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Abstract

Generative adversarial networks constitute a powerful approach to generative modeling.
While generated samples often are indistinguishable from real data, there is no guarantee
that they will follow the true data distribution. For scientific applications in particular,
it is essential that the true distribution is well captured by the generated distribution. In
this work, we propose a method to ensure that the distributions of certain generated data
statistics coincide with the respective distributions of the real data. In order to achieve this,
we add a new loss term to the generator loss function, which quantifies the difference between
these distributions via suitable f -divergences. Kernel density estimation is employed to
obtain representations of the true distributions, and to estimate the corresponding generated
distributions from minibatch values at each iteration. When compared to other methods,
our approach has the advantage that the complete shapes of the distributions are taken
into account. We evaluate the method on a synthetic dataset and a real-world dataset and
demonstrate improved performance of our approach.

1 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014) comprise a generator and a discriminator
network trained adversarially until the generator manages to produce samples realistic enough to fool the
discriminator. Since their conception, GANs have become a popular tool for generative modeling (Hong et al.,
2019; Gui et al., 2021). The GAN framework is generally applicable and it is probably best known for its
successes in image generation (Reed et al., 2016; Mathieu et al., 2016; Isola et al., 2017; Ledig et al., 2017).

Although GANs have proven powerful, challenges such as mode collapse and non-convergence remain (Saxena
and Cao, 2021). It is often the case that the generated samples, while realistic, stem from only a subspace
of the true data distribution, or do not reflect the relative frequencies with which they occur accurately.
For scientific applications in particular, such as in cosmology (Rodriguez et al., 2018; Villaescusa-Navarro
et al., 2021) or high-energy physics (Paganini et al., 2018; Alanazi et al., 2021), where GANs may serve as
differentiable surrogate models for expensive but highly accurate numerical simulations, having a good match
between the distributions is essential (Kansal et al., 2023).

It is this latter aspect that we tackle in this work, by matching properties of the generated distribution with
those of the real data distribution. In particular, we consider statistics of the dataset such as the power
spectrum components, and match their distributions. We incorporate these requirements in the form of
probabilistic constraints since it is not properties of individual samples that are enforced, but collective
characteristics of the dataset. The approach is chiefly aimed at applications in science, where suitable statistics
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to be matched can be chosen through domain knowledge. The only requirement on the statistics is that they
need to be differentiable.

The main ingredients of our approach are the following: we approximate both the distributions of the real
data and the generated data statistics efficiently via kernel density estimation (KDE) (Silverman, 1986). In
each iteration, the mismatch between true and generated distributions is then calculated through suitable
f -divergences and added as an additional term to the generator loss. That way, we end up with a constrained
generated distribution. Using f -divergences, as opposed to e.g. low-order moments of the distributions, has
the advantage that the full shapes of the distributions are taken into account. In the following, we refer to
our method as probabilistically constrained GAN (pcGAN).

2 Related Work

The field of physics-informed machine learning, where prior knowledge is introduced into the ML model, has
been an active area of research in recent years (Karniadakis et al., 2021; Cuomo et al., 2022). In the context
of GANs, two main approaches for including prior knowledge in the model exist.

In the first approach, the constrained values can be fed as additional inputs into the discriminator, such that
it can explicitly use constraint fulfillment as a means to distinguish between real and generated data. In
Stinis et al. (2019), GANs are employed for interpolation and extrapolation of trajectories following known
governing equations. The generated trajectories are constrained to fulfill these equations by passing the
constraint residuals as additional inputs to the discriminator; in order to prevent the discriminator from
becoming too strong, some noise is added to the residuals of the real data, which might otherwise be very
close to zero. When extrapolating, the GAN is applied iteratively from some initial condition; in order to
train stably, it learns to predict the correct trajectory from slightly incorrect positions of the previous step.

In Yang et al. (2019), a physically-informed GAN (PI-GAN) is developed to model groundwater flow. They
make use of the same basic idea as physics-informed neural networks (Raissi et al., 2019) and employ automatic
differentiation in order to obtain a partial differential equation (PDE) residual on the GAN output, which is
in turn fed into the discriminator. By evaluating the GAN prediction at many different points and comparing
to an equivalent ensemble of true values of the corresponding physical field, the GAN is constrained to adhere
to a stochastic PDE.

In the second approach, prior knowledge may be taken into account via additional loss terms in either
discriminator or generator loss: in Khattak et al. (2018; 2019), GANs are employed to simulate detector
signals for high-energy physics particle showers. Here, physical constraints such as the particle energy are
taken into account via additional generator loss terms.

In Yang et al. (2021), the incorporation of imprecise deterministic constraints into the GAN is investigated;
e.g. the case where the GAN output is supposed to follow a PDE, but where the PDE parameters are not
known accurately could be formulated as an imprecise constraint. In a first step, deterministic constraints
can be included by adding the constraint residuals as an additional loss term to the generator loss; they
argue that it is better to add such terms to the generator since this strengthens the weaker party in the
adversarial game, instead of giving an even larger advantage to the discriminator. In order to make the
constraint imprecise, they do not require that the residuals go to zero, but instead only include residuals
above a certain threshold value ϵ2 in the loss.

The work closest in aim to ours is probably that by Wu et al. (2020), where a statistical constrained GAN is
introduced. They add an additional term to the generator loss function in order to constrain the covariance
structure of the generated data to that of the true data. This additional term is a measure of similarity
between the covariances, and they concluded that the Frobenius norm was the best choice for this purpose.
They use their method to obtain better solutions for PDE-governed systems.

Similar to Wu et al. (2020), our method also imposes probabilistic constraints via an additional term to the
generator loss. However, there are significant differences: firstly, our method does not consider the covariance
structure of the dataset in particular, but instead allows to constrain on arbitrary statistics of the data.
Secondly, our method uses f -divergences to match the distributions of true and generated data statistics
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explicitly and takes the complete shapes of the distributions into account, instead of only the second-order
moments.

3 Background

The basic idea of generative adversarial networks (GANs) (Goodfellow et al., 2014) is to train a generator
to generate samples of a given distribution and a discriminator (or critic) to distinguish between real and
generated data. During the training, both networks are pitted against each other in a minimax game with
value function

min
G

max
D

V (D, G) = Ex∼pdata(x) [log D(x)] + Ez∼pz(z) [log(1 − D(G(z)))] . (1)

Here, D denotes the discriminator, G the generator, x samples drawn from the real data and z randomly
generated latent space vectors serving as input to the generator; pdata and pz denote the real data distribution
and the latent vector distribution, respectively. Discriminator and generator are then trained alternatingly
(with m ≥ 1 discriminator updates between each generator update); in (Goodfellow et al., 2014), it is shown
that a stable equilibrium to the minimax problem (1) exists and that the optimal solution lies in the generator
producing samples from the true data distribution.

The standard GAN can be very difficult to train and often suffers from mode collapse. In Arjovsky et al.
(2017), the Wasserstein GAN (WGAN) was introduced, where they suggest the earth-mover (EM) distance
as a new loss for the GAN. They show that the discriminator and generator losses can then be expressed as

LD = D(xgen) − D(xtrue), (2a)
LG = −D(xgen), (2b)

under the condition that the discriminator is Lipschitz continuous. Rather crudely, this is enforced by
clipping the weights of the discriminator. In the end, the terms in (2) are approximated as expectations over
minibatches.

With this loss function, the discriminator can be interpreted as a critic that assigns scores to both true and
generated samples. These scores are not constrained to any specific range and can therefore give meaningful
feedback to the generator also when the discriminator is outperforming. Advantages of the WGAN include
improved learning stability as well as meaningful loss curves (Gui et al., 2021).

In this work, we also consider two other common variants of the GAN: firstly, the WGAN with gradient
penalty (WGAN-GP) (Gulrajani et al., 2017), where the aforementioned weight clipping is avoided by
instead imposing a penalty on the discriminator that is supposed to enforce Lipschitz continuity. Secondly,
the spectrally normalized GAN (SNGAN) (Miyato et al., 2018), where Lipschitz continuity is ensured by
constraining the spectral norm of each layer of the discriminator explicitely.

4 Method

The aim of our method is to consider the distributions of Ns differentiable statistics z of the true dataset, such
as e.g. components of the power spectrum (compare Appendix C.1), and to ensure that the same statistics,
when extracted from the generated data, are distributed equally.

In order to match true (ptrue) and generated (pgen) distributions, we modify the generator loss (2b) as follows:

Lc
G = LG + λ

Ns∑
s=1

λsh(ptrue(zs), pgen(zs)). (3)

The function h is an f -divergence that quantifies the mismatch between ptrue and pgen, λ is a global weighting
factor for the constraints, and the λs, for which

∑
s λs = 1, allow to weight the constraints individually.

Three important choices remain to be made: how to choose the function h, how to obtain suitable functional
representations for ptrue and pgen, and how to adequately weight the different loss terms.
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Figure 1: The various representations involved in matching the statistic zs are depicted. The histogram in the
background shows the true data distribution. Left: Representation of the true data distribution. Middle
left: Representation of the generated data distribution with batch size 64 for different choices of σ in the
kernel. Middle right: Representation of the generated data distribution for various batch sizes with optimal
choice for σ (as determined via Algorithm 3 in the appendix). Right: Taking the recent minibatch history
into account (here with ϵ = 0.9) can smoothen out fluctuations and lead to a more accurate representation.
In this figure, a perfectly trained generator has been assumed, i.e. the minibatches have been sampled from
real data.

4.1 Quantifying the Mismatch

Let p, q be arbitrary probability density functions (PDFs). For f -divergences h, it holds that h(p, q) ≥ 0,
with equality if and only if p = q. These properties justify the use of f -divergences for the function h in (3).
A major advantage of using f -divergences, as opposed to e.g. the Wasserstein distance, is that they are
efficient to calculate.

The Kullback-Leibler (KL) divergence constitutes a straightforward choice for h and is defined as

h(p, q) = KL(p||q) =
∫ ∞

−∞
p(x) log p(x)

q(x)dx. (4)

The KL divergence is asymmetric and we consider the forward KL, also known as zero-avoiding, in order to
ensure a complete overlap of areas with non-zero probability of the distributions; in case of the reverse, or
zero-forcing, KL, the loss term would typically tend to match q to one of the peaks of p and hence fail to
match the distributions in a way suitable for our purposes.

The Jeffreys divergence (JD), which can be thought of as a symmetrized version of the KL divergence, as
well as the total variation (TV) distance constitute further options:

h(p, q) = J(p||q) = 1
2 (KL(p||q) + KL(q||p)) , (5)

h(p, q) = V (p − q) =
∫ ∞

−∞
|p(x) − q(x)|dx. (6)

An advantage of the latter choice is that no divisions by zero can occur, which may cause problems with the
other two options.

As an alternative to using f -divergences, we also discuss the maximum mean discrepancy (MMD) as a possible
loss function in Appendix B.2. We show that there are drawbacks to using the MMD loss and that the
method performs better when using f -divergences.

4.2 Obtaining Representations

In order to evaluate the loss terms in (3), means of extracting representations for both the true and generated
PDFs are required. We denote these representations as p̃true and p̃gen. Note that p̃true will need to be
determined only once, in advance of the GAN training, since it remains constant. In contrast to the true
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Algorithm 1 High-level algorithm
Step 1: obtain p̃true via (7)
Step 2: determine the optimal values fs

σ in (9)
(see Algorithm 3 in the appendix)

Step 3: train the pcGAN (see Algorithm 2)

Algorithm 2 Training the probabilistically
constrained GAN (pcGAN)

Input: Untrained D and G; p̃true; data {xtrue};
h; λ

Output: Trained D and G
for i = 1 to Nit do

for k = 1 to m − 1 do
sample xtrue
generate xgen
LD = mean(D(xgen) − D(xtrue))
update D
clip weights

end for
generate xgen
L0

G = −mean(D(xgen))
for s = 1 to Ns do

calculate statistics {zsj}nbatch
j=1 from xgen

determine p̃i
gen(zs) according to (10)

ls = h(p̃true(zs), p̃i
gen(zs))

end for
η = l − min(l) + 0.1(max(l) − min(l))
λs = ηs∑

s′ ηs′

Lc
G = λ

∑
s λsls

LG = L0
G + Lc

G

update G
end for

distribution, the generated distribution changes dur-
ing GAN training, and hence p̃gen also needs to be
determined anew after each generator update.

Kernel density estimation (KDE) (Silverman, 1986)
has proven effective for obtaining these representa-
tions. For the true distributions, we then get

p̃true(zs) = 1
N

N∑
j=1

1
σ̄s

K

(
zs − zsj

σ̄s

)
, (7)

where N denotes the number of datapoints, K the
kernel function and σ̄s the bandwidth of the ker-
nel. The choice σ̄s = 1

200 (maxj(zsj)−minj(zsj)) has
proven to give accurate representations for the true
distributions (compare e.g. the leftmost plots in Figs.
1, 2, and 5), as we typically have N ≫ 1000 and
can afford to choose such a small value. Throughout
the paper, we use Gaussian kernels with K(x) =
(2π)−1/2e−x2/2. We evaluate different kernel choices
in Appendix B.1.

We also approximate the generated distributions at
each iteration using KDE, using the constraint val-
ues as obtained from the current minibatch samples.
That is, we obtain the approximate generated PDFs
as

p̃gen(zs) = 1
nbatch

nbatch∑
j=1

1
σs

K

(
zs − zsj

σs

)
, (8)

where nbatch denotes the batch size.

For p̃gen(zs), choosing σs adequately is crucial and
requires more thought than in the case of p̃true. This
is due to the fact that there are much fewer samples
available in the minibatches. The bandwidths σs

are chosen separately for each constraint zs, under
the criterion that p̃gen as obtained from minibatches
drawn from the true data should have a mismatch
as small as possible with p̃true. Since the optimal values of σs would be expected to depend both on the range
of value zs in the true dataset and the batch size, we parameterized them as

σs(nbatch) = std(zs)/fs
σ(nbatch). (9)

A detailed description of how to determine the optimal values for fs
σ is given in Appendix A.

In order to improve the accuracy of p̃gen (assuming that pgen does not change drastically between subsequent
iterations), we can include information from the preceding minibatches via an exponentially decaying historical
average:

p̃i
gen(zs) = (1 − ϵ)p̃gen(zs) + ϵp̃i−1

gen (zs), (10)
where the parameter ϵ defines the strength of the decay and i denotes the current iteration. In this way,
the potentially strong fluctuations between minibatches are smoothened out, allowing for a more accurate
representation of pgen.

With representation (10) for the generated distribution and (7) for the true distribution, the one-dimensional
integrals required for evaluating h(p̃true, p̃gen) in (3) can be carried out numerically. In Fig. 1, the various
representations are illustrated.
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4.3 Weighting the Constraints

The following heuristic scheme has proven effective in weighting the constraints according to how big their
mismatches are relative to each other: first, we calculate η = l − min(l) + 0.1(max(l) − min(l)), where l is
a vector with components ls = h(p̃true(zs), p̃i

gen(zs)). Then we assign λs = ηs∑
s′ ηs′

. The first term in the
definition of η quantifies the constraint fulfillment relative to the best-fulfilled one and the second term
prevents already well-matched constraints from ceasing to be included. The global weighting factor λ needs
to be tuned separately.

A high-level overview of the method is given in Algorithm 1 and the pcGAN training is detailed in Algorithm 2.
Note that, while our training algorithm is based on the WGAN, the modified generator loss (3) is more
general and can be used for other types of GANs as well.

5 Results 1

In this section, we present the results obtained with our model. We introduce a set of evaluation metrics and
consider a synthetic example and a real-world dataset from physics. The evaluation metrics are chosen to
cover different aspects of the generated distribution and evaluate the GAN performance both in the sample
space and in a lower-dimensional space of high-level features, as is common practice (Kansal et al., 2023). We
compare the pcGAN to the unconstrained WGAN, WGAN-GP, SNGAN, and the statistical constrained GAN
from Wu et al. (2020). We investigate the impact that training parameters have on the model performance
and we combine the probabilistic constraint with the different GAN variants to evaluate its potential for
improving their performance.

More results are given in the appendices. In Appendix B.1, we investigate the impact that the choice of kernel
for the KDE has on the model performance. In Appendix B.2, we evaluate how well the MMD loss would
perform instead of the f -divergences for matching the constraints. A discussion on the training time required
for the different models is given in B.4. Additional information on the datasets, the training parameters, and
the high-level features is given in Appendix C.

5.1 Evaluation Metrics

To compare the different models, we consider four evaluation metrics:

The Fréchet distance in the sample space, as an alternative to the widely used Fréchet Inception distance
(Heusel et al., 2017). It quantifies the agreement of the first and second-order moments of the real and
generated distribution and is calculated via

d2
F = ∥µ − µ′∥2 + Tr

(
Σ + Σ′ − 2

√
ΣΣ′

)
, (11)

where µ, Σ correspond to the true distribution and µ′, Σ′ to the generated distribution.

The F1-score in the space of high-level features, which is defined as the harmonic mean between precision (P)
and recall (R):

F1 = 2 PR

P + R
. (12)

In the context of generative modeling, the precision is the fraction of generated samples that lie in the real
data manifold and the recall gives the fraction of real data samples that lie in the generated data manifold
Sajjadi et al. (2018). They are calculated as suggested in Kynkäänniemi et al. (2019), with choice k = 10 for
the k-nearest neighbor.

The agreement of the distributions of the constrained statistics, by calculating the average of the total
variations of the differences between their histograms:

V̄c = 1
Ns

Ns∑
s=1

V (phist
true(zs) − phist

gen (zs)), (13)

1The code for the project is available on GitHub: https://github.com/ppilar/pcGAN.
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Figure 2: (Synthetic example) The distributions of three different power spectrum components ps as
obtained by the different models are depicted, where the orange lines show the true distribution as obtained
via KDE (7). From left to right, the histograms correspond to the real data, the pcGAN, the method of
Wu et al. (2020), WGAN, WGAN-GP, and SNGAN. For the histograms, 20 000 generated samples have
been considered (or the full dataset, in case of the real distribution). Parameters for the pcGAN: bs = 256,
λ = 500, ϵ = 0.9, h = KL.

where phist
true and phist

gen are given by the outline of the histograms in e.g. Fig. 2. Here, the histograms have
been chosen instead of KDE, in order to use a quantity that is not directly constrained (and hence without
the danger of overfitting to).

The agreement between the distributions of the Nf high-level features (here denoted as x). We proceed in
the same way as for the constrained statistics:

V̄f = 1
Nf

Nf∑
f=1

V (phist
true(xf ) − phist

gen (xf )). (14)

To get an idea of the complexity of each metric, it helps to consider them in the following way: the F1 score
takes the full shape of the data distribution into account, dF the first two moments, and V̄c and V̄f the
marginal distributions of the constrained statistics and the chosen set of high-level features, respectively.

5.2 Synthetic Example

For our first experiment, we consider a superposition of sine waves. Each wave consists of two sine waves,
x = 1

2
∑2

i=1 sin(ωit), with angular frequencies sampled randomly from ωi ∼ |N (1, 1)|, and we generate 200
equally-spaced measurements in the interval t ∈ [0, 20]. In total, we create 100 000 samples of size 200 to
serve as training data. We perform the Fourier transform for real-valued inputs for each time series in the
dataset and we use the square roots of the power spectrum components (i.e. the absolute values of the Fourier
coefficients) as the statistics to constrain when training the GAN; that is, we have 101 separate constraints
(compare Appendix C.1).

In Figure 2, results for the different GAN variants are depicted. The data generated by the pcGAN matches
the true distributions very well. The method of Wu et al. (2020) comes in second, managing to cover the
correct range of constraint values, but failing to adhere to the precise shapes of the PDFs. The unconstrained
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WGAN WGAN + pc
(pcGAN)

Wu et al. Wu et al.
+ pc

WGAN-GP WGAN-GP
+ pc

SNGAN SNGAN
+ pc

d2
F

100 (↓) 48.94±6.65 12.32±2.99 3.81±2.13 2.49±0.75 49.38±5.26 3.50±0.76 49.67±5.76 12.67±3.51
F1 (↑) 0.15±0.06 0.18±0.05 0.16±0.03 0.20±0.06 0.16±0.04 0.19±0.05 0.16±0.09 0.18±0.08
V̄c (↓) 1.11±0.10 0.20±0.02 0.47±0.22 0.17±0.03 1.07±0.09 0.20±0.01 1.40±0.12 0.34±0.04
V̄f (↓) 1.70±0.10 0.80±0.05 0.95±0.12 0.75±0.05 1.61±0.15 0.70±0.05 1.63±0.11 0.88±0.08

Table 1: (Synthetic example) The different GAN variants and their combinations with the probabilistic
constraint are evaluated via different performance metrics, defined in Section 5.1: the Fréchet distance dF ,
the F1 score, the agreement of the constraint distributions V̄c, and the agreement of the distributions of
a selection of high-level features V̄f . The arrows indicate whether high or low values are better. Ten runs
have been conducted per model, and the mean values plus-or-minus one standard deviation are given. Bold
font highlights best performance. Parameters: bs = 256, ϵ = 0.9, h = KL, and λ = [500, 500, 500, 2500],
respectively, from left to right for the constrained variants.
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Figure 3: (Synthetic example) Different values of the weighting coefficient λ are considered (with bs = 256,
ϵ = 0.9, h = KL). Ten runs have been conducted per model, and the mean values plus-or-minus one standard
deviation are depicted.

WGAN, WGAN-GP and SNGAN are distinctly worse and tend to assign too much weight to the highest
peak of the distribution.

In Table 1, we evaluate the performance of the different models in terms of the evaluation metrics defined
in Section 5.1. The results for the constraint distributions are well reflected here and the unconstrained
versions of the GAN tend to perform worse than both the pcGAN and the method of Wu et al. (2020) on
metrics other than the F1 score. When considering the F1 score, pcGAN is ahead of the unconstrained
models. Between the pcGAN and Wu et al. (2020), pcGAN outperforms Wu et al. (2020) in all metrics apart
from dF , where the method of Wu et al. (2020) is slightly better. This makes sense since dF only evaluates
agreement of the first and second-order moments of the distribution; the latter are precisely what the method
of Wu et al. (2020) constrains.

In addition to the pcGAN, results for combinations of the other GAN variants with the probabilistic constraint
are also given in the table. It is apparent that adding the constraint also leads to improved performance of
the other models. In Appendix B.3, a plot visualizing the constraint fulfillment equivalent to Fig. 2 is given
for the different constrained GANs.

In Fig. 3, the impact of the global weighting factor λ is investigated. A clear improvement with increasing λ
is visible for most of the metrics, up to λ ≈ 100. Overall, the value λ = 500 appears to be a good choice. The
fact that dF and F1 also improve indicates that the constraints help to produce a better diversity of samples.

In Fig. 4, we consider the impact that the batch size and the historical averaging have on the results. Both
dF and constraint fulfillment improve with increasing batch size, although we observe diminishing returns for
batch sizes larger than 256. The inclusion of historical averaging improves dF , with higher values of ϵ yielding
larger improvements, whereas constraint fulfillment V̄c is only weakly affected by the choice of ϵ and the
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Figure 4: (Synthetic example) Different batch sizes with and without historical averaging are considered
(with λ = 500, h = KL). The different colors indicate which points belong to the same batch size. Ten runs
have been conducted per model, and the mean values plus-or-minus one standard deviation are depicted.

h=TV, ϵ=0.5 h=TV, ϵ=0.9 h=KL, ϵ=0.5 h=KL, ϵ=0.9 h=JD, ϵ=0.5 h=JD, ϵ=0.9
d2

F
100 (↓) 0.21±0.06 0.15±0.03 0.15±0.02 0.12±0.02 0.15±0.05 0.14±0.04
F1 (↑) 0.15±0.04 0.13±0.03 0.17±0.05 0.18±0.04 0.18±0.07 0.16±0.06
V̄c (↓) 0.29±0.05 0.25±0.06 0.19±0.02 0.19±0.02 0.14±0.01 0.16±0.02
V̄f (↓) 0.81±0.07 0.80±0.08 0.76±0.05 0.79±0.06 0.75±0.07 0.86±0.08

Table 2: (Synthetic example) Different choices for the f -divergence h quantifying the mismatch between
ptrue and pgen in (3) are considered (with bs = 256, λ = 500, h = KL). Ten runs have been conducted
per model, and the mean values plus-or-minus one standard deviation are given. Bold font highlights best
performance.

metric V̄f is negatively affected. F1 seems to be largely unaffected by the batch size and somewhat negatively
affected by large values of ϵ. The larger the batch size, the smaller the impact of historical averaging.

In Table 2, the different options for the f -divergence h used for matching the statistics are evaluated. The
results indicate that the Jeffreys divergence performs slightly better than the KL divergence, and the total
variation is notably worse than the other two options. Furthermore, we observe that increasing the factor ϵ
for the historical averaging tends to improve the results for the total variation and the KL divergence, but
slightly decreases the performance in case of Jeffreys divergence.

We conclude that the probabilistic constraint holds promise for improving the performance of many different
GAN variants. When training the pcGAN, larger batch sizes are advantageous. For smaller batch sizes, the
historical averaging can yield improvements. When choosing the f -divergence for matching the constraints,
the KL divergence or the Jeffreys divergence should be selected rather than the total variation. The weighting
parameter λ is essential to consider when tuning the pcGAN.

The architectures used for the discriminator and generator were inspired by the DCGAN architecture and
the ADAM optimizer (Kingma and Ba, 2015) was used for optimization. A discussion on the runtime of the
different models is given in Appendix B.4. A detailed description of the architecture, settings for the training
procedure, and samples as obtained from the different models can be found in Appendix C.2.

5.3 IceCube-Gen2 Radio Signals

The IceCube neutrino observatory (Aartsen et al., 2017) and its planned successor IceCube-Gen2 (Aartsen
et al., 2021) are located at the South Pole and make use of the huge ice masses present there in order to
detect astrophysical high-energy neutrinos. Deep learning methodology has already been employed to extract
information such as shower energy or neutrino direction from radio-detector signals (Glaser et al., 2023;
Holmberg, 2022). Holmberg (2022) also investigated the use of GANs to simulate detector signals. We are
going to consider the filtered Askaryan radio signals from Holmberg (2022), which were generated using
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Figure 5: (IceCube-Gen2) The distributions of minimum and maximum values as obtained by different
models are compared, where the orange lines show the true distribution as obtained via KDE (7). From left
to right, the histograms correspond to the real data, the pcGAN, the method of Wu et al. (2020), WGAN,
WGAN-GP, and SNGAN. For the histograms, 20 000 generated samples have been considered (or the full
dataset, in case of the real distribution). Parameters for the pcGAN: bs = 256, λ = 2, ϵ = 0.9, h = KL.

WGAN WGAN + pc
(pcGAN)

Wu et al. Wu et al.
+ pc

WGAN-GP WGAN-GP
+ pc

SNGAN SNGAN
+ pc

d2
F (↓) 25.34±12.85 16.71±9.52 15.82±8.15 14.21±6.20 5.36±6.09 6.88±4.80 9.02±7.07 7.09±3.17

F1 (↑) 0.35±0.17 0.38±0.12 0.36±0.08 0.36±0.06 0.48±0.08 0.45±0.06 0.46±0.04 0.46±0.06
V̄c (↓) 0.97±0.11 0.30±0.06 0.99±0.12 0.30±0.05 0.71±0.12 0.16±0.04 1.01±0.06 0.17±0.04
V̄f (↓) 0.76±0.09 0.70±0.08 0.75±0.05 0.68±0.07 0.66±0.06 0.65±0.07 0.65±0.05 0.63±0.04

Table 3: (IceCube-Gen2) The different GAN variants and their combinations with the probabilistic
constraint are evaluated via different performance metrics, defined in Section 5.1: the Fréchet distance dF ,
the F1 score, the agreement of the constraint distributions V̄c, and the agreement of the distributions of a
selection of high-level features V̄f . The arrows indicate whether high or low values are better. Ten runs have
been conducted per model, and the mean values plus-or-minus one standard deviation are given. Bold font
highlights best performance. Parameters: bs = 256, λ = 2, ϵ = 0.9, h = KL.

the NuRadioMC code (Glaser et al., 2020) according to the ARZ algorithm (Alvarez-Muñiz et al., 2010).
These signals take the form of 1D waveforms and in our experiments we want to focus solely on the shape
of these waves, not their absolute amplitudes; this is achieved by normalizing each signal to its maximum
absolute value. We use the pcGAN to constrain the generated data on the distributions of the minimum and
maximum values of the signals.

The results are depicted in Fig. 5. The pcGAN matches the characteristics of both minimum and maximum
distribution well. In particular, it manages to match the spikes at -1 and 1 more accurately than any of the
other models. The distributions as obtained via the other models also exhibit the two peaks in each of the
distributions but do not reproduce their precise shapes correctly. Out of the remaining models, WGAN-GP
matches the distributions best, with only slightly less pronounced spikes at -1 and 1 than the pcGAN. A plot
showing the constraint fulfillment for the different constrained GANs is given in Appendix B.3.

In Table 3, the evaluation metrics are given for the different GAN variants together with their constrained
versions. The constraints are matched well for all of the constrained models. In terms of the remaining
metrics, adding the constraint yields improvements for WGAN, Wu et al. and SNGAN. For WGAN-GP, on
the other hand, a slight decrease in performance can be observed. While WGAN-GP performs best on d2

F

and F1, WGAN-GP + pc is the best choice for overall performance when taking constraint fulfillment into
account.

The network architecture used for the GANs is based on that from Holmberg (2022). More details on the
training procedure, as well as plots of generated samples, are given in Appendix C.3.
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6 Conclusions and Future Work

We have presented the probabilistically constrained GAN (pcGAN), a method to incorporate probabilistic
constraints into GANs. The method is expected to be particularly useful for scientific applications, where
it is especially important for generated samples to represent the true distribution accurately and where
suitable statistics to be matched can be identified through domain knowledge. For a given statistic z, this is
achieved by adding the mismatch between the corresponding true and generated distribution as quantified via
a suitable f -divergence to the generator loss. Kernel density estimation is employed to obtain representations
for the distributions of the statistic. By adequately weighting the different loss terms, a large number of
statistics can be matched simultaneously.

We have evaluated our method using two different datasets. Our experiments clearly demonstrate that the
probabilistic constraint is effective at matching the chosen dataset statistics. In terms of the evaluation
metrics, the pcGAN constitutes a significant improvement over the standard WGAN. Depending on the
dataset under consideration, it can also outperform WGAN-GP, SNGAN, and the method of (Wu et al.,
2020). Combining the probabilistic constraint with GAN variants other than the WGAN also improves the
respective models in most cases.

For future work, it would be interesting to extend the method to consider the joint distribution of different
statistics, in order to also include correlations between them in the constraint. Furthermore, it would be
important to find a way to make the method compatible with conditional GANs in order to widen the range
of possible applications. Finding automated ways for obtaining suitable statistics to match, e.g. by using
features of classifier networks, could improve the approach and would allow for its application to situations
where insufficient domain knowledge is available. In principle, the probabilistic constraint could also be added
to other types of generative models. The main requirements would be that new samples are generated during
each iteration of the training procedure and that a suitable spot for adding the loss term can be identified.
Investigating the applicability of the approach to other generative models, such as autoencoders (Kingma
and Welling, 2014) or denoising diffusion probabilistic models (Ho et al., 2020), therefore constitutes another
promising avenue for future research.
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A Algorithm to Determine f s
σ

Algorithm 3 Determining the optimal value of fs
σ

Input: true data {zs}; p̃true(zs), h, Navg
Output: fs

σ

c = std(zs)
afσ

= logspace(−1, 2, 200)
for iN ∈ [0, Navg); ifσ ∈ [0, len(afσ )]; do

sample minibatch {zs}
σ = c

afσ [ifσ ]
determine p̃gen(zs) according to (8) using σ
H[ifσ

, iN ] = h(p̃true(zs), p̃gen(zs))
end for
ifσ

= min (mean (H, dim = 1))
fs

σ = afσ [ifσ ]

We propose a method to determine optimal values
for fs

σ that is based on the assumption that data
sampled from the true distribution should on aver-
age have the best possible match between the true
distribution and the KDE approximation obtained
via the minibatches.

The procedure is summarized in Algorithm 3. In
order to determine the optimal value of fs

σ for a
given constraint zs in (9), we perform a grid search
over possible values fσ. Introducing the standard
deviation of zs into the definition of σ via c helps
to narrow the range in which the optimal values
fs

σ lie. The grid is defined in the array afσ . For
each value of fσ, we evaluate the mismatch between
the true distribution p̃true(zs) (7) and the generated
distribution p̃gen(zs) (8) via the f -divergence h.

The minibatches are sampled from the true data since the aim is to obtain a mismatch as small as possible
for true data. The obtained values for the mismatch are then averaged over Navg minibatches. Subsequently,
the value fσ corresponding to the minimum mean value is determined; this value is the desired optimal value
fs

σ. Figures 8 and 9 illustrate the grid search.

B Additional Results

In this appendix, we present additional experiments and results.

B.1 The Choice of Kernel

kernel

G K(x) = 1√
2π

e− x2
2

u K(x) =
{

1
2
0

|x| ≤ 1
|x| > 1

epa K(x) =
{

3
4 (1 − x2)
0

|x| ≤ 1
|x| > 1

tri K(x) =
{

35
32 (1 − x2)3

0
|x| ≤ 1
|x| > 1

cos K(x) =
{

π
4 cos

(
π
2 x

)
0

|x| ≤ 1
|x| > 1

Table 4: Different choices of kernel.

Here, we investigate the impact that the specific choice of
kernel for approximating the distributions in (3) has on
the performance of the pcGAN. We consider the following
kernels (compare Table 4): Gaussian (G), uniform (u),
Epanechnikov (epa), triweight (tri), and cosine (cos). The
kernel bandwidths are obtained via (9) and Algorithm 3.
The results are depicted in Table 5.

The choice of kernel does not have a big impact on the
model performance. Overall, the Gaussian kernel seems to
be the best choice as it consistently performs well for all of
the metrics. A potential reason why the Gaussian kernel
is superior can be found in its unbounded support. This
means that there will always be some overlap between
real and generated distributions, as obtained via KDE,
enabling more informative gradients.

B.2 Using Maximum Mean Discrepancy to Match Statistics

The maximum mean discrepancy (MMD) is a kernel-based statistical test that can be employed to determine
whether two distributions are the same (Gretton et al., 2012). It has been used as a loss function to establish
generative moment matching networks, a distinct class of generative models (Li et al., 2015; Dziugaite et al.,
2015). While an adversarial approach has been suggested to improve MMD networks by learning more
suitable kernels (Li et al., 2017), they constitute their own model class and not an extension of the GAN. In
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K = G K = u K = epa K = tri K = cos
d2

F
100 (↓) 13.39±3.08 19.73±3.57 15.33±4.60 15.15±5.70 11.69±1.83
F1 (↑) 0.17±0.06 0.13±0.04 0.20±0.05 0.14±0.03 0.18±0.04
V̄c (↓) 0.20±0.02 0.21±0.02 0.31±0.08 0.25±0.06 0.23±0.03
V̄f (↓) 0.80±0.07 0.89±0.06 0.84±0.04 0.84±0.05 0.82±0.04

Table 5: (Synthetic example) The pcGAN with different choices of kernel K is evaluated via different
performance metrics, defined in Section 5.1: the Fréchet distance dF , the F1 score, the agreement of the
constraint distributions V̄c, and the agreement of the distributions of a selection of high-level features V̄f .
The arrows indicate whether high or low values are better. Ten runs have been conducted per model, and
the mean values plus-or-minus one standard deviation are given. Bold font highlights best performance.
Parameters: bs = 256, λ = 500, ϵ = 0.9, h = KL.

σ0 = 1
λ = 0.1

σ0 = 1
λ = 0.5

σ0 = 1
λ = 1.0

σ0 = 1
λ = 5.0

σ0 = 0.5
λ = 0.5

σ0 = 2
λ = 0.5

σ0 = 5
λ = 0.5

σ0 = [1, 2, 5]
λ = 0.5

d2
F

100 (↓) 21.52±3.97 18.42±3.03 18.59±3.47 23.26±2.93 19.52±2.12 17.27±4.13 18.16±5.63 17.63±3.47
F1 (↑) 0.14±0.05 0.11±0.04 0.11±0.03 0.10±0.07 0.13±0.04 0.17±0.06 0.18±0.04 0.13±0.04
V̄c (↓) 0.56±0.05 0.71±0.09 0.76±0.10 0.96±0.06 0.50±0.03 0.90±0.12 1.05±0.15 0.77±0.05
V̄f (↓) 1.20±0.11 1.13±0.06 1.07±0.07 1.01±0.06 1.08±0.06 1.10±0.08 1.10±0.13 1.07±0.05

Table 6: (Synthetic example) The pcGAN with MMD loss is evaluated for different weighting factors
λ and kernel widths σ0 via different performance metrics, defined in Section 5.1: the Fréchet distance dF ,
the F1 score, the agreement of the constraint distributions V̄c, and the agreement of the distributions of a
selection of high-level features V̄f . The arrows indicate whether high or low values are better. Ten runs have
been conducted per model, and the mean values plus-or-minus one standard deviation are given. Bold font
highlights best performance.

this appendix, we do not consider MMD networks but explore instead the effectiveness of using MMD as the
loss function for matching the high-level statistics. That is, we use the MMD loss instead of f -divergences
(compare Section 4.1) in (3).

The kernel maximum mean discrepancy between two distributions is defined as

MMD2 = 1
σ
E

[
K

(
X − X ′

σ

)
− 2K

(
X − Y

σ

)
+ K

(
Y − Y ′

σ

)]
, (15)

where X denotes real data and Y generated data. This leads to the following loss function, where we estimate
the expectations over minibatches and omit constant terms (i.e. terms that do not contain Y ):

LMMD = 1
M(M − 1)σ

∑
m̸=m′

K

(
ym − ym′

σ

)
− 2

MNσ

M∑
m=1

N∑
n=1

K

(
ym − xn

σ

)
, (16)

where M is the number of generated samples and N the number of real samples in the current minibatches.

One drawback of this approach is the mixed loss term in equation (16); it would be too computationally
costly to take into account the entire dataset at each iteration wherefore we also need to batch the real data.
When using f -divergences in loss (3) of our approach, similar problems can be circumvented by evaluating
ptrue once on a fixed grid in advance of the training. Here, the same trick does not work, since the statistics
as extracted from the generated data determine the points at which the kernel K needs to be evaluated.

The results for the MMD loss are given in Table 6. We consider different weighting factors for the loss
term, as well as Gaussian kernels with different bandwidth. The bandwidths of the Gaussian kernels for the
different constraints are given by the values σs in (9) times the factors σ0 given in the figure. When multiple
factors are given, then the sum of the corresponding Gaussian kernels is used. Both in terms of matching the
constraints and in terms of the performance metrics, the method performs better than the standard WGAN,
but worse than the pcGAN (compare Table. 1).
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Figure 6: (Synthetic example) The distributions of three different power spectrum components ps as
obtained with the different GAN variants when combined with the probabilistic constraint are depicted, where
the orange lines show the true distribution as obtained via KDE (7). For the histograms, 20 000 generated
samples have been considered (or the full dataset, in case of the real distribution). Parameters: bs = 256,
ϵ = 0.9, h=KL, and λ = [500, 500, 500, 2500], respectively, from left to right.

B.3 Additional plots

In Fig. 6, plots of the constraint fulfillment for the different GAN variants combined with the probabilistic
constraint are given. It is apparent that all the constrained models reproduce the constraint distributions
well, with WGAN-GP + pc giving the smoothest fit. The distributions obtained with SNGAN + pc are a bit
more jagged than the other ones.

In Fig. 7, an equivalent plot is given for the IceCube-Gen2 dataset. Again, all of the constrained GANs
match the distributions very well.

B.4 Runtime and parameter tuning

Table 7: Runtime (in hours) for one run of 100 000 iterations.

WGAN WGAN + pc
(pcGAN)

Wu et al. Wu et al.
+ pc

WGAN-GP WGAN-GP
+ pc

SNGAN SNGAN
+ pc

Synthetic (5.2) 1.20 1.95 1.38 2.06 1.91 2.68 1.40 2.07
IceCube-Gen2 (5.3) 0.37 0.46 0.45 0.46 0.51 0.56 0.60 0.67

The runtime required for one run of 100 000 iterations for the various models and for the different datasets is
given in Table 7. The time required to extract the representations ptrue for all of the constrained statistics
combined is negligible in comparison: for the synthetic dataset, it takes 66 seconds, and for the IceCube-Gen2
dataset 0.05 seconds. These numbers have been obtained on a system with NVIDIA RTX 3060 Ti 8GB GPU,
Intel Core i7 7700-K @ 4.2GHz CPU, and 16GB RAM. Overall, adding the probabilistic constraint increases
the runtimes of the corresponding base GANs by around 40% − 60% in case of the synthetic dataset, where
101 statistics are matched. For the IceCube-Gen2 dataset, where only 2 statistics are matched, the increases
in runtime are significantly lower at less than 30%.
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Figure 7: (IceCube-Gen2) The distributions of minimum and maximum values as obtained with the
different GAN variants when combined with the probabilistic constraint are depicted, where the orange lines
show the true distribution as obtained via KDE (7). For the histograms, 20 000 generated samples have been
considered (or the full dataset, in case of the real distribution). Parameters: bs = 256, ϵ = 0.9, h=KL, λ = 2.

Apart from the increased runtime for individual runs, new hyperparameters get introduced with the proba-
bilistic constraint which will cause additional upfront cost when tuning the model. They include the global
weighting coefficient λ, the parameter ϵ determining the amount of historical averaging, and the function h
to quantify the mismatch between the distributions. In principle, the heuristic choices in the formula for λs

can also be finetuned. The values used throughout the paper, e.g. those given in Tables 1 and 3, should serve
as good starting points for these hyperparameters. The most important parameter to tune individually for
each dataset is the global weighting coefficient λ in (3). Assuming that the underlying unconstrained GAN
has already been well-tuned, obtaining good results with the probabilistically constrained GAN should be
possible with 5-10 additional runs.

The fine-tuning process of the pcGAN can add a sizable amount of time to the model development. In
cases where the simulation would take minutes or hours to generate a single sample, and where thousands or
millions of samples need to be generated, the pcGAN can still provide speedups. Apart from that, GANs
have the advantage of being differentiable, which allows for their use in end-to-end optimization pipelines, e.g.
for detector design (Dorigo et al., 2023). Hence, being faster than the traditional simulation is not always
essential for GANs to be useful.

C Details on the Experiments

In this appendix, we give additional information on the experiments conducted in Sections 5.2-5.3, in
particular on the network architectures and the training parameters. The code for the project is available at
https://github.com/ppilar/pcGAN; note, however, that only the data for the synthetic example is available
there.

C.1 Constraints and High-level Features

We start by giving an overview of the different quantities that have been employed either as constraints or
performance metrics.

For the 1D signals x of length Nx = 200 in Sections 5.2 and 5.3, we used the minimum and maximum
values, min = min(x0, . . . , xNx−1), max = max(x0, . . . , xNx−1), mean values, mean = 1

Nx

∑Nx−1
i=0 xi, the mean

absolute values, mean(abs) = 1
Nx

∑Nx−1
i=0 |xi|, the number of zero crossings, Nzc, and the number of maxima,

Nmax, of the curves.
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The discrete Fourier transform for real-valued inputs (as implemented in torch.fft.rfft) was utilized to obtain
the complex Fourier coefficients for positive frequencies k ∈ [0, ⌊ Nx

2 ⌋ + 1] below the Nyquist frequency,

Xk =
Nx−1∑
n=0

xne−i2π kn
Nx , (17)

and the corresponding power spectrum components are obtained as Sk = 1
Nx

|Xk|2. The total spectral energy

is then calculated as S =
∑⌊ Nx

2 ⌋+1
k=0 Sk. When employed as constraints, we did not constrain on the power

spectrum components directly, but instead on ps[k] =
√

NxSk.

For the different experiments, we considered the following set of high-level features: mean, mean(abs),
max-min, E, Nzc, and Nmax. For the IceCube-Gen2 experiment, we omitted the mean, since it did not exhibit
interesting structure in its distribution.

C.2 Synthetic Example (Section 5.2)

The synthetic dataset consists of 100 000 samples of size 200, generated as described in Section 5.2. For
this example, we employed convolutional networks for both the discriminator and generator; details on the
corresponding network architectures are given in Tables 9 and 10, respectively. In layers where both batch
normalization and an activation function are listed in the column ‘Activation’, batch normalization is applied
to the input of the layer whereas the activation function is applied to the output. Padding is employed in
each layer such that the given output sizes are obtained; reflection padding is utilized.

Table 8: Hyperparameters used for the experiments.

Experiment Navg Nit lr fsched itsched β1 β2 clamping
Synthetic (5.2) 50 100 000 2e-4 0.5 70000 0 0.9 [0, 0.005]

IceCube-Gen2 (5.3) 50 100 000 5e-4 0.5 40000 0 0.9 [0, 0.1]

In Figure 8, the search for the best values fs
σ in (8) is illustrated for h = KL. It is apparent, that there is

a clear, batch size-dependent minimum of the KL-divergence for each constraint, with larger batch sizes
tending towards larger values of fs

σ; this is due to the fact that more samples in the minibatch allow for a
more fine-grained approximation of the generated distribution. In the top right plot, optimal values of fs

σ

are depicted for all components ps[i] of the power spectrum. The spike around i ≈ 10 is the result of some
outliers in the values of the power spectrum components; they lead to a high standard deviation of the true
distribution, which in turn requires a large fs

σ in order to obtain small enough standard deviations for the
KDE to resolve the narrow peak well.

In the bottom row, approximations of the generated distributions as obtained via the minibatches are depicted.
It is apparent that the mixtures of Gaussians approximate them reasonably well, with larger batch sizes
typically giving better results.

In Figure 10, samples from the true distribution as well as generated samples from the different GANs are
depicted. All of the GANs produce reasonable-looking results, although upon closer inspection it becomes
apparent that they do not necessarily constitute a superposition of two sine waves. Only the WGAN seems
to have a tendency to produce rugged curves.

C.3 IceCube-Gen2 (Section 5.3)

For this example, we considered 50 000 IceCube-Gen2 radio-detector signals of size 200 (generated using
the NuRadioMC code (Glaser et al., 2020) according to the ARZ algorithm (Alvarez-Muñiz et al., 2010)),
normalized to their respective maximum absolute values. The networks employed are a mixture of convolutional
and fully connected networks, which have been based on the architectures used in Holmberg (2022); details on
discriminator and generator architectures are given in Tables 11 and 12, respectively. For the discriminator,
the input to the network is first fed through four convolutional layers in parallel, the outputs of which are

19



Published in Transactions on Machine Learning Research (09/2024)

10 1 100 101 102

f

10 2

10 1

100

101

KL
 d

iv
er

ge
nc

e

ps [0]
bs=32
bs=64
bs=256

10 1 100 101 102

f

10 2

10 1

100

101

ps [15]
bs=32
bs=64
bs=256

10 1 100 101 102

f

10 2

10 1

100

101

ps [30]
bs=32
bs=64
bs=256

0 20 40 60 80 100
i

2

4

6

8

10

12

14

f*

bs=32
bs=64
bs=256

0 20 40 60 80
ps [0]

0.00

0.01

0.02

0.03

0.04

0.05

0.06
bs=32
bs=64
bs=256
KDE

0 2 4 6 8
ps [15]

0.0

0.1

0.2

0.3

0.4

0.5
bs=32
bs=64
bs=256
KDE

0.0 0.2 0.4 0.6 0.8 1.0 1.2
ps [30]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

bs=32
bs=64
bs=256
KDE

Figure 8: (Synthetic example) Determining optimal values fs
σ for h = KL. Top left: The three plots

on the top left depict the dependency of the KL divergence on the factor fσ for different power spectrum
components; the curves have been averaged over 50 minibatches sampled from the original dataset. Bottom
left: The first three plots in the bottom row depict the distribution of the constraint values together with
their KDE representation, as well as curves obtained via (8) from minibatches of different size (not averaged);
it is between them that the KL divergences in the top row have been calculated. Top right: Optimal values
of the factor fs

σ are depicted for different batch sizes, where the index i gives the respective component of the
power spectrum.

subsequently concatenated into one long array. The LeakyReLU activation function with factor 0.2 is applied.
During training, we also check for a rare failure mode where the GAN generates only horizontal lines; if this
happens, the training is restarted.

In Figure 9, a plot on the process of determining optimal values for fs
σ is shown at the example h = KL.

Same as for the synthetic example (compare Fig. 8), the KL divergences as a function of fσ exhibit clear
minima that depend on the batch size.

In Figure 12, samples from the true distribution as well as generated samples from the different GANs are
depicted. Altogether, most of the generated samples look good, with none of the models clearly outperforming
the others.

C.4 Training Parameters

Here, we summarize the training parameters used for the different experiments. Nit gives the number of
training iterations, lr the learning rate, and λ the weighting factor for the constraints in (3). In the column
‘clamping’, the range is given to which network parameters of the discriminator D were clamped in order to
enforce the Lipschitz constraint in WGANs (Arjovsky et al., 2017). The ADAM optimizer (Kingma and Ba,
2015) was used for training the networks, with hyperparameter values β1 and β2; a scheduler was employed
that reduced the learning rate by a factor of fsched after itsched iterations. The weighting factor for the
statistical constraint from Wu et al. (2020) was chosen as λWu = 1. The weighting factor for the gradient
penalty in WGAN-GP was chosen as λGP = 10. The parameter m, which gives the number of discriminator
updates per generator update, was chosen as 1.
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Figure 9: (IceCube-Gen2) Determining optimal values fs
σ for h = KL. Top left: The two plots on the top

left depict the dependency of the KL divergence on the factor fσ; the curves have been averaged over 50
minibatches sampled from the original dataset. Bottom left: The first two plots in the bottom row depict
the distributions of the constraint values together with their KDE representation, as well as curves obtained
via (8) from minibatches of different size (not averaged); it is between them that the KL divergences in the
top row have been calculated. Top right: Optimal values of the factor fs

σ are depicted for different batch
sizes, where the index i gives the respective constraint.

Table 9: Discriminator architecture for the synthetic example.

Layer Output Size Kernel Size Stride Activation
Input 1 × 200
Conv 32 × 99 3 2 BatchNorm, ReLU
Conv 32 × 99 3 1 BatchNorm, ReLU
Conv 32 × 99 3 1 ReLU
Conv 64 × 48 3 2 BatchNorm, ReLU
Conv 64 × 48 3 1 BatchNorm, ReLU
Conv 64 × 48 3 1 ReLU
Conv 128 × 23 3 2 ReLU
Conv 128 × 23 3 1 ReLU
Conv 128 × 23 3 1 ReLU
Conv 256 × 10 3 2 ReLU
Conv 256 × 10 3 1 ReLU
Conv 256 × 10 3 1 ReLU

Flatten 2560
Linear 1
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Table 10: Generator architecture for the synthetic example.

Layer Output Size Kernel Size Stride Activation
Input 1 × 5 BatchNorm

ConvTransp 256 × 25 3 16 BatchNorm, Tanh
Conv 256 × 25 3 1 BatchNorm, Tanh
Conv 256 × 25 3 1 BatchNorm, Tanh

ConvTransp 128 × 50 3 2 BatchNorm, Tanh
Conv 128 × 50 3 1 BatchNorm, Tanh
Conv 128 × 50 3 1 BatchNorm, Tanh

ConvTransp 64 × 100 3 2 BatchNorm, Tanh
Conv 64 × 100 3 1 BatchNorm, Tanh
Conv 64 × 100 3 1 BatchNorm, Tanh

ConvTransp 32 × 200 3 2 BatchNorm, Tanh
Conv 32 × 200 3 1 BatchNorm, Tanh
Conv 32 × 200 3 1 Tanh
Conv 1 × 200 3 1 Tanh

Table 11: Discriminator architecture for the IceCube-Gen2 data. The input is first fed through the layers
Conv01-Conv04 in parallel and the outputs are subsequently concatenated into one long array.

Layer Output Shape Kernel Size Stride Activation
Input 1 × 200

Conv01 32 × 49 5 4 LeakyReLU
Conv02 32 × 47 15 4 LeakyReLU
Conv03 32 × 44 25 4 LeakyReLU
Conv04 32 × 42 35 4 LeakyReLU

Concatenate 32 × 182
Conv 1 × 182 1 1 LeakyReLU
Linear 92 LeakyReLU
Linear 45 LeakyReLU
Linear 20 LeakyReLU
Linear 1

Table 12: Generator architecture for the IceCube-Gen2 data.

Layer Output Size Kernel Size Stride Activation
Input 5
Linear 24 ReLU
Conv 48 × 24 3 1 ReLU
Conv 48 × 24 3 1 ReLU

ConvTransp 24 × 49 3 2 ReLU
Conv 24 × 49 3 1 ReLU

ConvTransp 12 × 99 3 2 ReLU
Conv 12 × 99 3 1 ReLU

ConvTransp 6 × 199 3 2 ReLU
Conv 1 × 200 4 1
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Figure 10: Samples for the synthetic example as obtained from the different models.
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Figure 11: Samples for the synthetic example as obtained from the different constrained models.
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Figure 12: Samples for the IceCube-Gen2 dataset as obtained from the different models.
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Figure 13: Samples for the IceCube-Gen2 dataset as obtained from the different constrained models.
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