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ABSTRACT

We introduce three new robustness benchmarks consisting of naturally occurring
distribution changes in image style, geographic location, camera operation, and
more. Using our benchmarks, we take stock of previously proposed hypotheses
for out-of-distribution robustness and put them to the test. We find that using larger
models and synthetic data augmentation can improve robustness on real-world
distribution shifts, contrary to claims in prior work. Motivated by this, we introduce
a new data augmentation method which advances the state-of-the-art and outper-
forms models pretrained with 1000× more labeled data. We find that synthetic
augmentations can sometimes improve real-world robustness. We also find that
some methods consistently help with distribution shifts in texture and local image
statistics, but these methods do not help with some other distribution shifts like geo-
graphic changes. Hence no evaluated method consistently improves robustness. We
conclude that future research must study multiple distribution shifts simultaneously.

1 INTRODUCTION

While the research community must create robust models that generalize to new scenarios, the
robustness literature (Dodge and Karam, 2017; Geirhos et al., 2020) lacks consensus on evaluation
benchmarks and contains many dissonant hypotheses. Hendrycks et al. (2020a) find that many recent
language models are already robust to many forms of distribution shift, while Yin et al. (2019) and
Geirhos et al. (2019) find that vision models are largely fragile and argue that data augmentation
offers one solution. In contrast, Taori et al. (2020) provide results suggesting that using pretraining
and improving in-distribution test set accuracy improve natural robustness, whereas other methods do
not.

In this paper we articulate and systematically study seven robustness hypotheses. The first four
hypotheses concern methods for improving robustness, while the last three hypotheses concern
abstract properties about robustness. These hypotheses are as follows.

• Larger Models: increasing model size improves robustness (Hendrycks and Dietterich, 2019; Xie
and Yuille, 2020).

• Self-Attention: adding self-attention layers to models improves robustness (Hendrycks et al.,
2019b).

• Diverse Data Augmentation: robustness can increase through data augmentation (Yin et al., 2019).
• Pretraining: pretraining on larger and more diverse datasets improves robustness (Orhan, 2019;

Hendrycks et al., 2019a).
• Texture Bias: convolutional networks are biased towards texture, which harms robustness (Geirhos

et al., 2019).
• Only IID Accuracy Matters: accuracy on independent and identically distributed test data entirely

determines natural robustness.
• Synthetic 6=⇒ Real: synthetic robustness interventions including diverse data augmentations

do not help with robustness on real-world distribution shifts (Taori et al., 2020).

It has been difficult to arbitrate these hypotheses because existing robustness datasets preclude the
possibility of controlled experiments by varying multiple aspects simultaneously. For instance,
Texture Bias was initially investigated with synthetic distortions (Geirhos et al., 2018), which conflicts
with the Synthetic 6=⇒ Real hypothesis. On the other hand, natural distribution shifts often affect
many factors (e.g., time, camera, location, etc.) simultaneously in unknown ways (Recht et al., 2019;
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Figure 1: Images from our three new datasets ImageNet-Renditions (ImageNet-R), DeepFashion
Remixed (DFR), and StreetView StoreFronts (SVSF). The SVSF images are recreated from the
public Google StreetView, copyright Google 2020. Our datasets test robustness to various naturally
occurring distribution shifts including rendition style, camera viewpoint, and geography.

Hendrycks et al., 2019b). Existing datasets also lack diversity such that it is hard to extrapolate which
methods will improve robustness more broadly. To address these issues and test the seven hypotheses
outlined above, we introduce three new robustness benchmarks and a new data augmentation method.

First we introduce ImageNet-Renditions (ImageNet-R), a 30,000 image test set containing various
renditions (e.g., paintings, embroidery, etc.) of ImageNet object classes. These renditions are naturally
occurring, with textures and local image statistics unlike those of ImageNet images, allowing us to
more cleanly separate the Texture Bias and Synthetic 6=⇒ Real hypotheses.

Next, we investigate natural shifts in the image capture process with StreetView StoreFronts (SVSF)
and DeepFashion Remixed (DFR). SVSF contains business storefront images taken from Google
Streetview, along with metadata allowing us to vary location, year, and even the camera type. DFR
leverages the metadata from DeepFashion2 (Ge et al., 2019) to systematically shift object occlusion,
orientation, zoom, and scale at test time. Both SVSF and DFR provide distribution shift controls and
do not alter texture, which remove possible confounding variables affecting prior benchmarks.

Finally, we contribute DeepAugment to increase robustness to some new types of distribution
shift. This augmentation technique uses image-to-image neural networks for data augmentation,
not data-independent Euclidean augmentations like image shearing or rotating as in previous work.
DeepAugment achieves state-of-the-art robustness on our newly introduced ImageNet-R benchmark
and a corruption robustness benchmark. DeepAugment can also be combined with other augmentation
methods to outperform a model pretrained on 1000× more labeled data.

After examining our results on these three datasets and others, we can rule out several of the above
hypotheses while strengthening support for others. As one example, we find that synthetic data
augmentation robustness interventions improve accuracy on ImageNet-R and real-world image blur
distribution shifts, providing clear counterexamples to Synthetic 6=⇒ Real while lending support
to the Diverse Data Augmentation and Texture Bias hypotheses. In the conclusion, we summarize
the various strands of evidence for and against each hypothesis. Across our many experiments, we
do not find a general method that consistently improves robustness, and some hypotheses require
additional qualifications. While robustness is often spoken of and measured as a single scalar property
like accuracy, our investigations suggest that robustness is not so simple. In light of our results, we
hypothesize in the conclusion that robustness is multivariate.

2 RELATED WORK

Robustness Benchmarks. Recent works (Hendrycks and Dietterich, 2019; Recht et al., 2019;
Hendrycks et al., 2020a) have begun to characterize model performance on out-of-distribution (OOD)
data with various new test sets, with dissonant findings. For instance, Hendrycks et al. (2020a)
demonstrate that modern language processing models are moderately robust to numerous naturally
occurring distribution shifts, and that Only IID Accuracy Matters is inaccurate for natural language
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Figure 2: ImageNet-Renditions (ImageNet-R) contains 30,000 images of ImageNet objects with
different textures and styles. This figure shows only a portion of ImageNet-R’s numerous rendition
styles. The rendition styles (e.g., “Toy”) are for clarity and are not ImageNet-R’s classes; ImageNet-
R’s classes are a subset of 200 ImageNet classes. ImageNet-R emphasizes shape over texture.

tasks. For image recognition, Hendrycks and Dietterich (2019) analyze image models and show
that they are sensitive to various simulated image corruptions (e.g., noise, blur, weather, JPEG
compression, etc.) from their “ImageNet-C” benchmark.

Recht et al. (2019) reproduce the ImageNet (Russakovsky et al., 2015) validation set for use as a
benchmark of naturally occurring distribution shift in computer vision. Their evaluations show a
11-14% drop in accuracy from ImageNet to the new validation set, named ImageNetV2, across a
wide range of architectures. Taori et al. (2020) use ImageNetV2 to measure natural robustness and
dismiss Diverse Data Augmentation. Recently, Engstrom et al. (2020) identify statistical biases in
ImageNetV2’s construction, and they estimate that reweighting ImageNetV2 to correct for these
biases results in a less substantial 3.6% drop.

Data Augmentation. Geirhos et al. (2019); Yin et al. (2019); Hendrycks et al. (2020b) demonstrate
that data augmentation can improve robustness on ImageNet-C. The space of augmentations that
help robustness includes various types of noise (Madry et al., 2017; Rusak et al., 2020; Lopes et al.,
2019), highly unnatural image transformations (Geirhos et al., 2019; Yun et al., 2019; Zhang et al.,
2017), or compositions of simple image transformations such as Python Imaging Library operations
(Cubuk et al., 2018; Hendrycks et al., 2020b). Some of these augmentations can improve accuracy on
in-distribution examples as well as on out-of-distribution (OOD) examples.

3 NEW BENCHMARKS

In order to evaluate the seven robustness hypotheses, we introduce three new benchmarks that capture
new types of naturally occurring distribution shifts. ImageNet-Renditions (ImageNet-R) is a newly
collected test set intended for ImageNet classifiers, whereas StreetView StoreFronts (SVSF) and
DeepFashion Remixed (DFR) each contain their own training sets and multiple test sets. SVSF and
DFR split data into a training and test sets based on various image attributes stored in the metadata.
For example, we can select a test set with images produced by a camera different from the training
set camera. We now describe the structure and collection of each dataset.

3.1 IMAGENET-RENDITIONS (IMAGENET-R)

While current classifiers can learn some aspects of an object’s shape (Mordvintsev et al., 2015),
they nonetheless rely heavily on natural textural cues (Geirhos et al., 2019). In contrast, human
vision can process abstract visual renditions. For example, humans can recognize visual scenes from
line drawings as quickly and accurately as they can from photographs (Biederman and Ju, 1988).
Even some primates species have demonstrated the ability to recognize shape through line drawings
(Itakura, 1994; Tanaka, 2006).
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To measure generalization to various abstract visual renditions, we create the ImageNet-Rendition
(ImageNet-R) dataset. ImageNet-R contains various artistic renditions of object classes from the
original ImageNet dataset. Note the original ImageNet dataset discouraged such images since
annotators were instructed to collect “photos only, no painting, no drawings, etc.” (Deng, 2012). We
do the opposite.

Data Collection. ImageNet-R contains 30,000 image renditions for 200 ImageNet classes. We
choose a subset of the ImageNet-1K classes, following Hendrycks et al. (2019b), for several reasons.
A handful ImageNet classes already have many renditions, such as “triceratops.” We also choose
a subset so that model misclassifications are egregious and to reduce label noise. The 200 class
subset was also chosen based on rendition prevalence, as “strawberry” renditions were easier to
obtain than “radiator” renditions. Were we to use all 1,000 ImageNet classes, annotators would be
pressed to distinguish between Norwich terrier renditions as Norfolk terrier renditions, which is
difficult. We collect images primarily from Flickr and use queries such as “art,” “cartoon,” “graffiti,”
“embroidery,” “graphics,” “origami,” “painting,” “pattern,” “plastic object,” “plush object,” “sculpture,”
“line drawing,” “tattoo,” “toy,” “video game,” and so on. Images are filtered by Amazon MTurk
annotators using a modified collection interface from ImageNetV2 (Recht et al., 2019). For instance,
after scraping Flickr images with the query “lighthouse cartoon,” we have MTurk annotators select
true positive lighthouse renditions. Finally, as a second round of quality control, graduate students
manually filter the resulting images and ensure that individual images have correct labels and do
not contain multiple labels. Examples are depicted in Figure 2. ImageNet-R also includes the line
drawings from Wang et al. (2019), excluding horizontally mirrored duplicate images, pitch black
images, and images from the incorrectly collected “pirate ship” class.

3.2 STREETVIEW STOREFRONTS (SVSF)

Computer vision applications often rely on data from complex pipelines that span different hardware,
times, and geographies. Ambient variations in this pipeline may result in unexpected performance
degradation, such as degradations experienced by health care providers in Thailand deploying
laboratory-tuned diabetic retinopathy classifiers in the field (Beede et al., 2020). In order to study the
effects of shifts in the image capture process we collect the StreetView StoreFronts (SVSF) dataset, a
new image classification dataset sampled from Google StreetView imagery (Anguelov et al., 2010)
focusing on three distribution shift sources: country, year, and camera.

Data Collection. SVSF consists of cropped images of business store fronts extracted from
StreetView images by an object detection model. Each store front image is assigned the class
label of the associated Google Maps business listing through a combination of machine learning
models and human annotators. We combine several visually similar business types (e.g. drugstores
and pharmacies) for a total of 20 classes, listed Appendix B.

Splitting the data along the three metadata attributes of country, year, and camera, we create one
training set and five test sets. We sample a training set and an in-distribution test set (200K and 10K
images, respectively) from images taken in US/Mexico/Canada during 2019 using a “new” camera
system. We then sample four OOD test sets (10K images each) which alter one attribute at a time
while keeping the other two attributes consistent with the training distribution. Our test sets are year:
2017, 2018; country: France; and camera: “old.”

3.3 DEEPFASHION REMIXED

Changes in day-to-day camera operation can cause shifts in attributes such as object size, object
occlusion, camera viewpoint, and camera zoom. To measure this, we repurpose DeepFashion2 (Ge
et al., 2019) to create the DeepFashion Remixed (DFR) dataset. We designate a training set with 48K
images and create eight out-of-distribution test sets to measure performance under shifts in object
size, object occlusion, camera viewpoint, and camera zoom-in. DeepFashion Remixed is a multi-label
classification task since images may contain more than one clothing item per image.

Data Collection. Similar to SVSF, we fix one value for each of the four metadata attributes in the
training distribution. Specifically, the DFR training set contains images with medium scale, medium
occlusion, side/back viewpoint, and no zoom-in. After sampling an IID test set, we construct eight
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Figure 3: DeepAugment examples preserve semantics, are data-dependent, and are far more visually
diverse than augmentations such as rotations.

OOD test distributions by altering one attribute at a time, obtaining test sets with minimal and heavy
occlusion; small and large scale; frontal and not-worn viewpoints; and medium and large zoom-in.
See Appendix B for details on test set sizes.

4 DEEPAUGMENT

In order to further explore the Diverse Data Augmentation hypothesis, we introduce a new data
augmentation technique. Whereas most previous data augmentations techniques use simple augmen-
tation primitives applied to the raw image itself, we introduce DeepAugment, which distorts images
by perturbing internal representations of deep networks.

DeepAugment works by passing a clean image through an image-to-image network and introducing
several perturbations during the forward pass. These perturbations are randomly sampled from a set
of manually designed functions and applied to the network weights and to the feed-forward signal
at random layers. For example, our set of perturbations includes zeroing, negating, convolving,
transposing, applying activation functions, and more. This setup generates semantically consistent
images with unique and diverse distortions Figure 3. Although our set of perturbations is designed
with random operations, we show that DeepAugment still outperforms other methods on benchmarks
such as ImageNet-C and ImageNet-R. We provide the pseudocode in Appendix C.

For our experiments, we specifically use the CAE (Theis et al., 2017) and EDSR (Lim et al., 2017)
architectures as the basis for DeepAugment. CAE is an autoencoder architecture, and EDSR is a
superresolution architecture. These two architectures show the DeepAugment approach works with
different architectures. Each clean image in the original dataset and passed through the network and
is thereby stochastically distored, resulting in two distorted versions of the clean dataset (one for
CAE and one for EDSR). We then train on the augmented and clean data simultaneously and call this
approach DeepAugment.
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ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 7.9 63.9 56.0
+ ImageNet-21K Pretraining (10× labeled data) 7.0 62.8 55.8
+ CBAM (Self-Attention) 7.0 63.2 56.2
+ `∞ Adversarial Training 25.1 68.6 43.5
+ Speckle Noise 8.1 62.1 54.0
+ Style Transfer Augmentation 8.9 58.5 49.6
+ AugMix 7.1 58.9 51.8
+ DeepAugment 7.5 57.8 50.3
+ DeepAugment + AugMix 8.0 53.2 45.2

ResNet-152 (Larger Models) 6.8 58.7 51.9

Table 1: ImageNet-200 and ImageNet-R top-1 error rates. ImageNet-200 uses the same 200 classes
as ImageNet-R. DeepAugment+AugMix improves over the baseline by over 10 percentage points.
ImageNet-21K Pretraining tests Pretraining and CBAM tests Self-Attention. Style Transfer, AugMix,
and DeepAugment test Diverse Data Augmentation in contrast to simpler noise augmentations such
as `∞ Adversarial Noise and Speckle Noise. While there remains much room for improvement,
results indicate that progress on ImageNet-R is tractable.

5 EXPERIMENTS

5.1 SETUP

In this section we briefly describe the evaluated models, pretraining techniques, self-attention mecha-
nisms, data augmentation methods, and note various implementation details.

Model Architectures and Sizes. Most experiments are evaluated on a standard ResNet-50 model
(He et al., 2015). Model size evaluations use ResNets or ResNeXts (Xie et al., 2016) of varying sizes.

Pretraining. For pretraining we use ImageNet-21K which contains approximately 21,000 classes
and approximately 14 million labeled training images, or around 10× more labeled training data than
ImageNet-1K. We tune Kolesnikov et al. (2019)’s ImageNet-21K model. We also use a large pre-
trained ResNeXt-101 model from Mahajan et al. (2018). This was pre-trained on on approximately 1
billion Instagram images with hashtag labels and fine-tuned on ImageNet-1K. This Weakly Supervised
Learning (WSL) pretraining strategy uses approximately 1000× more labeled data.

Self-Attention. When studying self-attention, we employ CBAM (Woo et al., 2018) and SE (Hu
et al., 2018) modules, two forms of self-attention that help models learn spatially distant dependencies.

Data Augmentation. We use Style Transfer, AugMix, and DeepAugment to analyze the Diverse
Data Augmentation hypothesis, and we contrast their performance with simpler noise augmentations
such as Speckle Noise and adversarial noise. Style transfer (Geirhos et al., 2019) uses a style transfer
network to apply artwork styles to training images. We use AugMix (Hendrycks et al., 2020b)
which randomly composes simple augmentation operations (e.g., translate, posterize, solarize).
DeepAugment, introduced above, distorts the weights and feedforward passes of image-to-image
models to generate image augmentations. Speckle Noise data augmentation muliplies each pixel by
(1 + x) with x sampled from a normal distribution (Rusak et al., 2020; Hendrycks and Dietterich,
2019). We also consider adversarial training as a form of adaptive data augmentation and use the
model from Wong et al. (2020) trained against `∞ perturbations of size ε = 4/255.

5.2 RESULTS

We now perform experiments on ImageNet-R, StreetView StoreFronts, DeepFashion Remixed. We
also evaluate on ImageNet-C and compare and contrast it with real distribution shifts.

ImageNet-R. Table 1 shows performance on ImageNet-R as well as on ImageNet-200 (the original
ImageNet data restricted to ImageNet-R’s 200 classes). This has several implications regarding
the four method-specific hypotheses. Pretraining with ImageNet-21K (approximately 10× labeled
data) hardly helps. Appendix A shows WSL pretraining can help, but Instagram has renditions,
while ImageNet excludes them; hence we conclude comparable pretraining was ineffective. Notice
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Self-Attention increases the IID/OOD gap. Compared to simpler data augmentation techniques
such as Speckle Noise, the Diverse Data Augmentation techniques of Style Transfer, AugMix, and
DeepAugment improve generalization. Note AugMix and DeepAugment improve in-distribution
performance whereas Style transfer hurts it. Also, our new DeepAugment technique is the best
standalone method with an error rate of 57.8%. Last, Larger Models reduce the IID/OOD gap.

Regarding the three more abstract hypotheses, biasing networks away from natural textures through
diverse data augmentation improved performance, so we find support for the Texture Bias hypothesis.
The IID/OOD generalization gap varies greatly which condtradicts Only IID Accuracy Matters.
Finally, since ImageNet-R contains real-world examples, and since synthetic data augmentation helps
on ImageNet-R, we now have clear evidence against the Synthetic 6=⇒ Real hypothesis.

StreetView StoreFronts. In Table 2, we evaluate data augmentation methods on SVSF and find
that all of the tested methods have mostly similar performance and that no method helps much
on country shift, where error rates roughly double across the board. Here evaluation is limited to
augmentations due to a 30 day retention window for each instantiation of the dataset. Images captured
in France contain noticeably different architectural styles and storefront designs than those captured
in US/Mexico/Canada; meanwhile, we are unable to find conspicuous and consistent indicators of the
camera and year. This may explain the relative insensitivity of evaluated methods to the camera and
year shifts. Overall Diverse Data Augmentation shows limited benefit, suggesting either that data
augmentation primarily helps combat texture bias as with ImageNet-R, or that existing augmentations
are not diverse enough to capture high-level semantic shifts such as building architecture.

Hardware Year Location
Network IID Old 2017 2018 France
ResNet-50 27.2 28.6 27.7 28.3 56.7
+ Speckle Noise 28.5 29.5 29.2 29.5 57.4
+ Style Transfer 29.9 31.3 30.2 31.2 59.3
+ DeepAugment 30.5 31.2 30.2 31.3 59.1
+ AugMix 26.6 28.0 26.5 27.7 55.4

Table 2: SVSF classification error rates. Networks are robust to some natural distribution shifts but
are substantially more sensitive the geographic shift. Here Diverse Data Augmentation hardly helps.

Size Occlusion Viewpoint Zoom
Network IID OOD Small Large Slight/None Heavy No Wear Side/Back Medium Large
ResNet-50 77.6 55.1 39.4 73.0 51.5 41.2 50.5 63.2 48.7 73.3
+ ImageNet-21K Pretraining 80.8 58.3 40.0 73.6 55.2 43.0 63.0 67.3 50.5 73.9
+ SE (Self-Attention) 77.4 55.3 38.9 72.7 52.1 40.9 52.9 64.2 47.8 72.8
+ Random Erasure 78.9 56.4 39.9 75.0 52.5 42.6 53.4 66.0 48.8 73.4
+ Speckle Noise 78.9 55.8 38.4 74.0 52.6 40.8 55.7 63.8 47.8 73.6
+ Style Transfer 80.2 57.1 37.6 76.5 54.6 43.2 58.4 65.1 49.2 72.5
+ DeepAugment 79.7 56.3 38.3 74.5 52.6 42.8 54.6 65.5 49.5 72.7
+ AugMix 80.4 57.3 39.4 74.8 55.3 42.8 57.3 66.6 49.0 73.1

ResNet-152 (Larger Models) 80.0 57.1 40.0 75.6 52.3 42.0 57.7 65.6 48.9 74.4

Table 3: DeepFashion Remixed results. Unlike the previous tables, higher is better since all values are
mAP scores for this multi-label classification benchmark. The “OOD” column is the average of the
row’s rightmost eight OOD values. All techniques do little to close the IID/OOD generalization gap.

DeepFashion Remixed. Table 3 shows our experimental findings on DFR, in which all evaluated
methods have an average OOD mAP that is close to the baseline. In fact, most OOD mAP increases
track IID mAP increases. In general, DFR’s size and occlusion shifts hurt performance the most.
We also evaluate with Random Erasure augmentation, which deletes rectangles within the image,
to simulate occlusion (Zhong et al., 2017). Random Erasure improved occlusion performance, but
Style Transfer helped even more. Nothing substantially improved OOD performance beyond what is
explained by IID performance, so here it would appear that Only IID Accuracy Matters. Our results
do not provide clear evidence for the Larger Models, Self-Attention, Diverse Data Augmentation, and
Pretraining hypotheses.

ImageNet-C. We now consider a previous robustness benchmark to reassess all seven hypotheses.
We use the ImageNet-C dataset (Hendrycks and Dietterich, 2019) which applies 15 common image
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Figure 4: The left figure shows accuracy as a function of corruption severity. In the right figure, we
show ImageNet accuracy and ImageNet-C accuracy. Previous architectural advances slowly translate
to ImageNet-C performance improvements, but the DeepAugment+AugMix robustness intervention
on a ResNet-50 approximately yields a 19% accuracy improvement.

Figure 5: Examples of real-world blurry images from our collected dataset for ImageNet-C analysis.

corruptions (e.g., Gaussian noise, defocus blur, simulated fog, JPEG compression, etc.) across
5 severities to ImageNet-1K validation images. We find that DeepAugment improves robustness
on ImageNet-C. Figure 4 shows that when models are trained with AugMix and DeepAugment,
they attain the state-of-the-art, break the trendline, and exceed the corruption robustness provided
by training on 1000× more labeled training data. Note the augmentations from AugMix and
DeepAugment are disjoint from ImageNet-C’s corruptions. Full results are shown in Appendix A’s
Table 8. This is evidence against the Only IID Accuracy Matters hypothesis and is evidence for the
Larger Models, Self-Attention, Diverse Data Augmentation, Pretraining, and Texture Bias hypotheses.

Taori et al. (2020) remind us that ImageNet-C uses various synthetic corruptions and suggest that they
are divorced from real-world robustness. Real-world robustness requires generalizing to naturally
occurring corruptions such as snow, fog, blur, low-lighting noise, and so on, but it is an open question
whether ImageNet-C’s simulated corruptions meaningfully approximate real-world corruptions.

For our results analysis, we collect a small dataset of 1,000 real-world blurry images and find that
ImageNet-C can track robustness to real-world corruptions. We collect the “Real Blurry Images”
dataset with Flickr and query ImageNet object class names concatenated with the word “blurry.”
Examples are in Figure 5. We then evaluate various models on real-world blurry images and
find that all the robustness interventions that help with ImageNet-C also help with real-world
blurry images. Hence ImageNet-C can track performance on real-world corruptions. Moreover,
DeepAugment+AugMix has the lowest error rate on Real Blurry Images, which again contradicts the
Synthetic 6=⇒ Real hypothesis. The upshot is that ImageNet-C is a controlled and systematic proxy
for real-world robustness.

We collect 1,000 blurry images to see whether improvements on ImageNet-C’s simulated blurs
correspond to improvements on real-world blurry images. Each image belongs to an ImageNet
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Hypothesis ImageNet-C Real Blurry Images ImageNet-R DFR SVSF
Larger Models + + + −
Self-Attention + + − −
Diverse Data Augmentation + + + − −
Pretraining + + − −

Table 4: A highly simplified account of each hypothesis when tested against different datasets.
Evidence for is denoted “+”, and “−” denotes an absence of evidence or evidence against.

class. Results from Table 5 show that Larger Models, Self-Attention, Diverse Data Augmentation,
Pretraining all help, just like ImageNet-C. Here DeepAugment+AugMix attains state-of-the-art.
These results suggest ImageNet-C’s simulated corruptions track real-world corruptions. In hindsight,
this is expected since various computer vision problems have used synthetic corruptions as proxies
for real-world corruptions, for decades. In short, ImageNet-C is a diverse and systematic benchmark
that is correlated with improvements on real-world corruptions.

6 CONCLUSION

In this paper we introduced three new benchmarks, ImageNet-Renditions, DeepFashion Remixed, and
StreetView StoreFronts. With these benchmarks, we thoroughly tested seven robustness hypotheses–
four about methods for robustness, and three about the nature of robustness.

Let us consider the first four hypotheses, using the new information from ImageNet-C and our three
new benchmarks. The Larger Models hypothesis was supported with ImageNet-C and ImageNet-R,
but not with DFR. While Self-Attention noticeably helped ImageNet-C, it did not help with ImageNet-
R and DFR. Diverse Data Augmentation was ineffective for SVSF and DFR, but it greatly improved
ImageNet-C and ImageNet-R accuracy. Pretraining greatly helped with ImageNet-C but hardly
helped with DFR and ImageNet-R. This is summarized in Table 4. It was not obvious a priori that
synthetic Diverse Data Augmentation could improve ImageNet-R accuracy, nor did previous research
suggest that Pretraining would sometimes be ineffective. While no single method consistently helped
across all distribution shifts, some helped more than others.

Our analysis of these four hypotheses have implications for the remaining three hypotheses. Re-
garding Texture Bias, ImageNet-R shows that networks do not generalize well to renditions (which
have different textures), but that diverse data augmentation (which often distorts textures) can re-
cover accuracy. More generally, larger models and diverse data augmentation consistently helped
on ImageNet-R, ImageNet-C, and Blurry Images, suggesting that these two interventions reduce
texture bias. However, these methods helped little for geographic shifts, showing that there is more
to robustness than texture bias alone. Regarding Only IID Accuracy Matters, while IID accuracy is
a strong predictor of OOD accuracy, it is not decisive—Table 4 shows that many methods improve
robustness across multiple distribution shifts, and recent experiments in NLP provide further coun-
terexamples (Hendrycks et al., 2020a). Finally, Synthetic 6=⇒ Real has clear counterexamples given
that DeepAugment greatly increases accuracy on ImageNet-R and Real Blurry Images. In summary,
some previous hypotheses are implausible, and the Texture Bias hypothesis has the most support.

Our seven hypotheses presented several conflicting accounts of robustness. What led to this conflict?
We suspect it is because robustness is not one scalar like accuracy. The research community is
reasonable in judging IID accuracy with a univariate metric like ImageNet classification accuracy,
as models with higher ImageNet accuracy reliably have better fine-tuned classification accuracy on
other tasks (Kornblith et al., 2018). In contrast, we argue it is too simplistic to judge OOD accuracy
with a univariate metric like, say, ImageNetV2 or ImageNet-C accuracy. Instead we hypothesize that
robustness is multivariate. This Multivariate hypothesis means that there is not a single scalar model
property that wholly governs natural model robustness.

If robustness has many faces, future work should evaluate robustness using many distribution shifts;
for example, ImageNet models should at least be tested against ImageNet-C and ImageNet-R. Future
work could further characterize the space of distribution shifts. However, due to this paper, there are
now more out-of-distribution robustness datasets than there are published robustness methods. Hence
the research community should prioritize creating new robustness methods. If our Multivariate
hypothesis is true, research should shift toward using multiple tests to develop models that are both
robust and safe.
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A ADDITIONAL RESULTS

ImageNet-R. Expanded ImageNet-R results are in Table 7.
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Figure 6: Larger models improve ro-
bustness on ImageNet-R. The baseline
models are ResNet-50, DPN-68, and
ResNeXt-50 (32 × 4d). The larger
models are ResNet-152, DPN-98, and
ResNeXt-101 (32 × 8d). The baseline
ResNeXt has a 7.1% ImageNet error rate,
while the large has a 6.2% error rate.

WSL pretraining on Instagram images appears to yield
dramatic improvements on ImageNet-R, but the authors
note the prevalence of artistic renditions of object classes
on the Instagram platform. While ImageNet’s data collec-
tion process actively excluded renditions, we do not have
reason to believe the Instagram dataset excluded rendi-
tions. On a ResNeXt-101 32×8d model, WSL pretraining
improves ImageNet-R performance by a massive 37.5%
from 57.5% top-1 error to 24.2%. Ultimately, without
examining the training images we are unable to determine
whether ImageNet-R represents an actual distribution shift
to the Instagram WSL models. However, we also ob-
serve that with greater controls, that is with ImageNet-
21K pre-training, pretraining hardly helped ImageNet-R
performance, so it is not clear that more pretraining data
improves ImageNet-R performance.

Increasing model size appears to automatically improve
ImageNet-R performance, as shown in Figure 6. A ResNet-
50 (25.5M parameters) has 63.9% error, while a ResNet-
152 (60M) has 58.7% error. ResNeXt-50 32×4d (25.0M)
attains 62.3% error and ResNeXt-101 32×8d (88M) at-
tains 57.5% error.

ImageNet-C. Expanded ImageNet-C results are Table 8. We also tested whether model size
improves performance on ImageNet-C for even larger models. With a different codebase, we
trained ResNet-50, ResNet-152, and ResNet-500 models which achieved 80.6, 74.0, and 68.5 mCE
respectively.

Expanded comparisons between ImageNet-C and Real Blurry Images is in Table 5.
Network Defocus

Blur
Glass
Blur

Motion
Blur

Zoom
Blur

ImageNet-C
Blur Mean

Real Blurry
Images

ResNet-50 61 73 61 64 65 58.7
+ ImageNet-21K Pretraining 56 69 53 59 59 54.8
+ CBAM (Self-Attention) 60 69 56 61 62 56.5
+ `∞ Adversarial Training 80 71 72 71 74 71.6
+ Speckle Noise 57 68 60 64 62 56.9
+ Style Transfer 57 68 55 64 61 56.7
+ AugMix 52 65 46 51 54 54.4
+ DeepAugment 48 60 51 61 55 54.2
+ DeepAugment+AugMix 41 53 39 48 45 51.7

ResNet-152 (Larger Models) 67 81 66 74 58 54.3

Table 5: ImageNet-C Blurs (Defocus, Glass, Motion, Zoom) vs Real Blurry Images. All values are
error rates and percentages. The rank orderings of the models on Real Blurry Images are similar to
the rank orderings for “ImageNet-C Blur Mean,” so ImageNet-C’s simulated blurs track real-world
blur performance.

ImageNet-A. ImageNet-A (Hendrycks et al., 2019b) is an adversarially filtered test set and is
constructed based on existing model weaknesses (see (Wang et al., 2020) for another robustness
dataset algorithmically determined by model weaknesses). This dataset contains examples that are
difficult for a ResNet-50 to classify, so examples solvable by simple spurious cues are are especially
infrequent in this dataset. Results are in Table 9. Notice Res2Net architectures (Gao et al., 2019b)
can greatly improve accuracy. Results also show that Larger Models, Self-Attention, and Pretraining
help, while Diverse Data Augmentation usually does not help substantially.
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Implications for the Four Method Hypotheses.
The Larger Models hypothesis has support with ImageNet-C (+), ImageNet-A (+), ImageNet-R (+),
yet does not markedly improve DFR (−) performance.
The Self-Attention hypothesis has support with ImageNet-C (+), ImageNet-A (+), yet does not help
ImageNet-R (−) and DFR (−) performance.
The Diverse Data Augmentation hypothesis has support with ImageNet-C (+), ImageNet-R (+), yet
does not markedly improve ImageNet-A (−), DFR(−), nor SVSF (−) performance.
The Pretraining hypothesis has support with ImageNet-C (+), ImageNet-A (+), yet does not markedly
improve DFR (−) nor ImageNet-R (−) performance.

Hypothesis ImageNet-C ImageNet-A ImageNet-R DFR SVSF
Larger Models + + + −
Self-Attention + + − −
Diverse Data Augmentation + − + − −
Pretraining + + − −

Table 6: A highly simplified account of each hypothesis when tested against different datasets. This
table includes ImageNet-A results.
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ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 (He et al., 2015) 7.9 63.9 56.0
+ ImageNet-21K Pretraining (10× data) 7.0 62.8 55.8
+ CBAM (Self-Attention) 7.0 63.2 56.2
+ `∞ Adversarial Training 25.1 68.6 43.5
+ Speckle Noise 8.1 62.1 54.0
+ Style Transfer 8.9 58.5 49.6
+ AugMix 7.1 58.9 51.8
+ DeepAugment 7.5 57.8 50.3
+ DeepAugment + AugMix 8.0 53.2 45.2

ResNet-101 (Larger Models) 7.1 60.7 53.6
+ SE (Self-Attention) 6.7 61.0 54.3

ResNet-152 (Larger Models) 6.8 58.7 51.9
+ SE (Self-Attention) 6.6 60.0 53.4

ResNeXt-101 32×4d (Larger Models) 6.8 58.0 51.2
+ SE (Self-Attention) 5.9 59.6 53.7

ResNeXt-101 32×8d (Larger Models) 6.2 57.5 51.3
+ WSL Pretraining (1000× data) 4.1 24.2 20.1
+ DeepAugment + AugMix 6.1 47.9 41.8

Table 7: ImageNet-200 and ImageNet-Renditions error rates. ImageNet-21K and WSL Pretraining
test the Pretraining hypothesis, and here pretraining gives mixed benefits. CBAM and SE test the
Self-Attention hypothesis, and these hurt robustness. ResNet-152 and ResNeXt-101 32×8d test the
Larger Models hypothesis, and these help. Other methods augment data, and Style Transfer, AugMix,
and DeepAugment provide support for the Diverse Data Augmentation hypothesis.

Noise Blur Weather Digital
Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77
+ ImageNet-21K Pretraining 22.4 65.8 61 64 63 69 84 68 74 69 71 61 53 53 81 54 63
+ SE (Self-Attention) 22.4 68.2 63 66 66 71 82 67 74 74 72 64 55 71 73 60 67
+ CBAM (Self-Attention) 22.4 70.0 67 68 68 74 83 71 76 73 72 65 54 70 79 62 67
+ `∞ Adversarial Training 46.2 94.0 91 92 95 97 86 92 88 93 99 118 104 111 90 72 81
+ Speckle Noise 24.2 68.3 51 47 55 70 83 77 80 76 71 66 57 70 82 72 69
+ Style Transfer 25.4 69.3 66 67 68 70 82 69 80 68 71 65 58 66 78 62 70
+ AugMix 22.5 65.3 67 66 68 64 79 59 64 69 68 65 54 57 74 60 66
+ DeepAugment 23.3 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67
+ DeepAugment + AugMix 24.2 53.6 46 45 44 50 64 50 61 58 57 54 52 48 71 43 61

ResNet-152 (Larger Models) 21.7 69.3 73 73 76 67 81 66 74 71 68 62 51 67 76 69 65

ResNeXt-101 32×8d (Larger Models) 20.7 66.7 68 69 71 65 79 66 71 69 66 60 50 66 74 61 64
+ WSL Pretraining (1000× data) 17.8 51.7 49 50 51 53 72 55 63 53 51 42 37 41 67 40 51
+ DeepAugment + AugMix 20.1 44.5 36 35 34 43 55 42 55 48 48 47 43 39 59 34 50

Table 8: Clean Error, Corruption Error (CE), and mean CE (mCE) values for various models and
training methods on ImageNet-C. The mCE value is computed by averaging across all 15 CE values.
A CE value greater than 100 (e.g. adversarial training on contrast) denotes worse performance than
AlexNet. DeepAugment+AugMix improves robustness by over 23 mCE.
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ImageNet-A (%)

ResNet-50 2.2
+ ImageNet-21K Pretraining (10× data) 11.4
+ Squeeze-and-Excitation (Self-Attention) 6.2
+ CBAM (Self-Attention) 6.9
+ `∞ Adversarial Training 1.7
+ Style Transfer 2.0
+ AugMix 3.8
+ DeepAugment 3.5
+ DeepAugment + AugMix 3.9
ResNet-152 (Larger Models) 6.1
ResNet-152+Squeeze-and-Excitation (Self-Attention) 9.4
Res2Net-50 v1b 14.6
Res2Net-152 v1b (Larger Models) 22.4
ResNeXt-101 (32× 8d) (Larger Models) 10.2
+ WSL Pretraining (1000× data) 45.4
+ DeepAugment + AugMix 11.5

Table 9: ImageNet-A top-1 accuracy.

B FURTHER DATASET DESCRIPTIONS

ImageNet-R Classes. The 200 ImageNet classes and their WordNet IDs in ImageNet-R are as
follows.

Goldfish, great white shark, hammerhead, stingray, hen, ostrich, goldfinch, junco,
bald eagle, vulture, newt, axolotl, tree frog, iguana, African chameleon, cobra,
scorpion, tarantula, centipede, peacock, lorikeet, hummingbird, toucan, duck,
goose, black swan, koala, jellyfish, snail, lobster, hermit crab, flamingo, american
egret, pelican, king penguin, grey whale, killer whale, sea lion, chihuahua, shih
tzu, afghan hound, basset hound, beagle, bloodhound, italian greyhound, whippet,
weimaraner, yorkshire terrier, boston terrier, scottish terrier, west highland white terrier,
golden retriever, labrador retriever, cocker spaniels, collie, border collie, rottweiler,
german shepherd dog, boxer, french bulldog, saint bernard, husky, dalmatian, pug,
pomeranian, chow chow, pembroke welsh corgi, toy poodle, standard poodle, timber wolf,
hyena, red fox, tabby cat, leopard, snow leopard, lion, tiger, cheetah, polar
bear, meerkat, ladybug, fly, bee, ant, grasshopper, cockroach, mantis, dragon-
fly, monarch butterfly, starfish, wood rabbit, porcupine, fox squirrel, beaver, guinea
pig, zebra, pig, hippopotamus, bison, gazelle, llama, skunk, badger, orangutan,
gorilla, chimpanzee, gibbon, baboon, panda, eel, clown fish, puffer fish, accor-
dion, ambulance, assault rifle, backpack, barn, wheelbarrow, basketball, bathtub,
lighthouse, beer glass, binoculars, birdhouse, bow tie, broom, bucket, cauldron,
candle, cannon, canoe, carousel, castle, mobile phone, cowboy hat, electric gui-
tar, fire engine, flute, gasmask, grand piano, guillotine, hammer, harmonica, harp,
hatchet, jeep, joystick, lab coat, lawn mower, lipstick, mailbox, missile, mitten,
parachute, pickup truck, pirate ship, revolver, rugby ball, sandal, saxophone, school
bus, schooner, shield, soccer ball, space shuttle, spider web, steam locomotive, scarf,
submarine, tank, tennis ball, tractor, trombone, vase, violin, military aircraft, wine
bottle, ice cream, bagel, pretzel, cheeseburger, hotdog, cabbage, broccoli, cucum-
ber, bell pepper, mushroom, Granny Smith, strawberry, lemon, pineapple, banana,
pomegranate, pizza, burrito, espresso, volcano, baseball player, scuba diver, acorn.

n01443537, n01484850, n01494475, n01498041, n01514859, n01518878, n01531178,
n01534433, n01614925, n01616318, n01630670, n01632777, n01644373, n01677366,
n01694178, n01748264, n01770393, n01774750, n01784675, n01806143, n01820546,
n01833805, n01843383, n01847000, n01855672, n01860187, n01882714, n01910747,
n01944390, n01983481, n01986214, n02007558, n02009912, n02051845, n02056570,
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n02066245, n02071294, n02077923, n02085620, n02086240, n02088094, n02088238,
n02088364, n02088466, n02091032, n02091134, n02092339, n02094433, n02096585,
n02097298, n02098286, n02099601, n02099712, n02102318, n02106030, n02106166,
n02106550, n02106662, n02108089, n02108915, n02109525, n02110185, n02110341,
n02110958, n02112018, n02112137, n02113023, n02113624, n02113799, n02114367,
n02117135, n02119022, n02123045, n02128385, n02128757, n02129165, n02129604,
n02130308, n02134084, n02138441, n02165456, n02190166, n02206856, n02219486,
n02226429, n02233338, n02236044, n02268443, n02279972, n02317335, n02325366,
n02346627, n02356798, n02363005, n02364673, n02391049, n02395406, n02398521,
n02410509, n02423022, n02437616, n02445715, n02447366, n02480495, n02480855,
n02481823, n02483362, n02486410, n02510455, n02526121, n02607072, n02655020,
n02672831, n02701002, n02749479, n02769748, n02793495, n02797295, n02802426,
n02808440, n02814860, n02823750, n02841315, n02843684, n02883205, n02906734,
n02909870, n02939185, n02948072, n02950826, n02951358, n02966193, n02980441,
n02992529, n03124170, n03272010, n03345487, n03372029, n03424325, n03452741,
n03467068, n03481172, n03494278, n03495258, n03498962, n03594945, n03602883,
n03630383, n03649909, n03676483, n03710193, n03773504, n03775071, n03888257,
n03930630, n03947888, n04086273, n04118538, n04133789, n04141076, n04146614,
n04147183, n04192698, n04254680, n04266014, n04275548, n04310018, n04325704,
n04347754, n04389033, n04409515, n04465501, n04487394, n04522168, n04536866,
n04552348, n04591713, n07614500, n07693725, n07695742, n07697313, n07697537,
n07714571, n07714990, n07718472, n07720875, n07734744, n07742313, n07745940,
n07749582, n07753275, n07753592, n07768694, n07873807, n07880968, n07920052,
n09472597, n09835506, n10565667, n12267677.

SVSF. The classes are

• auto shop
• bakery
• bank
• beauty salon
• car dealer
• car wash
• cell phone store

• dentist
• discount store
• dry cleaner
• furniture store
• gas station
• gym
• hardware store

• hotel

• liquor store

• pharmacy

• religious institution

• storage facility

• veterinary care.

DeepFashion Remixed. The classes are

• short sleeve top
• long sleeve top
• short sleeve outerwear
• long sleeve outerwear
• vest

• sling
• shorts
• trousers
• skirt
• short sleeve dress

• long sleep dress

• vest dress

• sling dress.

Size (small, moderate, or large) defines how much of the image the article of clothing takes up.
Occlusion (slight, medium, or heavy) defines the degree to which the object is occluded from the
camera. Viewpoint (front, side/back, or not worn) defines the camera position relative to the article of
clothing. Zoom (no zoom, medium, or large) defines how much camera zoom was used to take the
picture.
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Represented Distribution Shifts

ImageNet-Renditions artistic renditions (cartoons, graffiti, embroidery, graphics, origami,
paintings, sculptures, sketches, tattoos, toys, ...)

DeepFashion Remixed occlusion, size, viewpoint, zoom
StreetView StoreFronts camera, capture year, country

Table 10: Various distribution shifts represented in our three new benchmarks. ImageNet-Renditions
is a new test set for ImageNet trained models measuring robustness to various object renditions.
DeepFashion Remixed and StreetView StoreFronts each contain a training set and multiple test sets
capturing a variety of distribution shifts.

Training set Testing images

ImageNet-R 1281167 30000
DFR 48000 42640, 7440, 28160, 10360, 480, 11040, 10520, 10640
SVSF 200000 10000, 10000, 10000, 8195, 9788

Table 11: Number of images in each training and test set. ImageNet-R training set refers to the
ILSVRC 2012 training set (Deng et al., 2009). DeepFashion Remixed test sets are: in-distribution,
occlusion - none/slight, occlusion - heavy, size - small, size - large, viewpoint - frontal, viewpoint -
not-worn, zoom-in - medium, zoom-in - large. StreetView StoreFronts test sets are: in-distribution,
capture year - 2018, capture year - 2017, camera system - new, country - France.

C DEEPAUGMENT DETAILS

Pseudocode. Below is Pythonic pseudocode for DeepAugment. The basic structure of DeepAug-
ment is agnostic to the backbone network used, but specifics such as which layers are chosen for
various transforms may vary as the backbone architecture varies. We do not need to train many
different image-to-image models to get diverse distortions (Zhang et al., 2018; Lee et al., 2020). We
only use two existing models, the EDSR super-resolution model (Lim et al., 2017) and the CAE
image compression model (Theis et al., 2017). See full code for such details.

At a high level, DeepAugment processes each image with an image-to-image network. The image-to-
image network’s weights and feedforward activations are distorted with each pass. The distortion
is made possible by, for example, negating the network’s weights and applying dropout to the
feedforward activations. These modifications were not carefully chosen and demonstrate the utility of
mixing together diverse operations without tuning. The resulting image is distorted and saved. This
process generates an augmented dataset.
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1 def main():
2 net.apply_weights(deepAugment_getNetwork()) # EDSR, CAE, ...
3 for image in dataset: # May be the ImageNet training set
4 if np.random.uniform() < 0.05: # Arbitrary refresh prob
5 net.apply_weights(deepAugment_getNetwork())
6 new_image = net.deepAugment_forwardPass(image)
7

8 def deepAugment_getNetwork():
9 weights = load_clean_weights()

10 weight_distortions = sample_weight_distortions()
11 for d in weight_distortions:
12 weights = apply_distortion(d, weights)
13 return weights
14

15 def sample_weight_distortions():
16 distortions = [
17 negate_weights,
18 zero_weights,
19 flip_transpose_weights,
20 ...
21 ]
22

23 return random_subset(distortions)
24

25 def sample_signal_distortions():
26 distortions = [
27 gelu,
28 negate_signal_random_mask,
29 flip_signal,
30 ...
31 ]
32

33 return random_subset(distortions)
34

35

36 class Network():
37 def apply_weights(weights):
38 ... # Apply given weight tensors to network
39

40 # Clean forward pass. Compare to deepAugment_forwardPass()
41 def clean_forwardPass(X):
42 X = network.block1(X)
43 X = network.block2(X)
44 ...
45 X = network.blockN(X)
46 return X
47

48 # Our forward pass. Compare to clean_forwardPass()
49 def deepAugment_forwardPass(X):
50 # Returns a list of distortions, each of which
51 # will be applied at a different layer.
52 signal_distortions = sample_signal_distortions()
53

54 X = network.block1(X)
55 apply_layer_1_distortions(X, signal_distortions)
56 X = network.block2(X)
57 apply_layer_2_distortions(X, signal_distortions)
58 ...
59 apply_layer_N-1_distortions(X, signal_distortions)
60 X = network.blockN(X)
61 apply_layer_N_distortions(X, signal_distortions)
62

63 return X
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Ablations. We run ablations on DeepAugment to understand the contributions from the EDSR
and CAE models independently. Table 13 contains results of these experiments on ImageNet-R and
Table 12 contains results of these experiments on ImageNet-C. In both tables, “DeepAugment (EDSR)”
and “DeepAugment (CAE)” refer to experiments where we only use a single extra augmented training
set (+ the standard training set), and train on those images.

Noise Blur Weather Digital
Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77
+ DeepAugment (EDSR) 23.5 64.0 56 57 54 64 77 71 78 68 64 64 55 64 78 46 67
+ DeepAugment (CAE) 23.2 67.0 58 60 62 62 75 73 77 68 66 60 52 66 80 63 78
+ DeepAugment (Both) 23.3 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67

Table 12: Clean Error, Corruption Error (CE), and mean CE (mCE) values for DeepAugment ablations
on ImageNet-C. The mCE value is computed by averaging across all 15 CE values.

Noise2Net. We show that untrained, randomly sampled neural networks can provide useful deep
augmentations, highlighting the efficacy of the DeepAugment approach. While in the main paper we
use EDSR and CAE to create DeepAugment augmentations, in this section we explore the use of
randomly initialized image-to-image networks to generate diverse image augmentations. We propose
a DeepAugment method, Noise2Net.

In Noise2Net, the architecture and weights are randomly sampled. Noise2Net is the composition
of several residual blocks: Block(x) = x + ε · fΘ(x), where Θ is randomly initialized and ε is a
parameter that controls the strength of the augmentation. For all our experiments, we use 4 Res2Net
blocks (Gao et al., 2019a) and ε ∼ U(0.375, 0.75). The weights of Noise2Net are resampled at every
minibatch, and the dilation and kernel sizes of all the convolutions used in Noise2Net are randomly
sampled every epoch. Hence Noise2Net augments an image to an augmented image by processing
the image through a randomly sampled network with random weights.

Recall that in the case of EDSR and CAE, we used networks to generate a static dataset, and then we
trained normally on that static dataset. This setup could not be done on-the-fly. That is because we
fed in one example at a time with EDSR and CAE. If we pass the entire minibatch through EDSR
or CAE, we will end up applying the same augmentation to all images in the minibatch, reducing
stochasticity and augmentation diversity. In contrast, Noise2Net enables us to process batches of
images on-the-fly and obviates the need for creating a static augmented dataset.

In Noise2Net, each example is processed differently in parallel, so we generate more diverse augmen-
tations in real-time. To make this possible, we use grouped convolutions. A grouped convolution with
number of groups = N will take a set of kN channels as input, and apply N independent convolutions
on channels {1, . . . , k}, {k + 1, . . . , 2k}, . . . , {(N − 1)k + 1, . . . , Nk}. Given a minibatch of size
B, we can apply a randomly initialized grouped convolution with N = B groups in order to apply
a different random convolutional filter to each element in the batch in a single forward pass. By
replacing all the convolutions in each Res2Net block with a grouped convolution and randomly
initializing network weights, we arrive at Noise2Net, a variant of DeepAugment. See Figure 7 for a
high-level overview of Noise2Net and Figure 8 for sample outputs.

We evaluate the Noise2Net variant of DeepAugment on ImageNet-R. Table 13 shows that it out-
performs the EDSR and CAE variants of DeepAugment, even though the network architecture is
randomly sampled, its weights are random, and the network is not trained. This demonstrates the
flexibility of the DeepAugment approach. Below is Pythonic pseudocode for training a classifier
using the Noise2Net variant of DeepAugment.
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Figure 7: Parallel augmentation with Noise2Net. We collapse batches to the channel dimension to
ensure that different transformations are applied to each image in the batch. Feeding images into the
network in the standard way would result in the same augmentation being applied to each image,
which is undesirable. The function fΘ(x) is a Res2Net block with all convolutions replaced with
grouped convolutions.

ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 7.9 63.9 56.0
+ DeepAugment (EDSR) 7.9 60.3 55.1
+ DeepAugment (CAE) 7.6 58.5 50.9
+ DeepAugment (EDSR + CAE) 7.5 57.8 50.3
+ DeepAugment (Noise2Net) 7.2 57.6 50.4

+ DeepAugment (All 3) 7.4 56.0 48.6

Table 13: DeepAugment ablations on ImageNet-200 and ImageNet-Renditions.

1 def train_one_epoch(classifier, batch_size, dataloader):
2 noise2net = Noise2Net(batch_size=batch_size)
3 for batch, target in dataloader:
4 noise2net.reload_weights()
5 noise2net.set_epsilon(random.uniform(0.375, 0.75))
6 logits = model(noise2net.forward(batch))
7 ... # Calculate loss and backrop
8

9 def train():
10 for epoch in range(epochs):
11 train_one_epoch(classifier, batch_size, dataloader)
12

13 class Noise2Net:
14 def __init__(self, batch_size=5):
15 self.block1 = Res2NetBlock(batch_size=batch_size)
16 self.block2 = Res2NetBlock(batch_size=batch_size)
17 self.block3 = Res2NetBlock(batch_size=batch_size)
18 self.block4 = Res2NetBlock(batch_size=batch_size)
19

20 def reload_weights(self):
21 ... # Reload Network parameters
22

23 def set_epsilon(self, new_eps):
24 self.epsilon = new_eps
25

26 def forward(self, x):
27 x = x + self.block1(x) * self.epsilon
28 x = x + self.block2(x) * self.epsilon
29 x = x + self.block3(x) * self.epsilon
30 x = x + self.block4(x) * self.epsilon
31 return x
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Figure 8: Example outputs of Noise2Net for different values of ε. Note ε = 0 is the original image.
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