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Latent space-based network analysis for 
brain–behavior linking in neuroimaging
 

Selena Wang    1  , Xinzhi Zhang2, Yunhe Liu3, Wanwan Xu2, Xinyuan Tian2 & 
Yize Zhao    2 

We propose a latent space-based statistical network analysis (LatentSNA) 
method that implements network science in a generative Bayesian framework, 
preserves neurologically meaningful brain topology and improves statistical 
power for imaging biomarker detection. LatentSNA (1) addresses the lack 
of power and inflated type II errors in current analytic approaches when 
detecting imaging biomarkers, (2) allows unbiased estimation of the 
influence of biomarkers on behavioral variants, (3) quantifies uncertainty and 
evaluates the likelihood of estimated biomarker effects against chance and 
(4) improves brain–behavior prediction in new samples as well as the clinical 
utility of neuroimaging findings. LatentSNA is broadly applicable across 
multiple imaging modalities and outcome measures in developing, aging 
and transdiagnostic cohorts, totaling 8,003 to 11,861 participants. LatentSNA 
achieves substantial accuracy gains (averaging 110–150%) and replicability 
improvements (averaging 153%) over existing approaches in moderate to 
large datasets. As a result, LatentSNA elucidates how network topology is 
implicated in brain–behavior relationships.

Neuroimaging encompasses techniques that provide in vivo depiction 
of the anatomy and function of the central nervous system to study 
the human brain in a noninvasive manner. Some imaging techniques 
focus on the structure of the brain (for example, computerized axial 
tomography and diffusion tensor imaging (DTI)), while others allow 
us to characterize brain activity or function, for example, functional 
magnetic resonance imaging (fMRI) and positron emission tomography 
(PET). A major hurdle for modeling neuroimaging data is the highly 
correlated and connected nature of measurements throughout the 
brain, not dissimilar to networks1, which contributes to low statistical 
power for identifying brain–behavior links. Given the networked nature 
of the brain, a marriage between network science, a complexity-driven 
discipline focused on the shared architecture of networks emerging 
across physical, biological and social domains2, and neuroimaging 
analysis is needed.

Neuroimaging connectivity models recognize and select meaning-
ful patterns from neuroimages that explain individual differences in 
behavior, cognition and other outcomes. For example, case–control 
comparisons measure differences in connectivity between healthy 

individuals and patients to identify markers of dysfunction3. Uni-
variate and marginal association analyses calculate associations 
between connectivity and outcomes to identify links4. By vectoriz-
ing unique pairwise edges from symmetric functional connectomes, 
connectome-based predictive modeling (CPM)5 achieves functional 
imaging biomarker detection using a multivariate regression model 
controlling overfitting with cross-validation. Machine learning algo-
rithms such as Ridge6, least absolute shrinkage and selection operator 
(Lasso)6, support vector machines (SVM)7, random forest (RF)8 and 
convolutional neural networks (CNNs)9 are integrated to improve 
the predictability of the connectivity model for individual outcomes.

A critical challenge remains: connectivity edges are treated as 
independent observations, whereas evidence supports the depend-
ent organization of brain networks as informative neurobiological 
indicators10. Graphical models, consisting of both undirected Gaussian 
graphical models11 and directed acyclic graphs12, describe the con-
ditional dependence among random variables and directly address 
the violation of the independence assumption. A key task of graphi-
cal models, when applied to neuroimaging data, is to estimate and 
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brain connectomes across multiple interconnected functional systems 
are found to explain differences in internalizing symptoms among chil-
dren26. Starlike topological architectures, known for their efficiency in 
information dissemination, resiliency with local transmission failure 
and affiliation with congestion27, are identified as the fingerprints of 
internalizing psychopathology and its deterioration in children. Over-
all, LatentSNA demonstrates high-quality fit to various imaging data, 
generates scientific insights and enriches discussions surrounding 
existing neuroscience questions.

Results
Conceptual framework
Motivated by the need to enhance the power for identifying neuroim-
aging biomarkers, we propose LatentSNA as a generative statistical 
network analysis (SNA) model to identify significant links between 
brain networks and behavioral traits (Fig. 1). Existing SNA models often 
analyze brain–behavior links as one-sided regression models. These 
models either analyze (reduced-dimension) brain connectivity as pre-
dictors in a regression with behavior as the response28,29 or they analyze 
connectivity as the response in a matrix-response regression to quantify 
behavioral covariate effects30. However, both types of models lack the 
ability to capture the mutual variations between behavioral profiles and 
brain variations, that is, brain development influences children’s behav-
ior and abnormal behaviors potentially reinforce brain abnormalities 
due to brain plasticity31. By contrast, LatentSNA allows connectivity 
differences to inform behavior–outcome variations and vice versa: both 
brain connectivity (Fig. 1b) and individual outcomes (Fig. 1a) are the tar-
geted modeling interests. LatentSNA is ideal for detecting complicated 
and potentially noisy and weak signals hidden in high-dimensional 
functional connectivity data, for example, high heterogeneity and 
strong motion artifacts in children’s fMRI data32. LatentSNA reinforces 
potentially weak signals in connectivity with a two-way cross-sectional 
brain–behavior linking module (Fig. 1c) that allows true connectivity 
signals and true internalizing signals to mutually inform each other, 
thus strengthening connectivity signals. Additionally, LatentSNA par-
tials out random noise variations from true signal variations to further 
reinforce potentially weak connectivity signals.

Second, focused on inferring the relationships between brain 
networks and behaviors, LatentSNA is, philosophically, an inference 
model (also called explanatory model), not a prediction model33,34. 
LatentSNA provides uncertainty quantification for biomarker detec-
tion and robust statistical inference under the Bayesian framework 
(Fig. 1a–c). Inference models are built to describe how potential pre-
dictors and explanatory variables explain individual differences in 
responses, while prediction models ignore this process and focus 
on accurately predicting future responses. Inference models rely on 
statistical theories such as the central limit theorem and large sample 
properties to derive unbiased estimates of the significant effect coef-
ficients with controlled type I error, while prediction models often 
introduce biases to improve prediction. Inference models are more 
optimal for detecting imaging biomarkers, as they allow us to quantify 
the uncertainty associated with the identification of imaging bio-
markers, which is not possible with prediction models. With a large 
enough sample size, our model can, in an unbiased manner, identify 
true mutual relationships between the connectivity of each region 
and individual outcomes with high enough power and controlled type 
I error. Meanwhile, machine learning methods such as Lasso35 do not 
offer unbiased quantification of the relationships and suffer from low 
power and inflated type II errors.

Third, LatentSNA builds on the statistical network modeling lit-
erature and preserves the topological structure of the brain network. 
Higher-order dependencies in real-world networks are defined as 
dependencies among three (triad) or more nodes36. Common examples 
of higher-order dependencies in real-world networks include homoph-
ily, balance and clusterability37. Homophily is often associated with the 

create brain connectivity networks based on whether signals from two 
brain regions are conditionally independent of each other13. Although 
individual behaviors and outcomes can be incorporated in graphical 
models, they are often used to influence the estimation of brain con-
nectivity networks14. By contrast, LatentSNA aims to understand the 
structure and property of brain networks (not their estimation) and 
how its structure is related to individual behaviors and outcomes. For 
further exploration of the differences between these two methodolo-
gies, we refer to these discussions2,15.

What differentiates a network science-driven analytic approach 
is that it draws on insights regarding the universality of the commu-
nicative structures of real-world networks1. Characteristics such as 
the small-world property and sparsity are universal properties found 
in social networks15, political networks16, the World Wide Web17 and 
human connectomes18. Shared network architectures, as a result of 
being governed by universal principles15, allow us to use a common 
set of mathematical and statistical instruments for network modeling. 
Network science is characterized by mathematical investigations about 
the universal principles of network generation: what mathematical 
principles define the generations of network with power law degree 
distributions1. This discipline may have overlap with neuroimaging 
connectivity analysis, although they are not the same. For example, 
CPM analyzes neuroimaging connectivity data (is a neuroimaging con-
nectivity analysis method), but it does not incorporate the networked 
(dependent) characteristics of the brain when modeling brain connec-
tivity edges: it assumes one connectivity edge to be an independent 
observation from another.

LatentSNA, an inference-focused generative Bayesian framework 
capturing universal network topologies and leveraging latent space 
estimation techniques, is designed to analyze human connectomes 
and identify meaningful neuroimaging biomarkers of individual out-
comes (Fig. 1). It comprises an integrated workflow containing three 
modules: networked connectome modeling (preserving transitiv-
ity and modularity), psychometric behavior profiling and two-way 
brain–behavior linking. We achieve robust neuroimaging biomarker 
detection with markedly improved statistical power, demonstrating 
generalizability of the method across seven neuroimaging landmark 
studies: Alzheimer’s Disease Neuroimaging Initiative (ADNI) Grand 
Opportunities, ADNI Phase 2 (ADNI-GO/2) and ADNI Phase 3 (ref. 19), 
Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4)20, 
the Human Connectome Project in Aging (HCP-A)21, Adolescent Brain 
Cognitive Development Study Baseline (ABCD-B) and second release 
(ABCD-2)22 and transdiagnostic data collected at Yale23. These studies 
involve eight different imaging modalities and 20 outcome measures 
with a total of 8,003 to 11,861 participants. LatentSNA consistently 
improves model fit performance over nine established methods, 
including three deep learning techniques (SVM, RF and CNN), two 
network-based brain analysis methods including penalized graph 
classification (GC24) and tensor network factorization analysis (TNFA25) 
and four popular brain–behavior linking approaches such as CPM, 
ridge CPM, Lasso and canonical correlation analysis (CCA). It enhances 
the predictability (an average of 110% improvement over TNFA and an 
average of 150% improvement over CPM) and replicability (averaging 
153% improvement over CPM) of various imaging techniques, including 
fMRI, T1-weighted structural MRI (sMRI), DTI and PET. Moreover, it is 
generalizable to different outcome measures, including but not lim-
ited to cognition, emotion, assessment of mental disorders, focal tau 
PET ([18F]flortaucipir) standardized uptake value ratio (SUVR) metrics 
and different participant demographics across developing, aging and 
transdiagnostic populations.

As a result, our proposed method can substantially improve the 
interpretability of current neuroimaging connectivity studies, for 
example, providing a view of how brain network topology is impli-
cated in brain–behavior relationships, exemplified by the ABCD study. 
Large-scale disruptions in the functional communicative patterns of 
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transitive property of a network, explaining how new connections are 
established based on existing connections, also known as transitivity. 
Balance suggests a state of harmony, in which positive connections are 
found among nodes with similar attributes and negative connections 
are found among nodes with divergent attributes. Clusterability repre-
sents a more relaxed criteria for harmony than balance38. With balanced 
cycles among triads, the entire network can be divided into cohesive 
groups with xu,v > 0 if nodes u and v are in the same group and xu,v < 0 if 
they are in opposite groups38. Therefore, the presence of higher-order 
dependencies such as balance contributes to relational patterns and 
topology across the whole network, including higher-order dependen-
cies. By modeling higher-order dependencies, the proposed LatentSNA 
captures relational patterns across the entire network.

Bilinear effects account for transitive, balanced and clusterable 
network structures39. Vector product-based latent space models, 
which include bilinear effect models, capture higher-order depend-
encies such as homophily, balance and clusterability39. Furthermore, 
such models show satisfactory model fit for networks with varying 
degrees of transitivity and clusterability40. Given that brain func-
tional networks possess small-world properties18, likely exhibiting 
both transitivity and clusterability, it is optimal for us to use bilinear 
effects to model higher-order dependence structures. Consequently, 
LatentSNA captures how network topology is implicated in brain–
behavior relationships.

Finally, LatentSNA offers powerful predictions of both connec-
tivity and behavioral variants. We provide a predictive mechanism 
for behavior based on connectivity, which simultaneously serves as a 
predictive mechanism for connectivity based on behavioral variants. 
Accurate prediction is achieved by incorporating latent variables to 
separate signal from noise, using joint modeling frameworks and 

allowing information communication between behavior and connec-
tivity during model estimation. Additionally, preserving the topology 
of brain networks and capturing complex dependence structures is not 
possible with simple linear additive models.

Assessment of LatentSNA using generated data
We compared LatentSNA to CPM, Lasso and CCA, a multivariate 
method exploring possible dependencies between datasets. The 
comparison was conducted with varying sample sizes, network sizes, 
signal-to-noise ratios in brain connectivity and different levels of rela-
tionships (signal proportions) between connectivity and behavior 
(Fig. 2). Based on both power and specificity, LatentSNA shows the 
highest success rate for recovering true relationships and true null 
relationships, making it the most sensitive and accurate method for 
identifying imaging biomarkers. The relatively low power observed via 
CPM reflects the general challenges associated with identifying imag-
ing biomarkers when fMRI data are noisy and relationships between 
connectivity and behavior are sparse. To reduce prediction error, 
Lasso introduces a penalty term in the loss function, inducing down-
ward bias in the coefficient estimates, and, unsurprisingly, reports the 
lowest power. The high specificity of Lasso is likely a byproduct of the 
downward bias in parameter estimation. By comparison, CCA exhibits 
higher power than Lasso and CPM when there are more relationships 
between connectivity and behavior. Using CCA, we find linear com-
binations of variables on both sides that maximize the dependence 
between the two, making CCA more powerful when the dependence 
is strong. Meanwhile, CCA reports low specificity when the signal pro-
portions are large, suggesting that CCA tends to overidentify effects 
with high type I error when the relationships between connectivity 
and behavior are numerous.
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Fig. 1 | Schematic diagram of LatentSNA. The LatentSNA Bayesian diagram 
demonstrates a holistic model for multivariate outcomes Y and brain networks 
X. Neuroimaging and multivariate behavior data are input into the LatentSNA 
model, which subsequently goes through an iterative MCMC algorithm that 
estimates the model parameters theorizing the data generation process of three 
interconnected components. a–c, These three interconnected components 
consist of psychometric behavior profiling (a), latent space network modeling 
(b) and brain–behavior linking (c). a, LatentSNA allows multivariate modeling 
of a latent behavior variable (for example, internalizing psychopathology) with 
multiple variables (for example, anxious–depressed, withdrawn–depressed and 

somatic complaints) to improve precision. The observed psychopathology is 
generated following a modified version of a psychometric Rasch model61,  
in which outcomes are decomposed into item and person components.  
b, LatentSNA uses the symmetric bilinear interaction effect to capture network 
topology (transitivity, balance and clusterability)38. c, LatentSNA infers 
relationships between the brain and behavior, for example, internalizing 
psychopathology and functional connectivity. We propose a joint latent variable 
model, in which we allow the latent connectivity variables Z and the latent 
behavior variables θ to covary with a shared covariance matrix, Σ. L, left; R, right.
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To assess whether the improved power for detection translates 
to better prediction accuracy of behavior, we report the estimated 
correlation between the predicted and observed behavior in randomly 
sampled test data (Supplementary Fig. 3). LatentSNA demonstrates the 
highest prediction accuracy for behavior across various data scenarios, 
with accuracy increasing as the relationship between brain connectivity 
and behavior strengthens and as the sample size grows. Additionally, 
we provide the prediction accuracy of connectivity using LatentSNA 
(Supplementary Figs. 1–3). With LatentSNA’s dual-predictive capabil-
ity, we can robustly predict the connectivity of each testing sample 
based on behavior information. By contrast, the comparison averag-
ing method uses the sample average connectivity as a prediction for 
a new participant’s connectivity. In both prediction tasks, LatentSNA 
reliably predicts connectivity networks and behavior in new samples, 
particularly when connectivity and behavior are strongly related.

Assessment of LatentSNA using real-world data
To demonstrate the generalizability of our method across studies, we have 
focused on two aspects. First, our method fits well to a range of datasets 
with strong out-of-sample prediction accuracy. Second, our method 
can show robust and replicable results with consistent effect estimation 
across random samplings within the same study. For both predictability 
and replicability, we applied LatentSNA to seven different datasets, involv-
ing eight different imaging modalities and 20 outcome measures, with 
information from a total of 8,003–11,861 participants included. We dem-
onstrate our method via an investigation of the ABCD study, which offers 
neurological insights and a view of how network topology is implicated 
in brain–behavior relationships during neurodevelopment.

Improved model performance is observed across imaging modali-
ties, outcome measures and population demographics. To evaluate 
the accuracy of predicting individual outcomes in independent samples, 

we apply LatentSNA to multiple landmark neuroimaging studies (Fig. 3). 
We demonstrate broad applicability of the model in predicting various 
types of outcome measures, including cognition, emotion, assessments 
of mental disorders and focal tau PET SUVR metrics, using imaging 
modalities such as structural imaging measuring fiber density, number 
of fibers and fiber length as well as resting and task state fMRIs. The pro-
posed method consistently shows improvement in model fit across dif-
ferent data scenarios compared to seven available connectivity models: 
penalized GC, TNFA, CPM, ridge CPM, SVM, RF and CNN. Across varied 
imaging modalities, outcome measures and populations, our method 
consistently outperforms existing alternatives, demonstrating, for 
example, an average improvement of 110% over TNFA and 150% over 
CPM (Supplementary Figs. 1–3). These results validate LatentSNA as 
an interesting adaptation of statistical network analysis concepts and 
methods for linking real-world networks to brain and behavior.

The lack of robustness and replicability of current fMRI studies 
is a well-known challenge41,42. We investigated the robustness and 
replicability performance of our proposed method by comparing 
covariance effect estimation across random samplings of the test data, 
that is, replicability with the same data. We calculated the absolute 
correlation of the estimated effects between replications (Fig. 4). Our 
model-estimated effects (covariance and/or correlations between brain 
and behaviors) were consistent across independent replications when 
we randomly split the data into 90% training and 10% test samples. The 
CPM, on the other hand, shows lower replicability and robustness. 
LatentSNA shows consistently higher replicability (with correlations 
above 0.75) across datasets, while CPM shows substantially lower and 
more variable reproducibility (correlations ranging from 0.25 to 0.75).

LatentSNA accurately predicts internalizing psychopathology and 
connectivity in independent samples. We apply LatentSNA to mul-
tivariate internalizing profiles and functional connectivity during the 
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quantiles as error bars to reflect the uncertainty. c, The recovery of biomarkers 
versus null effects using LatentSNA versus marginal correlation tests. Box 
plots show the centra and 25% and 75% quantiles of the estimated effects using 
LatentSNA versus marginal association analysis.
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emotional n-back task (EN-back), the stop signal task (SST) and the mon-
etary incentive delay (MID) task conditions as well as the resting state 
(RS) for 5,000 to 7,000 children in the baseline ABCD study. Our aim is to 
uncover functional fingerprints under different cognitive states for child-
hood internalization, replicate the results and investigate alterations in 
the fingerprints between different task and resting conditions. We show 
the prediction accuracy results for the ABCD baseline study (Fig. 3b). We 
randomly split the dataset into training and test sets with ten random 
splits, each with a test sample size of 100 to maintain consistency across 
task and resting conditions. LatentSNA (θ) shows median correlation 
above 0.9 between observed and predicted internalizing information in 
all four cognitive states, and LatentSNA (Z) shows correlations between 
0.6 and 0.8. On the other hand, CPM only provides correlations around or 
below 0.1. This strongly supports the advantage of LatentSNA in dissect-
ing reliable predictive information from functional connectivity under 
each cognitive state. Through those constructed joint learning mecha-
nisms by LatentSNA, we can effectively predict internalizing profiles for 
new participants based on the available functional connectivity data.

To assess the prediction accuracy of functional connectivity, we fit-
ted LatentSNA to training data and calculated the correlation between 
the observed and the estimated average connectivity (Fig. 3c). For 100 

test participants, LatentSNA reports a median correlation of 0.502 for 
the recovery of whole-brain connectivity, 0.557 for connectivity among 
the top ten risk-internalizing regions and 0.707 for connectivity among 
the top five risk-internalizing regions. This result shows that LatentSNA 
provides sufficiently accurate prediction of the connectivity measure-
ments, posing a unique opportunity to uncover brain connectivity for 
new participants incorporating their internalizing measures.

We compared model-identified biomarkers with null effects based 
on how much they can explain individual differences in internalizing 
psychopathology in new samples (Fig. 3d,e). We show scatterplots 
predicting internalizing values in independent samples using the sum 
of significant connectivity edges via marginal univariate tests (Fig. 3d) 
and connectivity via LatentSNA (Fig. 3e). The marginal test cannot dif-
ferentiate the imaging biomarker from the null effect, as both predic-
tive models show close to zero predictability for internalizing values. 
By contrast, LatentSNA is able to differentiate the imaging biomarker 
from the null effect based on predictive R2 values. This result demon-
strates that the estimated connectivity in LatentSNA differentiates 
biomarkers from null effects. The information flow between connectiv-
ity and internalizing, data integration, allows model-estimated brain 
connectivity to be informed by internalizing in a data-driven manner.
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Fig. 3 | LatentSNA shows substantially improved predictive performance 
over existing approaches. a, Model performance observed across imaging 
modalities, outcome measures and population demographics. We include 
data from ADNI Grand Opportunities, ADNI-GO/2, ADNI Phase 3, A4, HCP-A 
and transdiagnostic data collected at Yale. The model is fitted to each imaging 
modality and outcome measure with sample size outlined in Supplementary 
Table 1. Box plots show the centra and 25% and 75% quantiles of prediction 
accuracy using LatentSNA versus other methods. ADAS, Alzheimer’s Disease 
Assessment Scale; ECog, Everyday Cognition Scale; BSI, Brief Symptom 
Inventory; PACCN, Preclinical Alzheimer’s Cognitive Composite; nBack, 
emotional N-back task. b, Box plots show the centra and 25% and 75% quantiles 
of correlations between observed and predicted internalizing psychopathology 

for RS (blue), MID (light blue), SST (yellow) and EN-Back (red) for 100 test 
participants across ten runs. From left to right, predictive correlations 
based on CPM, LatentSNA (Z) and LatentSNA (θ) are reported. c, Bar plots 
display correlations between observed and predicted connectivity for 100 
test participants during resting and task conditions (same color scheme as 
before). Error bars represent the range between the 25th and 75th quantiles of 
prediction accuracy. From left to right, predictive correlations based on full 
networks, networks of the top ten internalizing regions and networks of the 
top five internalizing regions are reported. d, Scatterplot predicts internalizing 
values in independent samples using connectivity via the marginal correlation 
test. e, Scatterplot predicts internalizing values in independent samples using 
connectivity via LatentSNA.
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LatentSNA learns whether a relationship exists between the func-
tional connectivity of a brain region and internalizing psychopathology 
and correctly uses or ignores that relationship depending on whether it 
exists. In this manner, estimated latent connectivity variables contain 
varying degrees of internalizing information, and a connectivity region 
contains more internalizing information when it is significantly linked 
with internalizing psychopathology and less when it is not linked with 
internalizing psychopathology.

Within the LatentSNA framework, we modeled internalizing psy-
chopathology as an abstract latent construct (or variable) underlying 
three observed dimensions of internalizing psychopathology: the anx-
ious–depressed, withdrawn–depressed and somatic complaint dimen-
sions43. These three dimensions represent three conceptually distinct 
but complementary manifestations of internalizing psychopathology. 
Thus, by directly incorporating these dimensions into LatentSNA, 
we allowed more information to be included than if the internalizing 
psychopathology were simply modeled as the sum scores of the three 
dimensions, as is common in the current literature. To assess whether 
the incorporation of dimensions has improved modeling, we also mod-
eled internalizing as the sum scores using LatentSNA and compared 
the fit. We see improvements in predicting internalizing from 0.825 
to 0.885 for MID, from 0.886 to 0.893 for SST, from 0.846 to 0.901 for 
EN-Back and from 0.791 to 0.846 for RS when multiple dimensions are 
directly incorporated. This result suggests that incorporating multiple 
dimensions of psychopathology is superior to modeling internalizing 
sum scores.

Large-scale disruptions of multiple functional systems are consist-
ently found with internalizing psychopathology across cognitive 
conditions. We report the number of significant regions identified 
in each of the ten functional systems44,45; we show the correspond-
ing 95% credible intervals, the uncertainty quantification obtained 
from Markov Chain Monte Carlo (MCMC) under Bayesian inference 
of covariance estimates for each of the 268 brain regions (Fig. 5a,b). 
Across three task conditions, we found consistent involvement of 131 
of the 268 brain regions and seven of ten functional systems in internal-
izing psychopathology, supporting internalizing psychopathology as 
a complex and involving large-scale affective interference of multiple 
coordinating functional systems. While existing psychopathology 
literature indicates the involvement of functional systems such as the 
default mode network, the prefrontal cortex, the amygdala and other 
structures46, rarely do the studies have large enough power to test the 
disruption across the whole brain and support large-scale involvement. 

Using LatentSNA, we were able to identify and replicate this involve-
ment with other task conditions.

LatentSNA reveals a shared set of functional architectures attrib-
utable to individual variations in internalizing psychopathology when 
participants are tasked to perform different emotional and cognitive 
tasks. This finding corresponds to a recent ABCD study showing similar 
predictive brain features for various cognitive, personality and mental 
health scores47. During the MID task, functional connectivity shows the 
strongest relationship with psychopathology with the highest average 
covariance estimates (Supplementary Fig. 6). We show consistent 
discrimination of the functional systems and their contributions to 
developing internalizing psychopathology across tasks (Fig. 5a). While 
the motor system, the medial–frontal system, the basal ganglia system, 
the limbic system, the default mode network and the visual I systems are 
consistently found to be implicated in internalizing psychopathology, 
there is also a consistent lack of implications of the fronto-parietal, 
visual II and visual association systems.

The functional architectures of internalizing psychopathology 
are different for an intrinsic brain versus an active brain. While cur-
rent literature supports the existence of an intrinsic functional brain 
during rest with a set of small changes common across tasks48, little is 
known about differences in the functional architectures of internal-
izing psychopathology under different cognitive states. Our results 
show evidence for a difference in affective interference between RS and 
task states due to internalizing psychopathology. Different functional 
connectivity architectures are found to be implicated in internalizing 
psychopathology between rest and task states.

During RS, three functional systems emerge as the top risk ones to 
explain individual variations in internalizing psychopathology: the cer-
ebellum, visual I and visual association systems. The cerebellum plays 
an important role in social and emotion processing49, and abnormalities 
are found in the cerebellum during rest for individuals with depres-
sion50 and schizophrenia51. Our results suggest that, during rest, the 
cerebellum is a major functional system contributing to internalizing 
psychopathology, and its relationship to internalizing is specific to an 
intrinsic brain, not when the brain is active. Individual differences in the 
spontaneous functional activities of the RS visual network, including 
visual I and visual associations, are also related to individual differences 
in internalizing psychopathology across individuals.

The core–periphery functional network feature is more pro-
nounced with LatentSNA. LatentSNA differentiates signal from noise 
in functional connectivity networks via latent variables. Different 
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replicability and robustness of both methods. Higher correlation values indicate 
better reproducibility. f, resting state functional connectivity.
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from random noise, latent variables capture patterns of meaningful 
variations in functional signals across individuals. In LatentSNA, each 
brain region is allowed to exhibit different levels of variations in func-
tional signals across individuals and different levels of association with 
internalizing psychopathology. We captured true signal variations in 
reduced dimensions that are much smaller than the dimensions of the 
network, and we projected these reduced dimensions back to the net-
work dimensions. In this manner, we obtained the latent connectivity 
network capturing true variations of functional signals distinct from 
noise. We reported observed versus estimated latent connectivity for 
an average participant in the MID condition (Fig. 6b). Latent connectiv-
ity shows a different topological structure than the observed network.

We show densities of the node strength and closeness based on the 
latent network and the observed network for an average participant in 
the MID condition (Fig. 6c). The distributions of node strength, for both 
the latent network and the observed network, are approximately sym-
metric based on the d’Agostino skewness test52. The observed network 
shows a platykurtic distribution with significantly negative kurtosis 
(P < 10−5, Anscombe–Glynn kurtosis test53), while the latent network 

fails to reject the null. Negative kurtosis suggests that the node strength 
has a flat distribution with thin tails. By comparison, the latent network 
has more node strength in the tails with more extremely active and 
extremely dormant regions. Closeness, for both the latent network and 
the observed network, is positively skewed with highly positive kurtosis. 
Compared with the observed network, the latent network shows larger 
skewness and kurtosis. Centrality measures show that the latent network 
more strongly discriminates core and peripheral regions, reflecting a 
more pronounced core–periphery differentiation optimal for communi-
cation, parallel to those of an efficient information distribution system54.

By preserving the topological structure of the brain, it is not sur-
prising that our identified imaging biomarkers are biologically mean-
ingful and show strong associations with anatomical structures of the 
brain (Fig. 6a). Based on LatentSNA, the strongest biomarker signals 
(with covariance estimates above 0.4 and top six biomarker regions) 
come from the cuneus, the middle frontal gyrus, the middle temporal 
gyrus, the superior temporal gyrus and Heschl’s gyrus. These regions 
play key roles in brain functions and are the central actors of the overall 
brain network connectivity.
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found with internalizing psychopathology across cognitive conditions. 
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Functional architectures of internalizing psychopathology are 
driven by the core actors of the connectivity network. We report 
node strength for regions of the motor system (Extended Data Fig. 1a) 
and other systems (Supplementary Fig. 7). We also show node strength, 
closeness and betweenness for all regions (Supplementary Fig. 7). The 
results show that malfunctions associated with internalizing psycho-
pathology are driven by the core actors of the connectivity network. 
The location and connectivity edges of top imaging biomarker are 
compared against those of the null effect (Extended Data Fig. 1b,c). 
Core regions with high levels of connectivity across the whole brain 
contribute to individual differences in internalizing psychopathology. 
Compared to null effects, imaging biomarkers are the central actors 
of the functional network with high node strength and high closeness: 
they are able to transmit a large quantity of information effectively. 
Development of internalizing psychopathology relies on regions that 
transmit large quantities of information (high strength) efficiently 
(high closeness). Low-strength and high-closeness regions are not 
identified as biomarkers: they tend to be the peripheral actors of the 
network with only localized connectivity edges.

Internalizing psychopathology in children is attributable to starlike 
functional networks. As the brain is divisible into many coordinat-
ing functional systems with distinct connectivity architectures and 
topology, we report the latent internalizing networks with significant 

internalizing biomarkers and their connectivity edges in each func-
tional system in Extended Data Fig. 2. Starlike structures emerge across 
functional systems. These starlike structures consist of a few core 
actors (stars) with many links and many peripheral actors with a few 
links. The star nodes are almost completely connected with each other, 
forming a central clique, and almost all peripheral nodes are connected 
with the star nodes. The starlike structure corresponds to the rich club 
structure often found with brain networks54. In both structures, there 
are preferential connectivities among core regions. Different from 
the rich club structure, in the starlike structure, peripheral regions 
and central regions are efficiently linked with short path distances, 
and the peripheral regions are rarely linked to each other with low 
probability of connections. The starlike configurations contribute to 
the core–peripheral structure in the latent functional network and the 
skewness of the centrality distributions.

The starlike structure is consistent with the current literature on 
our lack of efficiency when multitasking. The starlike structure is cheap 
to assemble with a small number of edges and efficient searchability55. 
In an ideal one-star network, all peripheral actors are linked with the 
star, and there is no peripheral-to-peripheral edge. The number of steps 
to reach an actor in the network is always two, regardless of the network 
size, making the one-star network the most optimal for communication 
when only one information search is performed at one time. However, 
search on the polarized starlike networks quickly becomes expensive 
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when multiple searches occur simultaneously due to congestions at 
the star nodes.

Our star structure theory provides validity evidence for the cur-
rent multitasking literature, which supports the idea that the brain is 
prone to congestions when multiple mental tasks are to be performed56. 
The highly connected star regions and their central cliques such as 
the fronto-parietal control and dorsal attention systems are crucial 
for completing goal-oriented tasks, but the capacities of these star 
regions are not limitless. When we multitask, the star regions are likely 
to be bombarded by competing streams of information with multiple 
sources of relevant and irrelevant signals, which could lead to con-
gestion. On the other hand, with the star structure theory, the brain 
is efficiently organized and robust to transmission failure. The star 
topology reduces the impact of a transmission failure by independently 
connecting each peripheral region to the star clique. Peripheral regions 
communicate with each other via transmission to and from the star. 
Loss of links between peripheral regions has no impact on network 
communication. When there is a failure of transmission between a 
peripheral region and the star, the peripheral region is isolated, yet 
communication in the networked brain is unaffected, making it robust 
to failures.

Due to the efficiency of brain network communication and its gen-
eral robustness to transmission failure, degeneration of the functional 
brain network is damaging when the star regions are compromised. Our 
results provide evidence for this hypothesis. Internalizing psychopa-
thology in children is attributable to star regions and core cliques of 
the functional organization (Extended Data Fig. 2). Coherent starlike 
internalizing functional architectures are concentrated in the motor, 
limbic, medial–frontal, basal ganglia, default node network and visual 
I functional systems. By comparison, the internalizing functional net-
works identified through CPM do not exhibit a coherent pattern nor 
do they follow central–peripheral differentiation. Our results show 
that individual differences in the coordinating functional activities 
of a few star regions can explain substantial individual differences 
in psychopathology. Thus, the malefactions of star regions could 
have major impacts on the development of psychopathology and its 
further deterioration.

Discussion
In this study, we developed a network science-driven analytic method 
that addresses the lack of power and inflated type II errors in neuro-
imaging biomarker detection. The proposed method represents an 
effort to extend SNA1 to jointly model brain connectomes and outcome 
measurements, enhancing the ability to detect region-specific imaging 
biomarkers. While the current SNA methods mentioned above primarily 
focus on modeling single networks, brain connectivity networks can be 
viewed as multiplex networks with multiple layers of brain connections 
observed across a shared set of brain regions. To model these multiplex 
structures, a shared set of latent variables across layers can be used, 
assuming a joint relational structure across sets of connectivity57. Alter-
natively, we can distinguish between shared and individual components 
across layers58. In contrast to these approaches, LatentSNA captures 
individual differences in brain connectivity networks across layers and 
identifies specific brain regions where the covariation between layers 
of brain networks and outcome variables is substantial.

LatentSNA contributes to current neuroimaging connectivity 
methods by offering a high-power whole-brain approach for identifying 
brain–behavior links. A critical challenge of current neuroimaging con-
nectivity methods is that connectivity edges are treated as independ-
ent observations, resulting in low statistical power and inflated type 
II errors. Univariate and marginal association analyses independently 
calculate associations between each connectivity edge and outcomes 
to identify significant links4. CPM5 identifies imaging biomarker detec-
tion by vectorizing unique pairwise edges from symmetric functional 
connectomes for behavior prediction.

LatentSNA makes a contribution to existing neuroimaging 
regression methods such as network response regression59 and 
scalar-on-network regression60. LatentSNA offers several advantages 
over network response and scalar-on-network regressions by posit-
ing a shared data generation process for connectivity and outcomes. 
First, unlike regression models that typically assume one-directional 
relationships between brain and behaviors or outcomes, estimat-
ing either the impact of brain on behavior or vice versa, LatentSNA 
acknowledges the mutual relationship between them. Changes in the 
brain often correlate with changes in behavior, but neuroplasticity sug-
gests that disordered behaviors and dysfunctional environments can 
also influence brain function over time. Second, in scalar-on-network 
and network response regressions, using brain connectivity (or behav-
ior outcomes) as predictors assumes that these variables are fully 
observed. This assumption becomes problematic when data include 
partially missing observations for brain connectivity and individ-
ual outcomes. Regression methods struggle to handle situations in 
which data are incomplete for both brain connectivity and outcomes. 
Lastly, traditional regression methods lack robustness in estimating 
parameters related to brain connectivity or behavior when they do 
not simultaneously model the reciprocal influence between them. 
By contrast, LatentSNA integrates both brain and behavior within a 
unified modeling framework, allowing mutual information exchange 
during model estimation.

The LatentSNA model has limitations that prompt important 
future extensions. First, with LatentSNA, researchers can obtain sat-
isfactorily accurate predictions of both connectivity and behavioral 
variants in cross-section settings. Accurate prediction is achieved by 
incorporating latent variables to separate signal from noise, using 
joint modeling frameworks and allowing information communication 
between behavior and connectivity during model estimation. With 
the increased availability of longitudinal datasets such as ADNI and 
ABCD, it is of importance to extend current LatentSNA to longitudinal 
data. Longitudinal extensions would allow us to explore the temporal 
dynamics of fMRI across developmental or aging stages.

Second, LatentSNA offers substantially improved interpretabil-
ity of neuroimaging studies, as it provides inferences about specific 
neuroimaging connectivity features that contribute to behavior out-
comes. Future research is needed to investigate the clinical relevance 
of LatentSNA by exploring the specific contributions of different neu-
roimaging modalities in behavior predictions and investigating how 
these features can translate to clinical applications that ultimately 
improve the practical value of LatentSNA. In particular, a more clinically 
heterogeneous cohort is needed to understand functional substrates of 
psychopathologies. The ABCD study offers an opportunity to explore 
brain–behavior relationships in a large population of children. Yet, 
at these ages (9–10 at baseline and 11–12 at ABCD-2), relatively few 
children exhibit depression-related symptoms. Minimal participants 
in the ABCD study are diagnosed with depression, which limits the psy-
chopathology findings. A more clinically heterogeneous child cohort 
is thus needed to explore psychopathologies in children.

Future work should also consider the group structure among the 
regions and how regions collectively contribute to internalizing psy-
chopathology: past work has documented the importance of group 
structures of the functional brain via functional systems in cognition and 
disease. Beyond neuroscience, LatentSNA allows the detection of depend-
ence between complex networks and nodal attributes, with potential 
applications in many other domains of science. Many complex systems 
such as social relationships, worldwide webs and transportation grids are 
impacted by higher-level attributes, and LatentSNA is a statistical tech-
nique that can open up many fields with rigorous and powerful analysis.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
In Supplementary Table 1, we provide an overview of the study cohorts 
and datasets included in our analysis, consisting of the following stud-
ies: ADNI Grand Opportunities and ADNI-GO/2, ADNI Phase 3, A4, 
HCP-A, ABCD-B and its 2-year follow-up (ABCD-2) and the transdiagnos-
tic data collected at Yale. We fitted the model to each combination of 
imaging modality and outcome measure. Our focus includes cognition 
outcomes, commonly used to assess the performance of new methods; 
and emotion outcomes, closely aligned with internalizing outcomes 
such as depression and anxiety; as well as disorder and focal tau PET 
SUVR outcomes, which directly reflect biological changes in the brain.

Adolescent Brain Cognitive Development Study
We used brain imaging data from both the first and second releases of 
the largest long-term study of brain development and child health in 
the US, gathered from 11,875 children aged between 9 and 10 years old22. 
Here, we describe the data processing of the first-release data, and the 
second release was processed using the same procedures.

Functional magnetic resonance imaging. To investigate links, blood 
oxygen-level-dependent (BOLD) functional activation was recorded 
for children during RS and while they performed three emotional and 
cognitive tasks. The fMRI data underwent initial preprocessing using 
BioImage Suite62. Standard preprocessing procedures, including slice 
time and motion correction, and registration to the MNI template, 
were described in detail by Greene et al.63 and Horien et al.64. Eligible 
scans exhibited no more than a mean frame-to-frame displacement of 
0.10 mm. Brain images were parceled into 268 regions of interest (ROIs) 
or nodes using the Shen atlas, encompassing the cortex, subcortex and 
cerebellum65. Within each node, voxel-level time courses were aggre-
gated. Functional connectivity was then constructed for each child in 
the study during both RS and each task state. Functional connectivity 
matrices were created, with each row and column representing all 
nodes, and each entry (i, j) in the matrix denoting the Pearson correla-
tion coefficient between the ith and jth nodes, scaled to be normally 
distributed via Fisher’s z transformation.

To investigate whether a shared set of neural substrates exists for 
internalizing psychopathology across different emotional and cogni-
tive tasks and to determine whether these substrates differ from those 
observed during rest, we separately applied LatentSNA to RS functional 
connectivity and functional connectivity during each task state. Our 
analysis included 7,606 adolescents with RS functional connectivity 
data, capturing intrinsic brain functional activity. Additionally, we 
investigated the functional connectivity of 4,871 adolescents perform-
ing the EN-back task, 5,096 adolescents performing the SST and 5,298 
adolescents performing the MID task.

Internalizing psychopathology. In the ABCD study, internalizing 
psychopathology is assessed through self-reported surveys using the 
Child Behavior Checklist (Stavropoulos et al.43), which comprises 119 
items aggregated into eight empirical subscales. Three subscales of 
the Child Behavior Checklist, namely anxious–depressed (13 items), 
withdrawn–depressed (eight items) and somatic complaints (11 items), 
contribute to the assessment of internalizing psychopathology. We 
applied the proposed LatentSNA to both multivariate and univariate 
representations, interpreting the results based on the model with 
superior fit, namely the multivariate internalizing measures.

Alzheimer’s Disease Neuroimaging Initiative
Data used in the preparation of this article were obtained from the ADNI 
database (http://adni.loni.usc.edu).

Structural magnetic resonance imaging and diffusion tensor imag-
ing. We downloaded T1-weighted sMRI and DTI data from the ADNI-GO/2 
database from 174 participants. We applied an overcomplete local 

principal-component analysis66 to process DTI data following standard 
steps including denoising, motion correction and distortion correc-
tion. We performed probabilistic white matter fiber tractography using 
fiber assignment by continuous tracking67. We registered sMRI scans to 
the lower-resolution b0 volume of the DTI data using the FLIRT toolbox 
in the FMRIB Software Library68, and we then defined cortical ROIs in 
FreeSurfer space using the Lausanne 2008 parcellation with 68 corti-
cal ROIs69. We obtained the number of the fibers connecting each pair 
of ROIs as well as the surface area of the regions. Fiber density-based 
structural connectivity was calculated by dividing the number of fib-
ers between two ROIs with their average surface areas70. Three types 
of structural brain networks were constructed as the number of fibers 
between a pair of brain regions, the length of the fibers as well as the 
fiber density of tracts connecting pairs of ROIs.

Functional magnetic resonance imaging. We used RS functional 
neuroimaging data from the third release of the ADNI study. We pro-
cessed the images using the Connectome Mapper 3 pipeline71 built 
in Nipype72. RS fMRI images were processed with despiking and slice 
timing correction following the method of Cox73; the images were also 
motion corrected and distortion corrected using FSL. RS fMRI images 
were registered to the b0 sMRI using the FLIRT toolbox74. The BOLD time 
signals of each ROI were bandpass filtered and then detrended using a 
linear regression. We constructed functional brain networks for each 
participant as the Pearson correlation between the BOLD time signals 
for pairs of ROIs.

Disorder–cognition outcomes. For outcomes, we included the ADAS, 
Cognitive Subscale75, a rating of dysfunction by AD. We included the 
ADAS score as the sum of 13 diagnostic questions collected at baseline. 
In addition, we included the sum score of the Everyday Cognition 
Scale76, a questionnaire measuring the patient’s cognitive function. We 
applied the proposed LatentSNA to both the ADAS and the Everyday 
Cognition Scale to assess the model’s generalizability to alternative 
outcomes for the aging population.

Anti-Amyloid Treatment in Asymptomatic Alzheimer’s 
Disease
The A4 study is a secondary prevention trial targeted toward older 
people with amyloid accumulation and at high risk for AD dementia20.

Structural and functional magnetic resonance imaging. For the fMRI 
data, we used the same processing procedure as that for the ABCD. 
MPRAGE scans were skull stripped using optiBET77 and nonlinearly 
aligned to the MNI-152 template using BioImage Suite.

Focal tau PET SUVR metrics. We used PETSurfer within FreeSurfer for 
an integrated MRI–PET analysis78. We derived focal tau PET ([18F]flor-
taucipir) SUVR metrics from the A4 images using 90–110-min (4 × 5-min 
frames) post-injection images, preprocessed and analyzed using PET-
Surfer in FreeSurfer (version 6.0+). We summed and motion corrected 
the 5-min tau PET frames. We then aligned the composite PET images 
to corresponding MRI images, parcellated using the Desikan–Killiany 
Atlas79 and partial-volume corrected using FreeSurfer. We gathered 
the average tracer absorption values for each region defined by the 
atlas and computed SUVRs using the whole cerebellar cortex as the 
reference region.

Cognition outcome. To assess cognition changes, we included the 
Preclinical Alzheimer’s Cognitive Composite (PACC, Donohue et al.80) 
collected as part of the A4 project. PACC is a composite cognitive score 
combining tests that assess episodic memory, executive function and 
general cognition, and it is the primary outcome measure for A4 target-
ing the preclinical AD population. PACC is found to be sensitive to the 
earliest disease-related changes81.
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Human Connectome Project in Aging
The Lifespan HCP-A aims to characterize how brain organization and 
connectivity change during typical aging, compared to an ’abnormal’ 
aging process21.

Functional magnetic resonance imaging. For the fMRI data, we used 
the same processing procedure as that for the ABCD.

Emotion–cognition outcomes. For the HCP-A project, we focused on 
cognition and emotion measures. To assess the cognitive capability of 
the healthy aging population, we included the composite scores for 
the Picture Sequence Memory Test as well as the Cognition Composite 
score including Fluid Composite and Crystallized Composite, derived 
from all National Institutes of Health (NIH) Toolbox Cognition tasks82. 
For the emotion outcomes, we chose Emotional Distress Depression 
and PROMIS Anxiety to maintain relative consistency with the inter-
nalizing outcome. Emotional Distress Depression is captured by the 
Sadness Survey from NIH Toolbox Emotion Battery83, which measures 
negative mood and perceptions. PROMIS Anxiety is captured by the 
Fear Affect Survey, a self-report measure assessing fear and anxious 
misery from NIH Toolbox Emotion Battery.

Transdiagnostic project
The Transdiagnostic project aims to recruit clinically naturalistic and 
demographically diverse participants to more effectively study the 
links between imaging and behaviors23; the project was conducted at 
Yale between February 2018 and March 2021. Participants in the Trans-
diagnostic project tended to show a wide range of symptom severity 
and commonly had multiple psychiatric diagnoses. All imaging infor-
mation was collected at the Yale Magnetic Resonance Research Center.

Functional magnetic resonance imaging. Preprocessing of fMRI data 
from the Transdiagnostic project is the same as the processing of fMRI 
data from the ABCD study.

Disorder outcomes. We included the global severity index of the 
Brief Symptom Inventory84,85, a rating scale aiming to identify clini-
cally relevant psychological symptoms in adolescents and adults. The 
global indices measure the level of symptomatology, its intensity and 
number of occurrences.

LatentSNA
Our method makes use of techniques of Bayesian statistical inference, 
in which we propose a generative network model to theorize how 
neuroimaging connectivity and individual behaviors and outcomes 
intertwine with each other under random statistical processes with 
noise. We fitted the neuroimaging connectivity data and accompanying 
outcome measures and estimated covariances between the connectiv-
ity of each brain region with outcome measures across participants.

LatentSNA is motivated by the need to improve the power for 
detecting meaningful biomarkers of individual behaviors and out-
comes using noisy imaging connectivity networks. To achieve this aim, 
we propose LatentSNA with a few distinctive features. First, LatentSNA 
is a joint model integrating imaging connectivity and behavior variants. 
Consider a symmetric connectivity tensor, 𝒳𝒳 𝒳 𝒳V×V×N, where V is the 
number of nodes for the brain atlas and N is the number of participants. 
Simultaneously, we have information about the behavior of the par-
ticipants, denoted by the N × P matrix Y, where each row includes the 
response value for participant i with p outcome measurements. The 
proposed LatentSNA is distinct from a network response regression, 
where the network is the response and the effect of behavior on the 
network is estimated as the regression coefficient of covariates. Simi-
larly, the model differs from a connectivity-based predictive model 
with behavior as the response and the network as the predictor28. 
Instead, we proposed a joint data generation process that allows 

connectivity alternations to inform behavior variations and vice versa: 
both brain connectivity and behavior are the targeted 
modeling interests.

Second, LatentSNA has roots in statistical network methods and 
preserves the topological structure of the network. When modeling 
brain connectivity (one of the three components of the model), we 
made use of the symmetric bilinear interaction effect to capture 
third-order dependence patterns (transitivity, balance and cluster-
ability) often present in symmetric networks38,86. While additive effects 
only capture variations across the rows and the columns of the network 
(variation in node degrees), bilinear interaction effects capture trian-
gular structures of the network and relatedness among multiple brain 
regions. This is important because these higher-order dependencies 
exist in brain connectivity. For example, functional systems capture 
the coactivation of three or more brain regions that creates behavior, 
cognition and psychopathology. Bilinear effects capture how the dis-
tributed patterns of interactions create function and account for the 
complexity of integrated multimodal brain systems not possible with 
additive effects. For each participant, we introduced unidimensional 
region-specific latent variables zu,i to represent connectivity informa-
tion for participant i and region u and use zu,izv,i as the driver of connec-
tion between brain regions u and v for participant i. Each node u is part 
of a dependent network with strength of connection to node v via the 
bilinear effect of the two nodes. Specifically, the connectivity between 
nodes u and v, u < v, u, v = 1, 2,…, V is modeled by

xu,v,i = wTi β + ai + zu,izv,i + eu,v,i, eu,v,i
iid∼ N(0,σ2), (1)

where ai is the fixed connectivity intercept for participant i, eu,v,i is the 
error term, σ2 is the error variance and iid stands for independent and 
identically distributed. We adjusted for Q covariates, for example, age 
and gender, denoted by wi with the first element to be 1 corresponding 
to the intercept with their effects on the connectivity matrix character-
ized by β. Given that each connectivity value is standardized across 
persons, node-level additive effects are not necessary. The mean of the 
connectivity values for each node across persons is zero. In matrix 
form, we used Z to denote the N × V matrix of latent variable values, zi 
to denote the V × 1 vector of latent variable values for participant i and 
Ei to denote the V × V matrix of errors. The approximation of the pos-
terior distributions of the unknown quantities is facilitated by setting 
an MVN(μβ, Σβ), μβ = (0, 0,…, 0, 0)T, Σβ = IQ prior distribution for β, a 
gamma(½, ½) prior distribution for σ−2e  and an N(0, 1) prior distribution 
for ai (where MVN stands for multivariate normal and N for normal). 
The prior for the covariance of the latent network dimensions is 
described in the joint component.

The third distinguishing feature of LatentSNA is that it focuses on 
the inference of relationships between connectivity and behaviors. 
For each participant i, the probability of pairwise brain connectivity 
also depends on the participant’s behavior yi, and this influence is 
achieved via joint multivariate normal distribution of the connectivity 
and behavior parameters. Suppose that we have θi, the unidimensional 
random latent variable representing the behavior information for 
participant i. The connectivity and individual behaviors and outcomes 
are integrated in the following way:

(z1,i, z2,i,… , zV,i,θi)
T iid∼ MVN ((

0V
0D

) ,ΣV+D) , Σ = (
Λz ΛTzθ
Λzθ Λθ

) , (2)

where Λzθ is the V × D matrix modeling the relationship between con-
nectivity and behaviors, D = 1. When there are nonzero elements in the 
Λzθ matrix, the connectivity and the attributes regulate and inform each 
other, which leads to better estimation for both connectivity and behav-
iors. Approximation of the posterior distribution of Σ−1 is facilitated by 
setting a prior distribution of Wishart(IV+D, V + D + 2). To infer whether the 
connectivity of a brain region is related to behaviors, we tested whether 
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the corresponding covariance parameter equals zero, controlling for 
reflection indeterminacy. We delved deeper into the issue of reflection 
indeterminacy when discussing estimation. Via the joint distribution, we 
assume that there is a latent dependence structure between the network 
and the behavior, ΣV+D. This dependence structure is region specific, with 
behavior having significant links with some brain regions and not oth-
ers. This dependence structure captures the true (in a statistical sense) 
covariation between connectivity and behaviors across individuals, 
separate from variations due to random noise. If a covariance parameter 
is significantly different from zero, we can conclude that the associated 
brain region is significantly linked with behaviors, and its differences 
across individuals can explain individual differences in behaviors.

Last but not least, using latent behavior variables, LatentSNA 
allows multivariate modeling of individual behaviors and outcomes 
with more information to improve its estimation precision than uni-
variate modeling. In this manner, observed individual outcomes are 
generated following a modified version of a psychometric Rasch model. 
The original Rasch model61 proposes a data generation process for 
random test responses in which each test question has a unique dif-
ficulty parameter and each person is ranked based on the number of 
correct responses. We modified this model in a few ways. The original 
Rasch model does poorly at accommodating data types that are not 
binary. We included a more flexible linking mechanism for the latent 
responses and the observed data, allowing for both discrete and con-
tinuous data distributions. The original Rasch model also does not 
account for covariate effects such gender and race, and, to improve, 
we included a covariate term that allows the probability of responses 
to vary depending on participant demographics. Most importantly, we 
introduced a dependence between the latent behavior variables and 
connectivity, which allows the latent space of behaviors to be informed 
by brain connectivity. The degree of dependence is learned via data, 
and it organically influences how much the behavior information is 
integrated. As the behavior component of the joint model, participant 
i’s response on variable p is modeled by

yi,p = hTi γ + bp + θi + ϵi,p, ϵi,p
iid∼ N(0, τ2), (3)

where bp is the fixed intercept for variable p. We adjusted for Q′ covari-
ates, for example, age and gender, denoted by hi with the first element 
to be 1 corresponding to the intercept with their effects on the connec-
tivity matrix characterized by γ. In matrix notation, we used b to denote 
the P × 1 vector of the intercepts, θ to denote the N × D matrix of latent 
variables and Ψ to denote the N × P matrix of psychopathology errors. 
As is common in Rasch models, the parameters for the question items 
are fixed and the person variables are random. Approximation of the 
posterior distribution of the intercept parameters is facilitated by set-
ting a standard normal prior distribution. We set a prior distribution 
of gamma(½, ½) for τ−2.

Estimation
Fitting the model involves iterative samples of the full conditional 
distributions of each parameter defined in the model until we find 
stable and converged Markov chains to approximate various quanti-
ties of the targeted posterior distributions via the Gibbs sampler. To 
achieve the global optimum for parameter estimation, we start with 
ten random initializations for parameter values and choose the most 
optimal results based on out-of-sample prediction accuracy. We iter-
ated the following steps:

•	 simulate β, a from their full conditional distributions,
•	 simulate σ2 given β, a, τ2, γ, b, Z, θ, Σ, X, Y,
•	 simulate γ, b from their full conditional distributions,
•	 simulate τ2 given β, a, σ2, γ, b, Z, θ, Σ, X, Y,
•	 simulate {Z and θ} from their full conditional distributions and
•	 simulate Σ from its full conditional distribution.

To allow the information in connectivity and individual behaviors and 
outcomes to flow between each other and mutually inform parameter 
estimation, we sampled {Z and θ} from their joint full conditional dis-
tribution given both the connectivity and behaviors. For participant 
i, the joint full conditional distribution of zi and θi is the product of the 
three parts (connectivity, behaviors and joint):

p ((
zi
θi
) |ti, ̃fu,i,Σ,σ2ϵ)

∝ p(ti|θi,σ2ϵ )p( ̃fu,i|zu,i)p ((
zi
θi
) |Σ) ∝ exp (− 1

2
σ−2ϵ

P
∑
p=1

(ti,p − θi)
2)

exp (− 1
2

V
∑

v=1,v≠u
( ̃fu,v,i − czTu,izv,i)

2
)& exp(− 1

2
(
zi
θi
)
T

Σ−1 (
zi
θi
)) ,

(4)

where T = Y − 1bT − Hγ1TP  and Fi is Xi − ai −wiβ = zizTi + Ei. We can trans-
form Fi in such a way that the transformed error term is a standard 
normal distribution using ̃Fi = cFi , where c = σ−1e . Therefore, 
̃Fi = czizTi + ̃Ei, where ̃eu,v,i follows a standard normal distribution. The 

joint part of the distribution p(( zu,iθi
)|Σ′)  can be written as 

exp(− 1
2
(zu,iQ′

zzu,i + zu,iQ′
θzθi + θiQ

′
zθzu,i + θ

T
i Q

′
θθi)) , where Σ−1 = ( Qz QθzQzθ Qθ

)  

(each component is a function of Λs) and Σ′ is part of Σ only involving 
the specific brain region. Extracting relevant terms from 

p(( ziθi
)|ti, ̃fu,i,Σ,σ2ϵ ), we can see that the full conditional distribution of 

zu,i is

p (zu,i| ̃fu,i,Σ,θi)

∝ exp(− 1
2 zu,i (

V
∑

v=1,v≠u
c2zv,izv,i +Q′) zu,i

+zTu,i (
V
∑

v=1,v≠u
c ̃fu,v,izv,i −

1
2Q

′
θzθi −

1
2Q

′T
zy θi)) ,

(5)

a multivariate normal distribution, with variance (∑V
v=1,v≠u c

2zv,izv,i+Q′z)
−1 

and mean (∑V
v=1,v≠u c

2zv,izv,i +Q′z)
−1
(∑V

v=1,v≠u c ̃fu,v,izv,i −
1
2
Q′
θzθi −

1
2
Q′T
zyθi) . 

The latent variable value for psychopathology is informed by brain 
connectivity and should be sampled from

p (θi|ti,Σ, zu,i,A,σ2ϵ )

∝ exp(− 1
2θ

T
i (σ

−2
ϵ

P
∑
p=1

αpαTp +Qθ)θi

+θTi (
P
∑
p=1

σ−2ϵ ti,pαp −
1
2
QTθzzi −

1
2Qzθzi)) ,

(6)

a multivariate normal distribution, with variance (∑P
p=1 σ

−2
ϵ αpαTp +Qθ)

−1
 

and mean (∑P
p=1 σ

−2
ϵ αpαTp +Qθ)

−1
(∑P

p=1 ti,pσ
−2
ϵ αp −

1
2
QTθzzi −

1
2
Qzθzi) . Cru-

cially, we sampled the covariance matrix Σ from an inverse Wishart (IW) 
(IV+D + F′TF′, N + V + D + 2) with F′ as an N × (V + 1) matrix with the ith row 
as (zTi ,θ

T
i ).

The introduction of the bilinear effect zu,izv,i induces partial reflec-
tion indeterminacy. For each set of latent variable values, ̂zu,i and ̂zv,i, 
the positions given by − ̂zu,i and − ̂zv,i give the same set of product and 
consequently the same likelihood. During the MCMC chain, the sign 
of zu,i, u = 1 can change while maintaining the same connectivity value. 
Crucially, the connectivity latent variables are also related to individual 
behaviors and outcomes, whether zu,i is estimated as ̂zu,i  or − ̂zu,i  has 
consequences on the correlation between zu,i and θi. Put in a different 
way, zu,i is softly identified, as the signs of zu,i need to satisfy the correla-
tion between zu,i and θi. To estimate such a model, we assume that, after 
a sufficient burn-in period, the signs of zu,i have reached a sufficiently 
optimal point, where its correlation with θi has researched a stabilized 
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estimate resembling the true correlation. After this burn-in period, we 
fix the signs of zu,i to the same as those of the target, that is, target = esti-
mated zu,i from the first iteration after burn in. Therefore, there is no 
reflection indeterminacy issue after burn in.

The estimation algorithm for this paper was implemented in R. The 
code is available via the user-friendly GitHub page at https://github.
com/selenashuowang/latentSNA with a tutorial. For each task condi-
tion, we performed posterior inference based on the MCMC algorithm 
under random initialization. No obvious nonconvergence issues were 
found via trace plots. For each task condition of the ABCD study, we 
compared the model fit of the multivariate behaviors with that of the 
univariate behavior outcome. The univariate outcome is the sum of 
the three internalizing variables as mentioned before.

Identification of imaging biomarkers is based on whether the 
estimated covariances between connectivity and behavior are sig-
nificantly different from zero. Therefore, it is of interest to expand on 
the sensitivity of the prior specification of the covariance parameters.

In LatentSNA, the approximation of the posterior distribution of Σ 
is facilitated by setting a prior distribution of IW(IV+1, V + 1 + 2) with the 
identify scale matrix S0 = I and degree of freedom equal to m0 = V + 1 + 2. 
The use of an IW distribution as a prior for the variance–covariance 
parameter matrix is fairly common in Bayesian analysis; see discus-
sions of Leonard and Hsu87. The IW prior is a conjugate prior for the 
covariance matrix of the normal data. In LatentSNA, we are interested 
in estimating the covariance matrix Σ of the joint distribution of the 
latent connectivity and behavior variables, D = (z1,i, z2,i,…, zV,i, θi). With 
the IW prior, the posterior distribution of Σ can be obtained through 
Bayes’ theorem:

p(Σ|D) = p(D|Σ|)p(Σ)
p(D) . (7)

From it, we can obtain the posterior distribution of Σ with the specified 
prior distribution as

Σ|D ∼ IW(S0 + F′TF′,m0 + 2), (8)

where F′ is an N × (V + 1) matrix with the ith row as (zTi ,θTi ). Therefore, 
the posterior mean of Σ is a weighted average of the sample covariance 
matrix F′TF′ and the prior mean S0. When the sample size N → ∞, the 
posterior mean approaches the sample mean.

In a sensitivity analysis conducted by Zhang88, the author set the 
scale matrix as identity and varied the degrees of freedom by increas-
ing m0. With the increase in m0, the posterior means become smaller 
and the posterior variances also become smaller. Thus, given the large 
sample size in the data, we expect the posterior mean of Σ to approach 
the sample mean.

Simulation
The data generation process for the simulation was as follows. For sim-
plicity and consistency, the number of behavior variables was assigned 
as one in all generated data. We first generated the connectivity latent 
variables as well as the latent behavior variables from the multivariate 
normal distribution with the mean zero and the predefined covariance 
matrix with unit variances. To conduct a comprehensive assessment 
of the model performance, we created a range of data situations with 
varying sample sizes, connectivity scale, signal-to-noise ratio and sig-
nal proportions. To assess the model’s ability to accurately identify 
true imaging biomarkers for outcomes that have both strong and weak 
biological signals, we varied the amount of true signals in the data by 
assigning the signal proportion to 0.1 and 0.3. When the signal propor-
tion equaled 0.1 (0.3), we randomly assigned 10% (30%) of the covariance 
parameters between connectivity and behavior to be nonzero. To ensure 
the positive definiteness of Σ, we assigned both the covariances between 
connectivity and behavior and the corresponding dimensions in the 

latent connectivity covariance matrix as 0.9. We randomly sampled the 
errors for the connectivity from a normal distribution with mean 0 and 
variance defined by the signal-to-noise ratio. Errors for the behavior were 
sampled from the normal distribution with the mean 0 and variance 0.5.

We considered three sample sizes, N = 500, N = 1,000 and N = 2,000 
and two conditions for the number of nodes V = 20 and V = 70, and we 
specified two levels of the signal-to-noise ratio, 0.5 and 1, controlled by 
the error variance while keeping the variance of the latent variables con-
stant. The individual-specific intercepts for connectivity and behavior 
were set to 0. In total, we considered 24 different scenarios combining 
from different signal proportions, sample sizes, node numbers and 
signal-to-noise ratios. Under each scenario, we simulated the 100 data.

We compared LatentSNA with CPM, Lasso and CCA. For Lasso, 
we fitted the model to the training set using the glmnet package89. We 
selected significant edges based on minimizing mean squared error 
with tenfold cross-validation. For CCA, we fitted the model to the 
training set using the CCA package90, and regions with strong loadings 
were considered to be related to behavior. The cutoff thresholds are 
determined by the true signal proportions. For example, when the true 
signal proportion equals 0.1, we considered the top 10% of regions 
with highest absolute loadings to be significantly linked with behavior.

Predicting outcomes
For LatentSNA (θ), predicting the behavior outcome of a new partici-
pant amounts to additional draws for each new yi from a distribution 
with probability determined by the model. For LatentSNA (Z), on the 
other hand, predicting the behavior outcome of a new participant is 
based on the estimated latent connectivity variable Z from the train-
ing data. We evaluated the out-of-sample predictive performance for 
LatentSNA (Z) and LatentSNA (θ) as follows:

•	 We randomly sampled 100 participants and their behavior 
outcome as the test data and the other sets of data points as 
the training data.

•	 We fitted the training data to LatentSNA and obtained the 
posterior mean of the model parameters.

•	 For LatentSNA (θ),
	– �Predicting the behavior outcome of a new participant amounts 

to additional draws for each new yi from a distribution with 
probability determined by the model.

	– �The full conditional of the new observations 𝒴𝒴(test) is, for any 
yi 𝒳 𝒴𝒴(test), determined by π(yi∣θ, bi, Ψi).

•	 For LatentSNA (Z), 
	– �Predicting the behavior outcome of a new participant is based 

on the estimated latent connectivity variable ̂Z  from the train-
ing data.

	– �We first selected significant imaging biomarkers based on 
95% posterior credible intervals of the covariance parameters 
and used latent connectivity variables of significant imaging 
biomarkers as predictors.

	– �Second, we split the estimated latent connectivity variables 
into the test set ̂Z

(test)
 and the training set ̂Z

(train)
 following the 

split of the data.
	– �Third, we fitted the training model using ̂Z

(train)
 as the predic-

tors and the observed psychopathology outcomes for the 
training participants as the response.

	– �We obtained the estimated regression coefficients β̂ based on 
the training model.

	– �Lastly, we predicted the psychopathology outcome of a new 
participant, for any yi 𝒳 𝒴𝒴(test), under LatentSNA (Z) following 
yi = β̂ × ̂Z

(test)
.

We repeated the process ten times. Figure 3b shows the 
out-of-sample correlations between the observed and predicted inter-
nalizing values on the test data using LatentSNA (Z) and LatentSNA 
(θ). Between LatentSNA (Z) and LatentSNA (θ), the former does not 

http://www.nature.com/naturemethods
https://github.com/selenashuowang/latentSNA
https://github.com/selenashuowang/latentSNA


Nature Methods

Article https://doi.org/10.1038/s41592-025-02896-9

directly, but indirectly, incorporate training internalizing information 
for prediction, while the latter does. This shows that, by constructing 
joint learning mechanisms using LatentSNA, we can effectively predict 
internalizing profiles for new participants based on the available data.

Comparison methods. We have added model evaluation results 
against two network-based brain analysis methods, the penalized GC 
approach24 and the TNFA. Additionally, we have incorporated compari-
sons with three widely used machine learning techniques, SVM7, RF8 
and CNNs9, to provide a comprehensive assessment of our methods’ 
performance. The GC approach uses brain connectivity as predictors 
and adopts both L1 penalty, the absolute value of coefficient magni-
tudes and a generic group Lasso penalty. We fitted the GC approach 
using the graphclass R package91. The tuning of the penalty factor 
pair (λ, ρ) was conducted on a 3 × 4 grid, with λ selected from the set 
{10−6, 10−5, 10−4} and ρ ∈ {1, 10, 20, 30}. It was observed that a λ value 
exceeding 10−3 and a ρ value surpassing 40 result in the penalization 
of all coefficients to zero.

For the TNFA approach, similar to the tensor network 
principal-component analysis method25, we embedded the V × V 
symmetric adjacency matrices into a low-dimensional matrix; each 
row contains participants’ principal-component scores, and each 
column contains the basis network; only significant basis networks 
were included as predictors. We then performed a network predictor 
regression with the embedded low-dimensional basis networks as pre-
dictors of the outcome variables. SVM predicted behavioral outcomes 
based on a low-dimensional matrix derived from the V × V symmetric 
adjacency matrices, akin to the TNFA approach. This process involves 
embedding the adjacency matrices into a reduced space, where only 
significant basis networks were retained as predictors. These features 
were then used to train an SVM model with a linear kernel using the 
e1071 R package92. The model undergoes parameter tuning using a grid 
search to optimize the cost parameter, and the best model is used to 
predict behavioral outcomes from test data. The RF method is imple-
mented using the ranger package within the caret framework in R93, 
and, similarly to SVM, it uses features derived from a low-dimensional 
matrix of brain connectivity data. A grid search strategy optimizes 
key parameters: the number of variables per split (mtry), the node 
splitting criterion (splitrule) and the minimum node size (min.node.
size). For CNN, we fitted the model with the torch package in R94. Our 
CNN architecture consists of sequential dense layers with ReLU activa-
tions, specifically designed to handle the features extracted from the 
low-dimensional connectivity data. The model undergoes training 
using an Adam optimizer and a cross-entropy loss function across 
multiple epochs, ensuring optimal learning from the training data. 
After training, the CNN is used to predict outcomes on the test dataset.

Predicting connectivity
We evaluated the out-of-sample performance for predicting connectiv-
ity of new participants as follows:

•	 We randomly sampled 100 participants and their connectivity 
values as the test data and the other part of data points as the 
training data.

•	 We fitted the training data to LatentSNA and obtained the poste-
rior mean of the model parameters.

•	 Predicting the connectivity of a new participant amounts to 
additional draws for each missing xi 𝒳 𝒳𝒳(test) from a distribution 
with probability determined by the model.

•	 The full conditional of the new observations 𝒳𝒳(test) is, for any 
xi 𝒳 𝒳𝒳(test), determined by π(xi∣zi, ai, Ei).

We repeated the process ten times. Figure 3c shows the average 
out-of-sample correlations between the observed and predicted con-
nectivity values in the test data for predicting the whole graph, the top 
ten internalizing regions and the top five internalizing regions. The 

results show that LatentSNA provides sufficiently accurate prediction 
of the connectivity measurements, posing a unique opportunity to 
uncover brain connectivity for new participants, incorporating their 
internalizing measures.

Comparison method. The Average method and its extensions repre-
sent one of the most common methods to capture group-level con-
nectivity and to perform subsequent analysis95, often with satisfactory 
prediction accuracy96. We first randomly divided the connectivity data 
into ten equal sizes, using one set of data points as the test data and 
the other sets of data points as the training data. We then captured 
the group-level connectivity using the entry-wise sample mean of 
individual connectivity matrices in the training data. We performed 
predictions for connectivity in the test set using estimated connec-
tivity from the training data. We show the average out-of-sample cor-
relations between the observed and predicted connectivity values 
across 100 random samples (Supplementary Fig. 3a). Our results sug-
gest that LatentSNA shows satisfactory prediction accuracy for brain 
connectivity using individual-level estimates, and it outperforms the 
Average method when the signal proportion is large. When predicting 
connectivity using group-level estimates, LatentSNA and the Average 
method both show satisfactory performance for the whole graph, and 
LatentSNA outperforms the Average method for regions with strong 
relational ties with behavior.

Network statistics
Node strength, an extension of degree in weighted networks, is the sum 
of the edge weights associated with each node97. Closeness reflects 
how quickly one node can reach others. We calculated closeness in the 
weighted graphs using the igraph R package98, and a uniform magni-
tude equaling the largest negative edge is added to all edges to ensure 
that all weights are positive. Among the shortest paths in a network 
that pass through intermediate nodes, betweenness reflects how many 
times a node is present in those paths and demonstrates the extent to 
which a node is part of connections among other nodes99. We calculated 
the betweenness of the connectivity networks with positive weights 
defined as before using the igraph R package100. High betweenness 
reflects power as it positions the region with an important bridging 
role allowing the neighboring regions to connect101, an investment into 
the communication between distant clusters.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level imaging and behavior data used in the present 
study are available from four publicly accessible data resources: 
ABCD (https://abcdstudy.org/), HCP (https://www.humanconnec-
tome.org/), A4 (https://www.a4studydata.org) and ADNI (https://
adni.loni.usc.edu). Transdiagnostic data are available via the NDA 
website (https://nda.nih.gov/).

Code availability
The estimation algorithm for this paper was implemented in R. The 
code is available at https://github.com/selenashuowang/latentSNA 
with a tutorial. The code is released under the MIT License. In this 
GitHub repository, we have provided instructions for installation 
(specifying prerequisite packages), explanations of outputs and a 
sample toy example with evaluations.
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Extended Data Fig. 1 | Functional architectures of internalizing 
psychopathology are driven by the core actors of the connectivity network. 
(A) The strength of each brain region in MOT based on the latent network 
(left) and the observed network (right) for an average participant during MID 
condition. Regions identified to play a significant role in explaining individual 
differences in internalizing behaviors are colored as green, and non-significant 
regions are colored as red. (B) The location and connectivity networks of an 

imaging biomarker (top) versus a null effect (bottom) with no identifiable 
contribution to internalizing. The 3D brain plots show the front (top left), back 
(top right), right (bottom left) and left (bottom right) views. (C) The circle plots 
of the connectivity edges associated with the imaging biomarker (top) and the 
null effect (bottom). In B and C, red line indicates positive connectivity edges, 
and blue line indicates negative connectivity edges.
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Extended Data Fig. 2 | Internalizing psychopathology in children are 
attributable to star-like functional networks. Latent internalizing networks 
(left) against CPM networks (right) for an average participant in each 
functional system during MID task. Node positions of the latent networks 
are then determined using the fruchterman-reingold force-directed graph 
layout algorithm. The nodes are fixed in the same positions when plotting 
the internalizing connectivity edges identified via CPM. We also show the 

corresponding (whole) latent networks, with both significant and non-significant 
connectivity edges, estimated via LatentSNA, as well as the average observed 
networks. MF: Medial-Frontal, FP: Fronto-parietal, DMN: Default Mode, MOT: 
Motor, VI: Visual I, VII: Visual II, VAs: Visual Association, LIM: Limbic, BG: Basal 
Ganglia, CBL: Cerebellum. Blue represents the positive connectivity edges, and 
red represents negative edges.
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