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Abstract
Gaussian processes provide reliable uncertainty
estimates in nonlinear modeling, but a poor choice
of the kernel can lead to poor generalization. Al-
though learning the hyperparameters of the kernel
typically leads to optimal generalization on in-
distribution test data, we demonstrate issues with
out-of-distribution test data. We then investigate
three potential solutions– (1) learning the smooth-
ness using a discrete cosine transform, (2) assum-
ing fatter tails in function-space using a Student-t
process, and (3) learning a more flexible kernel us-
ing deep kernel learning–and find some evidence
in favor of the first two.

1. Introduction
Gaussian processes (GPs) are flexible distributions over
functions that are widely used in applications (Williams &
Rasmussen, 2006; Deringer et al., 2021; Liu et al., 2020a;b).
The covariance of a GP leads to different function-space
properties. For example, amplitude variance describes the
magnitude of the functions, lengthscale describes the “flat-
ness” of the functions, and smoothness corresponds to the
number of times the functions are differentiable.

The covariance of a GP is given by the functional form of a
kernel k : X × X → R and its associated hyperparameters.
For example, the popular radial basis function (RBF) kernel
k(x,x′) = σ2 exp(∥x− x′∥2/(2ℓ2)) has two hyperparam-
eters, σ2 and ℓ, that control the amplitude variance and
lengthscale properties, respectively. In fact, these hyperpa-
rameters can be added to any kernel by scaling the input to
and output of the kernel (i.e., k̃(x,x′) := σ2k(x/ℓ,x′/ℓ))
and, furthermore, can be learned from data, for example by
full posterior inference or by optimizing the log marginal
likelihood. Like many kernels, though, the smoothness
property implied by an RBF kernel is fixed, in this case to
functions so smooth they can be differentiated an infinite
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number of times. Although the Matérn kernel generalizes
the RBF kernel by adding a smoothness hyperparameter ν,
it is typically fixed to one of ν ∈ {1/2, 3/2, 5/2} because it
is computationally difficult to infer from data (Marin et al.,
2021). Unfortunately, if the functions implied by the kernel
are too smooth relative to the ground-truth function that
generated the data, the generalization error on test data can
decay slowly in the number of training observations, even
logarithmically slowly in the case of an RBF kernel (Sollich,
2001; van der Vaart & van Zanten, 2011; Jin et al., 2022).

Fortunately, a small lengthscale can effectively compensate
for such a smoothness “mismatch” (Sollich & Ashton, 2012;
van der Vaart & van Zanten, 2011) by allowing the function
to “wiggle” as a substitute for being more rough. However,
in this work we demonstrate it can come at the cost of poor
performance in an out-of-distribution (OOD) “gap” in the
data, because the function misses out on long-range trends
captured by the lengthscale. We say it can come at cost
because the performance depends on the way the model
is evaluated and whether all of the hyperparameters are
optimized. Even in the best case, though, the OOD perfor-
mance seems unsatisfactory because the posterior quickly
reverts to the prior. We provide a careful examination of
this phenomena using a simple 1D dataset.

Figure 1 shows an example of the problem we study. In
the left panel, the model is smoother than the process that
generated the data. To compensate, the model learns a small
lengthscale, resulting in a decent fit of the training data (see
its posterior in purple). However, in the OOD gap between
the two clusters of training data, the posterior quickly reverts
to the prior because of the small lengthscale. This is espe-
cially evident in the posterior mean (thick line) reverting
downwards to the prior mean of zero. In contrast, the cor-
rectly specified model (i.e., that generated the data, shown
in blue) identifies the upward trend in the data. While also
inferring the amplitude variance and, importantly, a con-
stant mean function (right panel, shown in red) significantly
improves the uncertainty quantification in the gap, the pos-
terior mean still poorly models the upward trend because of
the small lengthscale.

To address these issues, we investigate three possible solu-
tions: learning the smoothness by manipulating the function
in frequency space, using a heavier-tailed function-space
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distribution with the Student-t process (Shah et al., 2014),
and allowing for more flexible kernel learning using deep
kernel learning (Wilson et al., 2016). The first method scales
poorly but shows some promise.

Figure 1: Optimizing kernel hyperparameters of a mis-
matched kernel can lead to poor OOD generalization.
Left: A small lengthscale allows an overly smooth model
(purple) to fit rough training data, but results in a quick re-
version to the prior in the out-of-distribution “gap”. Notice
how the posterior mean (thick line) dips drastically below
the test data, towards the prior mean of zero, compared to
the correctly specified model (blue). Right: Also optimizing
the variance hyperparameter and a constant mean function
results in much better performance, but the posterior mean
still misses the upward trend in the data (red). Shaded re-
gions are ±2 standard deviations of the posterior.

2. Background
GPs The mean function m : X → R and the kernel
k : X × X → R define a Gaussian process. Together with
a likelihood, which in this paper we take to be a Gaussian
distribution of constant variance, they constitute a statistical
model of noisy function observations. The mean function is
often taken to be zero, so the kernel and its hyperparameters
encodes most of the assumptions made by the user.

GP learning rates There is a large literature on the asymp-
totic, ID generalization properties of kernel ridge or GP
regression, but a common theme is that when the functions
implied by the kernel are smoother than the ground-truth
function, then the relative smoothness of the two plays a
key role (Sollich, 2001; van der Vaart & van Zanten, 2011;
Jin et al., 2022). Thus, it is this setting where learning a
lengthscale is especially important to ID generalization. We
use it to study the implications for OOD generalization.

GP smoothness The smoothness of a GP can be measured
by the eigenspectrum of the kernel integral operator, with
fatter tails implying rougher processes. The eigenspectrum
is known only in some cases (Zhu et al., 1998; Hawkins,
1989; Bach & Jordan, 2002; Velikanov & Yarotsky, 2021),
but it can be estimated empirically (see Appendix B). Un-
fortunately, the smoothness is often fixed by the kernel.

3. In and Out of Distribution Behavior of
Mismatched GPs

We demonstrate empirically how a small lengthscale allows
an overly smooth model to fit training data and nearby, “in-
distribution” (ID) test data, but has unintended consequences
for further away, OOD test data. Intuitively, this happens
because a small lengthscale results in a quick reversion to
the prior, thus ignoring long-range trends in the data.

We generate data by sampling functions from a rough,
non-differentiable process — a Matérn GP with ν = 1/2.
We allow for a long-range trend by setting the length-
scale to ℓ = 100. For the model, we always use a ker-
nel that implies a smoother, “mismatched” GP: Matérn
(ν ∈ {3/2, 5/2,∞}, arccos (order ∈ {1, 2}), and piecewise
polynomial (degree ∈ 1, 2)). We start by assuming the train
and test sets come from the same distribution (i.e., the test
distribution is ID), writing Dtrain = {xtrain

n ,ytrain
n }N train

n=1 and
DID = {xID

n ,yID
n }N ID

n=1, where xtrain
n ,xID

n ∼ pID(x). Later,
we use an OOD test set DOOD = {xOOD

n ,yOOD
n }NOOD

n=1 , where
xOOD
n ∼ pOOD(x). We use a noise variance of 0.1.

GPs are typically evaluated — both for training hyperpa-
rameters and measuring posterior performance — by the
negative log marginal likelihood (NLML), which measures
the (negative log of the) average likelihood that functions
drawn from the GP place on the entire dataset. For some
models (e.g., Bayesian neural networks), the NLML is in-
tractable, so it is common to instead report the (negative
log of the) average likelihood that functions drawn from the
model place on each point individually. We call this the
DiagNLML because it ignores the covariance between the
function evaluated at different inputs. Although the NLML
can be computed exactly for GPs, we will demonstrate that
it prefers drastically different kernel hyperparameters than
the DiagNLML when evaluated on OOD data and, arguably,
the hyperparameters preferred by the DiagNLML are more
desirable based on a visual examination of the posterior.

In our notation, since we distinguish between the dataset
used for conditioning, Dc ∈ {∅,Dtrain} (yielding the prior or
posterior, respectively), and the dataset used for prediction,
Dp ∈ {Dtrain,DID,DOOD}, we write the two metrics as

NLMLDp

Dc =
1

Np
log

∫
p(yp | fp)p(fp | Dc) dfp

DiagNLMLDp

Dc =
1

Np

N∑
n=1

log

∫
p(ypn | fp

n)p(f
p
n | Dc) dfp

n

where fp = {fp
n}N

p

n=1 = {f(xp
n)}N

p

n=1 is the function eval-
uated on the inputs. For simplicity, we abuse notation and
write, e.g, NLMLtrain

prior instead of NLMLDtrain

∅ . We also use the
same superscript and subscript notation on the root-mean-
squared-error (RMSE) of the posterior mean.
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To choose the hyperparameters, we follow the standard GP
training procedure of minimizing the NLML of the prior on
the training data, i.e., NLMLtrain

prior. We always optimize the
lengthscale with a gridsearch. Using the learned hyperpa-
rameters, we compute the posterior in closed-form.

A small lengthscale minimizes the training objective
(NLMLtrain

prior) and effectively compensates for the smooth-
ness mismatch on ID test data. Figure 2 illustrates how
the standard training procedure learns a relatively small
lengthscale, ℓ = 0.29, which permits the overly smooth
model to fit the rough training data much better than the
model with the larger lengthscale of ℓ = 1.0. This is consis-
tent with previous work (Sollich & Ashton, 2012). Section
A.1 shows this conclusion is robust across other random
datasets, different model kernels, and whether the other
hyperparameters are optimized.

Figure 2: A small lengthscale allows a smoother model to
fit the training data and any nearby test data. Posterior
of RBF GPs compared to the rougher, ground-truth Matérn
GP with ν = 1/2.

Next we turn to the main question of this paper: does a
lengthscale smaller than the ground-truth negatively impact
OOD behavior? We find that the answer depends on how
the model is evaluated (NLML vs. DiagNLML) and whether
other hyperparameters (i.e., beyond lengthscale) are also
optimized (including a constant mean function, which is

otherwise set to zero). We again draw noisy data from a GP
with a Matérn kernel and a large lengthscale, ℓ = 100, but
we instead assume there is a gap in the training data, with
the OOD data in the gap. An example of this dataset, and
the basic intuition of our results, is shown in Figure 1.

When only the lengthscale is inferred, an overly smooth
model provides poor OOD predictions and marginal
uncertainty (i.e., RMSE and DiagLML), though sur-
prisingly good full covariance uncertainty (i.e., NLML)
Figure 3 shows the intuition for a single dataset. The center
panel shows various metrics as a function of the length-
scale, which is the only hyperparameter we optimize in
this experiment. Because of the smoothness mismatch, the
standard training objective, NLMLtrain

prior shown in purple, is
minimized by a fairly small lengthscale. Unfortunately,
a small lengthscale leads to poor OOD predictions (i.e.,
RMSEOOD

post , shown in brown) and poor OOD marginal un-
certainty (i.e., DiagNLMLOOD

post , shown in orange). This is
the poor OOD behavior we highlight in this work. Interest-
ingly, though, a small lengthcale does not result in a poor
OOD full covariance uncertainty (i.e., NLMLOOD

post , shown in
green). This happens because the NLML rewards the model
for compensating for the smoothness mismatch with a small
lengthscale, enough so to outway the poor predictions.

The posteriors in Figure 3 illustrate the dramatic differ-
ence in the hyperparameters preferred by the posterior OOD
NLML and DiagNLML. On the left is the model that mini-
mizes the posterior OOD DiagNLML. Notice the posterior
mean strongly reverts to the prior mean of 0 in the gap and
sharply differs from the posterior of the model that gen-
erated the data (shown in blue). This is in contrast to the
model that minimizes the posterior OOD NLML, shown on
the right. It is difficult to imagine an application where the
green model on the left would be preferred to the orange
model on the right, but nonetheless this is the preference of
the standard evaluation metric, the NLML.

Figure 3: A small lengthscale nearly minimizes the full covariance NLML on OOD data (green), but has poor
predictions and marginal variance (brown and orange). Left: Posterior of the model with the best NLMLOOD

post . Middle:
Various prior and posterior metrics as a function of lengthscale. The NLMLtrain

prior is minimized during inference and the rest
are used for evaluation on OOD data. Right: Posterior of the model with the best DiagNLMLOOD

post .
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This behavior is illustrated across datasets and kernels by
Figure 4, which compares the average performance across
several metrics based on two criteria for selecting the length-
scale: minimizing the NLML of the prior on the training
data (i.e., the standard training objective) and the minimiz-
ing the DiagNLML of the posterior on the OOD test data.
Of course, the latter criteria cannot be minimized in practice
because it requires access to the test data, but we provide it
to show the best possible choice of the lengthscale for this
metric. In other words, we are comparing what happens
in standard practice based on the training data to what we
would ideally like to optimize if we somehow had access
to the OOD test data. Any new method designed to alter
the lengthscale chosen by the standard objective could not
result in performance better than what we show. We use
the DiagNLML instead of the NLML because we have al-
ready seen how the NLML prefers models with very poor
predictions in the situation we analyze.

Immediately we see the expected tradeoff in the lengthscale.
As in the single dataset in Figure 3, models that minimize the
training objective tend to have a smaller lengthscale and do
poorly in OOD prediction (RMSEOOD

post ) and OOD marginal
uncertainty calibration (DiagNLMLOOD

post ). But models that
minimize the OOD marginal uncertainty do relatively worse
on the other metrics, i.e., ID metrics and OOD NLML.
Therefore, if one were to force the lengthscale to be larger to
do better on OOD data (in terms of RMSE or DiagNLML),
the model would do worse on ID data or OOD NLML. Note
for comparision, for every metric we also show the best
possible choice of the lengthscale for that metric as a black
bar (i.e., “best in category”), which by construction agrees
with the purple bar in the case of DiagNLMLOOD

post .

Figure 4: Across datasets and kernels, the best
lengthscale for posterior DiagNLML on OOD data
(DiagNLMLOOD

post ) is relatively large while the best length-
scale for other metrics is relatively small. For each kernel
and dataset, we select the lengthscale that minimizes the
corresponding metric.

When all hyperparameters are inferred, the perfor-
mance improves but the posterior still quickly reverts to
the prior. Figure 5 demonstrates that inferring all of the
hyperparameters (including a constant mean function) tends
to improve the OOD DiagNLML and RMSE, in particular
when using the standard procedure of selecting the hyper-
parameters. In the case of Matérn kernel with v = 5/2, the

Figure 5: Optimizing all hyperparameters improves Di-
agNLML and RMSE of the posterior on OOD data, but
the lengthscale is even smaller.

dramatic difference in the posterior can be seen by com-
paring the left and right panels of Figure 1. However, we
argue that the solution provided by optimizing all of the
hyperparameters, while clearly preferable, is unsatisfactory.
The posterior still tends to revert to the prior in the gap
because of the small lengthscale, it is just that the prior is
much better calibrated to the data. Any long-range patterns
in the data cannot be identified, though.

There are two modes when minimizing the posterior
OOD RMSE. Figure 6 demonstrates how models with
small and large lengthscales can perform similarly but for
different reasons. If the lengthscale is small, the posterior
does not make an attempt to capture any trends in the data
and just reverts to the prior. This solution will never perform
very well, but it will also never perform very badly. If the
lengthscale is large, the posterior does make an attempt but
it will typically be incorrect to some degree. Generally we
argue the large lengthscale solution is preferable since at
least it could identify the trend, but in this case reverting to
the prior mean of zero indeed gave better predictions.

Figure 6: A small or large lengthscale can minimize the
RMSE. The larger lengthscale better identifies the upward
trend, but has poor uncertainty quantification. The smaller
lengthscale quickly reverts to the prior.

4. Beyond Standard GPs
So far we have seen a trade-off in choosing the lengthscale
when the model is overly smooth. If the lengthscale is
too large, the model cannot fit ID. If the lengthscale is too
small, the model quickly reverts to the prior outside of the
data. Next we investigate three extensions of standard GPs,
hoping to perform well on ID and OOD data simultaneously.

Manipulate the smoothness in frequency space. Earlier we
stated that the smoothness of a GP cannot be optimized with
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standard methods, so the lengthscale attempts to compensate
for any smoothness mismatch. But what if the smoothness
could be optimized? We propose a method (DCTGP), in-
spired by the low-pass filtered BNN (Yao et al., 2022) and
spectral mixture kernel (Wilson & Prescott, 2013), that ma-
nipulates the smoothness of a GP using a discrete cosine
transform (DCT). Specifically we manipulate function sam-
ples evaluated on a grid of evenly-spaced inputs. We then
(1) transform to frequency space using a DCT, (2) manip-
ulate the tail of the frequency spectra, for which there is a
trainable hyperparameter, and finally (3) transform back to
function space using an inverse DCT. These three steps cor-
respond to a single linear transformation A, so this method
is still a GP but with Gram matrix AKA⊤ instead of K.
See Appendix C for details. Unfortunately, evaluating func-
tions on a grid of points scales poorly, so we deem this a toy
method that could perhaps inspire scalable alternatives.

Use heavy tails in function space. A heavy-tailed distribu-
tion over functions could allow the posterior to adapt to
a smoothness mismatch without adjusting the lengthscale
as significantly. We use a Student-t process (STP), which
replaces the multivariate Gaussian distribution in a GP with
a multivariate Student’s t-distribution (Shah et al., 2014).
Note that STPs have the same posterior mean as GPs (given
the same hyperparameters), but differ from GPs in two im-
portant ways. First, the posterior variance of the STP is
outcome dependent (i.e., it depends on {ytrain

n }Ntrain
n=1 ) and,

second, the marginal likelihood is different, so the opti-
mized hyperparameters could be different. Bayesian neural
networks and deep GPs also imply a heavy-tailed function-
space distribution, but we leave them to future work to avoid
introducing approximate inference as a confounding factor.

Use deep kernels. By passing the inputs through a neu-
ral network before applying a standard kernel, like RBF,
deep kernel learning (DKL) aims to create more expressive
kernels (Wilson et al., 2016). Perhaps it will identify a ker-
nel that models the rough training data without losing the
long-range trends captured by the lenghthscale.

DCTGP provides substantial improvements, STP pro-
vides some improvements, and DKL performs worse.
Figure 7 shows the ID and OOD performance, analogously
to Figures 4 and 5 (the purple bar is the same). The DCTGP
performs the best, significantly improving the OOD Di-
agNLML and RMSE. Notice the lengthscale is typically
much larger, which makes sense given that the smooth-
ness can adapt. Although STP provides some improvement,
we find that similar improvements could be made simply
by plugging the posterior kernel of the standard GP into
a t-distribution. In other words, for the same kernel, a t-
distribution places more mass on the data than a Gaussian
distribution, likely due to the kernel mismatch, but there
was little to no value in training an STP instead of a GP.

DKL performs very poorly on OOD uncertainty quantifi-
cation (the values are outside of the plot), possibly due to
overfitting of the training data, which is a known problem
with DKL (Ober et al., 2021). We also show in Appendix
B that if the weights of the neural network are drawn ran-
domly, there is little impact on the eigenspectrum of the
kernel. This suggests the neural network may not be able to
significantly impact the smoothness implied by the

Figure 7: DCTGP and STP improve the DiagNLMLOOD
post

over the standard GP.

5. Conclusion
GPs are often used as the benchmark for neural-network-
based uncertainty quantification methods, like Bayesian neu-
ral networks or deep ensembles (Lakshminarayanan et al.,
2017), but it is important to remember that GPs are less
flexible. Although they are often consistent in function
space, they are not necessarily consistent in kernel space.
They have a fixed kernel with typically only a few hyperpa-
rameters and, even if this kernel is correctly specified, they
may not be able to recover the ground-truth hyperparameters
(Zhang, 2004). We have shown that the hyperparameters can
effectively compensate for kernel mismatch near the training
data, but away from the data — where uncertainty quantifi-
cation is most valuable — GPs can behave poorly due to
one hyperparameter compensating for another. Although
fatter tails in function-space provided some improvement,
only learning the mismatched smoothness with the DCTGP
significantly boosted performance. Since the DCTGP does
not scale well as proposed, in the future we will explore
neural-network-based models and deep GPs as we hypoth-
esize depth may aid in adapting the smoothness separately
from the lengthscale. This will enable the ultimate goal of
generalizing well to ID and OOD test data when the kernel
is unknown and thus likely misspecified.
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Deringer, V. L., Bartók, A. P., Bernstein, N., Wilkins, D. M.,
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A. Additional experiments
A.1. In-Distribution (ID) Behavior

Figure 8: The optimal amplitude variance decreases with the lengthscale.

(a) Non-lengthscale hyperparameters fixed to ground-true values. (b) All hyperparameters optimized.

Figure 9: NLMLpost
ID performance as a function of lengthscale, using the experimental setup as in Figure 2.
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A.2. Out-of-Distribution (OOD) Behavior

Figure 10: NLMLpost
ID as a function of lengthscale for various Matérn kernels. The ground truth model is a Matérn GP with

ℓ = σ2 = 1 and ν = 3/2. The optimal value of the lengthscale can be different from the ground truth if the smoothness is
misspecified.

(a) Non-lengthscale hyperparameters fixed to ground-true values. (b) All hyperparameters optimized.

Figure 11: OOD NLML performance as a function of lengthscale, using the experimental setup as in Figure 3 but averaged
over 10 function draws.
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(a) Non-lengthscale hyperparameters fixed to ground-true values. (b) All hyperparameters optimized.

Figure 12: RMSEpost
OOD performance as a function of lengthscale, using the experimental setup as in Figure 3 but averaged

over 10 function draws. We also break down results by kernel class, with the blue line representing a kernel that yields a
more smooth process as compared to the kernel represented by the orange line.

Figure 13: Best test RMSE model (among those tested) in Figure 3.
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B. Smoothness of non-traditional kernels

Figure 14: Estimated eigenvalues of kernels used in experiments. Matern12 (i.e., Matérn with ν = 1/2) is used for data
generation because it is the smoothest (slowest eigenvalue decay).

Figure 15: Estimated power-law decay rates of the eigenvalues of kernels used in experiments.
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Figure 16: Eigenspectrum for a DCTGP with a Matérn (ν = 3/2) kernel with different τ parameters. Larger values of τ
correspond to faster eigenvalue decays and thus smoother functions.

Figure 17: Impact of width on eigenspectrum of deep Matérn kernel
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Figure 18: Prior distribution over eigenspectrums from deep Matérn kernels. The dotted line is the eigenspectrum of the
regular Matérn kernel

C. DCTGP Details
We propose a toy method (DCTGP) that manipulates the smoothness of the model using a discrete cosine transform
(DCT), which is a linear transformation T that decomposes any discrete signal into a weighted sum of cosines of different
frequencies. By taking the signal to be the function evaluated on a grid of N grid inputs, the smoothness of the function
can be altered by adjusting the weight on the smallest frequency cosines and then applying the inverse transform, T⊤.
Specifically we multiply the frequencies by J := diag(j−τ ), where j := (1, . . . , N grid) indexes the frequences and τ is a
trainable parameter that adjusts the smoothness of the function. Since the whole transformation A := T⊤JT is linear, this
still defines a Gaussian process with Gram matrix K = AKA⊤.


