How to distribute data across tasks for meta-learning?
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Abstract

Meta-learning models transfer the knowledge acquired from previous tasks to
quickly learn new ones. They are trained on benchmarks with a fixed number of
data points per task. This number is usually arbitrary and it is unknown how it
affects performance at testing. Since labelling of data is expensive, finding the
optimal allocation of labels across training tasks may reduce costs. Given a fixed
budget of labels, should we use a small number of highly labelled tasks, or many
tasks with few labels each? Should we allocate more labels to some tasks and less
to others? We show that: 1) If tasks are homogeneous, there is a uniform optimal
allocation, whereby all tasks get the same amount of data; 2) At fixed budget, there
is a trade-off between number of tasks and number of data points per task, with a
unique and constant optimum; 3) When trained separately, harder task should get
more data, at the cost of a smaller number of tasks; 4) When training on a mixture
of easy and hard tasks, more data should be allocated to easy tasks. Interestingly,
Neuroscience experiments have shown that human visual skills also transfer better
from easy tasks. We prove these results mathematically on mixed linear regression,
and we show empirically that the same results hold for few-shot image classification
on CIFAR-FS and mini-ImageNet. Our results provide guidance for allocating
labels across tasks when collecting data for meta-learning.

1 Introduction

Deep learning (DL) models require a large amount of data in order to perform well, when trained
from scratch, but labeling data is expensive and time consuming. An effective approach to avoid
the costs of collecting and labeling a large amount of data is transfer learning: train a model on one
big dataset, or a few related datasets that are already available, and then fine-tune the model on the
target dataset, which can be of much smaller size [[1]. In this context, there has been a recent surge of
interest in the field of meta-learning, which is inspired by the ability of humans to learn how to learn
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[2. A model is meta-trained on a large number of tasks, each characterized by a small dataset, and
meta-tested on the target dataset.

The number of data points per task is usually set to an arbitrary number in standard meta-learning
benchmarks. For example, in few-shot image classification benchmarks, such as mini-ImageNet [3]],
[4] and CIFAR-FS [5]], each task has five classes (5-way) and either one or five images per class
is used during testing (1-shot or 5-shots). During training, the number of data points per class is
usually set to an arbitrary value, and it remains unclear how this number should be set to achieve the
best testing performance. We focus on training, rather than testing data, because the former can be
optimized by following specific procedures for data partitioning and collection.

Intuitively, one would think that the performance always improves with the number of training data
points. However, if the total number of labels is limited, is it better to have a large number of tasks
with little data in each task, or a smaller number of highly labelled tasks? Should some tasks be given
more labels than other tasks? The answers to these questions remain unknown, although they are
important to inform the design of new meta-learning benchmarks and the application of meta-learning
algorithms to real problems, especially given that data labelling is costly. Hence, we address these
questions for the first time, for a specific meta-learning algorithm: MAML ([6]). Our contributions
are:

e We introduce the problem of optimizing data allocation in meta-learning, with a fixed
budget of total data points to distribute across training tasks. We show that, when tasks are
homogeneous, the optimal solution is distributing data uniformly across tasks: all tasks get
the same amount of data. This setting is considered in most meta-learning problems (section
[ Theorem[T).

e When data is distributed uniformly across tasks, we show that the trade-off between number
of tasks and number of data points per task, at fixed budget, has a unique and constant
optimum for large budgets (section[5} Theorems 2} [3] Figures [I] 2).

e Next, we consider the problem of two sets of tasks, easy and hard. When trained separately,
we show that hard tasks need more data (per task) than easy tasks. While it is intuitive that
hard tasks require more data for training, we emphasize that the total number of data points
is fixed by the given budget, therefore the number of tasks is smaller (section [6.1] Figure[3).

e Finally, we study the problem of training a non-homogeneous mixture of easy and hard
tasks. In contrast to when they are trained separately, we show that better performance is
obtained by allocating more data to easy tasks. Our interpretation is that, as long as learning
transfers from easy to hard tasks, it is better to train more on the former since they are easier
to learn. Interestingly, human visual skills also transfer better from easy tasks [7] (section

[6.2] Figure[4).

We prove results mathematically on mixed linear regression, and confirm those results empirically on
few-shot image classification on CIFAR-FS and mini-ImageNet.

2 Related Work

In the context of meta-learning and mixed linear regression, the work of [8] asks whether more tasks
with a small amount of data can compensate for a lack of tasks with big data. However, they do not
address the problem of finding the optimal allocation of data for a fixed budget, which is the main
scope of our work. The work of [9] studies the problem of allocating a fixed budget of data points
to a finite set of discrete distributions. In contrast to our work, they do not study the meta-learning
problem and their data has no labels. Similar to us, a few theoretical studies looked at the problem
of mixed linear regression in the context of meta-learning ([LO], [[L1], [12f], [L3], [14], [L5], [L6]).
However, none of these studies look into the problem of data allocation, which is our main focus.

An alternative approach to avoid labelling a large amount of data is active learning, where a model
learns with fewer labels by accurately selecting which data to learn from [17]]. In the context of
meta-learning, the option of implementing active learning has been considered in a few recent studies
(L8], [19], [20], [21], [22]. However, they considered the active labeling of data within a given task,
for the purpose of improving performance in that task only. Instead, we ask how data should be
distributed across tasks.



In the context of recommender systems and text classification, a few studies considered whether
labeling a data point, within a given task, may increase performance not only in that task but also
in all other tasks. This problem has been referred to as multi-task active learning [23]], [24]], [25],
[26]], [27]], or multi-domain active learning [28]], [29]. However, none of these studies consider the
problem of meta-learning with a fixed budget. A few studies have looked into actively choosing the
next task in a sequence of tasks [30], [31]], [32], [33]], but they do not look at how to distribute data
across tasks.

3 Meta-learning

The reader may refer to [2] for a general introduction to meta-learning with neural networks. In
this work, we consider the cross-task setting, where we have a distribution of tasks 7 ~ p(7) and a
distribution of data points for a given task D™ ~ p(D|r). Each task has a loss function £(6; D) that
depends on a set of parameters 6 and data D. Here we assume that the loss has the same functional
form across tasks (e.g. square loss if they are all regression tasks, cross-entropy if they are all
classification tasks). The goal of meta-learning is minimizing the mean of the loss across tasks and
data.

In the meta-training phase, m tasks (7;)7 , are sampled from p(7) and, for each task n! training
t

data points D} = (x!;,y};);~, and ny validation data points D} = (x};, yw) 2y, are sampled

independently from the same distribution p(D|7;). We assume that the data is given by input x - label

y pairs. The meta-training loss is a function of the data and the meta-parameters w, is equal to

Lmeta ( Dt Dv _ Z Zc( w, Dt Zj,y”) (1)

The parameters are adapted to each task ¢ by using the transformation 6(w, D!). Different meta-
learning algorithms correspond to a different choice of this transformation. Here we use MAML [6],
which performs a fixed number of stochastic gradient descent steps with respect to the data for each
task. With a single gradient step, that is equal to

f(w,D!) = w C“ZV £ (wixt;y) )

v j=1
where «; is the learning rate for task <. This equation corresponds to a full-batch update, employing
all the data for a given task, but mini-batch gradient updates can be performed as well. A number &
of gradient steps may be used instead of one. This step is referred to as inner loop of meta-learning.

The loss in Eq.(I)) is minimized with respect to the meta-parameters w, namely
* (D', D") = argmin L"'* (w; D, D") 3)
w

This minimum is searched by stochastic gradient descent, using a distinct learning rate qy,esq. At
each gradient step, Eq.(2) is computed for each task and the gradient of Eq.(T)) with respect to w is
taken. This step is referred to as outer loop of meta-learning. Note that Eq.(I)) includes all m tasks,
which translates into full-batch training when taking the gradient. However, a mini-batch of tasks
may be also drawn from the set of m tasks at each step of the optimization. Standard optimization
procedures such as early stopping and scheduling of the learning rate ¢t can be applied. In the
case of mixed linear regression (section [3]), we solve Eq.(3) exactly by linear algebra.

In the meta-testing phase, the test loss £t¢%* is computed using the optimal value w* and test datasets
Dt DV

Etest (2)t7 DU, ﬁt7 @v) — Emeta (w* (z)t7 rDv) : @t’ ﬁv) (4)
The test datasets correspond to a new draw of both tasks and data points. The values of hyperparame-
ters m, nt, n?, , k for meta-testing are not necessarily the same as those used during meta-training.
The main focus of this work is optimizing m, nf, n? for meta-training, while they are fixed during
meta-testing. To evaluate the performance of the model for a given choice of the hyperparameters,

we compute the average test loss, defined as
test

Z R E E ]E Ctest (5)
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4 The data allocation problem

We denote the number of data points per task ¢ during meta-training as N; = n! + n?, equal to
the sum of training and validation data. In all experiments we used an equal split of training and
validation, n! = n? = n,;. We assume that the total number of data points for meta-training, referred
to as budget, is constant and equal to b = > " | N; = 23" | n;. This is equal to the total number
of data points across all training tasks, and is assumed fixed, while the number of data points per task
N; are allowed to vary. We denote by n the vector of n; values, n = (ny,...,n,,), and define the
data allocation problem of finding the value of n such that the average test loss is minimized

n* = argmin ZteSt(nl, ey M) (6)

n:y ™, n;=b/2

The optimal value n* is referred to as optimal allocation, it may depend on the budget and on other
hyperparameters of the model. The optimal allocation determines which tasks should get more or less
data, for a fixed budget b and number of tasks m. In the following theorem, we provide conditions
under which the optimal data allocation is uniform.

—test . . . . . . .
Theorem 1. 1f the test loss £ is invariant under permutations of task allocations, i.e. permutations
of its arguments (n1, ..., n,,) then the uniform allocation n = (n,...,n) withn = % is a local

extremum of the constrained optimization problem, provided that it is non-degenerate.

Furthermore, if

gt (e T ) < L (), ™
2 2

for all ny, ..., n,,, subject to Zle n; = %, then the uniform allocation is the global minimum of the

data allocation problem.

Proof. The proof of the first part (see Modern Purkiss principle) is given by [34], noting that the
action of the symmetric group preserves the constraint and is irreducible, while the proof of the
second part (global minimum) is given by [35]]. O

Note that convexity of the test loss is a sufficient condition for the global minimum. We show in
section [5.1] that the Purkiss principle applies to the case of mixed linear regression with homogeneous
tasks. This result motivates, in addition to the data allocation problem @, the study of the uniform
allocation problem, in which the number of data points is assumed to be equal across tasks, but now
the number of tasks m is allowed to vary. The solution of this problem is defined by
n* = argmin ZteSt(n
n:nm=>b/2

(®)

In this case, the question is whether to have more data and less tasks, or less data and more tasks,
for the fixed budget b. In the next sections, we study both problems of data allocation and uniform
allocation on mixed linear regression and few-shot image classification on CIFAR-FS and mini-
ImageNet (Section[5.2).

4.1 Computation of the optimum

. . . . —test * e o as
In the case of linear regression, we derive exact expressions for £~ and n* in some limiting cases.

. . . . . . . . —test
In few-shot image classification, and in further linear regression experiments, we estimate £
empirically by searching a grid of values of n. We average the test loss over multiple repetitions
with different data samples and different initial conditions for w. Then, we determine the mean and
standard deviation for the optimum n* by the following procedure: we generate multiple instances of
test loss/accuracy vs n by sampling uniformly from the repetitions at each value of n, we record the
optimal n* of each instance and construct a distribution of n* across all instances. We also provide
nonlinear (sinusoid) regression experiments in the appendix (section [B].



5 Solution of the uniform allocation

In this section we consider the problem of uniform allocation, while the non-uniform case is studied
in section[6] We look at the trade-off between having either more tasks or more data per task, for a
fixed budget on two problems: mixed linear regressionand few-shot image classification.

5.1 Mixed linear regression

In mixed linear regression, each task is characterized by a different linear function, and the loss is the
. _1 T2

mean squared error £ (0;x,y) = 5 (y -0 X) .

where the label y is a scalar, while the input x and the parameter 6 are vectors of p components. Each

task corresponds to a different value of the generating parameter 6.

2
0~N <00, Ip> 9)
p

where 6y, v are hyperparameters, and I, is the p X p identity matrix. The distribution of data for a
given task is given by

y|x,0 ~N(07x,0%) (10)
x ~ N (0,\I)) (11)

where o is the label noise and A is the input variability. Each data point is independently drawn from
this distribution, for either training or validation set. We distinguish between the case of homogeneous
tasks, where all tasks have the same values of (o, \), and non-homogeneous tasks, where we allow
those values to vary across tasks. In Theorem [2]in appendix [C| we provide an approximate expression
for the MAML test loss for mixed linear regression.

It follows from our result that when tasks are homogeneous (o; = o, A; = ) and a fixed learning rate
is used for all meta-training tasks (a; = ), we note that the test loss @ is permutation invariant,
thus the Purkiss principle of Theorem [T| applies. Therefore, in the remainder of this section we
consider only the case of uniform allocation (n; = n). Non-homogeneous tasks and non-uniform
allocation are studied in section[6] Note also that Theorem [2]assumes an underparameterized model
(p < i~ n;). For completeness, we also study the overparameterized case in the appendix (section
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Figure 1: The optimal number of data points per task is constant for large budgets: linear
regression. A: Test loss vs. number of data points per task at fixed budget (more data points
imply less tasks). Dots: experimental values; Lines: theoretical prediction Eq.(16), different lines
correspond to different budgets (legend). As predicted by Theorem 2} theoretical prediction is more
accurate for larger budgets. Each curve has a unique optimum. B: Optimal number of data points per
task vs. budget, the four points correspond to the four curves in panel A. The theoretical prediction
of Eq.(T10) (orange line) is close to the estimated experimental optimum (see section [4.1] for its
computation).

Figure[TJA plots the meta-test loss of mixed linear regression as a function of n for different budgets.
It shows a good agreement between the experiments and the theoretical prediction of equation (16)



(see appendix for details, section[AT). According to equation (T6), the error between theory and
experiment is expected to be of order O (b=%/2), since b ~ O (£2), indeed theoretical prediction
is more accurate for larger budgets. As expected, test loss decreases with budget, since more data
implies better performance. We emphasize that curves have a convex shape, implying that there is
a unique optimal value of n for each budget. While the curves tend to flatten at large budgets, the
optimum remains approximately constant, as shown in Figure [IB.

In Theorem [3] (appendix, section [D) we compute the unique solution of the uniform allocation
problem for mixed linear regression. Theorem [3|implies that there is a unique and constant optimum
for the number of data points per task at large budgets. While the theoretical optimum does not
depend on the budget, it may depend on whether tasks are hard or easy (see section[6). Figure[TB
shows the optimal n* as a function of budget, it shows that the theoretical value of the optimum
(orange line) agrees with the experiments.
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Figure 2: The optimal number of data points per task is constant for large budgets: Few-shot
image classification: A,B: CIFAR-FS, D,E: mini-ImageNet dataset. Format is the same as of Figure
[} Curves are noisy and tend to flatten at large budgets, but there seems to be a unique optimum for
each budget value. The optimum is computed empirically as explained in sectiond.1] The optimal
number of data points converges to ~ 7 for CIFAR-FS and to ~ 10 for mini-ImageNet. Error bars
show standard deviation.

5.2 Few-shot image classification

We next tested whether the results of mixed linear regression generalize to the more interesting
problem of few-show image classification. In this case, the loss function is the cross-entropy,
L(0;2,y) = —yT log (fo(z)), where y is a one-hot encoding of the class label, and fy(x) is the
output vector of a neural network with parameters # and input . We use a convolutional neural
network commonly used with MAML on image classification [6] (see appendix @ for details).

We investigate the CIFAR-FS [5] and mini-ImageNet [3]] datasets, which are few-shot versions of
CIFAR-100 and ImageNet, respectively. Both classification problems are 5-way: each task contains 5
classes. We refer to the number of data points per class, which has to be multiplied by 5 to find the
number of data points per task. As in previous studies, we used 5 shots during testing (5 data points
per class), while the number of shots during training depends on the data allocation.

In previous work [3], [5], we note that tasks are usually re-sampled indefinitely until convergence of
the model, thus there is no limit on the number of tasks that can be generated. We instead pre-sample
a set of tasks in order to fix the budget constraint. For comparison, we also run experiments in the
usual way, and we call this the infinite budget case. However, the total number of labels is fixed and,



even if tasks are re-sampled indefinitely, it does not imply that the amount of data is infinite, rather
the same image may appear in multiple tasks.

As expected, Figure 2] shows that test performance improves with the budget, for both CIFAR-FS and
mini-ImageNet (Figure[JA,C). For infinite budget, the accuracy is similar to previously reported values
(~ 63% for mini-ImageNet [6], ~ 71% for CIFAR-FS [J5]]). For CIFAR-FS, the optimal number of
data points per class was ~ 20 at small budgets, but decreased and remained approximately constant
at ~ 7 for large budgets (Figure [2B). For mini-ImageNet, the optimal number of data points per class
was ~ 5 at very small budget and then increased and remain approximately constant at ~ 10 (Figure
D). The performance curves in Figure 2JA,C tend to flatten at higher budgets, but the optimum does
not change significantly. Overall, the empirical study of both datasets confirms our prediction that the
optimal number of data points per task is constant at large budgets.
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Figure 3: Hard tasks prefer more data (and less tasks) when trained separately. Few shot image
classification on CIFAR-FS. A Tasks are made harder by drawing classes within a hierarchy; B Tasks
are made harder by adding label noise. Both plots show test accuracy versus the number of data points
per class, as in Figure 2JA. Each plot shows an estimate of the point of maximum accuracy, with error
bars showing standard deviation (see section [.1]for its computation). In both cases, performance is
lower and the optimal number of data points per class is larger for hard tasks.

6 Easy vs hard tasks

In this section we consider the case of non-homogeneous tasks. We distinguish between two sets of
tasks, easy and hard. We use two independent definitions of hard tasks, one affects the input and the
other affects the output (label) of a dataset. We apply this definition in a similar way to both mixed
linear regression and few-shot image classification.

For the problem of mixed linear regression, we define fask difficulty in terms of the hyperparameters
o and \. A task is harder if it has a larger o (at equal \) or smaller A (at equal o). The case of larger
o is intuitive, a task is harder to learn if labels are more corrupted by noise. In the case of smaller A,
the smaller input range makes it harder to solve the regression problem in presence of noise.

In few-shot image classification, the first method to make a task harder is to introduce label noise
[36]: each input image has 20% probability of having its label swapped with another random class.
The second method is similar to [[15]: we take advantage of the hierarchical tree of the CIFAR-100
dataset and we constraint each task to draw classes from one of three superclasses: 1) animals, 2)
vegetations, 3) object and scenes. Therefore, we assume that each task has a smaller variability of
its input, not in terms of pixels color or intensity, but in terms of semantic relations. Intuitively, it is
harder to distinguish inputs when they are more similar to each other. We refer to the two different
definitions as, respectively, noisy labels and class hierarchy.

6.1 Separate training

Before studying the training of a mixture of easy and hard tasks, we ask what is the optimal uniform
allocation when the two types of tasks are trained separately. In mixed linear regression, the expression
for the optimum of the uniform allocation n* is given by Eq.(110)), but is hard to evaluate how it



depends on o and \. Therefore we computed an approximation that holds for small o/ (see equation

(133)) in the appendix):
0./2 % 4 5
n* = {2 (1—1—2)] a’§p+0(a’§) (12)
v

where o/ = M2a and 0/ = o /. The optimum increases with o, suggesting that harder tasks require
more data (and less tasks) at fixed budget. For ), there are two opposing forces: 1) On one hand a
smaller ) is equivalent to amplifying output noise ¢’ and increasing the optimum n*; 2) On the other
hand, X rescales the learning rate o’ with the opposite and stronger effect that a smaller A decreases
the optimum.

Figure[3]shows that introducing task difficulty in few-shot image classification on CIFAR-FS increases
the optimum for both methods (A: class hierarchy; B: noisy labels, see section[A.3]for details). As
expected, performance is lower for hard tasks in both cases (note that we train and test on the same
set of tasks, either only easy or only hard). While it is intuitive that hard tasks require more data to
learn, we emphasize that, for a fixed budget, this comes at the expense of a smaller number of tasks.

6.2 Joint training

We now turn to the problem of training on a mixture of easy and hard tasks. In addition to a fixed
budget, we further assume an equal number of easy and hard tasks, and a constant sum of easy and
hard data points per task. Therefore, the only hyperparameter of interest is the relative number of data
points per task for easy vs hard. Note that we use a mixture of easy and hard tasks also for testing,
but we always use an equal number of easy and hard data points and tasks in that case (see section

[A3]for details).

After the results of section we expect better results when allocating more data to hard tasks.
Surprisingly we find that the opposite is true. Figure [d]shows that a slightly higher performance is
obtained when allocating more data to easy tasks, in few-shot image classification on CIFAR-FS for
both methods (Panel A: class hierarchy; Panel B: noisy labels).
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Figure 4: When training on a mixture of easy and hard tasks, it is better to allocate more data
to easy tasks. Few shot image classification on CIFAR-FS. A Tasks are made harder by drawing
classes within a hierarchy; B Tasks are made harder by adding label noise. Both plots show test
accuracy versus the relative amount of easy vs hard data points per class. Each plot shows an estimate
of the point of maximum accuracy, with error bars showing standard deviation (see section 4.1 for its
computation). In both cases, a slightly higher performance is obtained by allocating more data to
easy tasks than to hard ones.

7 Discussion

In this paper we analysed the problem of optimal data allocation in meta-learning when the budget of
labelled examples is limited. When tasks are homogeneous, we showed that uniform data allocation
across tasks is optimal (under the assumptions of Theorem [I)). We further studied whether one should
use less tasks with more data or more tasks and less data. For mixed linear regression, we proved



that the optimum is unique and constant for large budgets. We confirmed this finding empirically on
few-shot image classification (an example of nonlinear regression is also included in the appendix).

Overall, our study exemplifies the importance of optimal data allocation in meta-learning and gives
a series of empirical and theoretical insights on the relation between model performance and data
allocation for MAML. While the behaviour of other meta-learners need not be the same, we surmise
that the problem of training models close to optimal allocation is important, and leave much space for
empirical study in a variety of contexts, as well as for the development of a more general theoretical
framework. For example, we have only scratched the surface of the problem of non-uniform allocation,
which requires much further study.
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A Details of experiments

A.1 Mixed linear regression experiments

For the distributions of Eqs.@),@), we used the following values of parameters: ¢ = 0.2, v = 0.2,
p = 128, 8y = (0.05,...,0.05). During meta-training, we run experiments for several pairs of
values of (N, ), as shown in Figure[I} As explained in the main text, the number of training and
validation data points was equal, n; = n,, = n, and the total number of data points per task was
defined as N = n; + n, = 2n. We used an inner loop learning rate of o = 0.3 during training. We
computed the exact minimum w* by using standard linear algebra, since the loss in Eq.(T)) is convex
and quadratic.

During meta-testing, we estimated the test loss by averaging over 100 tasks, for each task we used
20 training and 50 validation data points and we used a inner loop learning rate of 0.3. We repeated
each experiment 100 times, with different generated data samples, for each pair of values of (N, b).
As explained in the main text, we used sampling to determine the optimum of the test loss: for each
value of the budget b, we sampled 1000 curves for the test loss, by sampling one out of the 100
repetitions for each value of the number of data points per task N. For each one of the 1000 curves,
we determined the empirical value of the minimum N* of the test loss, and we computed the mean
and standard deviation of N* across those 1000 values (shown in Figure[IB,E).

In addition to the empirical experiments on mixed linear regression, that are conducted by sampling
the generative model of Eqs.(9),(I0), we used the analytical formulas for the average test loss and the
optimal data allocation computed in section [C|and [D] respectively.

A.2 Image classification experiments

For the CIFAR-FS and mini-ImageNet we apply MAML on a base learner given by a convolutional
neural network (CNN) with architecture as described in [6]. Small modifications were made to run
on the CIFAR-FS data. We use a network with 4 convolutional blocks. Each block consisted of a
sequence of 2D convolutions with kernel size 3, stride 1, same padding, batch normalization, a ReLU
nonlinearity, and MaxPooling to half size with the kernel size and the stride of 2. The predictor head is
a softmax layer applied to the flattened resulting features. We used 64 filters per layer for CIFAR-FS
and 32 for mini-ImageNet, in order to reduce overfitting, as in [6]. CIFAR-FS and mini-ImageNet
image sizes were 32 x 32 and 84 x 84, respectively.

For each budget limited run of MAML, data was presampled and arranged into the required number
of tasks and data points per class. Whether from the training, testing or validation meta-datasets, a
task was sampled by selecting 5 random classes with replacement from the available pool. Thus, it is
possible for independent samples of tasks to occasionally contain the same class of images.

For the grid search algorithm, independent runs were performed by independently sampling the initial
conditions of the algorithm and also independently sampling the meta-training, meta-validation and
meta-test datasets. We performed 5 independent runs this way for each point on the grid. For the
meta-test datasets, 1000 tasks were sampled to minimize variance in the estimates. Each task consists
of 5 randomly sampled classes (5-way), 5 data points (5-shot) per class for model adaptation and 5
data points per class for model evaluation.

During meta-training, the train-test split for each meta-training task dataset was 0.5. We ran the
Adam Algorithm in the meta-update of the MAML parameter w in the outer loop with the initial
learning rate of 0.001. We annealed this learning rate on a plateau of the validation loss for at least
250 meta-updates. This is done four times with the fifth incurring termination of training. For the
adaptation step we ran 5 steps of gradient descent during meta-training and 1 step during meta-testing.
Our preliminary experimental results demonstrate that using 5 adaptation steps for meta-training gives
more stable performance than using only 1 adaptation step although no performance improvement
can be obtained by using more adaptation steps. 1 adaptation step was used during training for
mini-Imagenet experiments to accommodate the larger memory requirements associated with this
dataset. The inner loop learning (i.e. adaptation step size) is set to 0.01 in all experiments.

The mini-batch gradient descent is used during meta-training for efficient GPU memory use. Each
mini-batch consists of 25 tasks for the experiments with m > 25 and otherwise m tasks, and each task
consists of 50 data points for experiments with N > 50 and otherwise N data points. We performed

11



preliminary experiments and no significant difference in terms of performance was observed when
increasing the batch size further.

All experiments ran on a single Nvidia 2080 GPU with an average runtime of 1.5 hours per run of the
CIFAR-FS dataset and 5 hours for minilmageNet. These times depend on the exact hyperparameters
such as the allocation and budget. Overall, grid search experiments were distributed in parallel over
15 - 45 GPUs.

A.3 Easy and hard tasks creation in the image classification experiments

In section [6] we introduce hard tasks to test the influence of task difficulty and study the optimal
allocation when training only in easy tasks, only in hard tasks a mixture of hard and easy tasks. The
experimental set-up follows the description in section[A.2] We define easy task as the standard tasks
of CIFAR-FS, while we use two definitions of hard task:

e Class hierarchy. Task difficulty is represented by the similarity in the input images. The
CIFAR-FS dataset can be described by a 4-level hierarchy. At the top level, there are three
high-level categories: animals, vegetations, and objects and scenes (see Table|[I). In a hard
task all classes belong to the same high-level category.

o Noisy labels Task difficulty is represented by label noise [36]. In hard tasks, each image has
a 20% probability of being mislabeled, by randomly drawing a label from another class with
a uniform distribution.

The train, test and validation split in hard and easy tasks is the original CIFAR-FS split. In the
experiments with only hard tasks, the procedure is exactly the same as described in section [A.2]but
only employing hard tasks for both training and testing. In joint training with easy and hard tasks, we
keep the budget constant at 50, 000 data points. The number of easy tasks is also kept constant, at
333, and equal to the number of hard tasks. The sum of easy and hard data points per class is kept
constant and equal to 30 data points per class. The balance of easy and hard tasks varies between 2

and 28 data points per class.

Table 1: CIFAR-FS, 4-level Hierarchy

3 Class

10 Class

20 Class

100 Class

animals

large animals

reptiles
large carnivores
large omnivores and herbivores

crocodile, dinosaur, lizard, snake, turtle
bear, leopard, lion, tiger, wolf
camel, cattle, chimpanzee, elephant, kangaroo

medium animals

aquatic mammals
medium-sized mammals

beaver, dolphin, otter, seal, whale
fox, porcupine, possum, raccoon, skunk

small animals

small mammals

hamster, mouse, rabbit, shrew, squirrel

fish aquarium fish, flatfish, ray, shark, trout
invertebrates insects bee, beetle, butterfly, caterpillar, cockroach
non-insect crab, lobster, snail, spider, worm
people people baby, boy, girl, man, woman
vegetations vegetations flowers orchids, poppies, roses, sunflowers, tulips

fruit and vegetables
trees

apples, mushrooms, oranges, pears, peppers
maple, oak, palm, pine, willow

objects and scenes

household objects

food containers
household electrical devices
household furniture

bottles, bowls, cans, cups, plates
clock, keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

construction

large man-made outdoor things

bridge, castle, house, road, skyscraper

natural scenes

large natural outdoor scenes

cloud, forest, mountain, plain, sea

vehicles

vehicles 1
vehicles 2

bicycle, bus, motorcycle, pickup truck, train
lawn-mower, rocket, streetcar, tank, tractor

B Nonlinear regression

We investigated non-linear regression on a 1-dimensional sinusoid wave dataset. The loss is again the

mean squared €1ror:

L(0;2,y) =

N~

(y — folx))?

(13)



where fy(x) is the output of a neural network with parameters 6 and input z. We use a simple
Multi-Layer Perceptron, following the architecture used in MAML [6], see below for details on this
experiment.

The task distribution is a joint over 2 parameters 7 = (A, ¢), where both distributions are uniform
within their range, given by

A~U(0.1,5) ¢ ~U(0,m) (14)
The distribution of data for a given task 7 = (A, ¢) is given by
x ~U(-5,5) y=A-sin(z + ¢) (15)

Each data point, of either training or validation sets, is independently drawn from this distribution.
We don’t add any label noise, therefore the minimum achievable value of the test loss is zero.

Figure 5| shows the data allocation results for the sinusoid regression, the format is the same as in
Figure|l] The curves for the test loss are qualitatively similar to one of the two cases analysed for
linear regression (Figure[T]A,B,C). Again, performance generally increases with budget and test loss
curves tend to have a unique minimum. Therefore, different data allocations for a given budget
can result in significantly different performance and there exists an optimal allocation for a given
budget. Figure 5B shows that the optimum N* increases from a small value at small budgets to an
approximately constant value for large budgets, of about 150 data points per task. Our theoretical
results of a constant optimum at large budgets, obtained in section [5] for mixed linear regression,
seems to be confirmed in the case of nonlinear regression.

The neural network used in all sinusoid experiments was a MLP with 2 hidden layers of 40 nodes
each with ReLU nonlinearities. During meta-training we used full batch gradient descent. The
initial learning rate for performing gradient updates in the outer loop of the MAML algorithm was
0.001, while the learning rate for the adaptation procedure (inner loop of MAML) was 0.01. In all
experiments we used a learning rate annealing schedule upon reaching a plateau in the training loss.
This was done three times with the fourth incurring termination of training. Additionally, we only
started the learning rate scheduler after a predetermined number of meta-iterations which depended
on the budget.

Unlike the experimental settings in other meta-learning papers, we do not use a fixed number of shots
for meta-training since we focus on the investigation of different numbers of data points per task. The
train-test split for each meta-training task dataset was 0.5. As a result, the minimum number of data
points per task was 2 (i.e. 1 for training and the other for validation). The maximum number of data
points per task was equal to the budget b in which case there was only one task (m=1). The training
was done using full batches of data and the Adam optimizer ([37]).

During meta-testing, we randomly sampled 1000 tasks and 500 data points per task for adaptation, and
500 data points per task for computing the test loss. We used one step adaptation during meta-training
and five steps during meta-testing.

For the grid search, we performed up to 10 independent runs for each point on the grid with randomly
sampled meta-training data and randomly initialised model weights. To obtain the statistics of the
optimal N* for each budget in the grid search experiments, we employed the following strategy. We
randomly sampled one run for each point on the grid and derived the optimal N* from this sample
and repeated the sampling for 1000 times. The mean and standard deviation of N* are computed and
presented in Figure 5B.

C Computation of the average test loss

This section largely follows the results of [10], but here the calculations are generalized to the case of
heterogeneous tasks and parametric input variability.

C.1 Definitions and result statement

In this section we prove the following result on mixed linear regression which computes an approxi-
mate expression for the MAML test loss.
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Figure 5: Nonlinear regression. Format is the same as of Figure[T} Results are qualitatively similar
to Figure[TJA,B with the optimal number of data points per task increasing and then converging to a
constant number (~ 150) at large budgets (panel B).

Theorem 2. Consider the algorithm of section [3](MAML one-step) and data generated according to
the mixed linear regression model. Let Z:’;l n; > p (underparameterized model), and let n; = n;(£),
m = m(€) be any functions of order ©() as £ — oo. Then, the average test loss is equal to

Ztest _ %.,2 (1 + /\ﬁa%p) + Azhv.y2+

N 2
—2
)‘Qhrp < 2 N 9 Ma?
r 27 M) o2 MY 1) oy ,
' 2 LZ; N hz} ; n; 7 [hz + N [(ns +1) g1 +p gau] | +
v, L
+ ;Ai [(ni +1) gsi +p gai] p+0(£7°) (16)

where the subscript ¢ denotes meta-training hyperparameters for task ¢, while the subscript r denotes
. . 2
meta-testing hyperparameters. We have defined the function h; = (1 — )\fai) + )\foz?p—ﬂ, and

the functions g are polynomials in A2c;; with coefficients of order O(1), defined in the apf)endix,

Equation (T09).

The proof will consist of a generalization of the results of [L0] in the case of non-homogeneous tasks
and parametric input variability. In the rest of this section we restate the problem in detail and present
the computations required for the proof.

We consider the problem of mixed linear regression y = Xw + z with squared loss, where X is
an x p matrix of input data, each row is one of n data vectors of dimension p, z is a n X 1 noise
vector, w is a p X 1 vector of generating parameters and y is a n X 1 output vector. Data is collected
for m tasks, each with a different value of the parameters w and a different realization of the input
X and noise z. We denote by w(?) the parameters for task 4, for i = 1,...,m. For a given task i,
we denote by X!, X? the input data for, respectively, the training and validation sets, by z!, z! the
corresponding noise vectors and by y?, y? the output vectors. We denote by n!, n? the data sample
size for task 1, respectively for training and validations sets.

For a given task ¢, the training output is equal to

vt = Xtw® 4 2t (17)
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Similarly, the validation output is equal to

v XPw® 4 g0, (18)

We consider MAML as a model for meta-learning (Finn et al 2017). The meta-training loss is equal

to
m

1 1
crett = — % o lyd - XP6i(w)[? (19)

where vertical brackets denote euclidean norm, and the estimated parameters 6;(w) are equal to
the one-step gradient update on the single-task training loss L) = |yt — X76;|?/2n?, with initial
condition given by the meta-parameter w. The single gradient update is equal to

T QT
0;(w) = (1 - Tyt Xt) + =Xyl (20)
nt n;
where I, is the p x p identity matrix and «; is the learning rate. We seek to minimize the meta-training
loss with respect to the meta-parameter w, namely

w* = arg min L™ 2D
w
We evaluate the solution w* by calculating the meta-test loss
test 1 s spx|2
Ll = = |y — X°0"| (22)
2ng
Note that the test loss is calculated over test data X, z*®, and test parameters w’, namely
vy = X°w +2° (23)
Furthermore, the estimated parameters 8* are calculated on a separate set of target data X", z",
namely

6* (I —XTTXT) * %XTTyT (24)

y =X"w +2" (25)
Note that the learning rate and sample size can be different at testing, denoted by «,., n,-, ns. We are

interested in calculating the average test loss, that is the test loss of Eq[22]averaged over the entire
data distribution, equal to

C —EEEEEEEEEE—W - X0 (26)

wzt Xtz¥ Xvw’/zs X52" X7
C.2 Probability distributions and averaging

We assume that all random variables are Gaussian. In particular, we assume that the rows of the
matrix X are independent, and each row, denoted by X, is distributed according to a multivariate
Gaussian with zero mean and unit covariance

x ~ N (0,)\%],) 27)

where I, is the p x p identity matrix. Similarly, the noise is distributed following a multivariate
Gaussian with zero mean and variance equal to o2, namely

z~ N (0,0%1,) (28)

Finally, the generating parameters are also distributed according to a multivariate Gaussian of variance

v? /p, namely
2

Y (WO, 21]0) (29)

The generating parameter w is drawn once and kept fixed within a task, and drawn independently
for different tasks. The values of x and z are drawn independently in all tasks and datasets (training,
validation, target, test). In order to perform the calculations in the next section, we need the following
results.
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Lemma 1. Let X be a Gaussian n X p random matrix with independent rows, and each row has
covariance equal to I, the p x p identity matrix. Then:

E[XTX] = M\nlI, (30)
E[(XTX)*] = X'n(n+p+ 1) I, = Xon?pal, 31)
E[(X7X)"] = A% (n® + p* + 3np + 3 + 3p + 4) [, = Nn’ug, (32)
E[(XTX)"] = An (n + p* + 6n%p + 6np*+ (33)
+6n° + 6p* + 17Tnp + 21n + 21p + 20) I, = An*pyl, (34)
E[XTX Tr(X"X)] = X (n®p+2n) I, = Npn’pui 11, (35)

E[(XTX)"Tr (XTX)| = A0 (n%p + np? + np + 4n + 4p + 4) I, = \pn izl (36)
E [XTXTr ((XTX)z)} =An (n’p+np® + np+4n+4p+4) I, = NopnPui I,  (37)
E[(XTX)"Tr ((XTX)")] = X%n (np + np® + 2n%p* + 2n%p + 2np*+ (38)
+8n? + 8p* + 21np + 20n + 20p + 20) I, = A¥pn*us 21, (39)

where the last equality in each of these expressions defines the variables . Furthermore, for any
n X n symmetric matrix C and any p X p symmetric matrix D, independent of X:

E[XTCX] =NTr(0) 1, (40)
E[XTXDX"X]| = Mn(n+1)D+ XnTr(D) I, (41)

Proof. The Lemma follows by direct computations of the above expectations, using Isserlis’ theorem.
Particularly, for higher order exponents, combinatorics plays a crucial role in counting products of
different Gaussian variables in an effective way.

O

Lemma 2. Let X7, X f be Gaussian random matrices, of size respectively n,, X p and n; X p, with
independent rows, and each row has covariance equal to [, the p x p identity matrix. Let p(£) and
n¢(€) be any function of order O(&) as & — oo. Then:

X2 X7 =\ I, +0 (§1/2) (42)
XX XEXPT = Mpny I, + O (53/2) (43)
XeXTXIXTXIXYT = Mpnu(ng +p+ 1), +0 (¢€72) (44)

Note that the order O (&) applies to all elements of the matrix in each expression. For i # j

xpxt"xix 0"t o (2 (46)
v T N i v(g T
XV X} Xth(J) Xt x*(" = o (55/2> 47)
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Furthermore, for any positive real number § and for any p x p symmetric matrix D independent of X,
where Tr(D) and Tr(D?) are both of order O(¢?)

X DX!T = NTe (D) I, + O (¢72) (48)
XX XIDXYT = AT (D) e, + 0 (£179/2) (49)
Xy X XIDXTXIXET = 00Tk (D) + p+ D, + 0 (€240/2) (50)
x’px*»" =0 (56/2) (51)
Xy x!"XIpx 0" = 0 (g14072) (52)
xvxt" xtpxt®’ xt x 0" Z o <€2+6/2) (53)

Proof. The Lemma follows by direct computations of the expectations and variances of each term.
O

Lemma 3. Let X?, X! be Gaussian random matrices, of size respectively n, X p and n; X p, with
independent rows, and each row has covariance equal to I,, the p x p identity matrix. Let n,,(§) and
n¢(€) be any function of order O(&) for £ — oo. Then:

X'TX" = N2, I, + O (51/2) (54)
X T X XTXY = Nngny I, + O (53/ 2) (55)
X xtxvTx Xt Xt = Anyng(ng + p+ 1)1, + O (55/2) (56)

Note that the order O (&) applies to all elements of the matrix in each expression.

Proof. The Lemma follows by direct computations of the expectations and variances of each term.
O

C.3 Averaging over test data

We calculate the average test loss as a function of the hyperparameters nﬁ, ny, Ny, P, M, Q, Oy,
Oi» Ory Nis A\r» V, Wo. The subscript ¢ denotes meta-training hyperparameters for task ¢, while the
subscript 7 denotes meta-testing hyperparameters. Using the expression in Eq[23|for the test output,
we rewrite the test loss in Eq[26]as

—test o 1

L =F— |X* (W — 6% +2° (57)

2ng

We start by averaging this expression with respect to X *, z°, noting that 8* does not depend on test
data. We further average with respect to w’, but note that 8* depends on test parameters, so we
average only terms that do not depend on 6*. Using Eq[30] the result is

|0*|2 NT px
O (wo+sw)7 0 (58)

—test 2 AQ
2 ()

where we define 0w’ = w’ — wg. The second term in the expectation is linear in 8* and can be
averaged over X", z", using Eq[24] and noting that w* does not depend on target data. The result is

EE 6*=(1-X\a,)w* + Na, (wo + dw') (59
Xra”

Using Eq we average over w’ the second term in the expectation of Eq and find
0**

tes ; 1
£t = % + A2 (2 - A?ar) (u2 + |w0\2) — A2 (1-Na,) Wi E w* + )\QIEOT (60)
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We average the last term of this expression over z", w’, using Eq24] and noting that w* does not
depend on target data and test parameters. The result is

2 2
EE 16%° = |w*|* + % (w* —wo)" (XTTX’") (w* —wp) — (61)
2, 2 2 2. 2 9
2 A TXTXT (W — wo) + Ty [ xrxt T 4 Sy | (xr X T (62)
n n2 n2p
[ T T

We now average over X", again noting that w* does not depend on target data. Using Eqs[30] we
find

1 )\2 2.2
BEEIT =l antor (14250 ) (1 o - wol?) -2t (o - ) 2
(63)

We can now rewrite the average test loss[60]as

—tes 2 Na? N2 1
et = ‘% (1 + ’“o‘rp> +5 [(1 —A2a,)’ 4 /\ﬁafp:} (u2 +E|w* —w0|2> (64)

nT‘ T

In order to average the last term, we need an expression for w*. We note that the loss in Eq[T9)]
is quadratic in w, therefore the solution of Eq[2T] can be found using standard linear algebra. In
particular, the loss in Eq[I9)can be rewritten as

1
£t = o |y - Bul’ (65)

m

where - is a column vector of >, n? components, and B is a matrix of shape Y .-

vector 7y is a stack of m vectors

n; x p. The

=[x (- 23T X ) wy - 2 Xy XL +
7= : (66)
1 v ! t Tyt a vyt Tt v
ﬁ |:Xm (Ip - ”z: X’m Xm) Wm — ﬁX’rnX'rn Z,, + Zm:|
Similarly, the matrix B is a stack of m matrices
Ok [ (1, 517
B = : (67)

o [X;;l (1,, - %X%TX%)}

m

We denote by I, the p x p identity matrix. The expression for w that minimizes Eq@] depends on
whether the problem is overparameterized (p > .., n?) or underparameterized (p < » ;- n?),
therefore we distinguish these two cases in the following sections.

C.4 Averaging over training data: overparameterized case

In the overparameterized case (p > Z:il n?), under the assumption that the inverse of BB exists,
the value of w that minimizes Eq[63]is equal to

w =BT (BBT) v+ [1, - BT (BBT) " B|w, (68)

The vector wy is interpreted as the initial condition of the parameter optimization of the outer loop,
when optimized by gradient descent. Note that the matrix B does not depend on w, z!, z°, and
Ew Ezt Ezv v = Bwg. We denote by §- the deviation from the average, and we have

w* = wo = BT (BBT) " gy + I, - BT (BBT) " B] (wo — wo) (69)

We square this expression and average over w, z!, z°. We use the cyclic property of the trace and the
fact that BT (BBT) “'Bisa projection. The result is

lw* —wo|> =Tr [F (BBT)_l} + (wo —wo) " [Ip - BT (BBT)_1 B} (wo —wo) (70)
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The matrix I' is defined as

™ o o
F=EEE0O® ' =| o - o (1)
. 0 0 It
Where matrix blocks are given by the following expression
12 2
r® = nva” (I - XtTXi> xyT +5 <I + & X”XthfX§T> (72)

It is convenient to rewrite the scalar product of Eqin terms of the trace of outer products
jw* = wol* = Tr [(BBT) ™" (T = B (wo — wo) (wo — wo)" BT )| +Jwo — wo*  (73)

In order to calculate E |w* — wq \2 in Eq we need to average this expression over training and
validation data. These averages are hard to compute since they involve nonlinear functions of the data.
However, we can approximate these terms by assuming that p and n! are large, both of order O(¢&),
where ¢ is a large number. Furthermore, we assume that |wy — wy| is of order O(¢~1/4). Using
Lemma 2] together with the expressions of B (Eq[67) and T" (Eqs[71][72), we can prove that

. ny T AP h Ly 0 0
lppr _ 0 0 +0(12) (74)
p
0 0 nd A Iy
2)\2p, 2 402
() = {M + 7 <1+ W)}Im +0(¢712) (75)
n171A12h1],L«1) 0 0
B (wo — wo) (wo — wo)" BT = |wy — wo|? 0 0 +0 (571/2>
0 (IR W .
(76)
where we define the following expression
1
hi= (1= \2a)) + A2l (77)
i
Using Eq{74|and Taylor expansion, the inverse (BB7) ~is equal to
. niA " ?hy T Ly 0 0
—-1 .
(BBT) o 0 0 ) (g 3/2), (78)
0 0 n:)n)\m72hm71]n;)”
Substituting the three expressions above in Eq[73] and ignoring terms of lower order, we find
1 m
E|w* — wol? = (1—271}’) lwo — wol? + (79)
P

4 2
+—Zn + ZAQh ( ’\i;”p>+0(§3/2) (80)

K3

Substituting this expression into in Eq[64] we find the value of average test loss

2 4,2 m

—test O Aroip Az, 1 2

L =_L11 rr 1—75 7 — 81
2 ( T >+ 2 P ool e

+A2h v ( Zn ) Z ‘;22’;: (1 + Aifp) +o(e?) @
i=1 "t

where we define the following expression

1
hy = (1 A2a,)? + A;%aip;

(83)

T
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C.5 Averaging over training data: underparameterized case

In the underparameterized case (p < Z;’;l ny), under the assumption that the inverse of B T B exists,
the value of w that minimizes EqJ63]is equal to

— (B"B)"' BTy (84)
Note that the matrix B does not depend on w, z, 2", and Ew E,: Ezv ¥ = Bwg. We denote by d~
the deviation from the average, and we have

lw* — wol? = Tr [(BTB)_l BTov 64" B (BTB)_l} (85)

We need to average this expressmn in order to calculate E |w* — wo\ in qu We start by
averaging 6~ 07 over w,z!, z", since B does not depend on those variables. Note that w, z!, z"

are independent on each other and across tasks. As in previous section, we denote by I' the result of
this operation, given by Eq.{71] [72] Finally, we need to average over the training and validation data

Elw’ —wol = F E Tr (B"B)” BTrB (B7B) | (86)

It is hard to average this expression because it includes nonlinear functions of the data. However, we
can approximate these terms by assuming that either m or £ (or both) is a large number, where ¢ is
defined by assuming that n! and n? are of order O(€). Using Lemma together with the expression
of B (Eq[67), and noting that each factor in Eq[86]has a sum over m independent terms, we can prove
that

m
BTB=Y NhI,+0 ((m§)1/2) 87)
i=1
Using this result and a Taylor expansion, the inverse is equal to
-1

(B"B)™' lz A2h ] I,+0 ((mg)—f‘/ 2) (88)
Similarly, the term BTT' B is equal to its average plus a term of smaller order
BTTB =E(B'TB) + 0 ((mg)l/ 2) (89)

We substitute these expressions in Eq[86]and neglect lower orders. Here we show how to calculate
explicitly the expectation of BT B. For ease of notation, we define the matrix A = I — 2 X xt,

Using the expressions of B (Eq 67) and T" (Eqs{71172), the expression for BTT B is given by

B'TB = va = 2AtTX”TX”At+—Zn” 2(AtTXvTXw) +
i=1

7

+ Z n? "t 202 AT XPT X X XIXPT XY Al (90)

We use Eqs[30} [31] to calculate the average of the first term in Eq[90]
m
v—2 o2 tT x0T yrv gt v—1y2 2
CAC XXV A Aioihid, 91
EE2 e > oD

i=1
We use Eqs[30} [31] [32] [40] B3] 36| 37} [38] to calculate the average of the second term
m 2 m
EEY w7 (ATXTxral) = B Y w N [y + 1) Al aPTe (A7) = 92)
Xt Xv Xt
i=1 i=1

=3 0N (Y + 1) (1 — A2y + M3 — axSaP ) + A?a;*uff)) I+
i=1

+3 A ( — AN2a; + 2042 + At — ax8ad i) + ASadp )2) I, (93
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where we have defined

i 1
p = (ni+p+1) (94)
(@) 1 t2 2 t t
i) = — (0t 4+ + 3nip+ 3nl + 3p+ 4) (95)
n;
uff) =3 (nfB +p® + anp + 6nip® + an + 6p? + 17nlp + 21nt + 21p + 20) (96)
n;
@ _ L (e ¢
piy = = (nip+2nt) ©7)
ntp
i 1
ug)l =— (nfp +nlp? +nlp+4nt +4p+ 4) (98)
ntp
; 1
M(Q’)Q =—3 (nﬁgp + nfp3 + 2n§2p2 + 2n§2p + 2nfp2 + 8n§2 + 8;02 + 21n§p + 20n§ + 20p + 20)
99
Finally, we compute the average of the third term, using Eqs[30] [31] B2] 33] 40} [35] 36]
EE Y 0y nialol Al X)TXPXTXIXTXPAL = (100)
Xt Xv
~ Mafa? v tT 3rtT yrt gt tT 4t tT 5t
=g > 28T [+ ) AT X XA+ Al A (x0T x| = (101)
Xt =1 n;}ni
o~ Aafol o, i i i i
= > 20 [+ 1) (1 - 20 + X2 ) 4+ p (1 - 203 + MaZuf} )| 1,
i=1 i
(102)

Putting everything together in Eq[86] and applying the trace operator, we find the following expression
for the meta-parameter variance

-2
E|w* — wol> = p lZAth] Zn;{afhﬂr

=1

o0 (1= 20?4 XaZi?) +p (1 20 + Afodud))|
v ol o 2 4,2 (i) 6,3, 8 4, (i)
+ ;)\i (ny +1) (1 —4Xj o + 6N oy — AN oG s AT oy )

_l’_
+p (1= 47 +2xfaZuf) + axtaZul’) — ax0aluf) + Aalul)) } } +0 ((mg)~*?)

(103)
We rewrite this expression as
m -2
* 2 - 2 >\22 2 /\fbla? v
Elw* —wol" =p ;)‘ihi ;77;’ o; hi+T§[(”i+1)gli+p92i] +
v, —3/2
N [ 1) g5+ o] 40 ((m) ) (104)
where we defined the following expressions for g;
g1 =1 - 22a;18” + Na2p) (105)
g2 = 1 — 2220} + MaZu$) (106)
g3 =1 — 44Xy + 6)\?%2#? — 4)\?a?,uéi) + )\fafuff) (107)
gai =1 — 4\Pa; + 27312l + axta2pl) — aX8al ) + Aol ) (108)
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Substituting this expression back into Eq[64] returns the final expression for the average test loss,
equal to

Fest _ if L+ Nta2p n )\%hﬂﬂ_’_
2 Ny 2

i=1 """t @

—2
A2hep = 2 - A Moo,

T l; Al hl] > o) [hz + = +1) 915 + pgail | +
2

+ ?/\12 [(nj +1) g3i + pgas) p + O ((mg)_?’/Z) (109)

D Optimal uniform allocation in mixed linear regression

The following theorem computes a simple expression for the optimal uniform allocation for MAML
for mixed linear regression, based on the result of Theorem@

Theorem 3. Under the assumptions of Theorem [2] consider the test loss of Equation (T6) and the
uniform allocation problem (8) of section[4 Furthermore, let p = p(&) be a function of order ©(¢)
as £ — oo, neglect orders O (f _2) in Equation . Then, for all sufficiently small values of the
learning rate o, the uniform allocation problem has a unique minimum, which does not depend on
the budget, equal to the unique real and positive value of (for k = 0,1, 2)

N2 <—1+\/—3>’“ <A1+\/A§—4A3>3
2

34 2

+(_1+\/_73)_k< 286 )é (110)
2 A+ VAT 1A

where we have defined Ay = B? — 3AC, Ay = 2B% — 9ABC + 27A%2D, A = 12(1 — &/)S,
B = 3v%ad?(1 — )4, C = 223 [u2(2 —a' —4a? + 303) + 0"%(2 — 5 + 4a? — a'?)|,
D =20 [12(20 — 1) + 0?(2¢/ — 1)], &/ = X2, 0’ = o/

In order to prove Theorem [3| we start by rewriting Equation (I6)) in the case of homogeneous tasks
(0; = 0, \; = ), fixed learning rate (o; = «) and uniform allocation (n; = n). That is similar to

the expression of Theorem 2 in [10]). In this case, the budget is equal to b = 2nm. We further assume
that, in addition to n and m, p is also large, of order ©(¢). Then the average test loss is equal to

—tres C .
v t201+72pg22{0/2 {92_1_0/2 (91-1—%92)}4—

b

n
+17 | =gs+gs| p +O (€72 (111)

p

where o’ = ¢, @/ = A%, and we have defined g1, g2, g3, g4 as
2
g=(1—-a") - 20/% ta? <3Z T f;) (112)
g2 =(1—a') +a?L (113)
n
2
gs=(1—a) + 60/2% — o (121'; + 422> n (114)
p ., .0, P
+a <6n + 6’? + ng> (115)
2

g=1-a)+ 20/2% - 40/3% + ot (25 + 22) (116)
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and C1, C5 do not depend on n and are equal to

2 )\4 2 2
= (1 + T:Tp> + 50 (117
Cy = A2 (1-\20,)° + A0a2 L (118)
n

T

where the subscript r denotes meta-testing hyperparameters.
We drop the term O (£72), and we optimize the test loss in Eq.(111) for the number of data points

. . —test : . .
per task n, by taking the gradient of £ “*" with respect to n and set it to zero. We obtain the following
expression

—test

oL Cop T
— 2P 119
on 2b <w>3 (119)
p
where I is a cubic expression in n/p, equal to
n3 TL2
I=1(1-0a)°—5 +3%?(1-a) 5+ (120)
p p
4203 [1/2(2 — o —4a”? + 3a%)+ (121)
+02(2 - 50/ + 40’ — 0/3)} L (122)
p
+20 120 — 1) + 0%(2¢/ —1)] =0 (123)

The zeros of the cubic represent stationary points, maxima or minima, of the loss as a function of n.
For ease of notation, we rewrite the cubic as

3 2
A<”) B<”> +C’<n>+D_O (124)
p p p

where the coefficients A, B, C, D are defined as

A=1%1-a")" (125)
B =3v2a%(1 - o/)? (126)
C =2 [1/2(2 o' —4a” 430+ (127)
+0(2 - 5o/ + 40 — a'?’)} (128)
D =20 [1?(2a® — 1) + 0% (22 — 1)] (129)

For small o/, these coefficients are of different orders, in particular A is O(1), B is of order O(a’?),
C is of order O(a’?), D is of order O(a/*). The discriminant of the cubic is equal to

—27A’D? + 18ABCD — 4AC® — 4B*D + B*C? (130)
We arranged the terms in this expression according to their o’ order, which is equal to, respectively,
O(a’®), O(a"), 0(a'?), O(a'1?), O(a/1?). Note that the leading term is always negative, therefore
there exists a value o’* such that, for |o/| < «’*, the discriminant of the cubic is negative, which
means that the cubic has only one real solution. This stationary point has to be a minimum, since

the derivative of the average test loss exists everywhere (note that go > 0) and it becomes large and
positive for large positive or negative n.

The cubic equation can be solved using standard methods, such as Cardano’s method and depressed
cubic transformation. The solution is equal to

[ () (reaE)
T34 2

3A 2

. (—1 + \/—3)’“ 2A3 : a3
2 Ay + /AT — 4AD
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for k£ = 0, 1, 2, where the real and positive solution among the three solutions should be selected, and
Ao, Ay are defined as

Ay = B? - 3AC (132)
Ay =2B% —9ABC +27A%*D (133)

Note that in the main text we defined the number of data points per task as N = n; + n, = 2n,
therefore we have N* = 2n* and

) B+< 1+W) <A1+m>

3A

1

. <1 + m> " 2A3 ; (13
2 A1+ /A —4AS

for £ = 0,1, 2, where the real and positive solution among the three solutions should be taken.

The expression for N* is rather complicated and it is hard to evaluate how the optimum depends on
the hyperparameters of the model. Therefore we computed an approx1mat10n that holds for small
|o’|. Of the three terms in square brackets of Eq.(134)), the first one is of order O(a/?), the second

is O(a/*/?) and the third is O(a//3), thus we neglect the first and last term. Furthermore, A3 is of
order O(a'), while A? is O(a'®), thus we neglect A, and we keep only the leading term in A;. We
obtain

1
12 3
N* ~2 [2 (1 n ‘;ﬂ a'3p (135)
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