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Abstract— Common reinforcement learning methods seek
optimal controllers for unknown dynamical systems by search-
ing in the “policy” space directly. A recent line of research,
starting with [1], aims to provide theoretical guarantees for such
direct policy-update methods by exploring their performance
in classical control settings, such as the infinite horizon linear
quadratic regulator (LQR) problem. A key property these
analyses rely on is that the LQR cost function satisfies the
“gradient dominance” property with respect to the policy pa-
rameters. Gradient dominance helps guarantee that the optimal
controller can be found by running gradient-based algorithms
on the LQR cost. The gradient dominance property has so
far been verified on a case-by-case basis for several control
problems including continuous/discrete time LQR, LQR with
decentralized controller, H2/H∞ robust control.

In this paper, we make a connection between this line of
work and classical convex parameterizations based on linear
matrix inequalities (LMIs). Using this, we propose a unified
framework for showing that gradient dominance indeed holds
for a broad class of control problems, such as continuous- and
discrete-time LQR, minimizing the L2 gain, and problems using
system-level parameterization. Our unified framework provides
insights into the landscape of the cost function as a function of
the policy, and enables extending convergence results for policy
gradient descent to a much larger class of problems.

I. INTRODUCTION

Linear quadratic regulator (LQR) is one of the most well
studied optimal control problems for decades [2]. Consider
the continuous time linear time-invariant dynamical system,

ẋ = Ax+Bu, x(0) = x0, (1)

where x ∈ Rn is the state, u ∈ Rp is the input, and A,B
are constant matrices describing the dynamics. The goal of
optimal control is to determine the input series u(t) that
minimizes some cost function that typically depends on state
and input. In the infinite horizon LQR problem, with constant
matrices Q ∈ Sn++, R ∈ Sp++, one minimizes

loss(u(t)) := Ex0

∫ ∞
0

(x(t)>Qx(t) + u(t)>Ru(t))dt (2)

It is known that the optimal controller is linear in the state,
referred to as static state feedback, and can be described as
u(t) = Kx(t) for a constant K ∈ Rp×n [2]. This can be
obtained by solving the algebraic Riccati equation (ARE) [3],
[4]. A large number of works have studied the solution of
ARE, including approaches based on iterative algorithms [5],
algebraic solution methods [6], and semidefinite programming
[7]. However, this approach is in sharp contrast to how one
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would typically minimize a cost function through gradient
descent on K, usually used in reinforcement learning settings.

In many practical cases, the system dynamics is unknown,
and among the optimal control algorithms, there are two major
types. The first type is model based methods, when the system
is first identified and then a controller is constructed based on
the identified system. System identification has a long history,
as reviewed [8]. Recently [9] gave sample complexity bounds
for state-observed system. [10]–[13] describe the joint system
identification and optimal control approaches.

Another type of method is model free method, when the
controller is directly trained by observing the cost (or loss)
function, without characterizing the dynamics. Here one does
not necessarily estimate the system parameters A,B. [14] is a
review of reinforcement learning area and optimal control and
studies some fixed point type dynamic programming methods.
Q-learning is a typical model free method for reinforcement
learning, and it is applied to LQR as in [10], [15], [16].

This paper mainly focus on another model-free method
called policy gradient descent. It calls for an estimate of
the cost (2) as well as its gradient with respect to controller
K when u = Kx. One hopes that gradient descent with
respect to K converges to the optimal controller K∗. The
policy gradient descent is more recently reviewed by [17],
[18]. [1] provides a counterexample showing that minimizing
the quadratic LQR cost as a function of K is not convex,
quasi-convex or star-convex.

Recently people have witnessed the empirical success of
first order methods in solving nonconvex reinforcement learn-
ing problems. [19, Ch. 3] proposes the gradient based method
for optimal control and extends to decentralized control. [20]
studies feedback control with dynamical controllers, and
observes that gradient descent with Youla parameterization
is robust within the set of stabilizing controllers while other
parameterizations are not. On theoretical side, [1] gives the
first result by proving the coercivity and gradient dominance
property of L(K) for the discrete time LQR. Based on
this, [1] shows the linear convergence of gradient based
method. Later [21] shows a similar result for the continuous
time case, [22], [23] give a more detailed analysis for both
discrete and continuous time LQR. [24] and [25] shows
similar results for two settings of zero-sum LQ games. [26]
studies the convergence of gradient descent on H2 control
with H∞ constraint and shows that gradient descent implicitly
makes the controller robust. [27] shows the convergence
for finite-horizon distributed control under the quadratic
invariance assumption. Those papers all show convergence
of policy gradient descent by gradient dominance property,
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but investigate different control problems and the proofs are
given case by case.

Traditionally, convex parameterization (convexification)
such as Youla parametrization, Q-parameterization, or the
more recent System Level Synthesis (SLS) have allowed
the reformulation of certain control design problems as
semidefinite programs. In this paper, we are interested to
see if these methods can help us distill the essence of the
gradient dominance property of the original control problem
that is nonconvex in K.

Control for nonlinear systems is far more difficult, typically
via dynamic programming, solving Bellman equations [28],
or recent deep RL that led to empirical success in control of
complex systems. Yet it is still mysterious how deep learning
models work in this context, and recent theoretical studies
have focused on linear systems in hope of providing insights
into more complex cases.

Contributions: In this paper, we will build a bridge
between nonconvex policy gradient descent and known
convex parameterization methods, which provides insight
into why convergence to the optimal solution happens despite
nonconvexity in all the problems cited above. We use a
mapping between the landscape of convex and nonconvex
objectives, and use this mapping to prove the gradient domi-
nance property of the nonconvex objective under reasonable
assumptions.

Our result is quite general—we show that continuous
time LQR is a special case that our theorem applies to,
and we generalize the guarantees provided by this method
to a range of other control problems including instances of
optimal control, robust control, mixed design and system level
synthesis (some are in appendix [29] due to space limit). Thus
for all these problems, if one wants to understand whether
the (nonconvex) loss with respect to controller parameter
K can be minimized by policy gradient descent (first-order
optimization methods that update K), one can directly check
if it is covered by our theorem, avoiding a case-by-case
analysis. Also, as discussed in [1], theoretical guarantees
for first-order methods naturally lead to guarantees for the
more practical zeroth-order optimization or sampling-based
methods, which do not need access to the gradient of the
cost with respect to K.

The rest of this paper is structured as follows. Sec. II
reviews the continuous-time LQR problem. Sec. III presents
our main result on the gradient dominance property for
the nonconvex loss. Sec. IV lists more examples of control
problems covered by the main theorem. Sec. V gives a proof
sketch with intuitive connections between the nonconvex and
convex formulations. The detailed proof appears in [29].

II. REVIEW OF CONVEX PARAMETERIZATION FOR
CONTINUOUS TIME LQR

Convexification method (e.g., solving optimal control by
linear matrix inequalities (LMI) in [30]) is widely used in
optimal control problems, and here we discuss its application
for continuous time LQR [21]. Define a continuous time linear
time invariant system (1) where x is state and u is input signal,

and x0 is the initial state. We assume that E(x0x
>
0 ) = Σ � 0.

This is a commonly used setup such as in [22, §3.3], [19,
Paper 3].

One can then consider minimizing the linear quadratic
(LQ) loss (2) as a function of u(t) where Q,R are positive
definite matrices. It is known [2] that, the input signal that
minimizes the loss function loss(u) is given by a static state
feedback controller, denoted by u(t) = K∗x(t). K∗ can be
obtained by solving linear equations, called riccati equations.
Note that once we know the optimal state feedback controller
is static, we can write loss as L(K) which is a function of K
instead, and search only in static state feedback controllers.

An alternative approach is reparameterizing to obtain a
convex formulation, as used in [21], which we will review
here, starting from the Lyapunov equation. Suppose the initial
state satisfies E(x0x

>
0 ) = Σ � 0, and ẋ = Ax. Then with

a matrix P ∈ Sn×n++ (P is a positive definite matrix) as the
variable, the Lyapunov equation is written as

AP + PA> + Σ = 0 (3)

In our setup (1), we use a state feedback controller u = Kx,
thus we have ẋ = (A+BK)x. We denote the set of stabilizing
controllers as SK,sta, which is defined as

SK,sta = {K : Re(λi(A+BK)) < 0, i = 1, ..., n}.

If a state feedback controller is applied, the loss is only
bounded when K ∈ SK,sta and is coersive in SK,sta [23].
Replace A by the closed loop system matrix A+BK in the
Lyapunov equation, and let L = KP ∈ Rp×n, we get

AP + PA> +BL+ L>B> + Σ = 0

Let A(P ) = AP + PA>, B(L) = BL+ L>B>, which are
often referred to as Lyapunov maps. Assume A is invertible,
then we have the relation

A(P ) + B(L) + Σ = 0. (4)

Indeed, once we fix the system and any stabilizing controller
A,B,K, the matrices P as well as L = KP are uniquely
determined. P is the Grammian matrix

P =

∫ ∞
0

et(A+BK) Σ et(A+BK)> dt. (5)

P is positive definite if Σ � 0. We are interested in the loss
function L(K) when1 K ∈ SK,sta, which corresponds to (2)
by inserting u(t) = Kx(t).

L(K) = Tr((Q+K>RK)P ). (6)

One can construct a bijection from P,L to K, and prove
that, if we minimize f(L,P ) subject to (4), the optimizer
P ∗, L∗ will map to the optimal K∗, and this minimization
problem is convex, so we can solve it by convex optimization
algorithms.

Convex reparameterization for Continuous time LQR:
Suppose the dynamics and loss are (1) and (2), and let
E(x0x

>
0 ) = Σ � 0. Denote the (static) state feedback

1If K is not a stabilizing controller, we define L(K) = +∞.
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controller by K, so that u(t) = Kx(t). The optimal control
problem then is

min
K
L(K), s.t. K ∈ SK,sta (7)

where L(K) is the cost in (2) with u = Kx. This problem
can be expressed as the following equivalent convex problem,

min
L,P,Z

f(L,P, Z) := Tr(QP ) + Tr(ZR) (8a)

s.t. A(P ) + B(L) + Σ = 0, P � 0, (8b)[
Z L
L> P

]
� 0 (8c)

The connection between the two problems is distilled in Sec.
III. For all feasible (L,P, Z) triplets in (8), we can take the
first two elements (L,P ), and they form a bijection with all
stabilizing controllers K in (7). The loss function values are
equal under the bijection. So we can solve for L∗, P ∗, and
K∗ = L∗(P ∗)−1.

III. MAIN RESULT

Motivated by methods that use gradient descent in the
policy space, we ask whether running a gradient-based
algorithm and getting ∇KL(K) = 0 for some K in fact
gives the globally optimum K∗. [1], [21] show the coercivity
and gradient dominance property of L(K) for the discrete
time and continuous time LQR respectively. In this paper, we
generalize these results from the special case of continuous-
time LQR to a much broader set of control problems, showing
the gradient dominance property of the nonconvex losses as
functions of policy.

We present our main result in Theorem 1. It is described as
a pair of problems satisfying Assumptions 1, 3, which covers
problems extending beyond continuous time LQR. In Sec.
IV we will review more examples showing the generality of
this result.

We begin by considering an abstract description of the
pair of problems (7) and (8). These problem descriptions
cover LQR as discussed in the last section, as well as more
problems discussed in Sec. IV. Consider the problems

min
K

L(K), s.t. K ∈ SK , (9)

and

min
L,P,Z

f(L,P, Z), s.t. (L,P, Z) ∈ S, (10)

where the sets SK ,S capture the control constraints. They
are defined differently for each specific example in Sec. IV.
For example, for continuous time LQR, SK is the set of all
stabilizing controllers (7) and S is the intersection of (8b)
& (8c). We allow special cases when (10) depends only on
L,P ,

min
L,P

f(L,P ), s.t. (L,P ) ∈ S (11)

We distill three properties of the two problems (9) and (10)
that will be critical for Theorem 1, and allow us to cover
more problems as discussed in Sec. IV.

Assumption 1. The feasible set S is convex in (L,P, Z).
The cost function f(L,P, Z) is convex, bounded, and differ-
entiable in (L,P, Z) ∈ S.

Assumption 1 imply the second problem is convex. Next,
we extract the property of the connection between (7) and
(8), and give an abstract description of the assumptions for
(9) and (10).

Assumption 2. Let P be always invertible2 in S. Assume
we can express L(K) as:

L(K) = min
L,P,Z

f(L,P, Z)

s.t. (L,P, Z) ∈ S, LP−1 = K.

With the assumptions above, we will present the main
theorem.

Theorem 1. We consider the problems (9) and (10), and we
require Assumptions 1,2. Let K∗ denote the global minimizer
of L(K) in SK . Then there exist constants C1, C2 > 0
independent of K,

1) if f is convex, the gradient of L satisfies3

‖∇L(K)‖F ≥ C1(L(K)− L(K∗)). (12)

2) if f is µ-strongly convex, the gradient satisfies

‖∇L(K)‖F ≥ C2(µ(L(K)− L(K∗)))1/2. (13)

The constants C1, C2 are discussed below and in [29].

Remark 1. The constants are case by case. We show that, for
continuous time LQR, in the sublevel set where L(K) ≤ a,
we define

ν = 4a
(
σmax(A)λ

−1/2
min (Q) + σmax(B)λ

−1/2
min (R)

)2

,

C1,1 = 2aνλ−1
min(Σ)λ

−1/2
min (Q)λ

−1/2
min (R),

C1,2 = 2a2ν2λ−2
min(Σ)λ

−3/2
min (Q)λ

−1/2
min (R),

Then C1 = (max{C1,1, C1,2})−1. [21] gives another convex
formulation with strong convexity and we can get C2 for that
form, the details are in [29].

Our lower bound of the gradient, ‖∇L(K)‖F & (L(K)−
L(K∗))α, is known as Lojasiewicz inequality [31]. When
α = 1/2, it is also called the gradient dominance property. If
Lojasiewicz inequality holds, all local minima of the objective
function are global minima, then an iterative method with
‖∇L(K)‖F → 0 makes the iterates converge to the global
minimum.

Assumption 2 is a rather weak assumption. Assumption 3
is a stronger one covered by Assumption 2 that, we assume

2The invertibility of P guarantees a well defined map between L,P and
K, which is usually true, e.g., for the instances in Sec. IV.

3We always consider the directional derivative of a feasible direction
within descent cone.
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that there is a bijection between K and (L,P ). This is true
for many control problems such as continuous time LQR. We
emphasize the special case for Assumptions 1,3 since it is
easy to illustrate in Sec. V.

Assumption 3. 1) (Bijection between two feasible sets) Let
P be invertible, K = LP−1 define a bijection4 K ↔
(L,P ). For any such bijection K ↔ (L,P ), ∃Z, such
that (L,P, Z) ∈ S.

2) (Equivalence of functions) Choose a controller K ∈
SK with corresponding (L,P ) ∈ S. Then L(K) =
minZ f(L,P, Z) subject to (L,P, Z) ∈ S.

Our main theorem suggests that, when the original non-
convex optimization problem can be mapped to a convex
optimization problem that satisfies Assumptions 1,2 or 1,3,
all stationary points of the nonconvex objective are global
minima. So if we can evaluate the gradient of nonconvex
objective and run gradient descent algorithm, the iterates
converge to the optimal controller.

IV. OPTIMAL CONTROL PROBLEMS COVERED BY MAIN
THEOREM

In order to reach the conclusion, Theorem 1 requires an
optimal control problem (9), its convexified form (10) and a
few assumptions. This is an abstract and general description
that does not need the exact continuous time LQR formulation
in Sec. II. We can easily check that the continuous time LQR
satisfies the Assumptions 1,3, thus we can directly apply
Theorem 1 to argue that the continuous time LQR cost L(K)
satisfies (12).

Below (more examples in [29]), we will list some examples
to show that Theorem 1 covers a wide range of optimal control
problems. This shows the generality of Theorem 1. They
can be optimized by policy gradient descent.

A. Discrete time LQR

We consider a discrete time linear system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0, (14)

The goal is to find a state feedback controller K minimizing

L(K) = Ex0

∞∑
i=0

x(t)>Qx(t) + u(t)>Ru(t), u = Kx

Similar to the continuous time system, one can choose the
same parameterization P,L, Z and another PSD matrix G ∈
Rn×n � 0 and solve the following problem

min
L,P,Z,G

f(L,P, Z,G) := Tr(QP ) + Tr(ZR) (15a)

s.t. P � 0, G− P + Σ = 0, (15b)[
Z L
L> P

]
� 0,

[
G AP +BL

(AP +BL)> P

]
� 0 (15c)

The goal is to argue that L(K) and (15) has the connection
such that Theorem 1 applies, so that the stationary point of
L(K) has to be the global optimum.

4Note that generally K = LP−1 cannot guarantee a bijection. However
bijection is possible with the extra constraint (L,P ) ∈ S.

Lemma 1. The LQR problem min L(K) with stabilizing K,
and problem (15), satisfy Assumption 1, 2.

Proof. (15) is a convex optimization problem. Now we prove
Assumption 2, i.e., we prove that L(K) equals the minimum
of the problem (15) with an extra constraint K = LP−1.

• We first minimize over Z, the minimizer is Z = LP−1L>.
Now replace L by KP and the loss becomes Tr((Q +
K>RK)P ).

• Eliminate G by[
P − Σ AP +BL

(AP +BL)> P

]
� 0

Using Schur complement, it is equivalent to

(AP +BL)P−1(AP +BL)> − P + Σ � 0

Plug in L = KP , we have

(A+BK)P (A+BK)> − P + Σ � 0.

The loss does not involve G so it does not change.
• Now, we need to prove that L(K) is equal to

min
P

Tr((Q+K>RK)P )

s.t. (A+BK)P (A+BK)> − P + Σ � 0. (16)

The constraint (16) can be written as

(A+BK)P (A+BK)> − P + Θ = 0, Θ � Σ.

• Denote the solution to (A+BK)P (A+BK)>−P+Θ = 0
as P (Θ). P (Θ) for all Θ � Σ covers the feasible points
of (16). P (Θ) is expressed as:

P (Θ) =

∞∑
t=0

(A+BK)tΘ((A+BK)>)t

So P (Θ) � P (Σ), ∀Θ � Σ. Since Q and K>RK are
positive semidefinite, Tr((Q + K>RK)P ) achieves the
minimum at P = P (Σ).

• At the end, P (Σ) is the Grammian E
∑∞
t=0 x(t)x(t)>

when Ex(0)x(0)> = Σ. We studied the connection
between continous time Grammian (5) and the loss (6), a
similar result holds for discrete time LQR:

Tr((Q+K>RK)P (Σ)) = L(K).

We build the connection between minimizing L(K), and the
convex optimization (15). We argued this pair of problems
satisfies the assumptions of Theorem 1. Theorem 1 suggests
that L(K) is gradient dominant, so we can approach K∗ by
gradient descent on K. This is essentially the conclusion of
[1], [22]. Note that the proof of discrete time LQR [1], [22]
and continuous time LQR [21], [23] cannot trivially extend
to each other.
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B. Minimizing L2 gain

We quote from [30] the problem of minimizing the L2 gain
with static state feedback controller K. As discussed in [30,
§6.3.2], this problem has an associated convex optimization
problem and we can show it satisfies Assumption 1,2.

We consider minimizing the L2 gain of a closed loop
system. The continuous time linear dynamical system is

ẋ = Ax+Bu+Bww, y = Cx+Du (17)

For any signal z, denote

‖z‖2 :=

(∫ ∞
0

‖z(t)‖22dt
)1/2

Suppose we use a state feedback controller u = Kx, and
aim to find the optimal controller K∗ that minimizes the L2

gain. We minimize the squared L2 gain as

min
K
L(K) := ( sup

‖w‖2=1

‖y‖2)2.

This problem can be further reformulated as [30, §7.5.1]

min
L,P,γ

f(L,P, γ) := γ, s.t.[
AP + PA> +BL+ L>B> +BwB

>
w (CP +DL)>

CP +DL −γI

]
:= M(L,P, γ) � 0. (18)

The minimum L2 gain is
√
γ∗ and K∗ = L∗P ∗−1. We will

show in [29] that the parameters K and (L,P, γ), with loss
L(K) and f(L,P, γ), satisfy Assumptions 1,2. Thus we can
claim that all stationary points of L(K) are global minimum.

[30, §6.3.2] suggests that L2 gain is also the H∞ norm
of transfer function, so it covers the instances in [26]. We
discuss this further in [29].

C. System level synthesis (SLS) for finite horizon time varying
discrete LQR

Different from the previous examples, we consider a
time varying system in a finite horizon, where we seek
to design a time varying controller. This problem and its
convex parameterization are introduced in [32]. It satisfies
Assumption 1,3. We consider the following linear dynamical
system

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t) (19)

over a finite horizon 0, . . . T . Let the state be x and the input
be u. Define

X =

x(0)
...
x(T )

 , U =

u(0)
...
u(T )

 ,

W =


x(0)
w(0)
...

w(T − 1)

 , Z =


0 0 ... 0 0
I 0 ... 0 0
0 I ... 0 0
...
0 0 ... I 0

 ,
A = diag(A(0), ..., A(T − 1), 0),

B = diag(B(0), ..., B(T − 1), 0)

Now we consider the time varying controller K that links
state and input as

u(t) =

t∑
i=0

K(t, t− i)x(i) (20)

and let

K =


K(0, 0) 0 ... 0
K(1, 1) K(1, 0) ... 0
...

K(T, T ) K(T, T − 1) ... K(T, 0)


We will minimize some loss function with the constraint. For
example, in the discrete time LQR regime, let the input be
(20) and define (More examples of nonquadratic cost in [32,
§2.2])

L(K) =

T∑
t=0

x(t)>Q(t)x(t) + u(t)>R(t)u(t), (21)

here Q(t), R(t) � 0. We will minimize L(K) where K is the
variable.

Convex problem: The dynamics (19) can be written as

X = ZAX + ZBU +W = Z(A+ BK)X +W

We define the mapping from W to X,U by[
X
U

]
=

[
ΦX
ΦU

]
W.

where ΦX ,ΦU are block lower triangular. There is a constraint
on ΦX ,ΦU : [

I − ZA −ZB
] [ΦX

ΦU

]
= I. (22)

It is proven in [32, Thm 2.1] that K = ΦUΦ−1
X . K and

ΦX ,ΦU is a bijection given ΦX ,ΦU satisfying (22).
Let Q = diag(Q(0), ..., Q(T )), R =

diag(R(0), ..., R(T )), the LQR loss with x(0) ∼ N (0,Σ)
and no noise is

f(ΦX ,ΦU ) =

∥∥∥∥diag(Q1/2,R1/2)

[
ΦX(:, 0)
ΦU (:, 0)

]
Σ1/2

∥∥∥∥2

F

the LQR loss with x(0), w(t) being i.i.d from N (0,Σ) is

f(ΦX ,ΦU ) =

∥∥∥∥diag(Q1/2,R1/2)

[
ΦX
ΦU

]
Σ1/2

∥∥∥∥2

F

.

If we solve minK L(K), K being lower left triangular, with
the above two models of w(t), both can be minimized with
constraint (22):

min
ΦX ,ΦU

f(ΦX ,ΦU ), s.t.
[
I − ZA −ZB

] [ΦX
ΦU

]
= I,

ΦX ,ΦU are lower left triangular

This problem is convex and satisfy Assumption 1. [32, Thm
2.1] suggests the relation between L and f satisfying the
Assumption 3 for Theorem 1. With Theorem 1, we can argue
that all stationary points of L(K) are global minimum.
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V. PROOF SKETCH

The full proof of Theorem 1 is in [29], and this section
is a sketch of the proof. We illustrate the idea in Figure 1,
which, on the high level, maps the loss function in original
space of controller K where the loss is nonconvex, and the
parameterized space with L,P, Z where the loss is convex.

Fig. 1: Mapping between nonconvex and convex landscapes.
Suppose we run gradient descent at iteration t, for any
controller K, we can map it to L,P, Z in the other parame-
terized space. and then we map the direction (L∗, P ∗, Z∗)−
(L,P, Z) and the gradient ∇f(L,P, Z) back to the original
K space. Since in (L,P, Z) space the loss is convex, then
〈∇f(L,P, Z), (L∗, P ∗, Z∗)− (L,P, Z)〉 < 0. We prove that
similar correlation holds for the nonconvex objective.

For simplicity, we sketch the proof using Assumptions
1,3. For any point K, we can find a point (L,P, Z) in
the parameterized space. If it is not the optimizer, we can
find the line segment linking (L,P, Z) and the optimizer
(L∗, P ∗, Z∗). Note that the optimization problem is convex
in this space so that 〈∇f(L,P, Z), (L∗, P ∗, Z∗)−(L,P, Z)〉
is upper bounded by f(L∗, P ∗, Z∗)− f(L,P, Z). Then with
the help of our assumptions, we can map the directional
derivative back to the original K space, and show that the
directional derivative in L(K) is not 0.

Before concluding, we remark that the assumptions in
Theorem 1 come from an optimization theory perspective,
and we do not dive into the control theoretic interpretations of
the constants and assumptions. Our approach has the benefit
that it unifies the analysis of many control problems in a
single abstract result. We leave it to future work to refine the
analysis to obtain the best case-specific convergence rates,
and to provide an interpretation of the associated constants
in terms of control theoretic notions.
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