Learning Knowledge Graph-based
World Models of Textual Environments

Prithviraj Ammanabrolu Mark O. Riedl
School of Interactive Computing School of Interactive Computing
Georgia Institute of Technology Georgia Institute of Technology
raj.ammanabrolu@gatech.edu riedl@cc.gatech.edu
Abstract

World models improve a learning agent’s ability to efficiently operate in interactive
and situated environments. This work focuses on the task of building world models
of text-based game environments. Text-based games, or interactive narratives,
are reinforcement learning environments in which agents perceive and interact
with the world using textual natural language. These environments contain long,
multi-step puzzles or quests woven through a world that is filled with hundreds
of characters, locations, and objects. Our world model learns to simultaneously:
(1) predict changes in the world caused by an agent’s actions when representing
the world as a knowledge graph; and (2) generate the set of contextually relevant
natural language actions required to operate in the world. We frame this task as
a Set of Sequences generation problem by exploiting the inherent structure of
knowledge graphs and actions and introduce both a transformer-based multi-task
architecture and a loss function to train it. A zero-shot ablation study on never-
before-seen textual worlds shows that our methodology significantly outperforms
existing textual world modeling techniques as well as the importance of each of
our contributions.

1 Introduction

World models, often in the form of probabilistic generative models, are used in conjunction with
model-based reinforcement learning to improve a learning agent’s ability to operate in various
environments [33}[7]]. They are inspired by human cognitive processes [[15]], with a key hypothesis
being that the ability to predict how the world will change in response to one’s actions will help you
better plan what actions to take [12]]. Evidence towards this hypothesis comes in the form of studies
showing that simulating trajectories using internal learned models of the world improves sample
efficiency in learning to operate in an environment [[12} 30].

Text-based games, in which players perceive and interact with the world entirely through textual
natural language, are environments that provide new challenges for world model approaches. Text-
based games are structured as long puzzles or quests that can only be solved by navigating and
interacting with potentially hundreds of locations, characters, and objects. The puzzle-like structures
to the games are exacerbated by two factors. First, these environments are partially observable,
i.e. observations of the world are incomplete. Second, the agent faces a combinatorially-sized
action space of the order of O(10'%) possible actions at every step. For these reasons model-free
reinforcement learning in text-based games is extremely data inefficient.

Prior work on text-based game playing agents repeatedly demonstrated that providing agents with
structured memory in the form of knowledge graphs (sets of (s, 7, 0) tuples such that s is a subject, r
is a relation, and o is an object) is critical in enabling them to operate in and model these worlds [3,
21 [1, [2]—aiding in both the challenges mentioned. These works all rely on extracting information

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Key: orth of \has /"
[Locations House Window
in West of \has Surr. Obj.s
Q mailbox Inv.. Obj.s \ orth
Attributes
have has lis
go north mailbox
leaflet house open- |:{>
able lis
‘West of House house Chel
You are standing in an open field west of a white North of House able
house, with a boarded front door. There is a small You are facing the north side of a white house. There is
mailbox here. no door here, and all the windows are boarded up. To the
Leaflet taken. north a narrow path winds through the trees.
You are empty-handed You are carrying: a small leaflet
Prev act: take leaflet Prev act: go north
Valid acts: go north, go south, go west, open mailbox Valid acts: go north, go east, go west, drop leaflet

Figure 1: Two subsequent states in Zorkl consisting of: textual observations, world knowledge
graphs, valid actions, and actions taken.

about one’s surroundings while navigating novel environments, either through rules [3} 2], question-
answering [3]], or transformer-based extraction [, 21]]. This [ifted representation helps agents
remember aspects of the world that become unobservable as the agent navigates the environment.
However, we hypothesize that agents that rely on lifted representations of the world will benefit
from more than just memorization but the ability to predict how the graph state representation will
change. For example, by inferring that a locked chest is likely to contain treasure before it is actually
revealed provides an agent with a form of look-ahead that will potentially enable it to bias its actions
towards opening such a chest. We introduce an approach to this knowledge representation problem
that effectively simplifies it by exploiting the inherent structure of knowledge graphs—framing it to
be the task of inferring the difference in knowledge graphs between subsequent states given an action.

A consequence of the combinatorially-sized action space in text-based games is that that the set of
contextually relevant actions—i.e. those that are most likely to affect change in the environment—are
overwhelmed by the irrelevant actions. For example, it is not illegal to try to climb a tree when there
are no trees present, and the game engine will just respond with feedback that nothing happens. An
aspect of world modeling that has not been considered for other games is inferring which actions are
valid in a particular context. We hypothesize that both the challenges mentioned are closely linked
and present world models that multi-task learn to tackle both simultaneously—i.e. to answer the
questions of “What actions can I perform?” and “How will the world change if I perform a particular
action?”.

Our work has four core contributions. (1) We first show how changes in the world can be represented
in the form of differences between subsequent knowledge graph state representations. (2) We present
the Worldformer, a novel multi-task transformer based architecture that learns to simultaneously
generate both the set of graph differences and the set of contextually relevant actions. (3) We introduce
a loss function and a training methodology that enable more effective training of the Worldformer
by exploiting the fact that knowledge graphs and natural language valid actions can be represented
permutation invariant Sets of Sequences—wherein the ordering of tokens within an item in the set
matters but the set itself lacks ordering. (4) A zero-shot ablation study conducted on diverse set
of never-before-seen text games shows the significance of each of the prior three contributions in
outperforming strong existing baselines.

2 Related Work

We will focus on three main areas of related work: world modeling and model-based reinforcement
learning, and world modeling and knowledge graphs in text games, and general (knowledge) graph
construction techniques.

World modeling via model-based reinforcement learning often serves to learn transition models
of an environment to allow for simulation without actually interacting with the environment [7]].
Ha and Schmidhuber [[12] use Variational Autoencoders (VAEs) combined with recurrent neural
networks to learn compressed state representations over time of visual reinforcement learning
environments [8]. This model is then used to simulate an environment and learn a control policy
in it. Other contemporary works attempt to also learn dynamics models using raw pixels in the

context of games such as Atari [26,[16]], and Super Mario Bros. [[11]] as well as 3D simulations [[16]
and robotics [37,135]. We note that in all of these works, in addition to the state space being raw
pixels—the action space is fixed and orders of magnitude smaller than in text games.

In textual environments, the traditional state representations of choice have been raw text encodings
via recurrent neural networks [24, 14, [13] but have since shifted towards transformer [34] and
knowledge graph-based representations [3| [1]. Knowledge graphs have been shown to be aid in the
challenges of: (1) knowledge representation [3, [1]], enabling neuro-symbolic reasoning approaches
over graph-based state representations [29]]; (2) combinatorial state-action spaces [2, [1]; and (3)
incorporating external knowledge sources for commonsense reasoning [3| 21} 22 9]]. Two of these
works are perhaps closest in spirit to ours. Yao et al. [39] train a GPT-2 model [27] to decode valid
actions based on human text game transcripts found online, showing that improved valid action
generation ability results in better control policies. Ammanabrolu et al. [S]] frame knowledge graph
construction in text games as a question-answering problem where agents ask questions to identify
common objects in the world and their attributes, showing that improved knowledge graph quality
results in better control policies. We note that of these works handles only one or another of the
sub-tasks required for world modeling in these environments.

A core aim in the field of graph representation learning is representing graphs as continuous vec-
tors while maintaining their inherent structure [17, 38]. Approaches to this task when applied to
knowledge graphs, attempt to exploit the inherent structure of knowledge graphs to create more
accurate continuous vector graph representations in the form of embeddings [36]. Building on these
representation learning works is the task of automated knowledge base construction attempts to create
links in knowledge graphs given text [25]. Li et al. [19] approach the graph generation problem as a
sequential process, first learning a generative model of the graph and then iteratively adding nodes
and edges to it using the learned model—this work does not consider cases where the graphs are
conditioned on text, however. These works focus solely on graph construction and do not include the
inherent interactive action-based components featured in world modeling and text games.

3 Background

Dataset. We use the JerichoWorld Dataset [4]{1_-] It contains 24,198 mappings between rich natural
language observations and: (1) knowledge graphs in the form of a set of tuples (s, 7, 0) (such that s is
a subject, r is a relation, and o is an object) that reflect the world state in the form of a map; (2) a
set of natural language actions that are guaranteed to cause a change in that particular world state.
An example of the mapping between rich natural language observations and structured knowledge
is illustrated in Figure[T] The training data is collected across 27 text games in multiple genres and
contains a further 7,836 heldout instances over 9 additional games in the test set.

Each instance of the dataset takes the form of a tuple of the form (S;, A, S¢+1, R) where .S and
Siy1 are two subsequent states with A being the action used to transition between states and R the
observed reward. As mentioned earlier, each of the states in the tuple contain information regarding
the observation O; € S;, ground truth knowledge graph G; € S;, and valid actions for that state
V; € S;. This data was collected by oracle agents, i.e. agents that can perfectly solve a game,
exploring using a mix of an oracle and random policy to ensure high coverage of a game’s state space.
A full sample is found in Appendix [A.T]

Tasks. Given this dataset, we focus on two tasks within it as formally defined by JerichoWorld. As
mentioned in Section[I] a successful world model will be able to accomplish both of these tasks.

1. Knowledge Graph Generation: this task involves predicting the graph at time step ¢ + 1 :
Giy1 € Sy given the textual observations, valid actions, and graph at time step ¢ :
Oy, Vi, Gy € Sy, and action A for all samples in the dataset.

2. Valid Action Generation: this task is formally defined as predicting the set of sequences of
valid actions at time step ¢t + 1 : Vi1 € Sy given the textual observations, valid actions,
and graph at time step ¢t : Oy, Vi, G; € Sy, and action A for all samples in the dataset.

"https://github.com/JerichoWorld/JerichoWorld

https://github.com/JerichoWorld/JerichoWorld

o
in__ /North of \has, *

! | You window’
: in__/Westof\has . House

1 mailbox, |

! House !

1 - north

- L
H '\ _in_/Westof
leaflet house) \ i House

go north

Figure 2: The transformation between subsequent world knowledge graphs G and G based on
the states in Figure[I} The green (Gr) outlined portions in the center are additions to G; to get G411
(i.e. G¢+1 — Gy) and the red (R) portions similarly represent deletions to G (i.e. Gy — G¢y1).

4 The Worldformer

This section describes the core methodological contributions of our work in creating world models for
text games. We first show how knowledge graph generation can be simplified to predicting the graph
difference between agent steps. We then describe the Worldformer, a transformer-based architecture,
and end-to-end training method—including an objective function—that treats both of the world
modeling tasks as a Set of Sequences generation problem.

4.1 Knowledge Graph Difference Generation

Figure [2]describes the gist of our simplification of the knowledge graph generation problem. Recall
that knowledge graphs are directed graphs that are stored the form of a set of tuples as (s, r, 0) such
that s is a subject, r is a relation, and o is an object. Let the knowledge graphs representing the
world state at two subsequent steps be G and G41. At every step, tuples are either added or deleted
from the graph G, to update the belief state about the world and turn it into graph G41. Using this
observation, we can simplify the knowledge graph generation problem. Instead of predicting G 1
given GGy and prior context, we can instead predict the differences between the two graphs.

In Figure [2] between steps ¢ and ¢ 4 1, we see that Gy.1 — G/ is the set of tuples that are added to G
and Gy — G¢41 the set of tuples are are deleted from G;. Together they make up the graph differences.
Here, we make a second key observation that allows for yet further simplification of the problem.
This observation is based on generally applicable properties of such worlds: (1) locations are fixed
and unique, i.e. the positions of locations with respect to each other does not change; (2) objects
and characters can only be in one location at a time; and (3) contradicting object attributes can be
identified using a lexical dictionary such as WordNet [20], e.g. an object cannot be both open and
closed at the same time. These properties let us uniquely identify the triples to be deleted from the
graph G; — G11 given triples to be added to the graph G;;; — G;. Additional implementation
details can be found in Appendix [A.2]

Taken together, the Knowledge Graph Generation task can be cast as follows: predict the nodes to
be added to the graph G; at time step ¢ : Gty1 — G, (a much smaller set than G4, by itself) to
transform it into graph G441 given the textual observations, valid actions, and graph at time step ¢ :
O¢, Vi, Gy € S, and action A for all samples in the dataset.

4.2 Multi-task Architecture

The Worldformer is a multi-task world model that simultaneously learns to perform both knowledge
graph and valid action generation. It is built on the hypothesis that each of these tasks contains
information crucial to the other—the valid actions that can be executed at any timestep are entirely
dependent on the current state and vice versa the state knowledge graph updates on the basis of the
previously executed action.

Figure [3| describes the architecture of the Worldformer. The inputs to the architecture are textual
observations, valid actions, and graph at time step ¢ : Oy, Vi, G; € S;. Oy and V; are encoded through
a bidirectional text encoder into Oy. In our work, we used an architecture similar to BERT [10] with
the original pre-trained weights that are then fine-tuned using a masked language model (MLM)
loss on observations taken from the training data. Oy is the output of the final hidden layer. The

cross-attention

B
Bidirectional
Text
Encoder

Action
Decoder

O + Vi

[OBS] West of House You are standing
in an open field west of a white house...
[ACT] go north [ACT] open mailbox ...

you, in, North of House ...

o

Graph Gt
Encoder
G
! cross-attention Gz
[GRAPH] you, in, West of House Decoder
[TRIPLE] West of house, has, mailbox N
ewi-at 4 4

[TRIPLE] mailbox, is, openable ...
(IGRAPH] you, in, North of House ... |

Figure 3: The Worldformer architecture. The text encoder (B) and graph encoder (R) have similar
architecture but different pre-training strategies. Both the decoders are not pre-trained and have
identical architectures. Solid black lines indicate gradient flow.

graph encoder receives G and encodes it into G. It is also similar to BERT, but is pre-trained on
knowledge graphs found in the training data using a MLM loss with a phrase-level masking scheme
where whole components of a (s, r, 0) graph triple (individual underlined portions in Figure are
masked at once. Again, Gy is the output of the final hidden layer.

O; and Gy are passed into a representation aggregator which then sends the combined encoded
state representation S; to one of two autoregressive decoders that have the same general internal
architecture as GPT-2 [27]. During training, the first decoder is conditioned on Sy directly and Oy
through cross-attention and takes in the valid actions of the next state V;,; as input, learning to
predict the same input sequence shifted to the right as sequence-to-sequence models do. Similarly,
the second decoder is conditioned on Sy directly and Gy through cross-attention and takes in the
knowledge graph of the next state Gy as input.

4.3 Set of Sequences Generation and Training

We observe that both the knowledge graph difference G;1 — G and the valid actions V;; are
both Sets of Sequences where the ordering of the sequence of tokens within an action or a graph
triple matters but the ordering of all the actions and triples does not. Standard autoregressive
decoding used in sequence-to-sequence (Seq2Seq) models [32]] does not account for such permutation
invariance. We frame the graph and action prediction tasks as a generation of a Set of Sequences
(SOS) problem—expanding on the simple set prediction problem definition proposed by works such
as Deep Sets [40] to account for the specific structure of Sets of Sequences. This problem structure is
used to then formulate a training methodology that lets autoregressive decoders better account for the
SOS structure.

For both of the decoders in Figure [3| we are given a target sequence Y = {y1, ..., yas } and some
input context via the encoders X . Standard autoregressive techniques factor the distribution over the
target sequence into a chain of conditional probabilities with a causal left to right structure.

M+1

PY|X;0) = [] p(ilyo:i-1, X;0) (1)
=1

Where 6 represents the overall network parameters. This can then be used to formulate a maximum
likelihood training loss with cross-entropy at every step.

M+1

Lseq =logP(Y]X;0) = Z logp(yilyo.i—1, X;0) 2)
i=1

In our setting, we can group elements in Y into its set of sequences form
Yeos = {41 Y 1,y € Vigrory, € Gy — Gy, M' < M

where ¥, = {yk.--Yr11}, Zlen(yé) =M (3)
J

Via the decoders, we seek to learn a transformation from Sy € R? (the input d-dimensional state
representation vector) and Yy,s €) (decoder inputs in the space of all possible decoder inputs)
that map to the permutation invariant target set of sequences Y;os. This function can then be defined
as f: IRTU2Y — 2Y as the permutation invariance of part of the domain and range of this function
makes it the power set of).

Combining this definition of permutation invariant functions with Eq. 2} [3] we can factorize the
distribution over the output Set of Sequences as the following chain of probabilities:

M+1
P(Yios| X;:60) =] p(yi1X:0) (4)
i=1
I+n
p(yi|X;0) = [[p(wklyin—r, X:6) (4b)
k=l
where | = Z len(y;), n = len(y;)

j<i
With the key intuition here being that Eq. [fa] factorizes the distribution such that each element of Yo

is independent of other elements in the set, but tokens of an element y; in the set are conditioned on
preceding tokens within the element (Eq. [4b).

This in turn gives us a maximum likelihood Set of Sequences loss that can be used to train a model to
output a Set of Sequences.

M+1

Loos = 10gP(Yeos|X10) = > logp(y;|X: 0)
=1

M+1 l4n
= Z Zlogp(yﬂyl:kth%e) (5a)
i=1 k=1
where [= Z len(yj), n = len(y;) (5b)
j<i

In our formulation, we have observation sequences at timestep ¢ : Oy, V; encoded into Oy, graph G
encoded into Gy, and all of them combined into S¢, with the output Sets of Sequences at timestep
t + 1 being the graph difference G;1 — G and valid actions V; ;. Across the two decoders, this
gives us a combined loss:

Lworld = logP(Gm - Gt|St7 Gy; 9) + 10gP(V}+1|St7 Oy; 9) (6)

This loss is used to multi-task train the Worldformer simultaneously across the two tasks.

5 Evaluation

We evaluate the Worldformer by comparing it on both of the tasks across 9 never-before-seen testing
games against strong baselines. We further present ablation studies in each task to determine the
relative importance of each of the techniques presented in the previous section.

Metrics. Across both the tasks, we use the same metrics as defined in JerichoWorld [4]. For
knowledge graph generation, we report two types of metrics (Exact Match or EM and F1) operating
on two different levels—at a graph tuple level and another at a token level. The graph level metrics
are based on matching the set of (subject, relation, object) triples within the graph, all three tokens in
a particular triple must match a triple within the ground truth graph to count as a true positive. The

Expt. ‘ Met- [Game [zorkl | Tlib. [det. bal. [pent. [ztuu [ludi. | deep. [temp. [[overall

rics Size | 886 | 654 | 434 990 [276 | 462 [2210 [630 | 1294 [[7836

Knowledge Graph Prediction
Gr. EM 372 7.61 1.39 9.17 6.44 4.94 5.10 0.49 2.48 4.70
Rules) F1 4.46 12.87 4.55 11.90 10.22 10.06 8.37 0.64 3.36 7.25
Tok. EM 6.08 10.33 7.51 32.53 16.48 14.40 14.47 3.34 7.42 13.08
F1 842 | 26.74 10.23 | 36.09 | 23.36 | 21.74 18.48 3.86 9.44 17.50
Gr EM 2456 | 29.14 | 34.45 | 4122 | 2896 | 22.17 | 4144 4.42 36.84 32.79
Q*BERT) F1 24.88 | 3146 | 3623 | 41.85 | 30.12 | 2626 | 46.74 4.66 39.86 35.48
(Question Tok EM 4393 | 49.78 | 60.28 | 85.81 65.02 | 49.44 | 57.58 9.31 48.98 53.581
Answering) ’ F1 48.31 5276 | 63.21 86.18 | 69.54 | 49.82 | 60.95 9.84 49.17 55.74"
Gr. EM 12.44 18.42 | 26.86 8.19 | 22.18 16.89 12.94 8.38 16.48 14.29
Seq2Seq : F1 12.96 18.89 | 29.48 9.04 | 23.54 16.89 14.18 10.47 18.52 15.54
Tok EM 18.01 20.26 | 35.86 17.60 | 25.48 17.19 14.8 13.25 22.48 18.80
: F1 21.12 | 20.84 | 35.86 18.86 | 27.72 17.87 15.42 13.25 24.34 19.96
Gr. EM 2230 | 2472 | 21.72 | 23.68 | 22.81 27.00 | 24.55 | 23.76 24.52 24.06
GATA-W : F1 2534 | 2647 | 22.14 | 2654 | 27.63 | 27.00 | 24.55 | 23.76 24.92 25.19
Tok. EM 33.09 | 33.88 | 25.64 | 34.64 | 37.71 35.81 35.94 | 3248 40.89 35.31
F1 3393 | 34.86 | 25.80 | 38.68 | 39.59 | 38.88 | 37.16 | 32.48 43.97 37.10

EM 21.62 3439 | 41.05 50.41 30.00 | 41.56 40.10 41.87 42.43 39.157

Worldformer | Gr. F1 | 2444 | 3439 | 4453 | 5243 | 3430 | 4220 | 4165 | 4274 | 45.17 || 4106

Tok EM 42.88 41.98 54.39 6222 | 49.00 | 50.80 51.29 | 50.04 53.81 51.32
: F1 48.12 | 4198 59.13 6222 | 49.00 | 52.24 51.29 | 50.04 54.96 52.45

Valid Action Prediction
Seq2Seq Act EM 16.65 15.13 18.19 16.19 23.39 14.75 20.10 14.71 20.34 18.10
F1 17.85 16.88 21.12 18.23 25.87 15.13 20.86 14.86 22.14 19.44
CALM Act EM 18.67 11.18 17.37 10.04 13.77 11.29 15.49 10.31 13.13 13.79
F1 18.90 | 2549 | 3442 12.16 | 34.40 9.95 20.94 7.84 18.57 19.11

EM 23.08 | 2255 | 2097 | 29.08 | 27.05 20.71 21.36 | 24.04 22.80 23.227

Worldformer | Act F1 | 2350 | 2652 | 2528 | 32.80 | 3132 | 23.66 | 2227 | 26.12 | 25.66 || 25.54

Table 1: Results across both the tasks for the models specified. Overall indicates a size weighted
average. All experiments were performed over three random seeds, with standard deviations not
exceeding £3.2 in any of the overall categories for KG prediction and 1.2 for valid action prediction.
Bolded results indicate highest overall scores. Asterisk (x) indicates when the top result is significantly
higher (p < 0.05 with an ANOVA test followed by a post-hoc pair-wise Tukey test) over all
alternatives. T indicates this result is not significantly higher than Worldformer.

token level metrics operate on measuring unigram overlap in the graphs, any relations or entities in
the predicted tokens that match the ground truth count towards a true positive.

For valid action generation, we adapt the graph level Exact Match (EM) and F1 metrics as described
in the previous task to actions. In other words, positive EM or F1 happens only when all tokens in a
predicted valid action match one in the gold standard set. In all cases, EM checks for accuracy or
direct overlap between the predictions and ground truth, while F1 is a harmonic mean of predicted
precision and recall.

5.1 Knowledge Graph Generation

We compare the Worldformer to 4 baselines taken from contemporary knowledge graph-based world
modeling approaches in text games. All sequence models use a fixed graph vocabulary of size
7002 that contains all unique relations and entities at train and test times. Additional details and
hyperparameters for the models are found in Appendix[A.2]

Rules. Following Ammanabrolu and Hausknecht [2]], we extract graph information from the observa-
tion using information extraction tools such as OpenlE [6] in addition to some hand-authored rules to
account for the irregularities of text games.

Question-Answering. (QA) This baseline comes from the Q*BERT agent described in [5]. It is
trained on both the SQuAD 2.0 [28] the Jericho-QA text game question answering dataset [5] on
the same set of training games as found in Worldformer. It uses the ALBERT [[18]] variant of the
BERT [10] natural language transformer to answer questions and populate the knowledge graph via
a few hand-authored rules from the answers. Examples of questions asked include: “What is my
current location?”, “What objects are around me?”".

Seq2Seq. This single-task model is provided as a baseline by JerichoWorld and performs sequence
learning by encoding the observation and graph with a single bidirectional BERT-based encoder

and using an autoregressive GPT-2-based decoder to decode the next graph. It is trained using the
standard Seq2Seq cross-entropy loss (Eq. 2).

GATA-World. We adapt the Graph-Aided Transformer Agent [1] to our task. It consists of the same
encoder structure as the Worldformer but contains one decoder that performs single-task Seq2Seq
learning to decode both the set of tuples that must be added as well as deleted from the graph in
the form of: (add, nodel, node2, relation) or {del, nodel, node2, relation). This is equivalent to
predicting (Gy41 — Gi) U (G¢ — Gy41). It is trained with the Seq2Seq cross-entropy loss (Eq. [2).

Table[T|describes the results in this task over all the games. We see that on the graph level metrics, the
Worldformer performs significantly better than all other other baselines. On the token level metrics,
the Worldformer and QA method are comparable—the difference between these two methods are
statistically non-significant (p = 0.18) with each other but both significantly (p < 0.05) higher than
all others. The QA method, and other extractive methods, highlight portions of the input observation
that form the graph and are particularly well suited for the token level metrics. The JerichoWorld
developers note that these approaches are prone to over-extraction, i.e. extracting more text than is
strictly relevant from the input observation aiding token level overlap but resulting in a sharp drop in
terms of the graph level metrics [4]. Additional failure modes of such extraction based approaches
occur when the text descriptions are incomplete or hidden—e.g. the contents of a chest are revealed
through the textual observation only when it is opened by a player. The Worldformer is able to make
a informed guess as to the contents of the chest due to its training, providing a form of look ahead

that the Rules and QA systems cannot. Ablation Graph Token
Graph | Multi | SOS EM F1 EM F1
Table [3| present the results of an ablation study Diff | Task | Loss 5 S E
. P . 14. 15. 18. 19.
testing the relative importance of the three main - 3535 T 34T 3999 T 4103
components of the Worldformer: graph differ- v v 3060 | 34.65 | 4274 | 4435
ence prediction, multi-task training, and the SOS v v 35.94 | 36.17 | 48.82 | 50.18
v v v | 3915 | 41.06 | 51.32 | 5445

loss. We note that a model without any of these
components is equivalent to the Seq2Seq ap- Table 2: Worldformer ablations to test the impact
proach described previously. We see significant of its three main components for KG prediction.
drops in performance, particularly on the graph All results are size weighted averages over all test
level metrics, when any single one of these com- games over three random seeds, with standard de-

ponents are removed. This indicates that all vjations not exceeding 4-3.2 in any category.
three components are necessary for the Worldformer to achieve state-otf-the-art performance.

In particular, we note that the largest performance drop was when Worldformer did not use the graph
difference simplification. In this case, the KG prediction task is simplified to predicting only; the
length of the set of sequences G;1 — G; is much smaller than G;;. There are on average 3.42
triples or 10.42 tokens per state across the JerichoWorld test dataset for G;1 — G but a mean of
8.71 triples or 26.13 tokens per state for G1. This also explains the increased performance of the
GATA-W over the baseline Seq2Seq agent—this agent only needs to predict on average 5.04 rules or
20.16 tokens across the testing games. Predicting a smaller number of triples and tokens per state
makes the problem relatively more tractable for world modeling agents.

5.2 Valid Action Generation

Similarly to the other task, we compare the Worldformer to an existing baseline for valid action
prediction. All models use a fixed vocabulary of size 11,056 at train and test times.

Seq2Seq. This single-task model is provided as a baseline by JerichoWorld and is identical to the
Seq2Seq model described in the previous task but is single-task trained to predict valid actions.

CALM. A complementary dataset of observation-action pairs created by humans on the ClubFloyd
online Interactive Narrative forunﬂ appears in both Ammanabrolu and Hausknecht [2] and Yao et al.
[39] with the latter using it to tune a GPT-2 model for valid action prediction using a GPT-2 based
Seq2Seq valid action model dubbed CALME] This model takes in Oy, A, O;11 and targets V4.

In Table[T} we see that the Worldformer significantly outperforms the Seq2Seq baseline on all the
games and CALM overall. Each valid action in a text game requires at most 5 tokens. This combined
with an average of 10.30 valid actions per test state means that for every state we would need to
generate about 52 tokens. Yet further, the vocabulary size for actions is 11, 056, larger than the graph

“http://www.allthingsjacq.com/interactive_fiction.html
*https://github.com/princeton-nlp/calm-textgame

http://www.allthingsjacq.com/interactive_fiction.html
https://github.com/princeton-nlp/calm-textgame

vocabulary of 7,002. This increase in task difficulty explains the relative decrease in the magnitude
of performance metrics between KG and valid action prediction tasks. Both the Seq2Seq model and
CALM—which is trained on a different dataset—are comparable on F1 scores but Seq2Seq is better
overall for exact matches. CALM also has relatively higher variance in performance across the test
games than the other two methods—e.g. on some games such as zorkl and detective it outperforms
the Seq2Seq and is not too far off the Worldformer especially in terms of F1 score. This would appear
to indicate that the Club Floyd dataset of text game transcripts that CALM was trained on is better
suited for transfer to certain games than others due to differences in training set genre similarities.

. . Ablati Act
Table [3] presents an ablation study that tests the two main compo- Niult ! m;OS :
nents of the Worldformer for this task: multi-task learning, and | Task | Loss | *M | M
SOS loss. As with the KG prediction task, we observe significant 18.10 | 19.44
X . v | 2078 | 2242
drops in performance when either of these components are taken v 2012 | 2128
away—suggesting that they are relatively critical components. The v v | 2322 | 2554

JerichoWorld developers note that there is a correlation between
performance of the baseline Seq2Seq model to the average number
of valid actions for the testing game (see Appendix Table[d)). They
attribute this to label imbalance in the dataset, stating that the model
likely learns a common set of actions found across all games such
as navigation actions before learning more fine-grained actions. E.g.
ztuu, deephome, and balances have a high number of gold standard
average valid actions while pentari, ludicorp, detective, and temple
which have a low number of average valid actions. While the latter
set of games have generally higher performance on both the Seq2Seq and Worldformer models, the
gap is significantly less pronounced with the Worldformer. We hypothesize that this is due to the
multi-task training of the Worldformer—encoder representations now contain enough information
regarding the next knowledge graph to alleviates the label imbalance of the actions and enable
prediction of more fine-grained actions.

Table 3: Worldformer abla-
tions to test the impact of its
two main components for ac-
tion prediction. All results are
size weighted averages over
all test games over three ran-
dom seeds, with standard devi-
ations not exceeding +1.2.

6 Conclusions

We presented the Worldformer, a state-of-the-art world model for text games that: maps worlds by
predicting the difference in knowledge graphs between subsequent states, multi-task learns to map
a world and act in it simultaneously, and frames all of these tasks as a Set of Sequences generation
problem. Its state-of-the-art performance and an ablation study have three potential implications:
(1) the simplification of the knowledge representation problem into that of predicting knowledge
graph differences between subsequent states is a critical step in making the problem more tractable;
(2) performance improvements due to multi-task training imply that acting in and mapping these
worlds is inherent a highly correlated problem and benefits from being solved jointly; and (3) the
performance boosts due to the SOS loss suggest that accounting for this property of graphs and
actions enables more effective training than if we were to treat them as simple sequences.

7 Broader Impacts

We view text-games as an platform on which to teach agents how to communicate effectively using
natural language, to plan via sequential decision making in situations that may not be anticipated. We
seek to enable agents to more efficiently model such worlds, helping them produce more contextually
relevant language in such situation. As stated in JerichoWorld—and further verified by us—data is
collected from games containing situations of non-normative language usage—describing situations
that fictional characters may engage in that are potentially inappropriate, and on occasion impossible,
for the real world such as running a troll through with a sword. Instances of such scenarios are
mitigated by careful curation of the games that the data is collected by both the authors of Jericho [13]]
and JerichoWorld [4]]. This is based on manual vetting and (existing) crowd-sourced reviews on the
popular interactive narrative forum IFDB (https://ifdb.org/).

Broadly speaking, the most relevant downstream task for this work is model-based reinforcement
learning. It is applicable to many sequential tasks, some of which cannot be anticipated. World
modeling for text environments is more suited for domains in which change in the world is affected
via language, which mitigates physical risks—downstream lines of work are not directly relevant to
robotics—but not cognitive and emotional risks, as any system capable of generating natural language
is capable of accidental or intentional non-normative and biased language use [23, [31].

https://ifdb.org/

References

[1] A. Adhikari, X. Yuan, M.-A. C6té, M. Zelinka, M.-A. Rondeau, R. Laroche, P. Poupart, J. Tang,
A. Trischler, and W. Hamilton. Learning dynamic belief graphs to generalize on text-based
games. Advances in Neural Information Processing Systems, 33, 2020.

[2] P. Ammanabrolu and M. Hausknecht. Graph Constrained Reinforcement Learning for Natural
Language Action Spaces. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=B [x6wOEtwH.

[3] P. Ammanabrolu and M. O. Riedl. Playing text-adventure games with graph-based deep
reinforcement learning. In Proceedings of 2019 Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, 2019.

[4] P. Ammanabrolu and M. O. Riedl. Modeling worlds in text. OpenReview Preprint, 2021. URL
https://openreview.net/forum?id=Y 1 YtSOMZATS,

[5] P. Ammanabrolu, E. Tien, M. Hausknecht, and M. O. Riedl. How to avoid being eaten by a grue:
Structured exploration strategies for textual worlds. arXiv preprint arXiv:2006.07409, 2020.

[6] G. Angeli, J. Premkumar, M. Jose, and C. D. Manning. Leveraging Linguistic Structure
For Open Domain Information Extraction. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), 2015.

[7] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep reinforcement
learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26-38, 2017. doi: 10.1109/
MSP.2017.2743240.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[9] S. Dambekodi, S. Frazier, P. Ammanabrolu, and M. O. Riedl. Playing text-based games with
common sense. arXiv preprint arXiv:2012.02757, 2020.

[10] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

[11] M. Guzdial, B. Harrison, B. Li, and M. Riedl. Crowdsourcing Open Interactive Narrative. In
FDG, 2015.

[12] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https:
/Iproceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4€92982f1a2ba- Paper.pdf.

[13] M. Hausknecht, P. Ammanabrolu, M.-A. Co6té, and X. Yuan. Interactive fiction games: A
colossal adventure. In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2020.
URL https://arxiv.org/abs/1909.05398.

[14] J. He, J. Chen, X. He, J. Gao, L. Li, L. Deng, and M. Ostendorf. Deep reinforcement learning
with a natural language action space. In ACL, 2016.

[15] D. Jancke. Orientation formed by a spot’s trajectory: a two-dimensional population approach in
primary visual cortex. Journal of Neuroscience, 20(14):RC86—RC86, 2000.

[16] T. Kipf, E. van der Pol, and M. Welling. Contrastive learning of structured world models. In
International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=H1gax6VtDB.

[17] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

[18] Z.Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert for
self-supervised learning of language representations. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=H1eA7AEtvS.

[19] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia. Learning deep generative models of
graphs. arXiv preprint arXiv:1803.03324, 2018.

10

https://openreview.net/forum?id=B1x6w0EtwH
https://openreview.net/forum?id=Y1YtS9MZA75
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://arxiv.org/abs/1909.05398
https://openreview.net/forum?id=H1gax6VtDB
https://openreview.net/forum?id=H1gax6VtDB
https://openreview.net/forum?id=H1eA7AEtvS

[20] G. A. Miller. WordNet: A Lexical Database for English. Communications of the ACM, 38(11):
39-41, 1995.

[21] K. Murugesan, M. Atzeni, P. Shukla, M. Sachan, P. Kapanipathi, and K. Talamadupula. Enhanc-
ing text-based reinforcement learning agents with commonsense knowledge. arXiv preprint
arXiv:2005.00811, 2020.

[22] K. Murugesan, M. Atzeni, P. Kapanipathi, P. Shukla, S. Kumaravel, G. Tesauro, K. Tala-
madupula, M. Sachan, and M. Campbell. Text-based RL Agents with Commonsense Knowl-
edge: New Challenges, Environments and Baselines. In Thirty Fifth AAAI Conference on
Artificial Intelligence, 2021.

[23] M. S. A. Nahian, S. Frazier, M. Riedl, and B. Harrison. Learning norms from stories: A prior for
value aligned agents. In Proceedings of the AAAI/ACM Conference on Al, Ethics, and Society,
AIES 20, page 124-130, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450371100. doi: 10.1145/3375627.3375825. URL https://doi.org/10.1145/3375627
3375825,

[24] K. Narasimhan, T. D. Kulkarni, and R. Barzilay. Language understanding for text-based games
using deep reinforcement learning. In EMNLP, pages 1-11, 2015.

[25] F. Niu, C. Zhang, C. Ré, and J. Shavlik. Elementary: Large-scale knowledge-base construction
via machine learning and statistical inference. International Journal on Semantic Web and
Information Systems (IJSWIS), 8(3):42-73, 2012.

[26] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-Conditional Video Prediction using
Deep Networks in Atari Games. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
R. Garnett, and R. Garnett, editors, Advances in Neural Information Processing Systems 28,
pages 2845-2853. Curran Associates, Inc., 2015.

[27] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language Models are
Unsupervised Multitask Learners. 2019.

[28] P. Rajpurkar, R. Jia, and P. Liang. Know what you don’t know: Unanswerable questions
for SQUAD. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 784-789, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL
https://www.aclweb.org/anthology/P18-2124,

[29] C. Sautier, D. J. Agravante, and M. Tatsubori. State Prediction in TextWorld with a Predicate-
Logic Pointer Network Architecture. In In Workshop on Knowledge-based Reinforcment
Learning at IJCAI-20, 2020. URL https://kbrl.github.io/papers/08-KBRL.pdf.

[30] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. arXiv preprint arXiv:1911.08265, 2019.

[31] E. Sheng, K.-W. Chang, P. Natarajan, and N. Peng. The woman worked as a babysitter:
On biases in language generation. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP-IJCNLP), pages 3407-3412. Association
for Computational Linguistics, 2019. doi: 10.18653/v1/D19-1339. URL https://www.aclweb
org/anthology/D19-1339,

[32] I Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Proceedings of the 27th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’ 14, page 3104-3112, Cambridge, MA, USA, 2014. MIT Press.

[33] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge,
MA, USA, Ist edition, 1998. ISBN 0262193981.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
L. Polosukhin. Attention is all you need. In Advances in neural information processing systems,
pages 5998-6008, 2017.

[35] N. Wahlstrom, T. B. Schon, and M. P. Deisenroth. From pixels to torques: Policy learning with
deep dynamical models. arXiv preprint arXiv:1502.02251, 2015.

[36] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey of approaches
and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724-2743,
2017.

11

https://doi.org/10.1145/3375627.3375825
https://doi.org/10.1145/3375627.3375825
https://www.aclweb.org/anthology/P18-2124
https://kbrl.github.io/papers/08-KBRL.pdf
https://www.aclweb.org/anthology/D19-1339
https://www.aclweb.org/anthology/D19-1339

[37]

[38]

[39]

[40]

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
alafc58c6ca9540d057299ec3016d726-Paper.pdf.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4-24,
2021. doi: 10.1109/TNNLS.2020.2978386.

S. Yao, R. Rao, M. Hausknecht, and K. Narasimhan. Keep CALM and explore: Language
models for action generation in text-based games. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 8736-8754, Online, Nov.
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.704.
URL https://www.aclweb.org/anthology/2020.emnlp-main.704.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola.
Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
f22e4747dalaa27e363d86d40ft442fe- Paper.pdf.

12

https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.704
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

	Introduction
	Related Work
	Background
	The Worldformer
	Knowledge Graph Difference Generation
	Multi-task Architecture
	Set of Sequences Generation and Training

	Evaluation
	Knowledge Graph Generation
	Valid Action Generation

	Conclusions
	Broader Impacts
	Appendix
	Dataset
	Training and Hyperparameters
	Worldformer

	Example Output Graphs and Actions

