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Abstract

Foundation models (FMs) in pathology are general-purpose models capturing heteroge-
neous morphological patterns on pathology images leveraged by a vast training dataset.
Although FMs have demonstrated promising results in multiple downstream tasks such as
classification and retrieval, confounding factors are also embedded in the features poten-
tially causing inaccurate decisions. For example, we observe a batch effect where distinctive
medical center signatures are displayed when clustering features from FMs. In this work,
we propose Foundation Model-based Manifold Approximation Pipeline (fmMAP) to reduce
the batch effect by adjusting features from FMs. Our framework employs supervised uni-
form manifold approximation (UMAP) to transform features generated by FMs into an
optimal space. In this transformed space, characteristics of features of interest (i.e., biolog-
ical features) are highlighted while other confounding factors are reduced. Experimental
results on eight recent FMs show that raw features from the FMs are shown to be unrobust,
but fmMAP transforms features to become robust on all FMs according to the robustness
index. In addition, fmMAP reduces average balanced accuracy for site prediction and im-
proves average balanced accuracy for tissue type classification achieving more than 96% in
publicly available datasets. We expect fmMAP framework will help FMs identify essential
pathologic features that would enhance performance on downstream tasks. The code will
be made publicly available upon acceptance.
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1 Introduction

Foundation models (FMs) are general-purpose machine learning models conducting a wide
range of downstream tasks (Bommasani et al. (2021)). FMs in pathology trained by millions
of whole slide images (WSIs) in a self-supervised manner can capture heterogeneous mor-
phological patterns on pathology images (Waqas et al. (2023)). For example, several FMs in
pathology have demonstrated promising results in patch-level classification, slide-level clas-
sification, patch retrieval, and biomarker prediction (Chen et al. (2024); Filiot et al. (2023,
2024); Saillard et al. (2024); Vorontsov et al. (2024); Xu et al. (2024); Zimmermann et al.
(2024)).

While representations from FMs can be used in several downstream tasks, they may be
suffered from confounding factors. For example, we observe a site-bias batch effect in these
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Figure 1: A UMAP (Mclnnes et al. (2018)) illustration of site-bias effect in a subset of
Breast Cancer Semantic Segmentation (BCSS) Dataset (Amgad et al. (2019)). (a) Raw
features extracted from FM UNI-2h (Chen et al. (2024)) clearly show site-bias batch effect.
Furthermore, the patient-bias batch effect can also be observed (institution: LL, patients:
A5YO, A441, A740). (b) Macenko stain normalization (Macenko et al. (2009)) is applied
to patches before feature extraction. The result shows that stain normalization does not
properly reduce the batch effect in both cases. (c¢) After applying our proposed fmMAP, the
batch effect is significantly reduced in both cases. Samples are distributed quite equally over
the space and tend to gather based on tissue type instead of the source site. More analysis
results from other FMs are available in Appendix B for reference.

FMs. In Fig. 1(a), patches are clustered sharply by institutions. This batch effect is known
to be caused by different staining protocols and scanners among different institutions (Stacke
et al. (2021)). A common technique to overcome this batch effect is stain normalization
(Macenko et al. (2009); Reinhard et al. (2001)), but the same limitation remains, as shown
in Fig. 1(b). The same issue was recently presented (de Jong et al. (2025); Komen et al.
(2024)), confirming that confounding factors are embedded within features extracted by
the FMs. The site-bias batch effect could lead to biased predictions, potentially raising
ethical concerns (Howard et al. (2021)). While the site-bias batch effect caused by FMs was
discussed (de Jong et al. (2025); Kémen et al. (2024)), no solution has yet been suggested.

In this paper, we propose fmMAP, Foundation Model-based Manifold Approximation
Pipeline, a framework to significantly reduce the site-bias batch effect by adjusting features
from FMs, shown in Fig. 1(c). To the best of our knowledge, fmMAP is the first approach to
remove batch effect from FMs in pathology. The fmMAP framework includes modifications
to mitigate common confounding biases in patch-level images, such as variations in staining,
before extracting features using FMs. Then, fmMAP uses UMAP (Mclnnes et al. (2018)) to
transform the extracted features from FMs into an optimal space, where biological features
are greatly enhanced while confounding features are suppressed. We test fmMAP on eight



FMMAP: A FRAMEWORK REDUCING SITE-BIas BaTrcH EFFECT FROM FMSs IN PATHOLOGY

F by B [ ey o ]

Stain Extracted Downstream
Normalization = features from FM = - = Tasks

Figure 2: Workflow of fmMAP framework.

FMs and two public datasets, where fmMAP diminishes site tracking and improves tissue
classification on all FMs. Specifically, all post-fmMAP features demonstrate that they are
greater than the “robust” threshold (Kémen et al. (2024)). In addition, the average balanced
accuracy of eight FMs even exceeds 96% on tissue classification. Our results suggest that
the fmMAP framework will help FMs recognize crucial pathological features and improve
their performance on downstream tasks.

2 Proposed Method

Recent FMs have shown great promise in pathology. Still, their performance is often re-
duced by confounding batch effects introduced by variations in staining protocols, imaging
conditions, and site-specific differences (Stacke et al. (2021)). Although stain normalization
methods, such as Macenko et al. (2009) and Reinhard et al. (2001), have been widely used
to address this challenge, we observe that these methods do not improve FM’s performance,
as shown in de Jong et al. (2025); Komen et al. (2024).

Standard domain adaptation techniques such as Correlation Alignment for Unsupervised
Domain Adaptation (CORAL) (Sun et al. (2016)) or Adversarial Discriminative Domain
Adaptation (ADDA) (Tzeng et al. (2017)) may be inadequate for the ultimate goal of im-
proving the performance of downstream analysis. CORAL is unsuitable for FMs due to its
reliance on second-order statistics (covariances), linear transformations, and computational
inefficiency in high dimensions. Similarly, ADDA is limited by training instability, loss of
task-relevant information, high computational cost, and poor generalization across multiple
batches. Both methods are designed for simpler domain adaptation scenarios and struggle
with the scale, complexity, and heterogeneity of FMs. It is necessary to have a scalable
workflow applying a non-linear estimation implemented directly on the output features of
any FMs.

This highlights a more robust approach that preserves meaningful biological information
while effectively reducing batch effects. We propose fmMAP to integrate stain normalization
with a UMAP-based transformation to optimize feature representations, offering pathology
FMs reliable and generalizable across diverse datasets. Figure 2 depicts the fmMAP frame-
work.

The proposed fmMAP leverages a modified version of UMAP, the so-called “supervised
UMAP”, incorporating target categories (labels) (Mclnnes et al. (2018)). However, unlike
neural network training, supervised UMAP does not fuse labels directly into features, which
may distort the feature content. Labels are used to build a fuzzy graph of connectivities
between samples to assign a higher priority to samples within a category. Instead of finding
a projected graph in a lower-dimensional space, fmMAP searches for a projection of that
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graph in the “same-dimensional space”. As a result, this will not shorten the size of the input
feature or reduce the capacity of the content, preserving as much original information as
possible. In addition, this would work as a denoising procedure to degrade the confounding
factors because of the emphasis on labels, while the graph structure maintains both local
and global properties of the features.

2.1 Unsupervised UMAP

Assume that UMAP models a high-dimensional dataset X with N samples as a weighted
graph. We have X = {x1,29,...,2x5} C RP, where each x; is a data point described by
a D-dimensional attribute vector. The pairwise distances di)J(- between two features (data
points) x;, z; can be converted to conditional probabilities:

di; — pi
Pij = exp (—J ) (1)

o

where p; is the distance to the nearest neighbor to enforce local connectivity, and o; is
a scaling parameter determined by the k-nearest-neighbor distances. This forms the un-
supervised component representing the local manifold structure, which is the fuzzy graph
GP, in high-dimensional space. In low-dimensional space, UMAP searches for embeddings
Y = {y1,42,.-.,yn} C RY d < D for dimension reduction. Assume g¢ij is the similar-
ity distribution between two embedded points y;,y;, conditional probabilities ¢;; form the
fuzzy graph G¢ in low-dimensional space. The unsupervised objective function optimizes
the cross-entropy loss Lunsup between p;; and g;;:

Lunsup = - Zpij 10g qij (2)
i#]
2.2 Supervised UMAP
To incorporate the target categories, assume C' = {c1, co,...,cn} is the corresponding class
labels of dataset X. A simple label similarity function can be defined as:
0 if ¢ =c
dg=q0 (3)
1 if C; 7é Cj

Instead of dfg , the supervised pairwise distance function is modified to account for both
feature and label similarity:

sup __ X C

where « € [0, 1] controls the influence of label supervision. Equation (1) will become:
a5 = pi
b = e (—”Ui )

And, the supervised objective loss function will be:
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Lsup = - Z pi;p log qij (6)
i#]

From equations (3-6), it can be observed that dg- are constants and class labels only influ-
ence the graph construction, not the optimization stage. This is the best part of supervised
UMAP compared to other feature-fusing or feature-concatenating approaches. The original
feature content is preserved during optimization. That helps preserve category structures in
the final embeddings, while the blended distances dj;” encourage intra-class clustering and
inter-class separation.

2.3 Experimental Setting

Eight recent FMs are selected to join our experiments including H Optimus 0 (Saillard
et al. (2024)), phikon (Filiot et al. (2023)), phikon-v2 (Filiot et al. (2024)), Prov-GigaPath
(Xuet al. (2024)), UNI (Chen et al. (2024)), UNI-2h (Chen et al. (2024)), Virchow (Vorontsov
et al. (2024)), and Virchow2 (Zimmermann et al. (2024)).These FMs and their upgraded
versions are selected for high performance in a prior study (Kémen et al. (2024)). Their
diverse training data ensures varied data coverage testing. As Virchow and Virchow2 com-
bine class and mean patch tokens for final tile embedding, we also test the variants with
1280 class tokens for a fair comparison with other methods. The ¢ 1280’ tag denotes these
Virchow-related FM variants.

For additional details on the implementation of the proposed method such as hyperpa-
rameters, datasets, stain normalization, and downstream tasks, see Appendix A.1, A.2, A.3,
A4, respectively.

2.4 Evaluation Metric

Robustness index of an FM is proposed to measure if a set of biological features dominates
a set of confounding features (de Jong et al. (2025)). Robustness index is defined as the
number of neighbors with the same biological class (e.g., tissue type) and the number of
neighbors with the same medical center within the K nearest ones in an embedding space:

Zij\i PO Oby b

N K
Zi:l Zj:l 5mi7mj

where b; and b; denote the label of the biological class of the i-th sample and its j-th
nearest neighbor, respectively; m; and m; represent the medical centers of the respective
samples; Kronecker delta function 0, returns 1 if z and y are equal, and 0 otherwise;
and N is the number of samples. The numerator counts the nearest neighbors sharing the
same biological class, while the denominator counts those from the same medical center.
The cosine distance is used as the similarity metric between embeddings. Rg > 1 would
indicate that an embedding space is structured primarily by biological signals rather than
confounders, whereas Rx < 1 would indicate the opposite. We use the robustness index
Ry = 1 as a threshold to identify “robust” FMs. In this study, we set K = 50 used in
de Jong et al. (2025).
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(b) WSSS Dataset

Figure 3: Robustness indices of foundation models (FMs) and their variants on two datasets
before and after fmMAP. Raw features from FMs achieve robustness indices less than 1.
fmMAP transforms the features to achieve robustness indices greater than 1.

Please see Appendix A.5 for the definition and calculation of the average balanced ac-
curacy (ABA).

3 Experimental Results

3.1 fmMAP improves the robustness of FMs

Figure 3 shows that fmMAP significantly improves the robustness of all FMs in both
datasets. Without fmMAP, none of the FMs using raw features are classified as robust,
Ry < 1, generally consistent with results reported in (de Jong et al. (2025)). Across both
datasets, stain normalization slightly enhances the robustness of all FMs. However, in most
cases, this improvement is insufficient to exceed the robustness threshold, Rx = 1. All FMs
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(b) WSSS Dataset

Figure 4: Average balanced accuracy (ABA, details in Appendix A.5)) performance of foun-
dation models (FMs) and their variants on two datasets. Each FM comes with two pairs of
bars indicating ABA of site tracking and tissue classification, with and without fmMAP for
each. ABA for site tracking is consistently and significantly reduced, and ABA for tissue
classification shows a notable and appropriate increase. This pattern is evident across all
FMs on both datasets, demonstrating fmMAP’s critical role in boosting the overall perfor-
mance of FMs.

and their variants exhibit increased robustness after applying fmMAP, as indicated by the
robustness index, Rx > 1. For example, Virchow with Macenko normalization and 1280
class tokens achieves the highest robustness index, Rx = 1.51. We notice that the extent
of robustness improvement varies between Breast Cancer Semantic Segmentation (BCSS)
Dataset (Amgad et al. (2019)) and Weakly Supervised Semantic Segmentation for Lung
Adenocarcinoma (WSSS4LUAD) Dataset (Han et al. (2022)), which may be caused by the
different numbers of medical centers in the two datasets.

3.2 fmMAP improves the accuracy of FMs

Figure 4 displays ABA derived from a stratified 5-fold cross-validation test. For each FM,
we report ABA results for predicting source sites and classifying tissue types, both with
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and without fmMAP applied. Implementing fmMAP remarkably lowers ABA for source site
prediction. The most substantial drops, around 47%, occur in BCSS dataset in two Virchow
variants: Virchow Reinhard 1280 and Virchow2 Reinhard 1280. Conversely, tissue clas-
sification ABA shows significant gains. Especially, in BCSS dataset, no FM initially exceeds
ABA of 85% before fmMAP. After fmMAP, however, all FMs surpass 96%, except phikon,
phikon-v2, and their variants. This consistent improvement holds across both BCSS dataset
and WSSS4LUAD dataset.

3.3 fmMAP compensates for the over-adjustment of stain normalization

Figure 4 additionally shows that while stain normalization such as Macenko (Macenko et al.
(2009)) or Reinhard (Reinhard et al. (2001)) alone drops ABA for site tracking, it also
drops ABA for tissue classification. For example, in the case of Hoptimus0 in Figure 4(a),
ABA for site tracking decreases from 99.6% to 96.8% after Macenko, but ABA for tissue
classification also decreases from 83.9% to 81.3% after Macenko. This pattern is consistent
with previous studies (de Jong et al. (2025); Komen et al. (2024)). Figure 4 further reveals
that applying fmMAP with stain normalization consistently elevates ABA to the highest
levels seen among the variants. This suggests that fmMAP and stain normalization can
cooperate well to improve the general performance of FMs.

4 Conclusion and Future Work

In this study, we find that pathology FMs are significantly affected by confounding factors
such as site-specific signatures. Stain normalization methods can degrade the biological
signal within extracted features and are insufficient to eliminate batch effects. We introduce
fmMAP, a framework designed to enhance FM robustness. Experiments show that our
approach can effectively remove site-specific biases while strengthening biological signals
from FMs.

One limitation of our work is that this would require patch-level labels. When labels
are unavailable, one potential solution that we would suggest is to use the raw features
generated by FMs to predict slide-level labels. Since FMs generally excel at generating
input representations without requiring patch labels, we can take exhaustive advantage of
this to predict the slide label first. Later, these labels can be used for fmMAP to enhance
downstream information. This proposes an efficient way for the fmMAP framework to
undermine the generality of the FM representations. We will also test the ability of fmMAP
to handle multiple biases simultaneously, mentioned in the Appendix A.6. Another plan to
further investigate fmMAP is to determine the minimum number of patch-label pairs that
are sufficient for downstream analyses, thus reducing the annotation burden on pathologists.
Lastly, we plan to test fmMAP in other downstream tasks such as slide-level classification,
image retrieval, and biomarker prediction.
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Appendix A. Supplementary Materials

A.1 Hyperparameters of UM AP

Uniform Manifold Approximation and Projection (UMAP) (Mclnnes et al. (2018)) is a
technique in machine learning that reduces complex, high-dimensional data into a lower-
dimensional form. A graph is built in the high-dimensional space of features, and another
graph will be estimated in a low-dimensional space. The method strikes a balance between
preserving nearby relationships (local structure) and the global data structure. fmMAP
adopts this mechanism of UMAP to search for the optimal projection of FM features in the
manifold, but under the additional guidance of the labels.

The UMAP algorithm takes four hyperparameters: n_ neighbors, the number of neigh-
bors to consider when approximating the local metric; n_ components, the target embedding
dimension; min_ dist, the desired separation between close points in the embedding space;
and n_ epochs, the number of training epochs to use when optimizing the low-dimensional
representation (McInnes et al. (2018)). Hyperparameters allow UMAP to work adaptively
with a wide range of data with various characteristics. However, we agree that tuning the
model costs a significant amount of time in a bad case.

As mentioned in Section 2, since the purpose of fmMAP is not dimension reduction,
fmMAP will always use the n_ components the same as the size of the input features, i.e.,
d = D for X and Y described in Section 2.1. The n_ epochs is automatically optimized
by the Python package 'umap’ according to the data size. We use the default values of
that package for n_neighbors=15, the target embedding dimension; min_ dist=0.1 for the
other two hyperparameters. The default setting works well for the selected test datasets. In
Equation 4, we use a=0.5 to balance the contribution between features and labels. However,
users can still adjust these parameters to match their settings.

A.2 Datasets

In this study, we use two multi-institutional public datasets with pixel-level or patch-
level labels: Breast Cancer Semantic Segmentation (BCSS) Dataset (Amgad et al. (2019))
and Weakly Supervised Semantic Segmentation for Lung Adenocarcinoma (WSSS4LUAD)
Dataset (Han et al. (2022)). First, BCSS dataset contains 151 pathology images with pixel-
level labels, which are sourced from The Cancer Genome Atlas (TCGA). The dataset has five
classes: tumor, stroma, lymphocytic infiltration, necrosis, and other tissue types. We assign
one of the classes to patches if the class is annotated at least 70% of its area, ensuring that
the assigned labels closely represent their predominant content. At the end, we have 19,337
patches from 20 medical centers, providing a broad spectrum of histopathological variations
and confounding factors, making it well-matched to the objectives of our experiments.

Second, a training set of WSSS4LUAD dataset is collected from two sources, contain-
ing 49 images from Guangdong Provincial People’s Hospital (GDPH) and 14 images from
TCGA, providing 10,091 patches with patch-level labels. The dataset provides three tissue
type labels: tumor, stroma, and normal. We assign final labels to patches by prioritizing
labels by medical significance, with tumor over stroma and stroma over normal tissue. Note
that we did not include validation and test sets in this study because weak labels are not
provided.

11
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All patches are extracted at 20x magnification with a size of 224 x224 pixels. Since our
datasets are highly imbalanced, we find that stratified five-fold cross-validation is appropriate
to assess the performance of the fmMAP framework. The final performance is determined
by averaging the results obtained from five iterations.

A.3 Stain Normalization

Stain normalization is essential in digital pathology, as it minimizes differences caused by
varying staining techniques and imaging setups. Macenko approach (Macenko et al. (2009))
uses the singular value decomposition to determine the covariances of the stain color and
standardize histological images. Reinhard method (Reinhard et al. (2001)) adjusts the
color profile of one image to align with another by matching statistical properties in a
color space that reflects human perception. Both techniques successfully decrease variability
between samples. fmMAP adopts stain normalization as a required preprocessing step for
input patches before feeding the FMs. Any future advances in this field can be adaptively
integrated or exchanged to improve the whole performance.

A.4 Downstream Tasks

We adopt a linear probe test tool provided by UNI (Chen et al. (2024)) to perform two
downstream tasks: site source tracking and tissue classification. Source site tracking aims
to assess the presence of site-specific signatures in FMs. If a source site can be tracked,
this would suggest that the features retain distinct site-related information strong enough
to reveal their origins. We conduct this test before and after applying fmMAP. Our two
goals are to demonstrate that fmMAP effectively mitigates batch effects in FMs and to
evaluate the influence of confounding factors on tissue classification captured in the extracted
features. Since morphology is the primary information expected from FMs, we investigate
how site-specific content impacts the biological signal within FM features. Analyzing metric
changes before and after applying fmMAP, we assess its effectiveness in achieving improved
downstream tasks. Positive results would indicate that removing batch effects helps restore
morphological information that was previously masked.

A.5 Average Balanced Accuracy

Due to a significant imbalance in the number of samples between medical sites and uneven
distributions of tissue classes, the standard accuracy metric may be biased toward the dom-
inant category. We use average balanced accuracy (ABA) (Sokolova and Lapalme (2009))
as our metric to evaluate performance results instead of standard accuracy, defined as:

C
1
ABA = - Zl Acc, (8)

where Acc, is the accuracy for class ¢ and C' is the number of classes.
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A.6 fmMAP can mitigate multiple types of bias simultaneously

The underlying assumption of fmMAP is that a fixed size of representations has a limited
capacity to encode all the information within an image, including biological morphology,
source site, patient, staining, and possibly other factors. Since the information capacity
remains fixed, by adjusting to maximize the proportion of the desired information of interest
(biological morphology), we would expect the relative contributions of the other types of
information, considered as biases, will naturally be diminished. Consequently, this approach
may potentially reduce other biases. Furthermore, such a mechanism in that paradigm
should willingly accommodate the overfitting.

For example, Fig. 1 illustrates the UMAP projections of UNI-2h (Chen et al. (2024))
features of a subset from BCSS dataset, before and after applying fmMAP. Fig. 1(a) clearly
shows the site-bias batch effect among institutions (top), as well as the inter-person batch
effect among patients within the same institution (bottom). It can be observed in Fig. 1(b)
that stain normalization does not properly reduce the batch effect in both cases. However, in
Fig. 1(c), the batch effect is significantly reduced after applying fmMAP in both cases. The
samples are distributed fairly equally throughout the space and tend to gather according to
tissue type instead of source site or patient. This pattern can also be consistently observed
in the visualized results of other FM tests in the Appendix B.

Appendix B. Supplementary Figures
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Figure B.1: A UMAP illustration of site-bias effect in a subset of BCSS dataset using FM
UNI (Chen et al. (2024)). (a) Raw features extracted from FM clearly show the site-bias
batch effect and patient-bias batch effect. (b) Macenko stain normalization is applied to
patches before feature extraction, but the effect is very limited. (c) After applying fmMAP,
the batch effect is significantly reduced in both cases.
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Figure B.2: A UMAP illustration of site-bias effect in a subset of BCSS dataset using FM
H-Optimus-0 (Saillard et al. (2024)). (a) Raw features extracted from FM clearly show
the site-bias batch effect and patient-bias batch effect. (b) Macenko stain normalization is
applied to patches before feature extraction, but the effect is very limited. (c) After applying
fmMAP, the batch effect is significantly reduced in both cases.
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Figure B.3: A UMAP illustration of site-bias effect in a subset of BCSS dataset using FM
Prov-GigaPath (Xu et al. (2024)). (a) Raw features extracted from FM clearly show the site-
bias batch effect and patient-bias batch effect. (b) Macenko stain normalization is applied to
patches before feature extraction, but the effect is very limited. (c) After applying fmMAP,
the batch effect is significantly reduced in both cases.
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Figure B.4: A UMAP illustration of site-bias effect in a subset of BCSS dataset using FM
Virchow (Vorontsov et al. (2024)). (a) Raw features extracted from FM clearly show the site-
bias batch effect and patient-bias batch effect. (b) Macenko stain normalization is applied to
patches before feature extraction, but the effect is very limited. (c) After applying fmMAP,
the batch effect is significantly reduced in both cases.
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Figure B.5: A UMAP illustration of site-bias effect in a subset of BCSS dataset using FM
Virchow?2 (Zimmermann et al. (2024)). (a) Raw features extracted from FM clearly show
the site-bias batch effect and patient-bias batch effect. (b) Macenko stain normalization is
applied to patches before feature extraction, but the effect is very limited. (c) After applying
fmMAP, the batch effect is significantly reduced in both cases.
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