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SURFSPLAT: CONQUERING FEEDFORWARD 2D GAUS-
SIAN SPLATTING WITH SURFACE CONTINUITY PRIORS
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Figure 1: SurfSplat is a feedforward network that predicts a 3D scene representation from sparse
images input. Previous methods often produce sparse, color-biased pointclouds that lack surface
continuity, especially under close-up views. In contrast, our SurfSplat approach utilizes 2DGS with a
surface continuity prior and forced alpha blending to generate coherent and realistic 3D surfaces.

ABSTRACT

Reconstructing 3D scenes from sparse images remains a challenging task due to
the difficulty of recovering accurate geometry and texture without optimization.
Recent approaches leverage generalizable models to generate 3D scenes using
3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce
continuous surfaces and instead yield discrete, color-biased point clouds that
appear plausible at normal resolution but reveal severe artifacts under close-up
views. To address this issue, we present SurfSplat, a feedforward framework based
on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy
and higher geometric precision. By incorporating a surface continuity prior and a
forced alpha blending strategy, SurfSplat reconstructs coherent geometry together
with faithful textures. Furthermore, we introduce High-Resolution Rendering
Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution
reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and
ScanNet demonstrate that SurfSplat consistently outperforms prior methods on
both standard metrics and HRRC, establishing a robust solution for high-fidelity
3D reconstruction from sparse inputs.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Reconstructing geometrically accurate real-world scenes continues to be a longstanding challenge in
3D vision. Such capability is crucial for applications like immersive VR experiences, realistic gaming
environments, and digital content creation, where both geometric fidelity and visual consistency
are essential. To address this, 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) has recently
shown impressive performance in novel view synthesis and scene reconstruction. It represents a
scene as a collection of discrete, semi-transparent ellipsoids, which are rendered onto the image
plane through “splatting”. Existing Gaussian-based reconstruction methods mainly follow two
paradigms. Traditional approaches, such as vanilla 3DGS, rely on a preprocessing step using
COLMAP Schönberger & Frahm (2016) to generate an initial point cloud and typically require
access to hundreds of posed views. These methods then perform scene-specific optimization over
tens of thousands of iterations, often taking several hours to converge to high-quality results. In
contrast, feedforward approaches employ pretrained models to directly predict per-pixel 3D Gaussians
from sparse inputs—often as few as two images—without any preprocessing. These methods can
reconstruct a 3D scene within milliseconds, enabling real-time and scalable applications.
However, we observe that existing feedforward methods tend to generate degraded 3D scenes. The
reconstructed surfaces often collapse into nearly spherical, discrete point clouds with color biases
and visible voids. This degradation stems from the under-utilization of the anisotropic properties of
Gaussian primitives, which makes it difficult to disentangle geometry from appearance. Moreover,
since current feedforward methods rely primarily on image loss, they often yield biased geometry and
appearance under sparse or weakly constrained viewpoints. These issues are often subtle in rendered
images at the original resolution and near reference views, but become prominent when the camera
moves closer or shifts to off-axis viewpoints. This discrepancy indicates that standard novel view
synthesis (NVS) metrics fail to accurately capture the geometric and textural fidelity of the scene.
To address these challenges and provide a more accurate reconstruction, we propose SurfSplat, a
feedforward model that reconstructs 3D scenes from sparse images using 2D Gaussian Splatting
(2DGS) as the representation primitive. Unlike 3DGS, 2DGS captures anisotropic structures more
effectively, resulting in improved geometric precision. However, direct training of 2DGS often suffers
from instability that arises from the complex coupling between geometric attributes and rendering
outcomes. This issue is amplified under limited supervision, where gradients cannot effectively
disentangling geometry from appearance. The faceted nature of 2D Gaussians further intensifies
the problem, as even minor geometric perturbations can produce substantial deviations in rendered
outputs. To tackle this, we introduce two key components: (1) an explicit surface continuity prior,
which binds the rotation and scale attributes of each 2DGS to its spatial position, encouraging smooth
and coherent surfaces. (2) a forced alpha blending strategy, which helps the model escape local
optima and reduces color bias during training.
Evaluating the quality of 3D scenes produced by feedforward models is also nontrivial. Traditional
geometry metrics such as Chamfer Distance or F1 Score are ineffective due to incomplete or sparse
outputs and the lack of dense ground truth. Furthermore, most datasets lack out-of-distribution
viewpoints for reliable assessment. To address this, we propose High-Resolution Rendering
Consistency (HRRC): a novel metric that evaluates scene fidelity by rendering the 3D model at
high resolutions, thereby simulating close-up views that expose hidden artifacts like spatial voids.
Moreover, HRRC can be computed directly from standard datasets without requiring new annotations.
Built upon these components, SurfSplat reconstructs continuous, high-fidelity 3D scenes with sig-
nificantly fewer holes and artifacts when viewed from challenging perspectives. Unlike previous
3DGS-based methods that predict Gaussian attributes independently, our approach explicitly models
continuity and structure, enhancing both geometric accuracy and rendering consistency.
In summary, the main contributions of this work are as follows:

• We propose SurfSplat, a feedforward network that reconstructs 3D scenes using 2D Gaus-
sian surfels from sparse inputs. Our model leverages a surface continuity prior and forced
alpha blending to significantly improve reconstruction quality.

• We introduce HRRC, a high-resolution rendering-based metric that reveals surface disconti-
nuities and enables fairer evaluation of forward-generated scenes through dense sampling.

• Extensive experiments demonstrate that SurfSplat achieves state-of-the-art performance in
both standard and HRRC metrics on RealEstate10K, DL3DV, and ScanNet, setting a new
benchmark for novel view synthesis under sparse-view settings.
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2 RELATED WORKS

2.1 3D GAUSSIAN SPLATTING

Recent Neural Radiance Field (NeRF) Mildenhall et al. (2021) approach has proven effective for
scene reconstruction by leveraging a continuous implicit representation of the scene. Subsequent
works have improved reconstruction quality by evolving from MLPs to grid-based structures. For
instance, Müller et al. (2022) introduced the Instant Neural Graphics Primitives (Instant-NGP), while
Fridovich-Keil et al. (2022) proposed Plenoxels. Other methods, such as Mip-NeRF Barron et al.
(2021; 2022), model rays as cones to achieve anti-aliasing.
To accelerate rendering, various strategies have been explored, including precomputation Wang et al.
(2023; 2022); Fridovich-Keil et al. (2022); Yu et al. (2021) and hash-based encoding Müller et al.
(2022); Takikawa et al. (2022). Additionally, several extensions have adapted NeRF to dynamic
scenes Xian et al. (2021); Park et al. (2021a;b); Pumarola et al. (2021); Song et al. (2023).
More recently, 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) introduced an efficient, point-based
rendering approach. By representing scenes as collections of semi-transparent, anisotropic Gaussians
in 3D space, 3DGS enables photorealistic rendering via rasterization-based splatting.
Numerous extensions have emerged to enhance the capabilities of 3DGS, targeting various aspects
such as: optimization efficiency Cheng et al. (2024); Zhang et al. (2024); Radl et al. (2024); Diolatzis
et al. (2024), anti-aliasing Yan et al. (2024); Yu et al. (2024); Song et al. (2024); Liang et al. (2024),
geometric fidelity Huang et al. (2024), and representation compression for faster inference Girish
et al. (2024); Navaneet et al. (2024); Niedermayr et al. (2024); Lee et al. (2024); Fan et al. (2024);
Chen et al. (2024a). Efforts to extend 3DGS to dynamic scenes have also been explored Luiten et al.
(2023); Wu et al. (2023); Wan et al. (2024); Huang et al. (2023); He et al. (2024).
Among these, Huang et al. (2024) proposed 2DGS, a novel differentiable surface element capable of
representing surfaces with higher accuracy. However, conventional 3DGS pipelines typically require
precomputed sparse point clouds, accurate camera poses, and extensive per-scene optimization,
limiting their applicability in sparse-view settings.

2.2 GENERALIZABLE 3D RECONSTRUCTION

To alleviate the need for costly per-scene optimization, recent works explored feedforward networks
that directly predict 3D Gaussians from sparse image collections.
Splatter image Szymanowicz et al. (2024) proposed a novel paradigm for converting images into
Gaussian attribute images. Other approaches incorporated task-specific backbones to improve
reconstruction by leveraging geometric cues. For example, PixelSplat Charatan et al. (2024) used
epipolar geometry for efficient depth estimation, while MVSplat Chen et al. (2024b) builded cost
volumes to aggregate multi-view information.
Follow-up works further extended these ideas. FreeSplat Wang et al. (2024b) addressed limited
synthesis range via a pixel-wise triplet fusion strategy. Hisplat Tang et al. (2024) predicted multiple
Gaussian layers in a hierarchical structure. DepthSplat Xu et al. (2024b) enabled cross-task interaction
between depth estimation and Gaussian splatting.
Several researches also focused on improving generalization by introducing triplane representa-
tions Zou et al. (2024); Xu et al. (2024a). SplatFormer Chen et al. (2024d) leveraged pretrained
models to improve performance in out-of-distribution views. NopoSplat Ye et al. (2024) abandoned
the transform-then-fuse pipeline and directly generated 3D scenes in canonical space. G3R Chen
et al. (2024c) extended the generalizable 3DGS to dynamic scenes using auxiliary LiDAR data.
Despite these advancements, prior feedforward methods primarily rely on 3DGS primitives. Without
effective regularization, the generated 3D scenes often lack realistic and continuous surfaces. These
degradations are typically unseen at original resolution near reference views, but become apparent
under close-up or off-axis inspection.
In contrast, our approach adopts 2DGS as the scene representation primitive. By introducing a
surface continuity prior and a forced alpha blending technique, our model successfully trains highly
anisotropic surface elements, enabling high-fidelity 3D scene reconstruction from sparse inputs.

3 METHOD

3.1 PRELIMINARIES

Feedforward 3D Gaussian Splatting (3DGS) methods aim to regress a set of 3D Gaussians di-
rectly from sparse multi-view images. Unlike optimization-based approaches that iteratively refine
Gaussians, feedforward methods predict all Gaussian parameters in a single forward pass. Given

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

a collection of V input images {Iv}Vv=1 with corresponding camera intrinsics {kv}Vv=1 and poses
{Tv}Vv=1, the network fθ predicts Gaussian parameters for each pixel as:

fθ : {(Iv,kv,Tv)}Vv=1 7→


H×W⋃
j=1

(
µv

j ,α
v
j , r

v
j , s

v
j , c

v
j

)
V

v=1

, (1)

where µv
j denotes the 3D position, αv

j the opacity, rvj the rotation, svj the scale, and cvj the spherical
harmonics of the j-th Gaussian generated from the v-th view. The feasibility of such models arises
from the observation that, even with sparse-view conditions, image features extracted by modern
backbones (e.g., ViTs Ranftl et al. (2021); Zhang et al. (2022); Wang et al. (2024a)) retain sufficient
local geometric cues for direct 3D reasoning. When combined with the camera intrinsics, these
features can be projected into 3D space and assigned accurate Gaussian attributes, enabling end-to-end
training via differentiable rasterization and photometric reconstruction loss.

3.2 MODEL ARCHITECTURE

Figure 2: Illustration for model architecture. Given sparse input images, our dual-path encoder
processes them through both single-view and multi-view branches. The fused features are passed
through a U-Net to predict intermediate attributes, including depth, scale multipliers, and appearance
components. Finally, these intermediates are converted into standard Gaussian attributes using our
surface continuity prior and forced alpha blending strategy.

In the context of feedforward 3D Gaussian Splatting (3DGS), multi-view cues are essential for
enforcing geometric consistency across views, while single-view priors offer guidance in regions
with missing textures or insufficient correspondences. To integrate these complementary sources
effectively, we adopt a dual-path for feature extraction within our model architecture. In the single-
view branch, we leverage a pretrained monocular depth backbone. Specifically, we use the Depth
Anything V2 model Yang et al. (2024), and bilinearly upsample its output features to the target spatial
resolution. In the multi-view branch, input images are first converted into low-resolution feature
maps, which are then processed by multiple layers of self- and cross-attention Vaswani et al. (2017);
Liu et al. (2021b) to extract inter-view correspondences. The fused features are subsequently used to
construct cost volumes Chen et al. (2024b) across views via the plane-sweep stereo approach Collins
(1996); Xu et al. (2023), which serve as the output of the multi-view branch. The final feature
representation is obtained by concatenating the single-view and multi-view features.
The combined feature is fed into a 2D U-Net Ronneberger et al. (2015); Rombach et al. (2022)
to regress the Gaussian Splatting (GS) attributes, including depth, scale multipliers, higher-order
spherical harmonics components, and opacity. These outputs are upsampled to full resolution using
a DPT head Ranftl et al. (2021) and further processed with our surface continuity prior and forced
alpha-blending techniques to produce the final standard Gaussian attributes. Technical details are
provided in Appendix A.1.

3.3 SURFACE CONTINUITY PRIOR

Existing feedforward 3DGS methods often produce incoherent and discontinuous surfaces. This stems
from the fact that learnable Gaussian primitives struggle to decouple geometry and texture attributes
when trained solely through gradient-based supervision. A closer inspection of rendered results
reveals biased color assignments, surface discontinuities, and voids. While these primitives may
collectively produce visually plausible images under common rendering settings, the underlying 3D
assets remain structurally flawed and fall short of the fidelity required for high-quality 3D generation.
To address these issues, we start by an observation: most visible geometry in real-world scenes
consists of smooth, continuous surfaces. This motivates the introduction of a surface continuity
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prior, which assumes that spatially adjacent surfels on a coherent 3D surface generally correspond to
neighboring pixels in the image. Guided by this prior, Gaussians are expected to exhibit correlated
geometric attributes. Specifically, the rotation and scale of each Gaussian should be strongly aligned
with the positions of its neighboring Gaussians. We consider the image-space neighborhood around a
pixel at (h,w), whose associated Gaussian has a 3D position p0 ∈ R3, with neighboring positions
{pi}ki=1. Following the standard COLMAP coordinate convention, where the camera frame has x
pointing right, y downward, and z inward, we assume that the default (unrotated) surface normal
aligns with the canonical vector n0 = (0, 0, 1)⊤. The initial rotation R0 ∈ SO(3) is set to the
identity matrix, which corresponds to the quaternion (1, 0, 0, 0).
To estimate the local surface orientation, we apply rightward and downward Sobel filters over the
3× 3 neighborhood around p0, obtaining two virtual neighbors, p1 and p2. These neighbors define
two tangent vectors:

t1, t2 = p1 − p0, p2 − p0. (2)
Although t1 and t2 are not guaranteed to be orthogonal in world space, their projections onto the
image plane are orthogonal. The local surface normal n ∈ R3 is then computed as their cross product:

n =
t1 × t2
∥t1 × t2∥

. (3)

Given this target normal n, the corresponding rotation matrix R ∈ SO(3) that aligns n0 with n can
be computed using Rodrigues’ rotation formula:

R = I+ [v]× +
1− c

∥v∥2
[v]2×, (4)

where v = n0 ×n, c = n⊤
0 n, and [v]× denotes the skew-symmetric matrix of v. This rotation aligns

the canonical frame with the estimated local surface, giving the updated surfel rotation:

Rsurf = RR0 = R. (5)

Figure 3: Illustration for Gaussian processor. We visualize
how image-space neighboring pixels are transformed into
Gaussians aligned on a continuous surface via the surface
continuity prior. To prevent opacity collapse and preserve
3D alignment, we apply a forced alpha-blending strategy that
reduces opacities, ensuring that spatially occluded Gaussians
still contribute during rendering.

To define anisotropic scale S =
diag(σu, σv, σw), we compute the
variance of projected neighboring
points along the rotated tangent axes
tu, tv . Since we employ 2D Gaussian
splats, the scale along the depth axis
σw is fixed to zero. To account for
screen-space deformation, let W ∈
R4×4 denote the transformation ma-
trix from world space to screen space,
and let J represent the Jacobian of the
affine approximation of the projective
transformation:

Σ = RSS⊤R⊤, (6)

Σ′ = JWΣW⊤J⊤, (7)

where Σ′ corresponds to a unit circle in the image plane, as in feedforward methods each GS
corresponds one-to-one with an image pixel and its projection always covers a single pixel.
However, inverting the projection matrix to estimate scale often yields unstable values that
hinder convergence. To address this, we adopt a coarse scale estimate based on image-space
distances between neighboring pixels:

σ̄2
u, σ̄

2
v = t21x + t21z, t22y + t22z. (8)

We then use the neural network to predict scale multipliers σ̂u, σ̂v , which are constrained to lie within[
1
3 , 3

]
. The final scales are then computed as:

σu = σ̄uσ̂u, σv = σ̄vσ̂v. (9)
With this design, instead of directly regressing Gaussian attributes, our method derives them from
predicted 3D positions, guided by a physically grounded constraint to ensure spatial consistency. This
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formulation provides a geometry-aware initialization of 2D Gaussian splats in 3D space, ensuring
that their orientation and shape remain consistent with surface continuity.

3.4 FORCED ALPHA BLENDING

While the surface continuity prior imposes effective local geometric constraints for continuous 3D
reconstruction, we observe that it can lead to suboptimal local minima during training. Specifically,
the model tends to learn highly opaque Gaussians, where individual splats saturate the pixel opacity.
This behavior rapidly boosts image quality for near-input viewpoints, but under the alpha-blending
rendering rule, occluded Gaussians contribute minimally to the output:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), α =
∑
i∈N

αi

i−1∏
j=1

(1− αj). (10)

As a result, deeper Gaussians in the rendering order are effectively ignored, which impairs the model’s
ability to learn 3D structure and maintain alignment.
To address this, we propose a forced alpha blending strategy that explicitly constrains each Gaussian’s
opacity. We clip the predicted opacity using an upper bound τopa < 1, ensuring that all Gaussians
contribute to the rendering regardless of their depth order. This preserves both the model’s multi-layer
expressiveness and its 3D alignment capabilities. To further improve the reliability of spherical
harmonics (SH)-based color estimation under enforced blending, we apply two adjustments. First,
we initialize the RGB color directly into the DC component of the SH basis. Second, We normalize
the rendered output C to compensate for transparency, since the final alpha holds α < 1 by design:

C =

C, α < τα,
C

α
, α ≥ τα,

(11)

where τα is a stability threshold to avoid amplifying noise in regions with very low transparency. This
correction allows the model to produce unbiased and stable renderings, while maintaining accurate
3D alignment in sparse-view scenarios.

3.5 TRAINING LOSS

Our training loss is an image-level loss computed directly between the rendered image and the
ground-truth image. We use a combination of mean squared error (MSE) and perceptual similarity
(LPIPS):

Lgs =

M∑
m=1

(
MSE

(
Imrender, I

m
gt

)
+ λ · LPIPS

(
Imrender, I

m
gt

))
, (12)

where M denotes the batch size. The weight λ is set to 0.05, following prior works Charatan et al.
(2024); Chen et al. (2024b); Xu et al. (2024b).

3.6 HIGH-RESOLUTION RENDERING CONSISTENCY (HRRC)
To better evaluate the geometric fidelity of reconstructed 3D scenes, we propose a novel evaluation
metric: High-Resolution Rendering Consistency (HRRC).
Conventional metrics—such as PSNR, SSIM, and LPIPS—are typically computed at the same
resolution as the input images (e.g., 256× 256). However, these metrics often fail to reveal geometric
inaccuracies or sparsity-induced artifacts, which may be hidden at lower resolutions but become
apparent under high-frequency sampling.
To address this limitation, we render each reconstructed scene at a higher resolution (e.g., 2× or 4×
the original), resulting in an output ÎHR. We compare this against a bicubic-upsampled version of
the ground truth image, denoted ÎGT↑, and compute standard quality metrics:

HRRCmetric = metric(ÎHR, ÎGT↑) where metric ∈ {PSNR,SSIM,LPIPS}. (13)
HRRC can effectively expose geometric flaws such as sparsity-induced holes, degenerate Gaussian
shapes (e.g., overly isotropic splats), and discontinuities in unobserved regions. A higher HRRC
score indicates stronger spatial generalization and more accurate 3D reconstruction. This makes
HRRC particularly useful for distinguishing models that merely memorize sparse views from those
that truly recover 3D geometry.
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4 EXPERIMENT

OursDepthSplatHiSplatTranSplatMVSplatpixelSplat

Figure 4: Multi-resolution rendering of 3D scenes. We visualize rendered images and depth maps at
three resolutions: ×1 (blue box), ×2 (green box), and ×4 (red box). As resolution increases, artifacts
in the underlying 3D representation become more evident. In the image space, they appear as dark
regions caused by unfilled gaps, where hollow areas are rendered as black pixels. In the depth space,
they appear as unnatural yellow regions, indicating incorrect depth predictions caused by geometric
discontinuities or sparsity. Note that yellow corresponds to near surfaces and blue denotes distant
regions in depth map visualization.
Datasets. To evaluate our method, we follow the experimental setup in PixelSplat Charatan et al.
(2024) and conduct experiments on the RealEstate10K (RE10K) Zhou et al. (2018) and ACID Liu
et al. (2021a) datasets. RE10K mainly consists of indoor real estate videos, whereas ACID contains
outdoor scenes captured by aerial drones. Both datasets provide precomputed camera poses and we
adhere to the official train-test splits used in prior work. Additionally, we evaluate our method on
the DTU Jensen et al. (2014) dataset following MVSplat Chen et al. (2024b), on DL3DV Ling et al.
(2024) following DepthSplat Xu et al. (2024b), and further extend our evaluation to the challenging
ScanNet Dai et al. (2017) dataset.
Evaluation Metrics. We evaluate novel view synthesis quality using standard metrics: PSNR, SSIM,
and LPIPS. To better evaluate geometric fidelity, we additionally report high-resolution rendering
consistency (HRRC) results at 2× and 4× resolution.
Baselines. We compare our method to state-of-the-art sparse-view generalizable methods for
novel view synthesis, including PixelSplat Charatan et al. (2024), MVSplat Chen et al. (2024b),
TranSplat Zhang et al. (2025), HiSplat Tang et al. (2024), and DepthSplat Xu et al. (2024b). Among
these, PixelSplat and HiSplat generate multiple Gaussians per pixel, while MVSplat, TranSplat, and
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DepthSplat predict a single Gaussian per pixel. Since using more primitives generally improves
performance, we focus our core comparisons on the latter group to ensure a fair comparison.
Implementation Details. Our method is implemented using PyTorch Paszke et al. (2019) and
optimized using AdamW Loshchilov & Hutter (2017) with a cosine learning rate schedule. We
conduct experiments with different monocular backbones from Depth Anything V2 Yang et al. (2024)
(ViT-S, ViT-B, ViT-L), referred to as Ours-S, Ours-B, and Ours-L respectively. We train our models
for a total of 4800K iterations on an NVIDIA A100 GPU following DepthSplat Xu et al. (2024b),.
For the small model (Ours-S), we train for 300K iterations with a batch size of 16, while the base and
large models (Ours-B and Ours-L) are trained for 600K iterations with a batch size of 8. We adopt the
encoder settings from DepthSplat Xu et al. (2024b), but use a lower learning rate of 2× 10−6 for the
pretrained Depth Anything V2 backbone. All other layers are trained with a learning rate of 2× 10−4.
The opacity threshold τopa is set to 0.6, and the alpha normalization threshold τα is set to 0.1 during
training and 0.001 during evaluation. Predicted scale multipliers are clamped to the range [ 13 , 3]. We
train our models at 256× 256 resolution for fair comparison unless otherwise specified. Furthermore,
we explore higher-resoluton training at 256× 448 and demonstrate the results in the appendix A.3.

4.1 MAIN RESULTS

Table 1: Novel view synthesis performance on the RealEstate10k dataset.

256×256 (Standard) 512×512 (HRRC) 1024×1024 (HRRC) Average

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

pixelSplat 26.049 0.862 0.137 25.782 0.868 0.207 24.920 0.877 0.269 25.584 0.869 0.204

HiSplat 27.193 0.882 0.117 25.269 0.870 0.198 24.262 0.878 0.248 25.575 0.877 0.188

MVSplat 26.359 0.868 0.129 20.408 0.809 0.290 17.966 0.755 0.425 21.578 0.811 0.281

TranSplat 26.687 0.875 0.125 20.610 0.815 0.286 18.154 0.761 0.427 21.817 0.817 0.279

DepthSplat 27.504 0.890 0.112 20.031 0.774 0.341 16.385 0.635 0.491 21.307 0.766 0.315

Ours-S 27.001 0.883 0.118 25.989 0.860 0.223 24.535 0.835 0.325 25.842 0.859 0.222

Ours-B 27.447 0.890 0.113 26.280 0.866 0.218 24.744 0.838 0.322 26.157 0.865 0.217

Ours-L 27.537 0.892 0.112 26.331 0.866 0.217 24.897 0.842 0.320 26.255 0.867 0.216

Table 2: Novel view synthesis performance on the ACID dataset.

256×256 (Standard) 512×512 (HRRC) 1024×1024 (HRRC) Average

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

pixelSplat 28.284 0.842 0.146 27.687 0.848 0.243 26.462 0.858 0.343 27.478 0.849 0.244

HiSplat 28.737 0.853 0.132 25.376 0.833 0.246 23.988 0.841 0.314 25.700 0.842 0.231

MVSplat 28.202 0.842 0.145 17.802 0.711 0.406 14.784 0.572 0.567 20.263 0.708 0.373

TranSplat 28.337 0.845 0.143 17.911 0.716 0.402 14.956 0.582 0.558 20.401 0.714 0.373

Ours 28.336 0.845 0.144 26.868 0.814 0.281 21.253 0.690 0.457 25.486 0.783 0.294

Reconstruction Quality. We report quantitative comparison on the RE10K dataset in Table 1 and on
the ACID dataset in Table 2. Our proposed SurfSplat method consistently outperforms previous state-
of-the-art methods across various metrics and datasets, especially under high-resolution rendering
settings. As shown in Figure 4, we visualize the predicted 3D scenes rendered into both RGB and
depth maps at the original, ×2, and ×4 resolutions. While previous methods appear visually plausible
at the original resolution, their reconstructions manifest spatial inconsistencies at higher resolutions,
including holes and surface gaps. These artifacts reveal the limitations of previous feedforward 3DGS
models in capturing sub-pixel-level geometry. Notably, DepthSplat, despite using the same encoder
backbone as our method, fails to generate coherent geometry or consistent surface details, which
highlights the effectiveness of our surface continuity prior and forced alpha blending strategy.
Cross-Dataset Generalization. To assess cross-dataset generalization, we train our model on RE10K
and directly conduct evaluation on DTU, DL3DV, and ScanNet datasets. As shown in Table 3,
SurfSplat maintains strong performance and generalizes better than previous methods across all
target domains. This demonstrates the robustness of our learned geometric prior and the general
applicability of our representation even under domain shift.
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Table 3: Cross datasets performance.

Scannet DL3DV DTU Average

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

pixelSplat 19.606 0.714 0.324 27.201 0.882 0.104 12.752 0.329 0.639 19.853 0.642 0.356

HiSplat 19.095 0.691 0.342 26.242 0.869 0.112 16.019 0.671 0.277 20.452 0.744 0.244

MVSplat 18.725 0.692 0.333 23.841 0.768 0.156 13.914 0.470 0.386 18.827 0.643 0.292

TranSplat 18.944 0.705 0.332 23.913 0.771 0.161 14.956 0.527 0.327 19.271 0.668 0.273

DepthSplat 20.201 0.735 0.305 28.141 0.905 0.083 14.592 0.425 0.436 20.978 0.688 0.275

Ours 20.305 0.731 0.313 27.384 0.890 0.106 15.544 0.488 0.329 21.078 0.703 0.249

Table 4: Ablations study on various components.

256×256 (Standard) 512×512 (HRRC) 1024×1024 (HRRC) Average

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o FAB, SCP 26.925 0.880 0.120 21.549 0.805 0.307 18.563 0.716 0.422 22.346 0.800 0.283

w/o FAB 26.481 0.873 0.128 21.042 0.776 0.345 17.576 0.662 0.474 21.700 0.770 0.316

Full 27.001 0.883 0.118 25.989 0.860 0.223 24.535 0.835 0.325 25.842 0.859 0.222

4.2 ABLATION AND ANALYSIS

Figure 5: Ablation study: Visualization of recon-
structed 3D scenes. Our full model yields contin-
uous and coherent surfaces, while ablated variants
exhibit visible artifacts and spatial inconsistencies.

We conduct extensive ablation studies to further
validate the effectiveness of key components.
Specifically, we evaluate variants without both
of forced alpha blending and surface continuity
prior (denoted as w/o FAB,SCP) , and without
forced alpha blending (denoted as w/o FAB).
Quantitative results are reported in Table 4, and
we also rendered the reconstructed 3D scenes
onto three orthogonal planes in Figure 5 to pro-
vide qualitative comparisons. Our full model
yields continuous and coherent surfaces, while
ablated variants exhibit visible artifacts and spa-
tial inconsistencies.
Surface Continuity Prior. To evaluate the im-
pact of the surface continuity prior, we train
a variant that independently predicts all Gaus-
sian attributes without geometric coupling. In-
terestingly, this variant still achieves competitive
novel view synthesis (NVS) performance at the
original resolution, despite producing visually
noisy and discontinuous surfaces. This observa-
tion highlights a key limitation of conventional
NVS metrics and underscores the value of our

proposed HRRC metric, which drops significantly when surface continuity is not enforced.
Forced Alpha Blending. We also train a variant with the surface continuity prior but without forced
alpha blending. We observe a clear spatial misalignment across views, as the model tends to produce
fully opaque Gaussians, which occlude background information and hinder correct 3D alignment.
This leads to a substantial drop in both standard and HRRC metrics.
5 CONCLUSION
We present SurfSplat, a feedforward framework for high-fidelity 3D scene reconstruction from sparse
views using 2D Gaussian splatting primitive. By introducing a surface continuity prior and a forced
alpha blending strategy, our method addresses key limitations of previous approaches, eliminating
surface discontinuities and overcoming opacity collapse. We also propose the HRRC metric to better
evaluate fine-grained geometric fidelity. Extensive experiments across multiple datasets demonstrate
that SurfSplat achieves state-of-the-art performance across both standard and high-resolution metrics,
providing a scalable and accurate solution for generalizable 3D reconstruction.
Limitations. Despite these improvements, our method still relies on known camera poses, and
predicting one Gaussian per pixel can lead to redundant representations. These limitations open
opportunities for future research on joint pose elimination and compact, adaptive representations.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 ENCODER ARCHITECTURE

We adopt a dual-branch encoder design to extract both monocular and multi-view features for robust
3D reasoning, following the architecture proposed by DepthSplat Xu et al. (2024b).

Multi-view Branch. The multi-view encoder begins with a lightweight ResNet-style backbone
composed of stride-2 convolutional layers, yielding spatially downsampled feature maps by a factor
of s. To enable view aggregation, we employ a multi-view Swin Transformer Liu et al. (2021b)
consisting of 6 stacked self- and cross-attention layers. This module outputs multi-view-aware
features

{
F i

}N

i=1
, where F i ∈ RH

s ×W
s ×C .

We further adopt the plane-sweep stereo technique Collins (1996); Xu et al. (2023) to construct
geometric consistency. We uniformly sample D candidate depths between near and far bounds. Given
reference view i and source view j, we warp features Fj to view i at each depth dm, resulting in{
F j→i
dm

}D

m=1
. These warped volumes are compared to Fi via dot-product similarity to construct a

cost volume Ci ∈ RH
s ×W

s ×D.

Single-view Branch. We utilize the ViT backbone from Depth Anything V2 model Yang et al.
(2024) to extract monocular features. The output has a spatial resolution of 1/14 relative to the
original image and is bilinearly upsampled to match the cost volume resolution, yielding monocular
features F i

m ∈ RH
s ×W

s ×Cm .

U-Net and Depth Prediction. The monocular and multi-view features F i
m and Ci are concatenated

along the channel dimension and processed by a 2D U-Net to produce depth candidates Di ∈
RH

s ×W
s ×D. A softmax operation is applied over the depth axis, followed by a weighted summation

to generate the predicted depth map.
To enhance depth quality, we employ a hierarchical cascade structure Gu et al. (2020), refining the
predicted depth to Di

ds ∈ R 2H
s × 2W

s , which is subsequently upsampled to full resolution using a DPT
head Ranftl et al. (2021).

Attribute Prediction. The predicted depth is used to reconstruct Gaussian positions. For estimating
the remaining Gaussian attributes—such as scale multipliers, high-frequency SH coefficients, and
opacity—we apply an additional DPT head, conditioned on a concatenation of the input image,
predicted depth, and encoder features.

Hyperparameter Selection. The downsample scale s is set to 4. Channel number C is set to 128,
channel number D is set to 128. The channel number Cm of the monocular feature is set to 64 for
small model, 96 for base model, 128 for large model.

Note: Our implementation is consistent with DepthSplat Xu et al. (2024b) for reproducibility. No
architectural modifications are made to the encoder unless otherwise stated.

A.2 HYPERPARAMETER SENSITIVITY.

We further investigate the influence of the hyperparameters τopa and τα in Table 5. Our results indicate
that SurfSplat is robust to the exact threshold values, maintaining strong performance as long as the
thresholds remain within a reasonable range. This demonstrates the stability and generality of the
forced alpha blending technique.

Table 5: Ablations study on hyperparameter sensitivity.

256×256 (Standard) 512×512 (HRRC) 1024×1024 (HRRC) Average

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours 27.001 0.883 0.118 25.989 0.860 0.223 24.535 0.835 0.325 25.842 0.859 0.222

τα = 0.3 26.921 0.881 0.120 25.930 0.860 0.222 24.816 0.843 0.317 25.889 0.861 0.220

τopa = 0.4 26.992 0.883 0.118 25.957 0.860 0.222 24.538 0.835 0.323 25.829 0.859 0.221
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Figure 6: Normal and mesh comparison with DepthSplat. We present the reconstructed mesh and
normal results and we observe that our method produces more geometrically consistent results.

A.3 EXTENDED RESULTS AT HIGHER RESOLUTION

To further demonstrate the scalability and generalization capability of our model, we train and
evaluate an extended version at higher input resolution (256× 448).
Quantitative results are summarized in Table 6, showing consistent improvements across standard
and high-resolution metrics. We also visualize the rendered images and depth maps at multiple output
resolutions (×1, ×2, and ×4) in Figure 7, Figure 8 and Figure 9, highlighting the enhanced geometric
detail and texture fidelity enabled by the higher-resolution input.
To empirically validate the effectiveness of HRCC on native high-resolution data, we conducted
additional experiments on the high-resolution version of the DL3DV dataset. We randomly sampled
a representative subset for evaluation and ensured that all methods were tested under identical
conditions. The results are reported in Table 7. Across these experiments, the relative performance
rankings remained fully consistent with those observed under HRRC evaluation, even without any
bicubic upsampling. This indicates that the conclusions drawn from HRRC reliably transfer to native
high-resolution evaluations.

A.4 NORMAL AND MESH COMPARISON

Since our method naturally predicts a surface orientation for each 2DGS, we additionally generate
the corresponding normal maps and reconstructed meshes to further demonstrate the effectiveness
of SurfSplat. We provide a comparison with DepthSplat Yang et al. (2024) in Figure 6. From this
comparison, we observe that our method produces more geometrically consistent results, highlighting
the improved geometric coherence induced by the surface continuity prior.

Table 6: Quantitative performance of the high-resolution model.

256×448(Standard) 512×896(HRRC) 1024×1792(HRRC) Average

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours-B 26.190 0.871 0.134 25.553 0.861 0.234 24.197 0.842 0.329 25.313 0.858 0.232

A.5 LLM USAGE

Large Language Models (LLMs) were used only for minor language polishing of the manuscript.
They did not contribute to research ideation, experimental design, analysis, or substantive writing.
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Table 7: Quantitative performance comparison on high-resolution DL3DV dataset.

Metric pixelSplat HiSplat MVSplat TransSplat DepthSplat Ours

PSNR ↑ 24.082 22.780 17.966 19.545 16.066 24.411
SSIM ↑ 0.755 0.765 0.645 0.679 0.600 0.788
LPIPS ↓ 0.250 0.237 0.301 0.257 0.424 0.252

GT X1 X2 X4

Figure 7: Visualization of the high-resolution model. We present rendering results (image and
depth) at multiple output resolutions. As the resolution increases, our model preserves coherent
geometry and appearance, revealing finer details of the scene.
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GT X1 X2 X4

Figure 8: Visualization of the high-resolution model. We present rendering results (image and
depth) at multiple output resolutions. As the resolution increases, our model preserves coherent
geometry and appearance, revealing finer details of the scene.
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GT X1 X2 X4

Figure 9: Visualization of the high-resolution model. We present rendering results (image and
depth) at multiple output resolutions. As the resolution increases, our model preserves coherent
geometry and appearance, revealing finer details of the scene.
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