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This study proposes a novel method for estimation and hypothesis testing in high-dimensional single-
index models. We address a common scenario where the sample size and the dimension of regression
coefficients are large and comparable. Unlike previous approaches, which often overlook the estimation
of the unknown link function, we introduce a new method for link function estimation. Leveraging
the information from the estimated link function, we propose more efficient estimators that are better
aligned with the underlying model. Furthermore, we rigorously establish the asymptotic normality of
each coordinate of the estimator. This provides a valid construction of confidence intervals and p-values
for any finite collection of coordinates. Numerical experiments validate our theoretical results.
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1. Introduction

We consider n i.i.d. observations {(XXX i,yi)}n
i=1 with a p-dimensional Gaussian feature vector XXX i ∼

Np(000,ΣΣΣ),ΣΣΣ ∈ Rp×p, and each scalar response yi belongs to a set Y (e.g., R,R+,{0,1},N∪ {0}),
following the single-index model:

E[yi | XXX i = xxx] = g(βββ⊤xxx), (1.1)

where βββ = (β1, . . . ,βp)
⊤ ∈ Rp is an unknown deterministic coefficient vector, and g(·) is an unknown

deterministic function, referred to as the link function, with βββ
⊤xxx being the index. To identify the scale

of βββ , we assume Var(βββ⊤XXX i) = βββ
⊤

ΣΣΣβββ = 1. The model includes common scenarios such as:

• Linear regression: yi | XXX i ∼ N (βββ⊤XXX i,σ
2
ε ) with σε > 0 by setting g(t) = t.

• Poisson regression: yi | XXX i ∼ Pois(exp(βββ⊤XXX i)) by setting g(t) = exp(t).
• Binary choice models: yi | XXX i ∼ Bern(g(βββ⊤XXX i)) with g : R→ [0,1]. This includes logistic regression

for g(t) = 1/(1 + exp(−t)) and the probit model by setting g(·) as the cumulative distribution
function of the standard Gaussian distribution.

We are interested in a high-dimensional setting, where both the sample size n and the coefficient
dimension p := p(n) are large and comparable. Specifically, this study examines the proportionally
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high-dimensional regime defined by:

n, p(n)→ ∞ and p(n)/n =: κ → κ̄, (1.2)

where κ̄ is a positive constant.
The single-index model (3.1) possesses several practically important properties. First, it mitigates

concerns about model misspecification, as it eliminates the need to specify g(·). Second, this model
bypasses the curse of dimensionality associated with function estimation since the input index βββ

⊤XXX i is
a scalar. This advantage is particularly notable in comparison with nonparametric regression models,
such as yi = ǧ(XXX i)+εi, where ǧ : Rp →R remains unspecified. Third, the model facilitates the analysis
of the contribution of each covariate, Xi j for j = 1, . . . , p, to the response yi by testing β j = 0 against
β j ̸= 0. Owing to these advantages, single-index models have been actively researched for decades
[2, 15, 24, 29, 33, 38, 39, 42, 43, 44, 46, 48, 60, 61], attracting interest across a broad spectrum of
fields, particularly in econometrics [41, 49].

In the proportionally high-dimensional regime as defined in (1.2), the single-index model and its
variants have been extensively studied. For logistic regression, which is a particular instance of the
single-index model, Salehi et al. [64], Sur et al. [68] have investigated the estimation and classification
errors of the regression coefficient estimators βββ . Furthermore, Sur and Candès [67], Yadlowsky et al.
[74], Zhao et al. [76] have developed methods for asymptotically valid statistical inference. In the
case of generalized linear models with a known link function g(·), Barbier et al. [5], Rangan [62]
have characterized the asymptotic behavior of the coefficient estimator, while [65] have derived the
coordinate-wise marginal asymptotic normality of an adjusted estimator of β j. For the single-index
model with an unknown link function g(·), the seminal work by Bellec [10] establishes the (non-
marginal) asymptotic normality of estimators, even when there is link misspecification. However, the
construction of an estimator for the link function g(·) and the marginal asymptotic normality of the
coefficient estimator are issues that have not yet been fully resolved.

Inspired by these seminal works, the following questions naturally arise:

1. Can we consistently estimate the unknown link function g(·)?
2. Can we rigorously establish marginal statistical inference for each coordinate of βββ?
3. Can we improve the estimation efficiency by utilizing the estimated link function?

This paper aims to provide affirmative answers to these questions. Specifically, we propose a novel
estimation methodology comprising three steps. First, we construct an estimator for the index βββ

⊤XXX i.
Second, we develop an estimator for the link function g(·). Third, we design a new estimator for
βββ with the estimated link function. To conduct statistical inference, we investigate the estimation
problem of inferential parameters necessary for establishing coordinate-wise asymptotic normality in
high-dimensional settings.

Our contributions are summarized as follows:

- Link estimation: We propose a consistent estimator for the link function g(·), which is of practical
significance as well as estimating coefficients. This aids in interpreting the model via the link
function and mitigates negative impacts on coefficient estimation due to link misspecification.

- Marginal inference: We establish the asymptotic normality for any finite subset of the coordinates
of our estimator, facilitating coordinate-wise inference of βββ . This approach allows us not only to
test each variable’s contribution to the response but also to conduct variable selection based on
importance statistics for each feature.
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- Efficiency improvement: By utilizing the consistently estimated link function, we anticipate that our
estimator of βββ will be more efficient than previous estimators that rely on potentially misspecified
link functions. We predominantly validate this efficiency through numerical simulations.

From a technical perspective, we leverage the proof strategy in Zhao et al. [76] to demonstrate
the marginal asymptotic normality of our estimator for βββ . Specifically, we extend the arguments to
a broader class of unregularized M-estimators, whereas Zhao et al. [76] originally considered the
maximum likelihood estimator (MLE) for logistic regression.

1.1. Marginal Inference in High Dimensions

We review key technical aspects of statistical inference for each coordinate β j in the proportionally
high-dimensional regime (1.2). We maintain βββ

⊤XXX i of constant order by considering the setting βββ
⊤

ΣΣΣβββ =
Θ(1). We define ΘΘΘ = ΣΣΣ

−1 as the precision matrix for the distribution of XXX i and set τ2
j := Θ

−1
j j > 0. An

unbiased estimator of τ j can be constructed using nodewise regression (cf. Section 5.1 in Zhao et al.
[76]). For simplicity, we assume τ j is known, following prior studies.

In the high-dimensional regime (1.2), statistical inference must address two components: the
asymptotic distribution and the inferential parameters of an estimator. We review the asymptotic
distribution of the MLE β̂ββ

m
for logistic regression. According to Zhao et al. [76], for all j ∈ {1, . . . , p}

such that
√

pτ jβ j = O(1) as n → ∞, the estimator achieves the following asymptotic normality:

√
p(β̂ m

j −µ∗β j)

σ∗/τ j

d→ N (0,1). (1.3)

Here, we define µ∗ ∈ R and σ∗ > 0 as the asymptotic bias and variance, respectively, ensuring the
convergence (1.3). It is crucial to note that both the estimator β̂ m

j and the target β j scale as Op(1/
√

p)
here.

To perform statistical inference based on (1.3), it is necessary to estimate the inferential parameters
µ∗ and σ∗. Several studies including El Karoui et al. [31], Loureiro et al. [51], Sur and Candès
[67], Thrampoulidis et al. [71] theoretically characterize these parameters as solutions to a system of
nonlinear equations that depend on the data-generating process and the loss function. Additionally,
various approaches have been developed to practically solve the equations by determining their
hyperparameter βββ

⊤
ΣΣΣβββ under different conditions. Specifically, Sur and Candès [67] introduces

ProbeFrontier for estimating βββ
⊤

ΣΣΣβββ based on the asymptotic existence/non-existence boundary of the
maximum likelihood estimator (MLE) in logistic regression. SLOE, proposed by Yadlowsky et al. [74],
enhances this estimation using a leave-one-out technique. Moreover, Sawaya et al. [65] takes a different
approach to estimate βββ

⊤
ΣΣΣβββ for generalized linear models.

For single-index models, Bellec [10] introduces observable adjustments that estimate the inferential
parameters directly under the identification condition βββ

⊤
ΣΣΣβββ = 1 irrespective of link misspecification,

bypassing the system of equations. In our study, we develop an estimator for the single-index model
satisfying the asymptotic normality (1.3), with corresponding estimators for the inferential parameters
using observable adjustments.

1.2. Related Works

Research into the asymptotic behavior of statistical models in high-dimensional settings, where both
n and p diverge proportionally, has gained momentum in recent years. Notable areas of exploration
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include (regularized) linear regression models [6, 8, 27, 37, 40, 45, 50, 56, 59, 69, 71], robust estimation
[11, 26, 31], generalized linear models [5, 62, 64, 65, 67, 68, 70, 76], low-rank matrix estimation [25, 52,
58], and various other models [51, 54, 57, 75]. These investigations focus primarily on the convergence
limits of estimation and prediction errors. Theoretical analyses have shown that classical statistical
estimation often fails to accurately estimate standard errors and may lack key desirable properties such
as asymptotic unbiasedness and asymptotic normality.

In such analyses, the following theoretical tools have been employed: (i) the replica method [19, 55],
(ii) approximate message passing algorithms [7, 16, 27, 34], (iii) the leave-one-out technique [30, 31],
(iv) the convex Gaussian min-max theorem [71], (v) second-order Poincaré inequalities [20, 47],
and (vi) second-order Stein’s formulae [12, 13]. Although these tools were initially proposed for
analyzing linear models with Gaussian design, they have been extensively adapted to a diverse range
of models. In this study, we apply observable adjustments based on second-order Stein’s formulae [10]
to directly estimate the asymptotic bias and variance of coefficient estimators. Furthermore, we provide
a comprehensive proof of marginal asymptotic normality, extending the work of Zhao et al. [76] to a
wider array of estimators.

1.3. Notation

Define [z] = {1, . . . ,z} for z ∈ N. For a vector bbb = (b1, . . . ,bp) ∈ Rp, we write ∥bbb∥ := (∑
p
j=1 b2

j)
1/2 and

∥bbb∥2
ΣΣΣ

:= bbb⊤ΣΣΣbbb. For a collection of indices S ⊂ [p], we define a sub-vector bbbS := (b j) j∈S as a slice of
βββ . For a matrix AAA ∈ Rp×p, we define its minimum and maximum eigenvalues by λmin(AAA) and λmax(AAA),
respectively. For a function F : R→R, we say F ′ the derivative of F and F(m) the mth-order derivative.
For a function f : R→R and a vector bbb ∈Rp, f (bbb) = ( f (b1), f (b2), . . . , f (bp))

⊤ ∈Rp denotes a vector
by elementwise operations.

1.4. Organization

We organize the remainder of the paper as follows: Section 2 presents our estimation procedure. Section
3 describes the asymptotic properties of the proposed estimator and develops a statistical inference
method. Section 4 provides several experiments to validate our estimation theory. Section 5 outlines the
proofs of our theoretical results. Section 6 discusses alternative designs for estimators. Finally, Section
7 concludes with a discussion of our findings. The Appendix contains additional discussions and the
complete proofs.

2. Statistical Estimation Procedure

In this section, we introduce a novel statistical estimation method for single-index models as defined in
(3.1). To give an overview, our estimator β̂ββ is constructed through the following steps:

(i) Construct an index estimator Wi for βββ
⊤XXX i using the ridge regression estimator β̃ββ , referred to as a

pilot estimator. This estimator is reasonable regardless of the misspecification of the link function.
(ii) Develop a function estimator ĝ(·) for the link function g(·), based on the distributional

characteristics of the index estimator Wi.
(iii) Construct our estimator β̂ββ for the coefficients βββ , using the estimated link ĝ(·) function.

Furthermore, statistical inference additionally involves a fourth step:

(iv) Estimate the inferential parameters µ∗ and σ∗, conditional on the estimated link function ĝ(·).
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In our estimation procedure, we divide the dataset (XXX i,yi)
n
i=1 into two disjoint subsets (XXX i,yi)i∈I1

and (XXX i,yi)i∈I2 , where I1, I2 ⊂ [n] are index sets such that I1 ∩ I2 = /0 and I1 ∪ I2 = [n]. Additionally,
for k = 1,2, let XXX (k) ∈ Rnk×p and yyy(k) ∈ Rnk denote the design matrix and response vector of subset Ik,
respectively. We utilize the first subset to estimate the link function (Steps (i) and (ii)), and the second
subset to estimate the regression coefficients (Step (iii)) and inference parameters (Step (iv)). From a
theoretical perspective, this division helps to manage the complicated dependency structure caused by
data reuse. Nonetheless, for practical applications, we recommend employing all observations in each
step to maximize the utilization of the data’s inherent signal strength. Here, n1 and n2 are the sample
sizes for each partition, satisfying n = n1 + n2 such that n1 and n2 are the same asymptotic order, i.e.,
we define κ1 = p/n1 and κ2 = p/n2 and there exist constants c1,c2 > 0 with c1 ≤ c2 independent of n
such that κ1,κ2 ∈ [c1,c2] holds.

2.1. Index Estimation

In this step, we use the first subset (XXX (1),yyy(1)). We define the pilot estimator as the ridge estimator,
β̃ββ = ((XXX (1))⊤XXX (1) + n1λ IIIp)

−1(XXX (1))⊤yyy(1) where λ > 0 is the regularization parameter. Further, we

consider inferential parameters (µ1,σ1) of β̃ββ , which satisfy
√

pτ j(β̃ j −µ1β j)/σ1
d→N (0,1) for j ∈ [p]

such that
√

pτ jβ j = O(1). Using these parameters, we develop an estimator Wi for the index βββ
⊤XXX (1)

i as
follows:

Wi := µ̃
−1

β̃ββ
⊤

XXX (1)
i − µ̃

−1
γ̃

(
y(1)i − β̃ββ

⊤
XXX (1)

i

)
(2.1)

for each i ∈ [n1]. Here, µ̃ and σ̃2 are estimators of µ1 and σ1, defined as

µ̃ =
∣∣∣∥β̃ββ∥2 − σ̃

2
∣∣∣1/2

and σ̃
2 =

n−1
1 ∥yyy(1)−XXX (1)

β̃ββ∥2

(ṽ+λ )2/κ1
,

where γ̃ := κ1/(ṽ+λ ) and ṽ = n−1
1 tr(IIIn −XXX (1)((XXX (1))⊤XXX (1)+n1λ IIIp)

−1(XXX (1))⊤). These estimators are
obtained by the observable adjustment technique described in Bellec [10].

This index estimator Wi is approximately unbiased for the index βββ
⊤XXX (1)

i , yielding the following
asymptotic result.

Wi ≈ βββ
⊤XXX (1)

i +N (0, σ̃2/µ̃
2). (2.2)

We will provide its rigorous statement in Proposition 5 in Section 5.1.
There are other options for the pilot estimator besides the ridge estimator β̃ββ . If κ1 ≤ 1 holds, the

least squares estimator can be an alternative. If yi is a binary or non-negative integer, the MLE of logistic
or Poisson regression can be a natural candidate, respectively, although the ridge estimator β̃ββ is valid
regardless of the form that yi takes. In each case, the estimated inferential parameters (γ̃, µ̃, σ̃2) should
be updated accordingly. Details are presented in Section 6.

2.2. Link Estimation

We develop an estimator of the link function g(·) using Wi in (2.1). If we could observe the true index
βββ
⊤XXX (1)

i with the unknown coefficient βββ , it would be possible to estimate g(x) = E[y1 | βββ
⊤XXX1 = x]

by applying standard nonparametric methods to the pairs of responses and true indices (yyy(1),XXX (1)
βββ ).
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However, as the true index is unobservable, we must estimate g(·) using given pairs of responses and
contaminated indices (y(1)i ,Wi)

n1

i=1, where Wi ≈ βββ
⊤XXX (1)

i +N (0, ς̃2) with ς̃2 = σ̃2/µ̃2 being a ratio of the
inferential parameters. The type of error N (0, ς̃2) involving the regressor leads to an attenuation bias
in the estimation of g(·), known as the errors-in-variables problem. To address this issue, we utilize
a deconvolution technique [66] to remove the bias stemming from error-in-variables asymptotically.
Further details of the deconvolution are provided in Supplementary Material.

We define an estimator of g(·). In preparation, we specify a kernel function K : R→ R, and define
a deconvolution kernel Kn : R→ R as follows:

Kn(x) =
1

2π

∫
∞

−∞

exp(−itx)
φK(t)

φς̃ (t/hn)
dt,

where hn > 0 is a bandwidth, i =
√
−1 is an imaginary unit, and φK : R → R and φς̃ : R → R are

the Fourier transform of K(·) and the density function of N (0, ς̃2), respectively. We then define our
estimator of g(·) as

ĝ(x) := R[ğ](x) with ğ(x) =
∑

n1
i=1 y(1)i Kn ((x−Wi)/hn)

∑
n1
i=1 Kn ((x−Wi)/hn)

, (2.3)

where R[·] is a monotonization operator, specified later, which maps any measurable function to a
monotonic function, and ğ(·) is a Nadaraya-Watson estimator obtained by the deconvolution kernel. We
will prove the consistency of this estimator in Theorem 1 in Section 3.

The monotonization operation R[·] on ğ(·) is justifiable because the true link function g(·) is
assumed to be monotonic. One simple choice for R[·], applicable to any measurable function f :R→R,
is

Rnaive[ f ](x) = sup
x′≤x

f (x′), x ∈ R.

This definition holds for all x ∈R. Another effective alternative is the rearrangement operator [21]. This
operator monotonizes a measurable function f : R→ R within a compact interval [x,x]⊂ R:

Rr[ f ](x) = inf
{

t ∈ R :
∫
[0,1]

1
{

f
(

u− x
x− x

)
≤ t
}

du ≥ x− x
x− x

}
, x ∈ [x,x]. (2.4)

This operator, which sorts the values of f (·) in increasing order, is robust against local fluctuations such
as function bumps. Thus, it effectively addresses bumps in ğ(·) arising from kernel-based methods.

2.3. Coefficient Estimation

We next propose our estimator of βββ using ĝ(·) obtained in (2.3). In this step, we consider the link
estimator ĝ(·) from XXX (1) as given, and estimate βββ using XXX (2). To facilitate this, we introduce the
surrogate loss function for bbb ∈ Rp, with xxx ∈ Rp, y ∈ R, and any measurable function ḡ : R→ R:

ℓ(bbb;xxx,y, ḡ) := Ḡ(xxx⊤bbb)− yxxx⊤bbb,

where Ḡ : R→R is a function such that Ḡ′(t) = ḡ(t). This function can be viewed as a natural extension
of the matching loss [3] used in generalized linear models. If ḡ(·) is strictly increasing, then the loss is
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strictly convex in bbb. Moreover, the surrogate loss is justified by the characteristics of the true parameter
as follows [1]:

βββ = argmin
bbb∈Rp

E [ℓ(bbb;XXX1,y1,g)|XXX1] ,

provided that G(·) is integrable. The surrogate loss aligns with the negative log-likelihood when g(·)
is known and serves as a canonical link function, thereby making the surrogate loss minimizer a
generalization of the MLEs in generalized linear models.

Using the second dataset (XXX (2),yyy(2)) with any given function ḡ(·), we define our estimator of βββ as

β̂ββ (ḡ) = argmin
bbb∈Rp

n2

∑
i=1

ℓ(bbb;XXX (2)
i ,y(2)i , ḡ)+ J(bbb), (2.5)

where J : Rp → R is a convex regularization function. Finally, we substitute the link estimator ĝ(·)
into (2.5) to obtain our estimator β̂ββ (ĝ). The use of a nonzero regularization term, J(·), is beneficial in
cases where the minimizer (2.5) is not unique or does not exist; see, for example, [18] for the logistic
regression case.

2.4. Inferential Parameter Estimation

We finally study estimators for the inferential parameters of our estimator β̂ββ (ĝ), which are essential for
statistical inference as discussed in Section 1.1. As established in (1.3), it is necessary to estimate the
asymptotic bias µ∗(ĝ) and variance σ2

∗ (ĝ) that satisfy the following relationship:

√
p(β̂ j(ĝ)−µ∗(ĝ)β j)

σ∗(ĝ)
d→ N (0,1), j ∈ [p],

conditional on (XXX (1),yyy(1)) and consequently on ĝ(·).
We develop estimators for these inferential parameters using observable adjustments as suggested by

Bellec [10], in accordance with the estimator (2.5). For any measurable function ḡ : R→ R, we define
DDD = diag(ḡ′(XXX (2)

β̂ββ (ḡ))) and v̂λ = n−1
2 tr(DDD−DDDXXX (2)((XXX (2))⊤DDDXXX (2) + n2λ IIIp)

−1(XXX (2))⊤DDD) for λ ≥ 0.
When incorporating J(bbb) = λ∥bbb∥2/2 into (2.5) with λ > 0, we propose the following estimators:

µ̂(ḡ) =
∣∣∣∥β̂ββ (ḡ)∥2 − σ̂

2(ḡ)
∣∣∣1/2

and σ̂
2(ḡ) =

∥yyy(2)− ḡ(XXX (2)
β̂ββ (ḡ))∥2

n2(v̂λ +λ )2/κ2
.

In the case where J(·)≡ 000 holds, we define

µ̂0(ḡ) =

∣∣∣∣∣∥XXX (2)
β̂ββ (ḡ)∥2

n2
− (1−κ2)σ̂

2
0 (ḡ)

∣∣∣∣∣
1/2

and σ̂
2
0 (ḡ) =

∥yyy(2)− ḡ(XXX (2)
β̂ββ (ḡ))∥2

n2v̂2
0/κ2

.

A theoretical justification for the asymptotic normality with these estimators and their application in
inference is provided in Section 3.2.
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3. Main Theoretical Results of Proposed Estimators

This section presents theoretical results for our estimation framework. Specifically, we prove the
consistency of the estimator ĝ(·) for the link function g(·), and the asymptotic normality of the estimator
β̂ββ (ĝ) for the coefficient vector βββ . Outlines of the proofs for each assertion will be provided in Section
5.

Assumption 1 (Gaussian covariates and identification) Each row of the matrix XXX independently
follows Np(000,ΣΣΣ) with ΣΣΣ obeying βββ

⊤
ΣΣΣβββ = 1 and 0 < c−1

Σ
≤ λmin(ΣΣΣ) ≤ λmax(ΣΣΣ) ≤ cΣ < ∞ for some

constant cΣ.

It is common to assume Gaussianity of covariates in the proportionally high-dimensional regime, as
mentioned in Section 1.2. The condition βββ

⊤
ΣΣΣβββ = 1 is necessary to identify the scale of βββ , which

ensures the uniqueness of the estimator in the single-index model with an unknown link function
g(·). For example, without this condition, it would be impossible to distinguish between g(XXX⊤

1 bbb) and
f (2XXX⊤

1 bbb), where f (t)= g(t/2), for any bbb∈Rp. Furthermore, the assumption of upper and lower bounds
on the eigenvalues of ΣΣΣ implies that ∥βββ∥= Θ(1).

Assumption 2 (Coherency of the single-index model) A distribution of (yi,XXX i), which follows the
model (1.1), satisfies that there exist an (unknown) deterministic function F : R2 →R such that we have

yi = F(βββ⊤XXX i,Ui), (3.1)

where Ui is some random variable independent of XXX i.

This assumption ensures the coherency of the single-index model (1.1). The description has
been commonly used [10, 48] and includes a wide class of models, e.g., the linear regression with
F(v,u) = v+u and Ui ∼ N(0,σ2

U ) with σ2
U > 0, and the logistic regression model with F(v,u) = 1{u ≤

1/(1+ e−v)} and Ui ∼ Unif[0,1]. Specifically, this assumption excludes a case where XXX i affects yi in a
way that is independent of the index βββ

⊤XXX i, such as yi = g(βββ⊤XXX i)+ γγγ⊤XXX iεi, where εi is a mean zero
random variable independent of XXX i and γγγ ∈Rp is an additional coefficient. A property of F is indirectly
constrained by assumptions about the link g that follow.

Assumption 3 (Monotone and smooth link function) There exists m ∈ N and constants a < b
such that g(ℓ)(x) exists for every ℓ = 0,1 . . . ,m and x ∈ [a,b]. Also, there exists a constant B > 0
such that maxℓ=0,1,...,m maxx∈[a,b] |g(ℓ)(x)| ≤ B holds. Furthermore, there exists cg ∈ (0,∞) such that
c−1

g ≤ minx∈[a,b] g′(x) holds.

Assumption 3 restricts the class of link functions to those that are monotonic. This class has been
extensively reviewed in the literature, with Balabdaoui et al. [4] providing a comprehensive discussion.
It encompasses a wide range of applications, including utility functions, growth curves, and dose-
response models [35, 53, 72]. Furthermore, under a monotonically increasing link function, the sign of
βββ is identified, so that we can identify βββ only by the scale condition βββ

⊤
ΣΣΣβββ = 1.

The lower boundedness of g′(·) on the closed interval implies that the loss function (2.5) for the
coefficient estimation is strictly convex on the interval. This assumption holds for the negative log-
likelihood of the logistic regression that is not strictly convex on the real line.
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Assumption 4 (Moment conditions of yyy) E[y2
1] < ∞ holds. Further, m2(x) := E[y2

1 | XXX⊤
1 βββ = x] is

continuous in x ∈ [a,b] for a,b ∈ R defined in Assumption 3.

The continuity of m2(·) is maintained in many commonly used models, particularly when g(·) is
continuous. For instance, the Poisson regression model defines m2(x) = exp(x)(1+exp(x)), and binary
choice models specify m2(x) = g(x).

3.1. Consistency of Link Estimation

We demonstrate the uniform consistency of the link estimator ĝ(·) in (2.3) over closed intervals. We
consider the mth-order kernel K(·) that satisfies∫

∞

−∞

K(t)dt = 1,
∫

∞

−∞

tmK(t)dt ̸= 0, and
∫

∞

−∞

tℓK(t)dt = 0,

for ℓ ∈ [m−1]. We then obtain the following:

Theorem 1 Suppose that Assumptions 1–4 hold and the Fourier transform φK(t) of the kernel K(·)
has a bounded support in [−M0,M0] with some M0 > 0, and the bandwidth hn = (ch logn1)

−1/2

satisfies 2M2
0(σ1/µ1)

2ch < 1. Also, for Zi ∼ N (0,1), i ∈ [n] defined in Proposition 5, suppose that
(Z1, . . . ,Zn)

⊤ ∼ Nn(000, IIIn) holds. Then, we have the following as n1 → ∞:

sup
a≤x≤b

|ĝ(x)−g(x)|= Op

(
1

(logn1)m/2

)
. (3.2)

This result shows the consistency of the link estimator. About the convergence rate, according to
Fan and Truong [32], the logarithmic rate Op(1/(logn1)

m/2) reaches a lower bound, indicating that this
rate cannot be improved.

Regarding the condition on (Z1, ...,Zn)
⊤ ∼ Nn(000, IIIn), it ensures that the index estimator Wi can be

regarded as asymptotically i.i.d. and is necessary for constructing a consistent link function estimator.
We numerically discuss the condition in Appendix C.

3.2. Marginal Asymptotic Normality of Coefficient Estimators

This section demonstrates the marginal asymptotic normality of our estimator β̂ββ (ĝ) for βββ , facilitated
by the estimators of the inferential parameters, µ̂(ĝ) and σ̂(ĝ). These results are directly applicable to
hypothesis testing and the construction of confidence intervals for any finite subset of the β j’s.

3.2.1. Unit Covariance and p > n Case
As previously noted, the inferential parameters vary depending on the estimator considered. In this
section, we focus on the ridge regularized estimator with unit covariance ΣΣΣ = IIIp. We will also present
additional results for generalized covariance matrices and the ridgeless scenario later.

Theorem 2 We consider the coefficient estimator β̂ββ (ĝ) with J(bbb) = λ∥bbb∥2/2, and the inferential
estimators (µ̂(ĝ), σ̂(ĝ)), associated with the link estimator ĝ(·). Suppose that ΣΣΣ = IIIp and Assumptions
1-3 hold. Then, a conditional distribution of (β̂ββ (ĝ), µ̂(ĝ), σ̂(ĝ)) with a fixed event on ĝ(·) satisfies the
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following: for any coordinate j ∈ [p] satisfying
√

pβ j = O(1), we have

Tj :=
√

p(β̂ j(ĝ)− µ̂(ĝ)β j)

σ̂(ĝ)
d→ N (0,1) (3.3)

as n, p → ∞ with the regime (1.2). Moreover, for any finite set of coordinates S ⊂ [p] satisfying√
p∥βββS ∥= O(1), we have, as n, p → ∞,

√
p(β̂ββS (ĝ)− µ̂(ĝ)βββS )

σ̂(ĝ)
d→ N (000, III|S |).

This result also implies that β̂ j(ĝ)/µ̂(ĝ) is an asymptotically unbiased estimator of β j. Note that the
convergence of the conditional distribution is ensured by the non-degeneracy property of the conditional
event, as defined by (XXX (1),yyy(1)); see Goggin [36] for details. We can improve the condition

√
pβ j =

O(1) to β j = o(1) under the Assumption E in Bellec [10] which derives the explicit rate of convergence
for the estimation error of µ̂(·).

We highlight two key contributions of Theorem 2. First, it is the first result in the literature of a
single-index model to demonstrate the marginal asymptotic normality of the coefficient estimator that
leverages the link estimator. Second, it remains valid even when the ratio κ = p/n exceeds one, a
notable distinction from a similar marginal asymptotic result (Theorem 5.2 in [10]), which holds only
when κ is less than one. Although Section 4 of [10] addresses the case κ > 1 and considers many
penalty functions, its results pertain not to marginal asymptotic normality, but rather to the average
behavior of the estimator.

Application to Statistical Inference: From Theorem 2, we construct a confidence interval CI j
1−α

for
each β j with a confidence level (1−α) as follows:

CI j
1−α

:=
1

µ̂(ĝ)

[
β̂ j(ĝ)− z(1−α/2)

σ̂(ĝ)
√

p
, β̂ j(ĝ)+ z(1−α/2)

σ̂(ĝ)
√

p

]
,

where j ∈ [p] and z(1−α/2) is the (1 − α/2)-quantile of the standard normal distribution. This
construction ensures the coverage probability adheres to the specified confidence level asymptotically.

Corollary 3 Under the settings of Theorem 2, for any α ∈ (0,1), we have the following as n, p → ∞

with the regime (1.2):

sup
1≤ j≤p

∣∣∣P(β j ∈ CI j
1−α

)
− (1−α)

∣∣∣→ 0.

Hence, for testing the hypothesis H j
0 : β j = 0 against H j

1 : β j ̸= 0 at level α ∈ (0,1), we can use the
corrected t-statistics in (3.3). The test that rejects the null hypothesis H j

0 if

σ̂(ĝ)z(1−α/2)√
pτ j

≤ |β̂ j(ĝ)|

controls the asymptotic size of the test at the level α . Additionally, it is feasible to develop a variable
selection procedure that identifies variables related to the response. Specifically, the p-value associated
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with H j
0 and the statistic

√
pβ̂ j(ĝ)/σ̂(ĝ) can serve as importance statistics for the jth covariate. This

approach facilitates variable selection procedures that control the false discovery rate, as detailed in
sources such as Benjamini and Hochberg [14], Candès et al. [17], Dai et al. [23], Xing et al. [73].

3.2.2. General Covariance and p < n Case
We extend Theorem 2 to scenarios with a general covariance matrix ΣΣΣ in unregularized settings. To this
end, we utilize the estimators (µ̂0(ĝ), σ̂0(ĝ)), which are defined for inferential parameters in Section
2.4. Recall that the precision matrix ΘΘΘ is defined as ΣΣΣ

−1.

Theorem 4 We consider the coefficient estimator β̂ββ (ĝ) with J(bbb) ≡ 0, and the inferential estimators
(µ̂0(ĝ), σ̂0(ĝ)), associated with the link estimator ĝ(·). Suppose that Assumptions 1-3 hold. Then, a
conditional distribution of (β̂ββ (ĝ), µ̂0(ĝ), σ̂0(ĝ)) with a fixed event on ĝ(·) satisfies the following: for any
coordinate j ∈ [p] satisfying

√
pτ jβ j = O(1), we have

√
p(β̂ j(ĝ)− µ̂0(ĝ)β j)

σ̂0(ĝ)/τ j

d→ N (0,1) (3.4)

as n, p → ∞ with the regime (1.2) with κ̄ ∈ (0,1). Moreover, for a finite set of coordinates S ⊂
{1, . . . , p}, we have

√
pΘΘΘ

−1/2
S (β̂ββS (ĝ)− µ̂0(ĝ)βββS )

σ̂0(ĝ)
d→ N (000, III|S |), (3.5)

where the submatrix ΘΘΘS consists of Θi j for i, j ∈ S .

We can also improve the condition
√

pτ jβ j = O(1) to τ jβ j = o(1), under the Assumption E in
Bellec [10].

4. Experiments

This section provides numerical validations of our estimation framework as outlined in Section 2. The
efficiency of our proposed estimator is subsequently compared with that of other estimators.

We examine two high-dimensional scenarios: n < p and n > p. For the scenario where n > p, we
assume the true coefficient vector follows a uniform distribution on the sphere: βββ ∼ Unif(Sp−1). In
the case of n < p, we set β1 = · · · = β100 =

√
p/100 and β101 = · · · = βp = 0. We generate response

variables yi for Gaussian predictors XXX i with an identity covariance matrix ΣΣΣ = IIIp, under the following
four scenarios:

(i) Cloglog: yi | XXX i ∼ Bern(g(i)(βββ
⊤XXX i)) with g(i)(t) = 1− exp(−exp(t));

(ii) xSqrt: yi | XXX i ∼ Pois(g(ii)(βββ
⊤XXX i)) with g(ii)(t) = t +

√
t2 +1;

(iii) Cubic: cubic regression yi = g(iii)(βββ
⊤XXX i)+ εi with εi ∼ N (0,1/2) and g(iii)(t) = t3/3;

(iv) Piecewise: piecewise regression yi = g(iv)(βββ
⊤XXX i)+ εi with εi ∼ N (0,1/5) and g(iv)(t) = (0.2t −

2.3)1(−∞,−1]+2.5t1(−1,1)+(0.2t +2.3)1[1,∞).
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4.1. Index Estimator

We validate the normal approximation of the index estimator Wi as shown in (2.2). For cases where
n > p, we set (n, p) = (500,50) for the Cloglog model and (n, p) = (500,200) for the other models. For
cases where n < p, we set (n, p) = (250,500) and apply the ridge regularized estimator to all models.
We assign the maximum likelihood estimator (MLE) of logistic regression to the pilot estimator for
(i) Cloglog, the MLE of Poisson regression for (ii) xSqrt, and the least squares estimator for both
(iii) Cubic and (iv) Piecewise models. We calculate µ̃(WWW −XXXβββ )/σ̃ using 1,000 replications for each
setup.

Figure 1 displays the results. In all settings, the difference between the index estimator and the index
follows a Gaussian distribution, as expected.
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FIG. 1. Histograms of the first coordinate of the statistics µ̃(WWW −XXXβββ )/σ̃ over 1,000 replications. According to Proposition 5,
these histograms are expected to resemble the N (0,1) density. The columns correspond to each model, ranging from (i) Cloglog
to (iv) Piecewise, while the rows represent unregularized and ridge-regularized estimations for cases where n > p and n < p,
respectively.

4.2. Link Function Estimator

Next, we evaluate the numerical performance of the link estimator ĝ(·), constructed from (W1, . . . ,Wn),
using a fixed bandwidth for each n. Figure 2 (left panel) shows that the estimation error of ĝ(·) for (iv)
Piecewise uniformly approaches zero as the sample size increases. The right four panels in Figure 2
display the squared losses of ĝ(·) evaluated over the interval [−3,3], which all decrease as n increases,
while their convergence rate is slow as shown in (3.2).

4.3. Our Coefficient Estimator

We examine the asymptotic normality of each coordinate of the estimator β̂ββ (ĝ) for the true coefficients.
As in Section 4.2, we construct the estimator using a fixed bandwidth and apply the rearrangement
operator Rr[·] as defined in (2.4) over the interval [−3,3] to obtain ĝ(·). We then compute β̂ββ (ĝ)
according to (2.5) using J(·)≡ 000 when n > p and J(bbb) = ∥bbb∥2 when n ≤ p. Figure 3 shows the marginal
normal approximation of the estimators under these conditions. All histograms closely resemble the
standard normal density, corroborating the asymptotic normality stated in Theorems 2 and 4.
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FIG. 2. Estimated link functions ĝ(·) for (iv) Piecewise were obtained with a fixed ratio p/n = 0.6 and n = 32,64, . . . ,1024,
averaged over 1,000 replications (left). The squared loss for ĝ(·), evaluated over the interval [−3,3], for (i) Cloglog to (iv)
Piecewise, as defined in the previous section, with a fixed ratio p/n = 0.4 averaged over 1,000 replications (right).
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FIG. 3. Histograms of the first coordinate of the statistics
√

p(β̂1(ĝ)− µ̂(ĝ)β1)/σ̂(ĝ) made from 1,000 replications. The columns
correspond to each model from (i) Cloglog to (iv) Piecewise, and the rows correspond to unregularized and ridge-regularized
estimation under n > p and n < p, respectively. They are expected to approach N (0,1) density by Theorems 2 and 4.

4.4. Efficiency Comparison

Finally, we compare the estimation efficiency of the proposed estimator with several pilot estimators.
We use the effective asymptotic variance σ2

∗ /µ2
∗ as an efficiency measure, which is the inverse of

the effective signal-to-noise ratio as described in [34]. We estimate this variance using the statistic

β̂ββ
⊤

β̂ββ/(β̂ββ
⊤

βββ )− 1 for an estimator β̂ββ . This statistic is a reasonable approximation of the asymptotic
variance of the debiased version of β̂ββ and converges almost surely to the effective asymptotic variance
under certain conditions (see Section 5 for details).

From a practical perspective, we analyze the scatter plot of (Wi,yi) and manually specify a functional
form for g(·) to conduct parametric regression. We estimate parameters a,b,c ∈ R in different forms:
ǧ(t) = 1/(1 + exp(−at + b)) for case (i), ǧ(t) = aexp(t) + b for case (ii), ǧ(t) = at3 + bt2 + ct
for case (iii), and ǧ(t) = a/(1 + exp(−bt + c))− a/2 for case (iv). We then use these estimates to
construct the link function. Additionally, we introduce new data-generating processes: Logit, where
yi | XXX i ∼ Bern(1/(1 + exp(βββ⊤XXX i))); Poisson, where yi | XXX i ∼ Pois(exp(βββ⊤XXX i)); Cubic+, where
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yi = g(iii)(βββ
⊤XXX i) + εi, with εi ∼ N (5,1/2); and Piecewise+, where yi = g(iv)(βββ

⊤XXX i) + εi, with
εi ∼ N (5,1/5).

Table 1 displays the efficiency measures for our proposed estimator and others across 100
replications. We find that our proposed estimator is generally more efficient in most settings, except
when the estimators are specifically tailored to the models. This highlights the broad applicability of
our estimator.

LeastSquares LogitMLE PoisMLE Proposed
Logit 3.77± .967 .525±.157 – .527± .157
Cloglog 3.13± .599 .294± .080 – .271±.068
Poisson 3.77± .967 – .630±.124 .630±.124
xSqrt 2.32± .692 – 1.12±.290 1.12±.290
Cubic 1.15±.258 – – 1.74± .440
Cubic+ 33.9±50.7 – – 1.74±.439
Piecewise .541± .031 – – .391±.157
Piecewise+ 6.32±3.26 – – .330±.184

TABLE 1 Efficiency measure for each pair of model and estimator. We
report the average ± standard deviation.

4.5. Real Data Applications

We utilize two datasets from the UCI Machine Learning Repository [28] to illustrate the performance of
the proposed estimator. The DARWIN dataset [22] comprises handwriting data from 174 participants,
including both Alzheimer’s disease patients and healthy individuals. The second dataset [63] features
753 attributes derived from the sustained phonation of the vowel sounds of patients, both with and
without Alzheimer’s disease. We employ a leave-one-out strategy for splitting each dataset. For each
n− 1 subset, we compute the regularized MLE of logistic regression alongside the proposed estimate
derived from it. We then estimate the effective asymptotic variance, σ2

∗ /µ2
∗ , for each estimator. The

results, presented in Tables 2–3, indicate that the proposed estimator consistently provides a more
accurate estimation of the true coefficient vector compared to conventional logistic regression.

λ = 1 λ = 5 λ = 10
Logit 1.87±0.06 0.46±0.01 0.30±0.00

proposed 0.61±0.01 0.25±0.00 0.18±0.00

TABLE 2 Estimated effective asymptotic variance
of the MLE of logistic regression and the proposed
estimator for DARWIN data. We provide the
average ± standard deviation by using leave-one-
out split datasets.
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λ = 1 λ = 5 λ = 10
Logit 2.22±0.03 0.30±0.00 0.16±0.00

proposed 0.15±0.00 0.06±0.00 0.05±0.00

TABLE 3 Estimated effective asymptotic variance
of the MLE of logistic regression and the proposed
estimator for speech data. We provide the average
± standard deviation by using leave-one-out split
datasets.

5. Proof Outline

We outline the proofs for each theorem in Section 3.

5.1. Consistency of Link Estimation (Theorem 1)

We provide an overview of the proof for Theorem 1, which comprises two primary steps: (i) the
asymptotic characteristics of the index estimator Wi discussed in Section 2.1, and (ii) demonstrating
the consistency of the estimator ĝ(·) in Section 2.2, related to Wi.

5.1.1. Error of Index Estimator
We consider the distributional approximation (2.2) for the index estimator Wi, established through
observable adjustments by Bellec [10]. Theorems 4.3 and 4.4 in Bellec [10] support Proposition 5,
i.e., under suitable assumptions we have the following statement:

Proposition 5 Under Assumptions 1-1 and E[y2
1] < ∞, there exists Zi ∼ N (0,1) independent of

βββ
⊤XXX (1)

i ∼ N (0,1) such that, for each i ∈ [n1], as n1 → ∞, it holds that∣∣∣µ̃Wi − µ̃βββ
⊤XXX (1)

i − σ̃Zi

∣∣∣ p→ 0. (5.1)

This asserts that each β̃ββ
⊤

XXX (1)
i for i ∈ [n1] is approximately equal to the sum of the biased true index

µ̃βββ
⊤XXX (1)

i , a Gaussian error, and an additive bias term. We can see that the estimation error of the index
estimator Wi is asymptotically represented by the Gaussian term as shown in Equation (2.2).

5.1.2. Error of Link Estimator
Next, we prove the consistency of the link estimator ĝ(·) using the index estimator Wi. To this aim, we
define a noise-contaminated index

W̃i := βββ
⊤XXX (1)

i + Z̃i,

where Z̃i ∼ N (0,σ2
1 /µ2

1 ) is an independent Gaussian variable. If Wi were exactly equivalent to W̃i, we
could apply the classical result of nonparametric error-in-variables regression [32] to demonstrate the
uniform consistency of ĝ(·). However, this equivalence is only asymptotic as shown in (5.1). Therefore,
we establish that the error due to this asymptotic equivalence is negligibly small in the estimation of
ĝ(·) to complete the proof.
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Specifically, we take the following steps. First, we decompose the error of ĝ(·) into two terms.
In preparation, we define g̃(·) as a deconvolution estimator using a deconvolution kernel K̃n(x) =
(2π)−1 ∫ ∞

−∞
exp(−itx)φK(t)/φς (t/hn)dt using the true inferential parameters as ς = σ∗/µ∗ (its precise

definition is given in Supplementary Material). This estimator corresponds to the estimator for the error-
in-variable setup developed by [32]. Then, from the effect of the monotonization operator, we obtain
the following decomposition:

sup
a≤x≤b

|ĝ(x)−g(x)| ≤ sup
a≤x≤b

|ğ(x)−g(x)|

≤ sup
a≤x≤b

|ğ(x)− g̃(x)|+ sup
a≤x≤b

|g̃(x)−g(x)| . (5.2)

The second term supa≤x≤b |g̃(x)−g(x)| in (5.2) is the estimation error by the deconvolution estimator
g̃(·), which is proven to be op(1) according to the result of [32].

On the other hand, the first term supa≤x≤b |ğ(x)− g̃(x)| in (5.2) represents how our pre-monotonized
estimator ğ(·) in (2.3) approximates the estimator g̃(·). Rigorously, we obtain

|ğ(x)− g̃(x)|≲ 1
n1hn

∣∣∣∣∣ n1

∑
i=1

Kn

(
W̃i − x

hn

)
−Kn

(
Wi − x

hn

)∣∣∣∣∣︸ ︷︷ ︸
=:T1

+
1

n1hn

∣∣∣∣∣ n1

∑
i=1

Kn

(
Wi − x

hn

)
− K̃n

(
Wi − x

hn

)∣∣∣∣∣︸ ︷︷ ︸
=:T2

,

where ≲ is an inequality up to some universal constant. The first term T1 describes the discrepancy
between the estimator with the index estimator Wi and the contaminated index W̃i. We develop an
upper bound on T1 by using the result of Proposition 5. The second term T2 represents the discrepancy
between the convolution kernels Kn(·) and K̃n(·). Note that Kn(·) depends on the estimator ς̃2 = σ̃2/µ̃2

of the inferential parameter, and K̃n(·) depends on the true value of the inferential parameter ς = σ∗/µ∗.
We derive its upper bound by evaluating the error of the estimators K̃n(·).

By integrating these results into (5.2), we prove that the estimation error of ĝ(·) is Op((logn1)
−m/2)

5.2. Marginal Asymptotic Normality (Theorem 4)

This section provides a proof sketch of Theorem 4. We specifically present a general theorem that
characterizes the asymptotic normality of each coordinate of the unregularized estimator in high-
dimensional settings. This discussion extends the proof provided by Zhao et al. [76] for logistic
regression.

Consider the single-index model given by (3.1) and an arbitrary loss function ℓ̄ : R×Y → R. We
define an M-estimator β̄ββ , based on the loss function ℓ̄(·), as follows:

β̄ββ ∈ argmin
bbb∈Rp

n

∑
i=1

ℓ̄(bbb⊤XXX i;yi). (5.3)

With this general setup, we establish the following statement:
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Theorem 6 Suppose that Assumption 1 holds. Also, suppose that the M-estimator β̄ββ ∈ Rp in (5.3) is
uniquely determined and there exists a constant C > 0 such that P(∥β̄ββ∥<C)≥ 1−o(1) holds. With the
true parameter βββ ∈ Rp, define

µ
β̄ββ
=

β̄ββ
⊤

ΣΣΣβββ

βββ
⊤

ΣΣΣβββ
, and σ

2
β̄ββ
= ∥PPP⊥

ΣΣΣ
1/2

βββ
ΣΣΣ

1/2
β̄ββ∥2 = ∥β̄ββ −µ

β̄ββ
βββ∥2

ΣΣΣ, (5.4)

where PPP⊥
ΣΣΣ

1/2
βββ
= IIIp −ΣΣΣ

1/2
ββββββ

⊤
ΣΣΣ

1/2/βββ
⊤

ΣΣΣβββ . Then, for any coordinates j ∈ [p] with
√

pτ jβ j = O(1), we
obtain

Tj :=

√
p(β̄ j −µ

β̄ββ
β j)

σ
β̄ββ
/τ j

d→ N (0,1).

as n, p → ∞ with p/n → κ̄ < 1.

This theorem establishes the marginal asymptotic normality for a broad class of estimators
defined by the minimization of convex loss functions. Additionally, it demonstrates that the limiting
distributional behavior of β̄ββ is characterized by µ

β̄ββ
and σ2

β̄ββ
in the high-dimensional setting (1.2).

Intuitively, µ
β̄ββ

is a scaled inner product of β̄ββ and βββ , and σ2
β̄ββ

denotes the magnitude of the orthogonal

component of β̄ββ to βββ .
The rigorous proof in Supplementary Material is conducted in the following steps:

(i) Since we have βββ
⊤XXX i = (ΣΣΣ−1/2XXX i)

⊤(ΣΣΣ1/2
βββ ), we achieve the replacements XXX i to ΣΣΣ

−1/2XXX i ∼
N (000, IIIp), βββ to ηηη = ΣΣΣ

1/2
βββ , and β̄ββ to η̂ηη = ΣΣΣ

1/2
β̄ββ . From the Cholesky factorization of ΣΣΣ, we have

Tj =

√
p(β̄ j −µ

β̄ββ
β j)

σ
β̄ββ
/τ j

=

√
p(η̂ j −µ

β̄ββ
η j)

σ
β̄ββ

.

(ii) Considering the rotation UUU around ηηη (i.e., UUUηηη = ηηη and UUUUUU⊤ = IIIp), several calculations give, for
TTT := (T1, . . . ,Tp)

⊤/
√

p,

TTT =
PPP⊥

ηηη η̂ηη

∥PPP⊥
ηηη η̂ηη∥

d
=

UUUPPP⊥
ηηη η̂ηη

∥PPP⊥
ηηη η̂ηη∥

.

This means that TTT is uniformly distributed on the unit sphere in ηηη⊥ (See Figure 4).
(iii) Drawing on the analogy to the asymptotic equivalence between the p-dimensional standard normal

distribution and Unif(
√

pSp−1), we obtain the asymptotic normality of Tj.

We apply this general theorem to obtain Theorem 4. A similar argument implies Theorem 2 for the
regularized estimator.

6. Other Design of Pilot Estimator

We can consider alternative estimators as the pilot estimator discussed in Section 2.1. Depending on the
context, choosing an appropriate pilot estimator can enhance the asymptotic efficiency of the overall
estimation process. Below, we list the various estimator options and their associated values necessary
for estimating their inferential parameters.
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FIG. 4. Illustration of the proof technique of Theorem 6. µ
β̄ββ

is the inner product of (ηηη , η̂ηη). The radius of the set depicted by the

red circle corresponds to σ
β̄ββ

.

6.1. Least Squares Estimators

In the case of κ1 < 1, we can use the least squares estimator

β̃ββ LS = ((XXX (1))⊤XXX (1))−1(XXX (1))⊤yyy.

In this case, there exist corresponding inferential parameters of β̃ββ LS.
We obtain the following marginal asymptotic normality of the least-squares estimator. We recall the

definition of inferential parameters in (5.4) and consider the corresponding parameter µ
β̃ββ LS

and σ
β̃ββ LS

by

substituting β̃ββ LS. Then, we obtain the following result by a straightforward application of Theorem 6.

Corollary 7 Suppose Assumption 1 holds. Then, for any coordinates j = 1, . . . , p obeying
√

pτ jβ j =
O(1), we have the following as n, p → ∞ with limn→∞ κ1 ∈ (0,1):

√
p(β̃LS, j −µ

β̃ββ LS
β j)

σ
β̃ββ LS

/τ j

d→ N (0,1).

We also define the following values (γ̃LS, µ̃LS, σ̃
2
LS) to estimate the inferential parameters µ

β̃ββ LS
and

σ
β̃ββ LS

. Namely, we define γ̃LS = κ1/(1−κ1), and

µ̃LS =

∣∣∣∣∣∥XXX (1)
β̃ββ LS∥2

n1
− (1−κ1)σ̃

2
LS

∣∣∣∣∣
1/2

, σ̃2
LS =

γ̃LS

n1(1−κ1)
∥yyy(1)−XXX (1)

β̃ββ LS∥2.

If we employ the least squares estimator β̃ββ LS as the pilot estimator in Section 2.1, we replace (µ̃, σ̃2)
for the index estimator Wi in (2.1) by (µ̃LS, σ̃

2
LS).
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6.2. Maximum Likelihood Estimators

When yi takes discrete values, a more appropriate pilot estimator can be proposed. For binary outcomes
such as in classification problems where yi ∈ {0,1}, we can employ MLE for logistic regression:

β̃ββ mle ∈ argmin
bbb∈Rp

n1

∑
i=1

log(1+ exp(bbb⊤XXX (1)
i ))− yibbb⊤XXX (1)

i .

In the case with yi ∈ N∪{0}, we can consider the MLE for the Poisson regression

β̃ββ mle ∈ argmin
bbb∈Rp

n1

∑
i=1

exp(bbb⊤XXX (1)
i )− yibbb⊤XXX (1)

i .

Its asymptotic normality is obtained by applying Theorem 6.

Corollary 8 Under Assumption 1, suppose that β̃ββ mle is uniquely determined and there exists a
constant C > 0 such that P(∥β̃ββ mle∥ < C) ≥ 1− o(1) holds as n, p → ∞. Then, for any coordinates
j = 1, . . . , p obeying

√
pτ jβ j = O(1), we have the following as n, p → ∞ with limn→∞ κ1 ∈ (0,1):

√
p(β̃mle, j −µ

β̃ββ mle
β j)

σ
β̃ββ mle

/τ j

d→ N (0,1),

In these cases, we can define values (γ̃mle, µ̃mle, σ̃mle) for estimating their inferential parameters.
Define g0(x) = 1/(1 + exp(−x)) for logistic regression and g0(x) = exp(x) for Poisson regression.
Then, we define the values as γ̃mle = κ1ṽ−1

mle and

µ̃mle =

∣∣∣∣∣∥XXX (1)
β̃ββ mle∥2

n1
− (1−κ1)σ̃

2
mle

∣∣∣∣∣
1/2

, σ̃
2
mle =

∥yyy(1)−g0(XXX (1)
β̃ββ mle)∥2

n1ṽmle/κ1
,

where we define ṽmle = n−1
1 tr(D̃DD− D̃DDXXX (1)((XXX (1))⊤D̃DDXXX (1))−1(XXX (1))⊤D̃DD) and D̃DD = diag(g′0(XXX

(1)
β̃ββ mle)).

Based on this definition, we can develop a corresponding index estimator by replacing (µ̃, σ̃) in (2.2)
by µ̃mle and σ̃mle.

7. Conclusion and Discussion

This study establishes a novel statistical inference procedure for high-dimensional single-index models.
Specifically, we develop a consistent estimation method for the link function. Furthermore, using
the estimated link function, we formulate an efficient estimator and confirm its marginal asymptotic
normality. This verification allows for the accurate construction of confidence intervals and p-values
for any finite collection of coordinates.

We identify several avenues for future research: (a) extending these results to cases where the
covariate distribution is non-Gaussian, (b) generalizing our findings to multi-index models, and
(c) confirming the marginal asymptotic normality of our proposed estimators under any form of
regularization and covariance. These prospects offer intriguing possibilities for further exploration.
Particularly, (c) can be achieved by imposing the exchangeability condition on the true coefficient βββ

and employing a technique similar to the proof of Corollary 3.8 in Li and Sur [50].
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A. Effect of Link Estimation on Inferential Parameters

The following theorem reveals that the estimation error of the link function is asymptotically negligible
with respect to the observable adjustments.

Specifically, we consider a slightly modified version of the inferential estimator. In preparation, we
define a censoring operator ι : R→R on a interval [a,b]⊂R as ι(z) = max(a,min(b,z)). Then, for any
ḡ : R→ R, we define a truncation version of DDD as DDDc = diag(ḡ′(ι(XXX (2)

β̂ββ (ḡ)))), and v̂0c = n−1
2 tr(DDDc −

DDDcXXX (2)((XXX (2))⊤DDDcXXX (2))−1(XXX (2))⊤DDDc). Further, in the case of J(·)≡ 000, we define the modified estimator
as

µ̂0c(ḡ) =
∣∣∣∥ι(XXX (2)

β̂ββ (ḡ))∥2/n2 − (1−κ2)σ̂
2
0c(ḡ)

∣∣∣1/2
, and

σ̂
2
0c(ḡ) =

∥yyy(2)− ḡ(ι(XXX (2)
β̂ββ (ḡ)))∥2

n2v̂2
0c/κ2

.

Using the modified definition, we obtain the following result.

Theorem 9 Suppose that J(·) ≡ 000 holds and the estimator (2.5) exists. Further, suppose that
Assumptions 1-4 hold. Then, we have the following as n1 → ∞:

|µ̂0c(ĝ)− µ̂0c(g)|
p→ 0, and

∣∣σ̂2
0c(ĝ)− σ̂

2
0c(g)

∣∣ p→ 0.

This result indicates that, since the link estimator ĝ(·) is consistent, we can estimate the inferential
parameters under the true link g(·).

The difficulty in this proof arises from the dependence between the elements of the estimator, which
cannot be handled by the triangle inequality or Hölder’s inequality, To overcome the difficulty, we
utilize the Azuma-Hoeffding inequality for martingale difference sequences.

B. Theoretical Efficiency Comparison

We compare the efficiency of our estimator β̂ββ (ĝ) with that of the ridge estimator β̃ββ as the pilot. As shown
in Bellec [10], the ridge estimator is a valid estimator for the single-index model in the high-dimensional
scheme (1.2) even without estimating the link function g(·).

To the aim, we define the effective asymptotic variance based on inferential parameters, which
is a ratio of the asymptotic bias and the asymptotic variance. That is, our estimator β̂ββ (ĝ) has its
effective asymptotic variance σ̂2(ĝ)/µ̂2(ĝ), and the ridge estimator β̃ββ has σ̃2/µ̃2. The effective
asymptotic variance corresponds to the asymptotic variance of each coordinate of the estimators with
bias correction.

We give the following result for necessary and sufficient conditions for the proposed estimator to be
more efficient than the least squares estimator and the ridge estimator.

Proposition 10 We consider the coefficient estimator β̂ββ (ĝ) with J(bbb)≡ λ∥bbb∥2 and the setup n1 = n2.
We use the regularization parameter λ1 > 0 for the pilot estimator β̃ββ . Suppose that Assumptions 1-3 are
fulfilled. Then, σ̂2(ĝ)/µ̂2(ĝ)< σ̃2/µ̃2 holds if and only if we have

∥β̂ββ (ĝ)∥
∥β̃ββ∥

· |v̂λ +λ |
|ṽ+λ1|

· ∥yyy(1)−XXX (1)
β̃ββ∥

∥yyy(2)− ĝ(XXX (2)
β̂ββ (ĝ))∥

> 1.
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TABLE C.4 p-values of statistical
tests on independence

logit Pois Cubic
κ = 0.1 0.759 0.441 0.478
κ = 0.5 0.912 0.123 0.383
κ = 1 0.602 0.060 0.825
κ = 2 0.931 0.531 0.704

This necessary and sufficient condition suggests that our estimator may have an advantage by
exploiting the nonlinearity of the link function g(·). The first reason is that, when yyy has nonlinearity
in XXXβββ , the residual ∥yyy− ĝ(XXX β̂ββ )∥2 of the proposed method is expected to be asymptotically smaller than
∥yyy−XXX β̃ββ∥2. The second reason is that v̂λ approximates the gradient mean n−1

∑
n
i=1 ĝ′(XXX⊤

i β̂ββ (ĝ)), so this
element increases when g(·) has a large gradient. Using these facts, the proposed method incorporates
the nonlinearity of g(·) and helps improve efficiency.

Proposition 11 If J(·)≡ 000, n1 = n2, and are fulfilled, then σ̂2
0 (ĝ)/µ̂2

0 (ĝ)< σ̃2
LS/µ̃2

LS if and only if

∥XXX (2)
β̂ββ (ĝ)∥

∥XXX (1)
β̃ββ LS∥

· |v̂0|
1−κ1

· ∥yyy(1)−XXX (1)
β̃ββ LS∥

∥yyy(2)− ĝ(XXX (2)
β̂ββ (ĝ))∥

> 1.

This result does not imply that the estimator β̂ββ (ĝ) always improves the pilot estimator β̃ββ . Indeed, in
the setting of linear regression models, Bean et al. [9] proves that the maximum likelihood estimator is
not efficient in the regime (1.2). Instead, they provide the form of the optimal loss function that depends
on the dimensionality κ .

C. Remarks on the condition in Theorem 1

In this section, we discuss the validity of the condition on (Z1, ...,Zn) in Theorem 1 by numerical
experiments. To this end, we conduct independence tests on (W1, . . . ,Wn) across various models and
estimators. Specifically, we perform a permutation test as described below. For each model defined in
Section 4, we fix n = 1000 and vary p for κ = p/n = 0.1,0.5,1,2.

1. We generate samples following each model, and compute the corresponding Wi, i ∈ [n].
2. We repeat it 100 times for independently generated samples and make a 100×n matrix of Wi’s, say

W̆WW .
3. We randomly permute the columns of the matrix W̆WW 1000 times. For each permutation, we compute

the dependence measure 1
n ∑

n
i=1 maxi′ ̸=i |ĈCCi,i′ | where ĈCC = 1

100W̆WW
⊤

W̆WW , called Mean Maximum
(absolute) Correlation (MMC).

4. We compute p-values as the proportion of times the MMC of the original W̆WW falls below the MMC
from 1000 permutations.

From the result displayed in Table C.4, the null hypotheses of independence are not rejected at
conventional significance levels, thus numerically, there is no evidence suggesting that the condition
does not hold.
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D. Nonparametric Regression with Deconvolution

In this section, we review the concept of nonparametric regression with deconvolution to address the
errors-in-variable problem. To begin with, we redefine the notation only for this section. For a pair of
random variables (X ,Y,Z), suppose that the model is

E[Z | X = x] = m(x),

and that we can only observe n i.i.d. realizations of Y = X +ε and Z. Here, ε is a random variable called
measurement error or error in variables. For the identification, we assume that the distribution of ε is
known. Let the joint distribution of (X ,Z) be f (x,z). By the definition of the conditional expectations,
m(x) = r(x)/ f (x) with

r(x) =
∫

∞

−∞

z f (x,z)dz, f (x) =
∫

∞

−∞

f (x,z)dz,

for the continuous random variables. The goal of the problem is to estimate the function m(·).
If we could observe X , a popular estimator of m(x) is Nadaraya-Watson estimator r̃(x)/ f̃ (x) with

r̃(x) =
1

nhn

n

∑
i=1

ZiK
(

x−Xi

hn

)
, f̃ (x) =

1
nhn

n

∑
i=1

K
(

x−Xi

hn

)
,

where K(·) is a kernel function and hn is the bandwidth. Since X is unobservable, we alternatively
construct the deconvolution estimator [66]. Let the characteristic function of X , Y and ε be φX (·),
φY (·) and φε(·), respectively. Since the density of Y is the convolution of that of X and ε , and the
convolution in the frequency domain is just a multiplication, we have φX (t) = φY (t)/φε(t). Thus, the
inverse Fourier transform of φY (t)/φε(t) gives the density of X . Since we know the distribution of ε

and we can approximate φY (t) by the characteristic function of the kernel density estimator of Y , we
can construct an estimator of f (x) as

f̂ (x) =
1

2π

∫
∞

−∞

exp(−itx)φK(thn)
φ̂Y (t)
φε(t)

dt, (D.1)

where we use the fact that the Fourier transform of f̃Y (y) = (nhn)
−1

∑
n
i=1 K((y−Yi)/hn) is φK(thn)φ̂Y (t),

which approximates φY (·). Here, φ̂Y (t) is the empirical characteristic function:

φ̂Y (t) =
1
n

n

∑
i=1

exp(itYi).

We can rewrite (D.1) in a kernel form

f̂ (x) =
1

nhn

n

∑
i=1

Kn

(
x−Yi

hn

)
,

with

Kn(x) =
1

2π

∫
∞

−∞

exp(−itx)
φK(t)

φε(t/hn)
dt.
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Using this, Fan and Truong [32] proposes a kernel regression estimator m̂(x) = r̂(x)/ f̂ (x) involving
errors in variables with

r̂(x) =
1

nhn

n

∑
i=1

ZiKn

(
x−Yi

hn

)
.

To establish the theoretical guarantee, we impose the following assumptions:

(N1) (Super-smoothness of the distribution of ε) There exists constants d0,d1,β ,γ > 0 and β0,β1 ∈ R
satisfying, as t → ∞,

d0 |t|β0 exp(−|t|β /γ)≤ |φε(t)| ≤ d1 |t|β1 exp(−|t|β /γ).

(N2) The characteristic function of the error distribution φε(·) does not vanish.
(N3) Let a < b. The marginal density fX (·) of the unobserved X is bounded away from zero on the

interval [a,b], and has a bounded k-th derivative.
(N4) The true regression function m(·) has a continuous k-th derivative on [a,b].
(N5) The conditional second moment E[Z2 | X = x] is continuous on [a,b], and E[Z2]< ∞.
(N6) The kernel K(·) is a k-th order kernel. Namely,for j = 1, . . . ,k−1, it holds that∫

∞

−∞

K(t)dt = 1,
∫

∞

−∞

tkK(t)dt ̸= 0,
∫

∞

−∞

t jK(t)dt = 0.

(N1) includes Gaussian distributions for β = 2 and Cauchy distributions for β = 1. For a positive
constant B, define a set of function

F =

{
f (x,z) :

∣∣∣ f (k)X (·)
∣∣∣≤ B, min

a≤x≤b
fX (x)≥ B−1, sup

a≤x≤b

∣∣∣m( j)(x)
∣∣∣≤ B, j = 0,1, . . . ,k

}
.

In this setting, we have the uniform consistency of m̂(·) and its rate of convergence.

Lemma 12 (Theorem 2 in Fan and Truong [32]) Assume (N1)-(N6) and that φK(t) has a bounded
support on |t|< M0. Then, for bandwidth hn = c(logn)−1/β with c > M0(2/γ)1/β ,

lim
d→∞

limsup
n→∞

P

(
sup

a≤x≤b
|m̂(x)−m(x)| ≥ d(logn)−k/β

)
= 0,

holds for any f ∈ F .

Furthermore, we can show the uniform convergence of the derivative of m̂(·). We use the following
result in the proof of Theorem 1.

Lemma 13 Under the condition of Lemma 12, we have, for any f ∈ F ,

sup
a≤x≤b

|m̂′(x)−m′(x)| p→ 0.

To prove this, we use the following two lemmas.
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Lemma 14 We have, for any t ∈ R,

E
[∣∣∣φ̂Y (t)−φY (t)

∣∣∣2]≤ n−1,

and

E

∣∣∣∣∣1n n

∑
i=1

Zi exp(itYi)−E[Z exp(itY )]

∣∣∣∣∣
2
≤ n−1E[Z2].

Proof of Lemma 14 We decompose the term on the left-hand side in the first statement by Euler’s
formula as

E
[∣∣∣φ̂Y (t)−φY (t)

∣∣∣2]

= E

∣∣∣∣∣1n n

∑
i=1

eitYi −EeitY

∣∣∣∣∣
2


= E

∣∣∣∣∣1n n

∑
i=1

{cos(tYi)−Ecos(tY )}− i
n

n

∑
i=1

{sin(tYi)−Esin(tY )}

∣∣∣∣∣
2


= E

{1
n

n

∑
i=1

cos(tYi)−Ecos(tY )

}2

−

{
1
n

n

∑
i=1

sin(tYi)−Esin(tY )

}2


≤ Var

(
n−1

n

∑
i=1

cos(tYi)

)
+Var

(
n−1

n

∑
i=1

sin(tYi)

)
≤ n−1E

[
cos(tY1)

2 + sin(tY1)
2]= n−1.

Similarly, we obtain

E

∣∣∣∣∣1n n

∑
i=1

Zi exp(itYi)−E[Z exp(itY )]

∣∣∣∣∣
2


=
1
n

Var(Z1 cos(tY1))+
1
n

Var(Z1 sin(tY1))

≤ n−1E[Z2].

This completes the proof. □

Lemma 15 Under the setting of Lemma 12, for bandwidth hn = c(logn)−1/β with c > M0(2/γ)1/β ,
we have

n−1 sup
x
|Kn(x)|2 = o(1).
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Proof of Lemma 15 At first, (N1) implies that there exists a constant M such that

|φε(t)|>
d0

2
|t|β0 exp(−|t|β/γ),

for |t|> M. By the fact that |exp(−itx)|= 1 and that the support of φK(·) is bounded by M0, we have

sup
x
|Kn(x)| ≤

∫
∞

−∞

|φK(t)|
|φε(t/hn)|

dt

≤ 2
∫ Mhn

0

|φK(t)|
|φε(t/hn)|

dt +
4
d0

∫ M0

Mhn

|φK(t)|
∣∣∣∣ t
hn

∣∣∣∣−β0

exp

(
|t/hn|β

γ

)
dt

≤ 2hn

∫ M

0

1
|φε(u)|

du+
4
d0

(M0 −Mhn)hβ0
n M−β0

0 exp

(
|M0/hn|β

γ

)
= O(hn)+O(hβ0

n exp(|M0/hn|β/γ)).

Here, we use the fact that |φK(t)| ≤
∫
|e−itx||K(x)|dx < ∞. Since we choose hn = c(logn)−1/β with

c > M0(2/γ)1/β , we obtain the conclusion. □

Proof of Lemma 13 Let a ≤ x ≤ b. To begin with, by the triangle inequality, we have

sup
a≤x≤b

∣∣m̂′(x)−m′(x)
∣∣

= sup
a≤x≤b

∣∣∣∣∣ r̂′(x) f̂ (x)− r̂(x) f̂ ′(x)

f̂ (x)2
− r′(x) f (x)− r(x) f ′(x)

f (x)2

∣∣∣∣∣
≤ sup

a≤x≤b

∣∣∣∣∣ r̂′(x) f̂ (x)− r̂(x) f̂ ′(x)− r′(x) f (x)+ r(x) f ′(x)
f (x)2

∣∣∣∣∣
+ sup

a≤x≤b

∣∣∣∣∣ r̂′(x) f̂ (x)− r̂(x) f̂ ′(x)
f (x)2

(
f (x)2

f̂ (x)2
−1

)∣∣∣∣∣
≤ B2 sup

a≤x≤b

∣∣∣r̂′(x) f̂ (x)− r̂(x) f̂ ′(x)− r′(x) f (x)+ r(x) f ′(x)
∣∣∣

+B2 sup
a≤x≤b

∣∣∣r̂′(x) f̂ (x)− r̂(x) f̂ ′(x)
∣∣∣ ∣∣∣∣∣ f (x)2 − f̂ (x)2

f̂ (x)2

∣∣∣∣∣ , (D.2)

where the last inequality uses the assumption mina≤x≤b | f (x)| ≥ B−1. We consider showing the
convergence in probability by showing the L1 convergence. Using the triangle inequality and the
Cauchy-Schwarz inequality, we have

E sup
a≤x≤b

∣∣∣r̂′(x) f̂ (x)− r̂(x) f̂ ′(x)− r′(x) f (x)+ r(x) f ′(x)
∣∣∣
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≤ E sup
a≤x≤b

∣∣∣ f̂ (x)(r̂′(x)− r′(x)
)∣∣∣+E sup

a≤x≤b

∣∣∣r′(x)( f̂ (x)− f (x)
)∣∣∣

+E sup
a≤x≤b

∣∣ f ′(x)(r(x)− r̂(x))
∣∣+E sup

a≤x≤b

∣∣∣r̂(x)( f ′(x)− f̂ ′(x)
)∣∣∣

≤

√√√√E

[
sup

a≤x≤b

∣∣∣ f̂ (x)∣∣∣2]
√√√√E

[
sup

a≤x≤b
|r̂′(x)− r′(x)|2

]

+ sup
a≤x≤b

|r′(x)|

√√√√E

[
sup

a≤x≤b

∣∣∣ f̂ (x)− f (x)
∣∣∣2]

+ sup
a≤x≤b

| f ′(x)|

√√√√E

[
sup

a≤x≤b
|r̂(x)− r(x)|2

]

+

√√√√E

[
sup

a≤x≤b
|r̂(x)|2

]√√√√E

[
sup

a≤x≤b

∣∣∣ f̂ ′(x)− f ′(x)
∣∣∣2].

Thus, to bound the right-hand side of (D.2), we need to show that E[supx | f̂ (x)|2] and E[supx |r̂(x)|
2]

are bounded by constants and that E[supx | f̂ (x)− f (x)|2], E[supx |r̂(x)− r(x)|2], E[supx | f̂ ′(x)− f ′(x)|2],
and E[supx |r̂′(x)− r′(x)|2] converge to zero.

• Bound for E
[
supa≤x≤b | f̂ (x)− f (x)|2

]
. By triangle inequality and the fact that (x+ y)2 ≤ 2x2 +2y2

for x,y ∈ R, we have

E

[
sup

a≤x≤b
| f̂ (x)− f (x)|2

]

≤ 2E

[
sup

a≤x≤b
| f̂ (x)−E f̂ (x)|2

]
+2 sup

a≤x≤b
|E f̂ (x)− f (x)|2. (D.3)

For the first term of the left-hand side of (D.3), the Cauchy-Schwarz inequality gives

E

[
sup

a≤x≤b
| f̂ (x)−E f̂ (x)|2

]

≤ 1
(2π)2E

[{∫
∞

−∞

|φK(thn)|
|φε(t)|

∣∣∣φ̂Y (t)−φY (t)
∣∣∣dt
}2
]

≤ 1
(2π)2

{∫
∞

−∞

|φK(thn)|
|φε(t)|

dt
}{∫

∞

−∞

E
[∣∣∣φ̂Y (t)−φY (t)

∣∣∣2] |φK(thn)|
|φε(t)|

dt
}
.

Lemma 14 and the proof of Lemma 15 imply that this converges to zero as n → ∞. Next, we consider
the second term in (D.3). We obtain

E
[

f̂ (x)
]
=

1
2π

∫
∞

−∞

exp(−itx)φK(thn)
EY [exp(itY )]

φε(t)
dt
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=
1

2π
EX

[∫
∞

−∞

exp(itx)φK(thn)exp(−itX)dt
]

= EX

[
1

2πhn

∫
∞

−∞

exp
(

it
x−X

h

)
φK(t)dt

]
=

1
hn

EX

[
K
(

x−X
hn

)]
.

Thus, a classical result for the kernel density estimation gives supx |E[ f̂ (x)]− f (x)| → 0 as n → 0.
• Bound for E

[
supa≤x≤b |r̂(x)− r(x)|2

]
. By triangle inequality and the fact that (x+ y)2 ≤ 2x2 +2y2,

E

[
sup

a≤x≤b
|r̂(x)− r(x)|2

]

≤ 2E

[
sup

a≤x≤b
|r̂(x)−Er̂(x)|2

]
+2 sup

a≤x≤b
|Er̂(x)− r(x)|2. (D.4)

For the first term of the left-hand side of (D.4), Cauchy-Schwarz inequality gives

E

[
sup

a≤x≤b
|r̂(x)−Er̂(x)|2

]

≤ 1
(2π)2E

{∫ ∞

−∞

|φK(thn)|
|φε(t)|

∣∣∣∣∣1n n

∑
i=1

Zi exp(itYj)−E[Z exp(itY )]

∣∣∣∣∣dt

}2


≤ 1
(2π)2

{∫
∞

−∞

|φK(thn)|
|φε(t)|

dt
}{

1
n

∫
∞

−∞

|φK(thn)|
|φε(t)|

dt
}
,

where we use the proof of Lemma 15 for the last inequality. Lemma 14 implies that this term converges
to zero as n → ∞. Next, we consider the second term in (D.4). We have

E [r̂(x)] =
1
hn

EX ,Z

[
ZK
(

x−X
hn

)]
.

Thus we have supa≤x≤b |E[r̂(x)]− r(x)| → 0.

• Bound for E
[
supa≤x≤b | f̂ ′(x)− f ′(x)|2

]
. By triangle inequality and the fact that (x+y)2 ≤ 2x2 +2y2

for x,y ∈ R, we have

E

[
sup

a≤x≤b
| f̂ ′(x)− f ′(x)|2

]

≤ 2E

[
sup

a≤x≤b
| f̂ ′(x)−E f̂ ′(x)|2

]
+2 sup

a≤x≤b
|E f̂ ′(x)− f ′(x)|2. (D.5)
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For the first term of the left-hand side of (D.5), since ∂ exp(−itx)/(∂x) = −it exp(−itx) and |i| =
|exp(−itx)|= 1,

E

[
sup

a≤x≤b
| f̂ ′(x)−E f̂ ′(x)|2

]

= E

[
sup

a≤x≤b

∣∣∣∣ 1
2π

∫
∞

−∞

−it exp(−itx)
φK(thn)

φε(t)

{
φ̂Y (t)−φY (t)

}
dt
∣∣∣∣2
]

≤ 1
(2π)2E

[{∫
∞

−∞

|tφK(thn)|
|φε(t)|

∣∣∣φ̂Y (t)−φY (t)
∣∣∣dt
}2
]
.

Thus, this converges to zero in the same way as (D.3). For the second term in (D.5), by the integration
by parts,

E
[

f̂ ′(x)
]
=

1
h2

n

∫
∞

−∞

K′
(

x− y
hn

)
f (y)dy

=
1
hn

∫
∞

−∞

K
(

x− y
hn

)
f ′(y)dy− 1

hn

[
K
(

x− y
hn

)
f ′(y)

]∞

−∞

.

Here, the second term is zero and the first term converges to f ′(x) uniformly.
• Bound for E

[
supa≤x≤b |r̂′(x)− r′(x)|2

]
. By triangle inequality and the fact that (x+ y)2 ≤ 2x2 +2y2

for x,y ∈ R, we have

E

[
sup

a≤x≤b
|r̂′(x)− r′(x)|2

]
≤ 2E

[
sup

a≤x≤b
|r̂′(x)−Er̂′(x)|2

]
+2 sup

a≤x≤b
|Er̂′(x)− r′(x)|2. (D.6)

For the first term of the left-hand side of (D.6), since |i|= |exp(−itx)|= 1, we have

E
[

sup
x
| f̂ ′(x)−E f̂ ′(x)|2

]

= E

sup
x

∣∣∣∣∣ 1
2π

∫
∞

−∞

−it exp(−itx)
φK(thn)

φε(t)

{
1
n

n

∑
i=1

Zi exp(−itYi)−E[Z exp(−itZ)]

}
dt

∣∣∣∣∣
2


≤ 1
(2π)2E

{∫ ∞

−∞

|tφK(thn)|
|φε(t)|

∣∣∣∣∣1n n

∑
i=1

Zi exp(−itYi)−E[Z exp(−itZ)]

∣∣∣∣∣dt

}2
 .

Thus, this converges to zero in the same way as (D.4). For the second term in (D.6), by the integration
by parts,

E
[
r̂′(x)

]
=

1
h2

n

∫
∞

−∞

∫
∞

−∞

zK′
(

x− y
hn

)
f (y,z)dydz

=
1
hn

∫
∞

−∞

∫
∞

−∞

zK
(

x− y
hn

)
∂

∂y
f (y,z)dydz
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− 1
hn

∫
∞

−∞

[
zK
(

x− y
hn

)
∂

∂y
f (y,z)

]∞

−∞

dz.

Here, the second term is zero and the first term converges to r′(x) = (∂/∂x)
∫

z f (x,z)dz uniformly.
• Bound for E

[
supa≤x≤b | f̂ (x)|2

]
and E

[
supa≤x≤b |r̂(x)|2

]
. By triangle inequality and the fact that

(x+ y)2 ≤ 2x2 +2y2,

E

[
sup

a≤x≤b
| f̂ (x)|2

]
≤ 2 sup

a≤x≤b
| f (x)|2 +2E

[
sup

a≤x≤b
| f̂ (x)− f (x)|2

]
.

We have already shown E[supa≤x≤b | f̂ (x)− f (x)|2] = o(1), E[supa≤x≤b | f̂ (x)|2] is asymptotically
bounded by a constant. Similarly, we can show that the other expectation E

[
supa≤x≤b |r̂(x)|2

]
is

asymptotically bounded by a constant. Combining these results together, we conclude that the first
term of (D.2) is o(1).

Next, we consider the second term of (D.2). Since f̂ (x) is asymptotically bounded uniformly on
[a,b] by the results above, we have only to show that supa≤x≤b | f̂ (x)2 − f (x)2|= o(1). This holds since

sup
a≤x≤b

| f̂ (x)2 − f (x)2| ≤ sup
a≤x≤b

| f̂ (x)+ f (x)| sup
a≤x≤b

| f̂ (x)− f (x)|= op(1).

This concludes that supa≤x≤b |m̂′(x)−m′(x)| p→ 0 as n → ∞. □

E. Proofs of the Results

For a convex function f : R→ R and a constant γ > 0, define the proximal operator proxγ f : R→ R as

proxγ f (x) = argmin
z∈R

{
γ f (z)+

1
2
(x− z)2

}
.

E.1. Proof of Master Theorem

First, we define the notation used in the proof. We consider an invertible matrix LLL ∈ Rp×p that satisfies
ΣΣΣ = LLLLLL⊤. Define, for each i ∈ {1, . . . ,n},

X̃XX i = LLL−1XXX i, ηηη = LLL⊤
βββ , η̂ηη = LLL⊤

β̄ββ . (E.1)

Proof of Theorem 6 We consider the following three steps.
Step 1: Reduction to standard Gaussian features. Note that the single-index model yi =

g(XXX⊤
i βββ )+ εi is equivalent to yi = g(X̃XX⊤

i ηηη)+ εi. Since XXX⊤
i bbb = X̃XX⊤

i (LLL
⊤bbb) holds, we have ℓ̄(XXX⊤

i bbb;yi) =

ℓ̄(X̃XX⊤
i LLL⊤bbb;yi). Hence, η̂ηη ∈ argminb̃bb∈Rp ∑

n
i=1 ℓ̄(X̃XX

⊤
i b̃bb;yi) is the estimator corresponding to the true

parameter ηηη ∈ Rp and features X̃XX i ∼ Np(000, IIIp).
We can choose ΣΣΣ = LLLLLL⊤ to be a Cholesky factorization so that ηp = τpβp and η̂p = τpβ̄p with τp =

(ΣΣΣ−1)
−1/2
pp by (E.1). This follows from the fact that Lpp = τp since τ2

p =Var(Xip |XXX i\p)=Var(Xip | X̃XX i\p),
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where XXX i\p ∈ Rp−1 denotes the vector XXX i without pth coordinate. Since we can generalize this to any
coordinate by permutation, we obtain

τ j
β̄ j −µ

β̄ββ
β j

σ
β̄ββ

=
η̂ j −µ

β̄ββ
η j

σ
β̄ββ

,

for each j ∈ {1, . . . , p} and any pair (µ
β̄ββ
,σ

β̄ββ
).

Step 2: Reduction to uniform distribution on sphere. Define an orthogonal projection matrix
PPPηηη = ηηηηηη⊤/∥ηηη∥2 onto ηηη , and an orthogonal projection matrix PPP⊥

ηηη = IIIp − PPPηηη onto the orthogonal
complement of ηηη . Let UUU ∈ Rp×p be any orthogonal matrix obeying UUUηηη = ηηη , namely, any rotation
operator about ηηη . Then, since η̂ηη = PPPηηη η̂ηη +PPP⊥

ηηη η̂ηη , we have

UUU η̂ηη =UUUPPPηηη η̂ηη +UUUPPP⊥
ηηη η̂ηη = PPPηηη η̂ηη +UUUPPP⊥

ηηη η̂ηη .

Using this, we obtain

UUUPPP⊥
ηηη η̂ηη

∥PPP⊥
ηηη η̂ηη∥

d
=

PPP⊥
ηηη η̂ηη

∥PPP⊥
ηηη η̂ηη∥

=
η̂ηη −µ

β̄ββ
ηηη

σ
β̄ββ

, (E.2)

where the first identity follows from the fact that UUU η̂ηη
d
= η̂ηη since UUU η̂ηη is the estimator with a true

coefficient UUUηηη = ηηη and features drawn iid from Np(000, IIIp), by ℓ̄(X̃XX⊤
i b̃bb;yi) = ℓ̄((UUU⊤X̃XX i)

⊤UUUb̃bb;yi) and

UUU⊤X̃XX i
d
= X̃XX i. (E.2) reveals that (η̂ηη − µ

β̄ββ
ηηη)/σ

β̄ββ
is rotationally invariant about ηηη , lies in ηηη⊥, and has a

unit norm. This means (η̂ηη −µ
β̄ββ

ηηη)/σ
β̄ββ

is uniformly distributed on the unit sphere lying in ηηη⊥.
Step 3: Deriving asymptotic normality. The result of the previous step gives us

η̂ηη −µ
β̄ββ

ηηη

σ
β̄ββ

d
=

PPP⊥
ηηη ZZZ

∥PPP⊥
ηηη ZZZ∥

, (E.3)

where ZZZ ∼ Np(000, IIIp). Triangle inequalities yield that

∥ZZZ∥
√

p
− |ηηη⊤ZZZ|

√
p∥ηηη∥ ≤

∥PPP⊥
ηηη ZZZ∥
√

p
≤ ∥ZZZ∥

√
p
+

|ηηη⊤ZZZ|
√

p∥ηηη∥ .

Since |ηηη⊤ZZZ|/(√p∥ηηη∥) a.s.−→ 0 and ∥ZZZ∥/√p a.s.−→ 1, we obtain ∥PPP⊥
ηηη ZZZ∥/√p a.s.−→ 1. Therefore, this fact

and (E.3) imply that

√
p

η̂ j −µ
β̄ββ

η j

σ
β̄ββ

d
= σ̌ jQ+op(1), σ̌

2
j = 1−

η2
j

∥ηηη∥2 ,

where Q ∼ N (0,1). Here we use the fact that the covariance matrix of PPP⊥
ηηη ZZZ is PPP⊥

ηηη PPP⊥
ηηη = IIIp −

ηηηηηη⊤/∥ηηη∥2. The assumptions η j = o(1) and ∥ηηη∥= 1 complete the proof. □
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E.2. Proof of Theorem 1

Let ς2 be the ratio σ2
1 /µ2

1 , where µ2
1 and σ2

1 are the true inferential parameters of the pilot estimator β̃ββ .

Proof of Proposition 5 First, define γ1 = tr(ΣΣΣ(XXX (1)⊤XXX (1)+nλ IIIp)
−1). We also define

µ1 = βββ
⊤

ΣΣΣβ̃ββ , and σ
2
1 = β̃ββ

⊤
ΣΣΣβ̃ββ −µ

2
1 .

Let r̃2 be the mean squared error n−1
1 ∥yyy(1)−XXX (1)

β̃ββ∥2
. Since β̃ββ is a ridge estimator, Theorem 4.3 in

Bellec [10] implies,

max
1≤i≤n1

E
[

r̃−2
∣∣∣β̃ββ⊤

XXX (1)
i −proxγ1 f

(
µ1βββ

⊤XXX (1)
i +σ1Zi

)∣∣∣2]≤ C
n1

, (E.4)

with f (t) = t2/2 and Zi ∼ N (0,1) independent of βββ
⊤XXX (1). Since ridge regression satisfies ∥β̃ββ∥ ≤Cλ

with a constant Cλ > 0 depending on the regularization parameter λ > 0 by the KKT condition, we
have r̃2 = Op(1). Hence, ∣∣∣β̃ββ⊤

XXX (1)
i −proxγ1 f

(
µ1βββ

⊤XXX (1)
i +σ1Zi

)∣∣∣ p→ 0,

as n1 → ∞ for each i ∈ [n1]. By using the fact that proxγ f (a) = a− f ′(proxγ f (a)) for a ∈ R, γ > 0, and
f : R→ R by the definition of the proximal operator, we obtain∣∣∣β̃ββ⊤

XXX (1)
i + γ1

(
y(1)i − β̃ββ

⊤
XXX (1)

i

)
−µ1βββ

⊤XXX (1)
i −σ1Zi

∣∣∣ p→ 0,

as n1 → ∞. Next, we consider to replace (µ1,σ1,γ1) with observable adjustments (µ̃, σ̃ , γ̃). Theorem
4.4 in Bellec [10] gives their consistency:

E [ṽ |γ̃ − γ1|]≤C1n−1/2,

E
[
ṽ2t̃2r̃−2 (∣∣µ̃2 −µ

2
1
∣∣+ ∣∣σ̃2 −σ

2
1
∣∣)]≤C2n−1/2,

where we define t̃2 = ∥(λΣΣΣ
−1/2 + ṽΣΣΣ

1/2)β̃ββ∥2 −κ1r̃2 and C1,C2 are positive constants. Proposition 3.1
in Bellec [10] implies that ṽ ≥ 1/(1+ c̄)−4c̄/n1 for a constant c̄ > 0. Also, Theorem 4.4 in Bellec [10]
implies that t̃2 p→ (βββ⊤(ṽΣΣΣ+λ )β̃ββ )2. By using these results, we have γ̃

p→ γ1, µ̃
p→ µ1, and σ̃2 p→ σ2

1 as
n1 → ∞ since the sign of µ1 is specified by an assumption. Then, triangle inequality implies∣∣∣β̃ββ⊤

XXX (1)
i + γ̃

(
y(1)i − β̃ββ

⊤
XXX (1)

i

)
− µ̃βββ

⊤XXX (1)
i − σ̃Zi

∣∣∣
≤
∣∣∣β̃ββ⊤

XXX (1)
i + γ1

(
y(1)i − β̃ββ

⊤
XXX (1)

i

)
−µ1βββ

⊤XXX (1)
i −σ1Zi

∣∣∣
+
∣∣∣(γ1 − γ̃)

(
y(1)i − β̃ββ

⊤
XXX (1)

i

)∣∣∣+ ∣∣∣(µ1 − µ̃)β̃ββ
⊤

XXX (1)
i

∣∣∣+ |(σ1 − σ̃)Zi| ,

which converges in probability to zero. □

To prove Theorem 1, we first introduce an approximation g̃(·) for the link estimator ĝ(·) defined in
(2.3).
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Lemma 16 For i = 1, . . . ,n1, define W̃i = βββ
⊤XXX (1)

i + ςZi with ς = σ1/|µ1| and Zi independent of
βββ
⊤XXX (1)

i satisfying (Z1, . . . ,Zn)∼ Nn(000, IIIn). We also define

g̃(x) :=

n1

∑
i=1

y(1)i

∫
∞

−∞

exp
(
t2

ς
2/(2h2

n)− it(x−W̃i)/hn
)

φK(t)dt

n1

∑
i=1

∫
∞

−∞

exp
(
t2

ς
2/(2h2

n)− it(x−W̃i)/hn
)

φK(t)dt
. (E.5)

Then, under the setting of Theorem 1, we have, as n1 → ∞,

sup
a≤x≤b

|ğ(x)− g̃(x)|= Op

(
1

(logn1)m/2

)
.

Proof of Lemma 16 We rewrite the kernel function for deconvolution in (2.3) as

Kn(x) =
1

2π

∫
∞

−∞

exp(−itx)
φK(t)

exp(−t2ς̂2/(2h2
n))

dt,

and also introduce an approximated version of the kernel function as

K̃n(x) =
1

2π

∫
∞

−∞

exp(−itx)
φK(t)

exp(−t2ς2/(2h2
n))

dt.

The difference here is that the parameter ς̂ is replaced by ς . We also define φς (t) = exp(−t2ς2/2).
At first, we have

|ğ(x)− g̃(x)|

=

∣∣∣∣∣∣
∑

n1
i=1 y(1)i Kn

(
Wi−x

hn

)
∑

n1
i=1 Kn

(
Wi−x

hn

) −
∑

n1
i=1 y(1)i K̃n

(
W̃i−x

hn

)
∑

n1
i=1 K̃n

(
W̃i−x

hn

)
∣∣∣∣∣∣

≤C1,nC2,n

∣∣∣∣∣ 1
n1hn

n1

∑
i=1

y(1)i

{
Kn

(
Wi − x

hn

)
− K̃n

(
W̃i − x

hn

)}∣∣∣∣∣
+C1,nC3,n

1
n1hn

∣∣∣∣∣ n1

∑
i=1

K̃n

(
W̃i − x

hn

)
−Kn

(
Wi − x

hn

)∣∣∣∣∣
≤C1,nC2,n

∣∣∣∣∣ 1
n1hn

n1

∑
i=1

y(1)i

{
K̃n

(
W̃i − x

hn

)
− K̃n

(
Wi − x

hn

)}∣∣∣∣∣ (E.6)

+C1,nC2,n

∣∣∣∣∣ 1
n1hn

n1

∑
i=1

y(1)i

{
K̃n

(
Wi − x

hn

)
−Kn

(
Wi − x

hn

)}∣∣∣∣∣ (E.7)

+C1,nC3,n
1

n1hn

∣∣∣∣∣ n1

∑
i=1

K̃n

(
W̃i − x

hn

)
− K̃n

(
Wi − x

hn

)∣∣∣∣∣ (E.8)
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+C1,nC3,n
1

n1hn

∣∣∣∣∣ n1

∑
i=1

K̃n

(
Wi − x

hn

)
−Kn

(
Wi − x

hn

)∣∣∣∣∣ , (E.9)

where we define C1,n =
∣∣∣n2h2

n(∑
n1
i=1 K̃n

(
W̃i−x

hn

)
)−1(∑

n1
i=1 Kn

(
Wi−x

hn

)
)−1
∣∣∣, C2,n =

∣∣∣ 1
n1hn

∑
n1
i=1 K̃n

(
W̃i−x

hn

)∣∣∣,
and C3,n =

∣∣∣ 1
n1hn

∑
n1
i=1 y(1)i K̃n

(
W̃i−x

hn

)∣∣∣. Here, C2,n and C3,n converge to upper-bounded non-negative
functions of x from the consistency of the deconvoluted kernel density estimator by the i.i.d. assumption
of Z1, . . . ,Zn. We proceed to bound C1,n and each term on the right-hand side. First, we bound (E.9).
(|t|e−1/

√
2)-Lipschitz continuity of φς (t) with respect to ς yields

1
n1hn

∣∣∣∣∣ n1

∑
i=1

K̃n

(
Wi − x

hn

)
−Kn

(
Wi − x

hn

)∣∣∣∣∣
=

∣∣∣∣∣ 1
2πn1hn

n1

∑
i=1

∫ M0

−M0

exp
(
−it

Wi − x
hn

)
φK(t)

φς (t/hn)φς̃ (t/hn)

{
φς (t/hn)−φς̃ (t/hn)

}
dt

∣∣∣∣∣
≤ 1√

2eπh2
n
|ς − ς̃ |

∫ M0

0
|tφK(t)|exp

(
t2(ς2 + ς̃2)

2h2
n

)
dt.

Theorem 4.4 in Bellec [10] implies that |ς − ς̃ |= Op(n
−1/2
1 ) since

|ς − ς̃ |(ς + ς̃) =
∣∣ς2 − ς̃

2∣∣≤ 1
µ̃2µ2

1

{
µ

2
1
∣∣σ̃2 −σ

2
1
∣∣+σ

2
1
∣∣µ2

1 − µ̃
2∣∣} . (E.10)

Hence, as we choose hn = (ch logn1)
−1/2 such that M2

0(ς
2 + ς̃2)ch/2+ c ≤ 1/2 for some c > 0, we

obtain

1
n1hn

∣∣∣∣∣ n1

∑
i=1

K̃n

(
Wi − x

hn

)
−Kn

(
Wi − x

hn

)∣∣∣∣∣= Op
(
(logn1)n−c

1
)
.

Next, we bound (E.8). For any x,x′ ∈ R, we have

|e−itx − e−itx′ |=
({

cos(−tx)− cos(−tx′)
}2

+
{

sin(−tx)− sin(−tx′)
}2
)1/2

≤
√

2t|x− x′|,

where the last inequality follows from 1-Lipschitz continuity of cos(·) and sin(·). Since φK(·) is
supported on [−M0,M0], we have,

1
n1hn

∣∣∣∣∣ n1

∑
i=1

K̃n

(
W̃i − x

hn

)
− K̃n

(
Wi − x

hn

)∣∣∣∣∣
=

∣∣∣∣∣ 1
2πn1hn

n1

∑
i=1

∫ M0

−M0

φK(t)
φς (t/hn)

{
exp
(
−it

(W̃i − x)
hn

)
− exp

(
−it

(Wi − x)
hn

)}
dt

∣∣∣∣∣
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≤
√

2
πn1h2

n

n1

∑
i=1

∣∣W̃i −Wi
∣∣∫ M0

0
|tφK(t)|exp

(
t2ς2

2h2
n

)
dt.

Here, we can use the fact that, by the triangle inequality,

|W̃i −Wi| ≤ |ς − ς̃ |Zi + |Wi −βββ
⊤XXX (1)

i − ς̃Zi|= Op(n
−1/2
1 ),

where the equality follows from (E.10) and (E.4). Thus, since we choose hn = (ch logn)−1/2 such that
M2

0 ς2ch/2+ c ≤ 1/2 for some c > 0, we have

1
n1hn

∣∣∣∣∣ n1

∑
i=1

K̃n

(
W̃i − x

hn

)
− K̃n

(
Wi − x

hn

)∣∣∣∣∣
= Op

(
1

n1/2
1 h2

n

exp
(

M2
0 ς2

2
ch logn1

))
= Op((logn1)n−c

1 ).

This concludes the convergence of C1,n and the term (E.8). Repeating the arguments above for (E.6)-
(E.7) implies that supa≤x≤b |ĝ(x)−g(x)|= Op((logn1)

−m/2). □

Proof of Theorem 1 Since βββ
⊤XXX (1)

i ∼N (0,1) by Assumption 1, Lemma 12 implies that, for g̃(·) defined
in (E.5),

sup
a≤x≤b

|g̃(x)−g(x)|= Op

(
1

(logn1)m/2

)
. (E.11)

Thus, we obtain

sup
a≤x≤b

|ĝ(x)−g(x)| ≤ sup
a≤x≤b

|ğ(x)− g̃(x)|+ sup
a≤x≤b

|g̃(x)−g(x)|

= Op

(
1

(logn1)m/2

)
.

The last equality follows Lemma 16 and (E.11). Also, the first inequality follows the triangle inequality
and a property of each choice of the monotonization operator R[·]. If we select the naive Rnaive[·], we
obtain the following for x ∈ [a,b]:

|ĝ(x)−g(x)|=

∣∣∣∣∣ sup
x′∈[a,x]

ğ(x′)−g(x)

∣∣∣∣∣
=

∣∣∣∣∣ sup
x′∈[a,x]

ğ(x′)− sup
x′∈[a,x]

g(x′)

∣∣∣∣∣
≤ sup

x′∈[a,x]
|ğ(x′)−g(x′)|,

by the monotonicity of g(·). If we select the rearrangement operator Ra[·], Proposition 1 in
Chernozhukov et al. [21] yields the same result for x∈ [a,b]. Thus, whichever monotonization is chosen,
we obtain the statement. □



HIGH-DIMENSIONAL SINGLE-INDEX MODELS 35

E.3. Proof of Theorem 2

Lemma 17 Let Assumption 1-3 hold. Define

µn = βββ
⊤

β̂ββ (ĝ), σ
2
n = ∥PPP⊥

βββ
β̂ββ (ĝ)∥

2
, (E.12)

where PPP⊥
βββ
= IIIp −ββββββ

⊤. Then, we have

|µ̂(ĝ)−µn|
p→ 0, and

∣∣σ̂2(ĝ)−σ
2
n
∣∣ p→ 0.

Proof of Lemma 17 Theorem 4.4 in Bellec [10] implies that as n2 → ∞, we have

v̂2
λ

t̂2ṙ−4 ∣∣µ̂2(ĝ)−µ
2
n
∣∣ p→ 0, v̂2

λ
t̂2ṙ−4 ∣∣σ̂2(ĝ)−σ

2
n
∣∣ p→ 0,

with t̂2 =(v̂λ +λ )2∥β̂ββ (ĝ)∥2−κ2ṙ2 and ṙ2 = n−1
2 ∥yyy(2)− ĝ(XXX (2)

β̂ββ (ĝ))∥
2
. Recall that v̂λ and DDD are defined

in Section 2.4. Thus, it is sufficient to show that v̂2
λ
, t̂2, and ṙ−4 are asymptotically lower bounded away

from zero. First, the fact that tr(DDD) ≥ n2c−1
g > 0 holds by Assumption 3 and Proposition 3.1 in Bellec

[10] imply that there exists a constant ĉ > 0 such that v̂λ ≥ c−1
g /(1+ ĉ)− 4ĉ/n2 holds. Next, since

ridge penalized regression estimators satisfy ∥β̂ββ (ĝ)∥ ≤ C′
λ

with a constant C′
λ
> 0 depending on the

regularization parameter λ > 0, we have ṙ2 = Op(1). Also, Theorem 4.4 in Bellec [10] implies that
t̂2 p→ ((v̂λ +λ )βββ⊤

β̂ββ (ĝ))2. Thus, we have |µ̂(ĝ)−µn|
p→ 0 and

∣∣σ̂2(ĝ)−σ2
n
∣∣ p→ 0 as n2 → ∞ since the

sign of µn is specified by an assumption. □

Proof of Theorem 2 We use the notations defined in (E.12). First, we can apply Theorem 6 and obtain

√
p(β̂ββ j(ĝ)−µnβββ j)

σn

d→ N (0,1).

This is because we can skip Step 1 in the proof of Theorem 6 by ΣΣΣ = IIIp and repeat Steps 2–3 since
J(ŨUUbbb) = J(bbb) for any orthogonal matrices ŨUU ∈ Rp×p. Hence, we have

√
p

β̂ j(ĝ)− µ̂(ĝ)β j

σ̂(ĝ)
=
√

p
β̂ j(ĝ)−µnβ j

σn

σn

σ̂(ĝ)
+
√

p
(µn − µ̂(ĝ))β j

σ̂(ĝ)
d→ N (0,1),

where the convergence follows from the facts that µ̂(ĝ)
p→ µn and σ̂2(ĝ)

p→ σ2
n by Lemma 17. This

concludes the proof of (3.3).
Next, we consider an orthogonal matrix UUU ∈ Rp×p with the first row UUU1 = vvv⊤. Since UUU β̂ββ (ĝ) is

the estimator given by (2.5) with covariates UUUXXX (2)
i and the true coefficient vector UUUβββ , applying (3.4)

to this with j = 1 yields that, for any sequence of non-random vectors vvvn such that ∥vvvn∥ = 1 and√
pτ(vvvn)vvv⊤n βββ = O(1),

√
pvvv⊤n (β̂ββ (ĝ)− µ̂(ĝ)βββ )

σ̂(ĝ)/τ(vvvn)

d→ N (0,1), (E.13)
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where τ2(vvvn) = (vvv⊤n ΘΘΘvvvn)
−1. Finally, (3.5) follows from (E.13) and the Cramér-Wold device. □

Remark 1 Under the Assumption E in [10], we obtain the explicit rate of convergence |µn − µ̂(ĝ)|=
Op(n−1/2). Then, we can improve the condition

√
pβ j = O(1) to β j = o(1) since

√
p
(µn − µ̂(ĝ))β j

σ̂(ĝ)
= Op(β j),

under the Assumption E in [10].

E.4. Proof of Theorem 4

First, we define the notations used in the proof. We consider an invertible matrix LLL ∈ Rp×p satisfying
ΣΣΣ = LLLLLL⊤. Define, for each i ∈ {1, . . . ,n},

X̃XX i = LLL−1XXX (2)
i , θθθ = LLL⊤

βββ , θ̂θθ := θ̂θθ(ĝ) = LLL⊤
β̂ββ (ĝ). (E.14)

Lemma 18 Let Assumption 1-3(1) hold. Using the notations (E.14), define

µ0 = θθθ
⊤

θ̂θθ , σ
2
0 = ∥PPP⊥

θθθ
θ̂θθ∥

2
,

where PPP⊥
θθθ
= IIIp −θθθθθθ

⊤. Then, we have

|µ̂0(ĝ)−µ0|
p→ 0, and

∣∣σ̂2
0 (ĝ)−σ

2
0
∣∣ p→ 0.

Proof of Lemma 18 Theorem 4.4 in Bellec [10] implies that as n2 → ∞, we have

v̂2
0t̂2

0 ṙ−4
0 |µ̂0(ĝ)−µ0|

p→ 0, v̂2
0t̂2

0 ṙ−4
0

∣∣σ̂2
0 (ĝ)−σ

2
0
∣∣ p→ 0,

with t̂2
0 = n−1

2 ∥XXX (2)
β̂ββ (ĝ)∥

2
v̂2

0−κ2(1−κ2)ṙ2
0 and ṙ2

0 = n−1
2 ∥yyy(2)− ĝ(XXX (2)

β̂ββ (ĝ))∥
2
. Recall that v̂0 is obtain

by the definition of v̂λ in Section 2.4 and setting λ = 0. Thus, it is sufficient to show that v̂2
0, t̂

2
0 , and

ṙ−4
0 are asymptotically lower bounded away from zero. First, tr(DDD)≥ n2c−1

g > 0 by Assumption 3 and
Proposition 3.1 in Bellec [10] imply that there exists a constant ĉ′ > 0 such that v̂0 ≥ c−1

g /(1+ ĉ′)−
4ĉ′/n2. Next, we assume that ∥β̂ββ (ĝ)∥ ≤C with probability approaching one, we have ṙ2

0 = Op(1). Also,
Theorem 4.4 in Bellec [10] implies that t̂2

0
p→ v̂0µ0. Thus, we have |µ̂0(ĝ)−µ0|

p→ 0 and
∣∣σ̂2

0 (ĝ)−σ2
0

∣∣ p→
0 as n2 → ∞ since the sign of µ0 is specified by an assumption. □

Proof of Theorem 4 At first, the first step of the proof of Theorem 6 implies that, for any coordinate
j = 1, . . . , p,

τ j
β̂ j − µ̂(ĝ)β j

σ̂(ĝ)
=

θ̂ j − µ̂(ĝ)θ j

σ̂(ĝ)
,
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where τ
−2
j = (ΣΣΣ−1) j j. Here, θθθ and θ̂θθ are defined in (E.14). Thus, we consider θ̂θθ instead of β̂ββ (ĝ). We

have

√
p

θ̂ j − µ̂(ĝ)θ j

σ̂(ĝ)
=
√

p
θ̂ j −µ0θ j

σ0

σn

σ̂(ĝ)
+
√

p
(µ0 − µ̂(ĝ))θ j

σ̂(ĝ)
.

Thus, the facts that µ̂0(ĝ)
p→ µ0 and σ̂2

0 (ĝ)
p→ σ2

0 by Lemma 18 conclude the proof of (3.4). The rest of
the proof follows from repeating the arguments in the proof of Theorem 2. □

E.5. Proof of Theorem 9

Lemma 19 Let c−1
g ≤ g′(·) hold. Consider censoring of β̂ββ (ĝ)⊤XXX (2)

i and β̂ββ (g)⊤XXX (2)
i for all i ∈ [n2] in

[a,b]. Under the setting of Lemma 12 with k = 3, we have

max
i=1,...,n2

∣∣∣β̂ββ (g)⊤XXX (2)
i − β̂ββ (ĝ)⊤XXX (2)

i

∣∣∣ p→ 0.

Proof of Lemma 19 We can assume XXX (2)
i ∼N (000, IIIp) for each i = 1, . . . ,n2 without loss of generality by

the first step of the proof of Theorem 6. In this proof, we omit (2) on XXX (2) for simplicity of the notation.
To begin with, we write the KKT condition of the estimation:

f (β̂ββ (g),g) = 000,

where we define f (bbb,g) = n−1/2
2 XXX⊤(g(XXXbbb)− yyy). We write f j(bbb,g) = n−1/2

2 XXX⊤
· j(g(XXXbbb)− yyy) for j =

1, . . . , p. Since ∂/(∂b j) f j(bbb,g) = n−1/2
2 XXX⊤

· jDDD(bbb)XXX · j with DDD(bbb) = diag(g′(XXXbbb)), by the mean value

theorem, there exists a constant c ∈ [0,1] such that b̄bb = cβ̂ββ (g)+(1− c)β̂ββ (ĝ) satisfies

f j(β̂ββ (g),g)− f j(β̂ββ (ĝ),g)

β̂ j(g)− β̂ j(ĝ)
=

(
1

√
n2

XXX⊤
· jDDD(b̄bb)XXX · j

)
> 0.

Define Rk := ĝ(XXX⊤
k β̂ββ (ĝ))−g(XXX⊤

k β̂ββ (ĝ)). We have

√
n2

(
β̂ j(g)− β̂ j(ĝ)

)
=
(

n−1
2 XXX⊤

· jDDD(b̄bb)XXX · j
)−1(

f j(β̂ j(g),g)− f j(β̂ j(ĝ),g)
)

=
(

n−1
2 XXX⊤

· jDDD(b̄bb)XXX · j
)−1{

f j(β̂ j(g),g)+
(

f j(β̂ j(ĝ), ĝ)− f j(β̂ j(ĝ),g)
)
− f j(β̂ j(ĝ), ĝ)

}
=
(

n−1
2 XXX⊤

· jDDD(b̄bb)XXX · j
)−1

(
1

√
n2

n2

∑
k=1

Xk jRk

)
,

where the second equality follows from the first-order conditions. In sequel, for simplicity, we consider
the leave-one-out estimator β̂ββ−i and ĝ−i constructed by the observations without the i-th sample. Define

R̃k := (logn2)
(

ĝ−1(XXX⊤
k β̂ββ−1(ĝ−1))−g(XXX⊤

k β̂ββ−1(ĝ−1))
)
,
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and

Tj :=
(

n−1
2 XXX⊤

−1, jDDD−1(b̄bb)XXX−1, j

)−1
,

where we define the leave-one-out design terms as XXX−1, j := (X2 j, . . . ,Xn2 j)
⊤ ∈ Rn2−1, and DDD−1(b̄bb) :=

diag(g′−1(XXX
⊤
2 b̄bb), . . . ,g′−1(XXX

⊤
n2

b̄bb)) ∈ R(n2−1)×(n2−1). We obtain

∣∣∣XXX⊤
1 β̂ββ−1(g)−XXX⊤

1 β̂ββ−1(ĝ−1)
∣∣∣= ∣∣∣∣∣ p

∑
j=1

X1 j

(
β̂−1, j(g)− β̂−1, j(ĝ−1)

)∣∣∣∣∣
≤

∣∣∣∣∣ 1
n2 logn2

p

∑
j=1

X1 jTj

n2

∑
k=2

Xk jR̃k

∣∣∣∣∣ .
Here, define a filtration Fk = σ({ĝ−1, β̂ββ−1(ĝ−1),T1, . . . ,Tp,XXX2, . . . ,XXXk+1}) with an initialization F0 =

σ({ĝ−1, β̂ββ−1(ĝ−1),T1, . . . ,Tp}). Define a random variable S̃k = n2
−1

∑
p
j=1 TjX1 jXk j. Then, R̃kS̃k is a

martingale difference sequence since E[R̃kS̃k | Fk−1] = 0 and E|R̃kS̃k| ≤ E[R̃2
k ]

1/2E[S̃2
k ]

1/2 < ∞. This
follows from the fact that

E
[
S̃2

k
]
= E

(n−1
2

p

∑
j=1

TjX1 jXk j

)2


= n−2
2

p

∑
j=1

E
[
T 2

j X2
1 jX

2
k j
]
+2 ∑

j< j′
E
[
TjX1 jXk jTj′X1 j′Xk j′

]
= n−2

2

p

∑
j=1

E[T 2
j X2

k j]≤ n−2
2

p

∑
j=1

E[T 4
j ]

1/2E[X4
k j]

1/2.

The last inequality follows from the Cauchy-Schwartz inequality. Since Xk j is the standard Gaussian,
E[X4

k j] = 3 holds. Also, we have 0 < Tj ≤ cg(n2
−1

∑
n2
l=2 X2

l j)
−1, where ((n2 −1)−1

∑
n2
l=2 X2

l j)
−1 follows

the inverse gamma distribution with parameters ((n2 − 1)/2,2/(n2 − 1)) and the bounded fourth
moment (2/(n2 −1))4Γ(2/(n2 −1)−4)/Γ(2/(n2 −1)).

Let (logn2)
−m/2R̃ := supa≤x≤b |ĝ−1(x)−g(x)|. Note that, since R̃ = Op(1) by Lemma 12, for any

ε1 > 0, there exists c̄> 0 such that we have P(Rk > c̄)≤ ε1. Also, note that censoring does not affect this
fact since ĝ(·) is given independent of XXX . Hence, we obtain, for c̄ and any tn > 0 satisfying tn = o(

√
n2),

P

(
1

√
n2

max
2≤k≤n2

∣∣∣∣∣R̃k

p

∑
j=1

TjX1 jXk j

∣∣∣∣∣> tn

∣∣∣∣∣ |R̃| ≤ c̄

)

≤ P

(
c̄

√
n2

max
2≤k≤n2

∣∣∣∣∣ p

∑
j=1

TjX1 jXk j

∣∣∣∣∣> tn

)

≤ P

(
c̄

√
n2

max
2≤k≤n2

∣∣∣∣∣ p

∑
j=1

X1 jXk jTj

∣∣∣∣∣> tn

∣∣∣∣∣ max
1≤ j≤p

|Tj| ≤ u

)
+P

(
max

1≤ j≤p
|Tj|> u

)
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≤ 2n2 exp
(
− ct2

n

c̄2K2

)
+P

(
max

1≤ j≤p
|Tj|> u

)
. (E.15)

with some c> 0 depending on u, where the last inequality follows from the union bound and Bernstein’s
inequality. Here, K is the sub-exponential norm of uX11X21. Since we have Tj ≤ cg(n2

−1
∑

n2
l=2 X2

l j), it
holds that

P
(

max
1≤ j≤p

|Tj|> u
)
≤ P

(
max

1≤ j≤p

1
n2

n2

∑
l=2

X2
l j −1 > u∗

)

≤ pexp
(
−c
(

u2
∗

K2 ∧ u∗
K

)
n2

)
, (E.16)

where u∗ = cg/u− 1. Using the bounds, Azuma-Hoeffding’s inequality yields, for any x,un > 0 and
tn > 0 satisfying tn = o(

√
n2),

P

(
1

(logn2)m/2 max
1≤i≤n2

∣∣∣∣∣ 1
n2

n2

∑
k ̸=i

R̃k

n2

∑
j=1

Xi jXk j

∣∣∣∣∣> x

)

≤ P

(
1

(logn2)m/2 max
1≤i≤n2

∣∣∣∣∣ 1
n2

n2

∑
k ̸=i

R̃k

n2

∑
j=1

Xi jXk j

∣∣∣∣∣> x

∣∣∣∣∣ |R̃| ≤ c̄

)
+ ε1

≤ n2P

(
1

(logn2)m/2

∣∣∣∣∣ 1
n2

n2

∑
k=2

R̃k

n2

∑
j=1

X1 jXk j

∣∣∣∣∣> x

∣∣∣∣∣ |R̃| ≤ c̄

)
+ ε1

≤ n2P

(
1

(logn2)m/2

∣∣∣∣∣ 1
n2

n2

∑
k=2

R̃k

n2

∑
j=1

X1 jXk j

∣∣∣∣∣> x

∣∣∣∣∣ 1
n

max
2≤k≤n2

∣∣∣∣∣R̃k

p

∑
j=1

X1 jXk j

∣∣∣∣∣≤ tn√
n2

, |R̃| ≤ c̄

)

+n2P

(
1
n2

max
2≤k≤n2

∣∣∣∣∣R̃k

p

∑
j=1

X1 jXk j

∣∣∣∣∣> tn√
n2

∣∣∣∣∣ |R̃| ≤ c̄

)
+ ε1

≤ 2n2 exp
(
−x2(logn2)

m

2t2
n

)
+2n2

2 exp
(
− ct2

n

c̄2K2

)
+n2

2 exp
(
−c
(

u2
∗

K2 ∧ u∗
K

)
n2

)
+ ε1,

where the last inequality follows from (E.15) and (E.16). Thus, one can choose, for instance, m = 3,
tn = (logn2)

3/5, and c̄ = log logn2 so that we have 1
(logn2)

m/2 max1≤i≤n2 |
1
n2

∑
n2
k ̸=i R̃k ∑

n2
j=1 Xi jXk j|= op(1)

and ε1 → 0. □

Proof of Theorem 9 In this proof, we omit the superscript (2) on XXX (2) and yyy(2) for simplicity of the
notation. We firstly rewrite the inferential parameters defined in Section A as

µ̂
2
0c(g) =

∥ι(XXX β̂ββ (g))∥2

n2
−κ2(1−κ2)σ̂

2(g), σ̂
2
0c(g) =

n−1
2 ∥yyy−g(ι(XXX β̂ββ (g))∥2(

n−1
2 tr(VVV (g))

)2 ,
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where VVV c(g) = DDDc(g)−DDDc(g)XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g). Since we have∣∣σ̂2
0c(ĝ)− σ̂

2
0c(g)

∣∣
≤ 1(

n−1
2 tr(VVV c(ĝ))

)2 (
n−1

2 tr(VVV c(g))
)2

×

{
∥yyy−g(ι(XXX β̂ββ (g))∥2

n2

∣∣∣∣∣
(

tr(VVV c(ĝ))
n2

)2

−
(

tr(VVV c(g))
n2

)2
∣∣∣∣∣

+

(
tr(VVV c(g))

n2

)2
∣∣∣∣∣∥yyy−g(ι(XXX β̂ββ (g))∥2

n2
− ∥yyy−g(XXX β̂ββ (ĝ))∥2

n2

∣∣∣∣∣
}
,

It is sufficient to show the following properties:

n−1
2

∣∣∣∥ι(XXX β̂ββ (ĝ))∥2 −∥ι(XXX β̂ββ (g))∥2
∣∣∣= op(1), (E.17)

n−1
2

∣∣∣∥yyy−g(ι(XXX β̂ββ (ĝ)))∥2 −∥yyy−g(ι(XXX β̂ββ (g)))∥2
∣∣∣= op(1), (E.18)

n−1
2 |tr(VVV c(ĝ))− tr(VVV c(g))|= op(1). (E.19)

For (E.17), immediately we have

n−1
2

∣∣∣∥ι(XXX β̂ββ (ĝ))∥2 −∥ι(XXX β̂ββ (g))∥2
∣∣∣

=

∣∣∣∣∣n−1
2

n2

∑
i=1

(
ι(XXX⊤

i β̂ββ (ĝ))− ι(XXX⊤
i β̂ββ (g))

)(
ι(XXX⊤

i β̂ββ (ĝ))+ ι(XXX⊤
i β̂ββ (g))

)∣∣∣∣∣ .
Since maxi=1,...,n2 |ι(XXX

⊤
i β̂ββ (g))− ι(XXX⊤

i β̂ββ (ĝ))| p→ 0 as n2 → ∞ by Lemma 19, this term converges in
probability to zero.

Next, for (E.18), since we have

n−1
2

∣∣∣∥yyy−g(ι(XXX β̂ββ (ĝ)))∥2 −∥yyy−g(ι(XXX β̂ββ (g)))∥2
∣∣∣

=

∣∣∣∣∣n−1
2

n2

∑
i=1

(
ĝ(ι(XXX⊤

i βββ (ĝ)))−g(ι(XXX⊤
i βββ (g)))

)(
2yi − ĝ(ι(XXX⊤

i βββ (ĝ)))−g(ι(XXX⊤
i βββ (g)))

)∣∣∣∣∣ ,
we should bound ĝ(ι(XXX⊤

i βββ (ĝ)))−g(ι(XXX⊤
i βββ (g))). Indeed, using the triangle inequality reveals∣∣∣ĝ(ι(XXX⊤

i βββ (ĝ)))−g(ι(XXX⊤
i βββ (g)))

∣∣∣
≤
∣∣∣g(ι(XXX⊤

i βββ (ĝ)))−g(ι(XXX⊤
i βββ (g)))

∣∣∣+ ∣∣∣ĝ(ι(XXX⊤
i βββ (ĝ)))−g(ι(XXX⊤

i βββ (ĝ)))
∣∣∣ .

The first term on the right-hand side is op(1) by the Lipschitz continuity of g(·) and Lemma 19. Also,
the second term is upper bounded by supx |ĝ(x)−g(x)|, and is op(1) by Lemma 12.
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To achieve (E.19), we first have

n−1
2 |tr(VVV c(ĝ))− tr(VVV c(g))|

≤ n−1
2 |tr(DDDc(ĝ)−DDDc(g))|

+n−1
2 |tr(DDDc(ĝ)XXX(XXX⊤DDDc(ĝ)XXX)−1XXX⊤DDDc(ĝ)

−DDDc(g)XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g))|.

For the first term, we have

n−1
2 |tr(DDDc(ĝ)−DDDc(g))|

≤ n−1
2

n2

∑
i=1

∣∣∣ĝ′(ι(XXX⊤
i β̂ββ (ĝ)))−g(ι(XXX⊤

i β̂ββ (g)))
∣∣∣

≤ sup
a≤x≤b

|ĝ′(x)−g′(x)|+Bn−1
2

n2

∑
i=1

∣∣∣ι(XXX⊤
i β̂ββ (ĝ))− ι(XXX⊤

i β̂ββ (g))
∣∣∣

= op(1),

by Lemma 13 and Lemma 19. For the second term, the triangle inequality yields

n−1
2 |tr(DDDc(ĝ)XXX(XXX⊤DDDc(ĝ)XXX)−1XXX⊤DDDc(ĝ)

−DDDc(g)XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g))|

≤ n−1
2

∣∣∣tr({DDDc(g)−DDDc(ĝ)}XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g)
)∣∣∣ (E.20)

+n−1
2

∣∣∣tr(DDDc(ĝ)XXX
{
(XXX⊤DDDc(g)XXX)−1 − (XXX⊤DDDc(ĝ)XXX)−1

}
XXX⊤DDDc(g)

)∣∣∣ (E.21)

+n−1
2

∣∣∣tr(DDDc(ĝ)XXX(XXX⊤DDDc(ĝ)XXX)−1XXX⊤ {DDDc(g)−DDDc(ĝ)}
)∣∣∣ . (E.22)

Using the Cauchy-Schwartz inequality, (E.20) is bounded by

n−1
2 ∥DDDc(g)−DDDc(ĝ)∥F

∥∥∥XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g)
∥∥∥

F
.

Here, we have

n−1/2
2 ∥DDDc(g)−DDDc(ĝ)∥F

≤

(
1
n2

n2

∑
i=1

{
g′(ι(XXX⊤

i β̂ββ (g)))− ĝ′(XXX⊤
i β̂ββ (ĝ))

}2
)1/2

≤

(
1
n2

n2

∑
i=1

[
2
{

g′(ι(XXX⊤
i β̂ββ (g)))−g′(XXX⊤

i β̂ββ (ĝ))
}2

+2
{

g′(ι(XXX⊤
i β̂ββ (ĝ)))− ĝ′(XXX⊤

i β̂ββ (ĝ))
}2
])1/2

≤

(
2
n2

n2

∑
i=1

{
g′(ι(XXX⊤

i β̂ββ (g)))−g′(XXX⊤
i β̂ββ (ĝ))

}2
)1/2
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+

(
2
n2

n2

∑
i=1

{
g′(ι(XXX⊤

i β̂ββ (ĝ)))− ĝ′(XXX⊤
i β̂ββ (ĝ))

}2
)1/2

≤ 2B max
i=1,...,n2

∣∣∣ι(XXX⊤
i β̂ββ (g))− ι(XXX⊤

i β̂ββ (ĝ))
∣∣∣+2 sup

a≤x≤b
|ĝ′(x)−g′(x)|

= op(1).

by Lemma 13 and Lemma 19. Also, we have

n−1/2
2

∥∥∥XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g)
∥∥∥

F

= n−1/2
2

∥∥∥DDDc(g)−1/2DDDc(g)1/2XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g)1/2DDDc(g)1/2
∥∥∥

F

≤ n−1/2
2

∥∥∥DDDc(g)−1/2
∥∥∥

op

∥∥∥DDDc(g)1/2
∥∥∥

op

∥∥∥DDDc(g)1/2XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g)1/2
∥∥∥

F

= n−1/2
2

∥∥∥DDDc(g)−1/2
∥∥∥

op

∥∥∥DDDc(g)1/2
∥∥∥

op

√
tr(IIIn2)

=
∥∥∥DDDc(g)−1/2

∥∥∥
op

∥∥∥DDDc(g)1/2
∥∥∥

op
.

Since
∥∥DDDc(g)1/2

∥∥
op ≤ supx g′(x)1/2 and

∥∥DDDc(g)−1/2
∥∥

op ≤ (infx g′(x))−1/2 are constants by an
assumption of g(·), we conclude that (E.20) is op(1). (E.22) is also shown to be op(1) in a similar
manner. Since AAA−1 − BBB−1 = −AAA−1(AAA − BBB)BBB−1 for two invertible matrices AAA and BBB, (E.21) can be
rewritten as

n−1
2

∣∣∣tr(DDDc(ĝ)XXX(XXX⊤DDDc(ĝ)XXX)−1XXX⊤ {DDDc(g)−DDDc(ĝ)}XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g)
)∣∣∣ ,

and a similar technique used above provides the upper bound,

n−1
2 ∥DDDc(ĝ)∥1/2

op

∥∥DDDc(ĝ)−1∥∥1/2
op ∥DDDc(g)∥1/2

op

∥∥DDDc(g)−1∥∥1/2
op ∥DDDc(g)−DDDc(ĝ)∥op

×
∥∥∥DDDc(ĝ)1/2XXX(XXX⊤DDDc(ĝ)XXX)−1XXX⊤DDDc(ĝ)1/2

∥∥∥
F

×
∥∥∥DDDc(g)1/2XXX(XXX⊤DDDc(g)XXX)−1XXX⊤DDDc(g)1/2

∥∥∥
F

= ∥DDDc(ĝ)∥1/2
op

∥∥DDDc(ĝ)−1∥∥1/2
op ∥DDDc(g)∥1/2

op

∥∥DDDc(g)−1∥∥1/2
op ∥DDDc(g)−DDDc(ĝ)∥op .

Here, ∥DDDc(g)∥1/2
op

∥∥DDDc(g)−1
∥∥1/2

op is a constant by an assumption, and also the term ∥DDDc(ĝ)∥1/2
op

∥∥DDDc(ĝ)−1
∥∥1/2

op
is asymptotically bounded by the uniform consistency of ĝ′ for g′ by Lemma 13. Finally, we have

∥DDDc(g)−DDDc(ĝ)∥op

= max
i=1,...,n2

∣∣∣g′(ι(XXX⊤
i β̂ββ (g)))− ĝ′(ι(XXX⊤

i β̂ββ (ĝ)))
∣∣∣

≤ max
i=1,...,n2

∣∣∣g′(ι(XXX⊤
i β̂ββ (g)))−g′(ι(XXX⊤

i β̂ββ (ĝ)))
∣∣∣
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+ max
i=1,...,n2

∣∣∣g′(ι(XXX⊤
i β̂ββ (ĝ)))− ĝ′(ι(XXX⊤

i β̂ββ (ĝ)))
∣∣∣

≤ B max
i=1,...,n2

∣∣∣ι(XXX⊤
i β̂ββ (g))− ι(XXX⊤

i β̂ββ (ĝ))
∣∣∣+ sup

a≤x≤b
|g′(x)− ĝ′(x)|

= op(1),

by Lemma 13 and Lemma 19. Thus, (E.21) is op(1). Combining these results concludes the proof. □

E.6. Proof of Proposition 10

Proof of Proposition 10 Let β̂ββ := β̂ββ (ĝ) for simplicity of the notation. Recall that when J(·)≡ 000,

µ̃
2
LS = n−1

1 ∥XXX β̃ββ LS∥
2 − (1−κ1)σ̃

2
LS, σ̃

2
LS =

κ1

n1(1−κ1)2 ∥yyy−XXX β̃ββ LS∥
2
,

µ̂
2(ĝ) = n−1

2 ∥XXX β̂ββ (ĝ)∥2 − (1−κ2)σ̂
2(ĝ), σ̂

2(ĝ) =
κ2

n2v̂2
λ

∥yyy− ĝ(XXX β̂ββ (ĝ))∥2.

Since we have

µ̃2
LS

σ̃2
LS

=
∥XXX β̃ββ LS∥2

κ1
(1−κ1)2 ∥yyy−XXX β̃ββ LS∥2

− (1−κ1),

and

µ̂2(ĝ)
σ̂2(ĝ)

=
∥XXX β̂ββ (ĝ)∥2

κ2
v̂2

λ

∥yyy− ĝ(XXX β̂ββ (ĝ))∥2
− (1−κ2),

σ̂2(ĝ)/µ̂2(ĝ)< σ̃2
LS/µ̃2

LS is equivalent to

∥XXX β̂ββ (ĝ)∥
∥XXX β̃ββ LS∥

· |v̂λ |
1−κ1

· ∥yyy−XXX β̃ββ LS∥
∥yyy− ĝ(XXX β̂ββ (ĝ))∥

> 1.

Next, when J(bbb) = λ∥bbb∥2, recall that

µ̃
2 = ∥β̃ββ∥2 − σ̃

2, σ̃
2 = κ1n−1

1 ∥yyy−XXX β̃ββ∥2(ṽ2 +λ1)
−2

µ̂
2(ĝ) = ∥β̂ββ (ĝ)∥2 − σ̂

2(ĝ), σ̂
2(ĝ) = κ2n−1

1 ∥yyy−XXX β̂ββ (ĝ)∥2(v̂2
λ
+λ )−2.

Thus, in a similar way as when J(·)≡ 000, we conclude the proof. □
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