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We propose alatent space-based statistical network analysis (LatentSNA)
method thatimplements network science in agenerative Bayesian framework,

preserves neurologically meaningful brain topology and improves statistical
power forimaging biomarker detection. LatentSNA (1) addresses the lack

of power and inflated type Il errors in current analyticapproaches when
detecting imaging biomarkers, (2) allows unbiased estimation of the
influence of biomarkers on behavioral variants, (3) quantifies uncertainty and
evaluates thelikelihood of estimated biomarker effects against chance and
(4) improves brain-behavior predictionin new samples as well as the clinical
utility of neuroimaging findings. LatentSNA is broadly applicable across
multipleimaging modalities and outcome measures in developing, aging
and transdiagnostic cohorts, totaling 8,003 to 11,861 participants. LatentSNA
achieves substantial accuracy gains (averaging 110-150%) and replicability
improvements (averaging 153%) over existing approaches in moderate to
large datasets. As aresult, LatentSNA elucidates how network topology is
implicated in brain-behavior relationships.

Neuroimaging encompasses techniques that providein vivo depiction
of the anatomy and function of the central nervous system to study
the human brain in a noninvasive manner. Some imaging techniques
focus on the structure of the brain (for example, computerized axial
tomography and diffusion tensor imaging (DTI)), while others allow
us to characterize brain activity or function, for example, functional
magnetic resonanceimaging (fMRI) and positron emission tomography
(PET). A major hurdle for modeling neuroimaging data is the highly
correlated and connected nature of measurements throughout the
brain, not dissimilar to networks', which contributes to low statistical
power foridentifying brain-behavior links. Given the networked nature
ofthebrain, amarriage between network science, acomplexity-driven
discipline focused on the shared architecture of networks emerging
across physical, biological and social domains?, and neuroimaging
analysis is needed.

Neuroimaging connectivity models recognize and select meaning-
ful patterns from neuroimages that explain individual differences in
behavior, cognition and other outcomes. For example, case-control
comparisons measure differences in connectivity between healthy

individuals and patients to identify markers of dysfunction®. Uni-
variate and marginal association analyses calculate associations
between connectivity and outcomes to identify links*. By vectoriz-
ing unique pairwise edges from symmetric functional connectomes,
connectome-based predictive modeling (CPM)® achieves functional
imaging biomarker detection using a multivariate regression model
controlling overfitting with cross-validation. Machine learning algo-
rithmssuch asRidge®, least absolute shrinkage and selection operator
(Lasso)®, support vector machines (SVM)’, random forest (RF)® and
convolutional neural networks (CNNs)? are integrated to improve
the predictability of the connectivity model for individual outcomes.

A critical challenge remains: connectivity edges are treated as
independent observations, whereas evidence supports the depend-
ent organization of brain networks as informative neurobiological
indicators'. Graphical models, consisting of both undirected Gaussian
graphical models" and directed acyclic graphs', describe the con-
ditional dependence among random variables and directly address
the violation of the independence assumption. A key task of graphi-
cal models, when applied to neuroimaging data, is to estimate and
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create brain connectivity networks based on whether signals from two
brainregions are conditionally independent of each other®. Although
individual behaviors and outcomes can be incorporated in graphical
models, they are often used to influence the estimation of brain con-
nectivity networks'. By contrast, LatentSNA aims to understand the
structure and property of brain networks (not their estimation) and
howits structureis related to individual behaviors and outcomes. For
further exploration of the differences between these two methodolo-
gies, we refer to these discussions®”.

What differentiates a network science-driven analytic approach
is that it draws on insights regarding the universality of the commu-
nicative structures of real-world networks'. Characteristics such as
the small-world property and sparsity are universal properties found
in social networks®, political networks', the World Wide Web" and
human connectomes'®. Shared network architectures, as a result of
being governed by universal principles®, allow us to use acommon
set of mathematical and statistical instruments for network modeling.
Network scienceis characterized by mathematical investigations about
the universal principles of network generation: what mathematical
principles define the generations of network with power law degree
distributions'. This discipline may have overlap with neuroimaging
connectivity analysis, although they are not the same. For example,
CPM analyzes neuroimaging connectivity data (isaneuroimaging con-
nectivity analysis method), butit does notincorporate the networked
(dependent) characteristics of the brain when modeling brain connec-
tivity edges: it assumes one connectivity edge to be an independent
observation from another.

LatentSNA, aninference-focused generative Bayesian framework
capturing universal network topologies and leveraging latent space
estimation techniques, is designed to analyze human connectomes
and identify meaningful neuroimaging biomarkers of individual out-
comes (Fig. 1). It comprises an integrated workflow containing three
modules: networked connectome modeling (preserving transitiv-
ity and modularity), psychometric behavior profiling and two-way
brain-behavior linking. We achieve robust neuroimaging biomarker
detection with markedly improved statistical power, demonstrating
generalizability of the method across seven neuroimaging landmark
studies: Alzheimer’s Disease Neuroimaging Initiative (ADNI) Grand
Opportunities, ADNI Phase 2 (ADNI-GO/2) and ADNI Phase 3 (ref. 19),
Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4)°,
the Human Connectome Project in Aging (HCP-A)?, Adolescent Brain
Cognitive Development Study Baseline (ABCD-B) and second release
(ABCD-2)*and transdiagnostic data collected at Yale?. These studies
involve eight differentimaging modalities and 20 outcome measures
with a total of 8,003 to 11,861 participants. LatentSNA consistently
improves model fit performance over nine established methods,
including three deep learning techniques (SVM, RF and CNN), two
network-based brain analysis methods including penalized graph
classification (GC**) and tensor network factorization analysis (TNFA®)
and four popular brain-behavior linking approaches such as CPM,
ridge CPM, Lasso and canonical correlation analysis (CCA). It enhances
the predictability (an average of 110% improvement over TNFAand an
average of 150% improvement over CPM) and replicability (averaging
153% improvement over CPM) of variousimaging techniques, including
fMRI, T;-weighted structural MRI (sMRI), DTl and PET. Moreover, it is
generalizable to different outcome measures, including but not lim-
ited to cognition, emotion, assessment of mental disorders, focal tau
PET ([*®F]flortaucipir) standardized uptake value ratio (SUVR) metrics
and different participant demographics across developing, aging and
transdiagnostic populations.

As aresult, our proposed method can substantially improve the
interpretability of current neuroimaging connectivity studies, for
example, providing a view of how brain network topology is impli-
cated inbrain-behavior relationships, exemplified by the ABCD study.
Large-scale disruptions in the functional communicative patterns of

brain connectomes across multiple interconnected functional systems
are found to explain differencesin internalizing symptoms among chil-
dren”. Starlike topological architectures, known for their efficiency in
information dissemination, resiliency with local transmission failure
and affiliation with congestion?, are identified as the fingerprints of
internalizing psychopathology and its deteriorationin children. Over-
all, LatentSNA demonstrates high-quality fit to various imaging data,
generates scientific insights and enriches discussions surrounding
existing neuroscience questions.

Results

Conceptual framework

Motivated by the need to enhance the power for identifying neuroim-
aging biomarkers, we propose LatentSNA as a generative statistical
network analysis (SNA) model to identify significant links between
brain networks and behavioral traits (Fig. 1). Existing SNA models often
analyze brain-behavior links as one-sided regression models. These
models either analyze (reduced-dimension) brain connectivity as pre-
dictorsinaregressionwith behavior as the response*? or they analyze
connectivity as the response inamatrix-response regression to quantify
behavioral covariate effects*®. However, both types of models lack the
ability to capture the mutual variations between behavioral profiles and
brainvariations, thatis, braindevelopment influences children’s behav-
ior and abnormal behaviors potentially reinforce brainabnormalities
due to brain plasticity®. By contrast, LatentSNA allows connectivity
differences toinformbehavior-outcome variations and vice versa: both
brain connectivity (Fig. 1b) and individual outcomes (Fig. 1a) are the tar-
getedmodelinginterests. LatentSNAisideal for detecting complicated
and potentially noisy and weak signals hidden in high-dimensional
functional connectivity data, for example, high heterogeneity and
strong motionartifactsin children’s fMRI data®’. LatentSNA reinforces
potentially weak signals in connectivity with atwo-way cross-sectional
brain-behavior linking module (Fig. 1c) that allows true connectivity
signals and true internalizing signals to mutually inform each other,
thus strengthening connectivity signals. Additionally, LatentSNA par-
tials out random noise variations fromtrue signal variations to further
reinforce potentially weak connectivity signals.

Second, focused on inferring the relationships between brain
networks and behaviors, LatentSNA is, philosophically, an inference
model (also called explanatory model), not a prediction model***.
LatentSNA provides uncertainty quantification for biomarker detec-
tion and robust statistical inference under the Bayesian framework
(Fig. 1a—c). Inference models are built to describe how potential pre-
dictors and explanatory variables explain individual differences in
responses, while prediction models ignore this process and focus
on accurately predicting future responses. Inference models rely on
statistical theories such as the central limit theorem and large sample
properties to derive unbiased estimates of the significant effect coef-
ficients with controlled type I error, while prediction models often
introduce biases to improve prediction. Inference models are more
optimalfor detecting imaging biomarkers, as they allow us to quantify
the uncertainty associated with the identification of imaging bio-
markers, which is not possible with prediction models. With a large
enough sample size, our model can, in an unbiased manner, identify
true mutual relationships between the connectivity of each region
andindividual outcomes with high enough power and controlled type
lerror. Meanwhile, machine learning methods such as Lasso* do not
offer unbiased quantification of the relationships and suffer from low
power and inflated typell errors.

Third, LatentSNA builds on the statistical network modeling lit-
erature and preserves the topological structure of the brain network.
Higher-order dependencies in real-world networks are defined as
dependencies among three (triad) or more nodes*. Common examples
ofhigher-order dependencies inreal-world networks include homoph-
ily, balance and clusterability”. Homophily is often associated with the
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Fig.1|Schematic diagram of LatentSNA. The LatentSNA Bayesian diagram
demonstrates a holistic model for multivariate outcomes Y and brain networks
X.Neuroimaging and multivariate behavior data are input into the LatentSNA
model, which subsequently goes through an iterative MCMC algorithm that
estimates the model parameters theorizing the data generation process of three
interconnected components. a-c, These three interconnected components
consist of psychometric behavior profiling (a), latent space network modeling
(b) and brain-behavior linking (c). a, LatentSNA allows multivariate modeling
ofalatent behavior variable (for example, internalizing psychopathology) with
multiple variables (for example, anxious-depressed, withdrawn-depressed and
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somatic complaints) toimprove precision. The observed psychopathology is
generated following a modified version of a psychometric Rasch model®,
inwhich outcomes are decomposed into item and person components.

b, LatentSNA uses the symmetric bilinear interaction effect to capture network
topology (transitivity, balance and clusterability)**. ¢, LatentSNA infers
relationships between the brain and behavior, for example, internalizing
psychopathology and functional connectivity. We propose ajoint latent variable
model, in which we allow the latent connectivity variables Zand the latent
behavior variables 8 to covary with a shared covariance matrix, 2. L, left; R, right.

transitive property of anetwork, explaining how new connections are
established based on existing connections, also known as transitivity.
Balance suggests a state of harmony, in which positive connections are
found among nodes with similar attributes and negative connections
arefound among nodes with divergent attributes. Clusterability repre-
sentsamorerelaxed criteria for harmony than balance®®. With balanced
cycles among triads, the entire network can be divided into cohesive
groupswithx,,>0ifnodesuandvareinthesamegroupandx,,<O0if
theyareinopposite groups®. Therefore, the presence of higher-order
dependencies such as balance contributes to relational patterns and
topology across the whole network, including higher-order dependen-
cies. By modeling higher-order dependencies, the proposed LatentSNA
captures relational patterns across the entire network.

Bilinear effects account for transitive, balanced and clusterable
network structures®. Vector product-based latent space models,
which include bilinear effect models, capture higher-order depend-
encies such as homophily, balance and clusterability®. Furthermore,
such models show satisfactory model fit for networks with varying
degrees of transitivity and clusterability*’. Given that brain func-
tional networks possess small-world properties', likely exhibiting
both transitivity and clusterability, it is optimal for us to use bilinear
effects tomodel higher-order dependence structures. Consequently,
LatentSNA captures how network topology is implicated in brain-
behavior relationships.

Finally, LatentSNA offers powerful predictions of both connec-
tivity and behavioral variants. We provide a predictive mechanism
for behavior based on connectivity, which simultaneously serves as a
predictive mechanism for connectivity based on behavioral variants.
Accurate prediction is achieved by incorporating latent variables to
separate signal from noise, using joint modeling frameworks and

allowing information communication between behavior and connec-
tivity during model estimation. Additionally, preserving the topology
ofbrain networks and capturing complex dependence structuresis not
possible with simple linear additive models.

Assessment of LatentSNA using generated data

We compared LatentSNA to CPM, Lasso and CCA, a multivariate
method exploring possible dependencies between datasets. The
comparisonwas conducted with varying sample sizes, network sizes,
signal-to-noise ratios in brain connectivity and different levels of rela-
tionships (signal proportions) between connectivity and behavior
(Fig. 2). Based on both power and specificity, LatentSNA shows the
highest success rate for recovering true relationships and true null
relationships, making it the most sensitive and accurate method for
identifyingimaging biomarkers. The relatively low power observed via
CPMreflectsthe general challenges associated withidentifyingimag-
ing biomarkers when fMRI data are noisy and relationships between
connectivity and behavior are sparse. To reduce prediction error,
Lassointroduces a penalty termin the loss function, inducing down-
ward bias in the coefficient estimates, and, unsurprisingly, reportsthe
lowest power. The high specificity of Lassois likely abyproduct of the
downward biasin parameter estimation. By comparison, CCA exhibits
higher power than Lasso and CPM when there are more relationships
between connectivity and behavior. Using CCA, we find linear com-
binations of variables on both sides that maximize the dependence
between the two, making CCA more powerful when the dependence
isstrong. Meanwhile, CCA reports low specificity when the signal pro-
portions are large, suggesting that CCA tends to overidentify effects
with high type I error when the relationships between connectivity
and behavior are numerous.
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Fig. 2| LatentSNA improves statistical power for biomarker detection.

a,b, Bar plots comparing the specificity (a) and power (b) of LatentSNA with
CPM, Lasso and CCA in different data situations across 100 replications;
replicationis generated data. From left to right, the sample size increases from
500t01,000 to 2,000. From top to bottom, we include small (V=20) and large

(V=70) networks as well as signal-to-noise ratios (SNR) of 0.5. We show 25-75%
quantiles as error bars to reflect the uncertainty. ¢, The recovery of biomarkers
versus null effects using LatentSNA versus marginal correlation tests. Box
plots show the centra and 25% and 75% quantiles of the estimated effects using
LatentSNA versus marginal association analysis.

To assess whether the improved power for detection translates
to better prediction accuracy of behavior, we report the estimated
correlationbetween the predicted and observed behaviorinrandomly
sampledtest data (Supplementary Fig. 3). LatentSNA demonstrates the
highest predictionaccuracy for behavior across various datascenarios,
withaccuracyincreasing as the relationship between brain connectivity
and behavior strengthens and as the sample size grows. Additionally,
we provide the prediction accuracy of connectivity using LatentSNA
(Supplementary Figs.1-3). With LatentSNA’s dual-predictive capabil-
ity, we can robustly predict the connectivity of each testing sample
based on behavior information. By contrast, the comparison averag-
ing method uses the sample average connectivity as a prediction for
anew participant’s connectivity. In both prediction tasks, LatentSNA
reliably predicts connectivity networks and behavior in new samples,
particularly when connectivity and behavior are strongly related.

Assessment of LatentSNA using real-world data
Todemonstrate the generalizability of our method across studies, we have
focused ontwo aspects. First, our method fits well to arange of datasets
with strong out-of-sample prediction accuracy. Second, our method
canshow robust and replicable results with consistent effect estimation
across random samplings withinthe same study. For both predictability
andreplicability, we applied LatentSNA to seven different datasets, involv-
ing eight different imaging modalities and 20 outcome measures, with
information fromatotal of 8,003-11,861 participantsincluded. We dem-
onstrate our method viaaninvestigation of the ABCD study, which offers
neurological insights and a view of how network topology is implicated
inbrain-behavior relationships during neurodevelopment.

Improved model performance is observed across imaging modali-
ties, outcome measures and population demographics. To evaluate
theaccuracy of predictingindividual outcomesinindependent samples,

we apply LatentSNA to multiple landmark neuroimaging studies (Fig. 3).
We demonstrate broad applicability of the modelin predicting various
types of outcome measures, including cognition, emotion, assessments
of mental disorders and focal tau PET SUVR metrics, using imaging
modalities such as structuralimaging measuring fiber density, number
offibers and fiberlength as well asresting and task state fMRIs. The pro-
posed method consistently shows improvement in model fit across dif-
ferent datascenarios compared to seven available connectivity models:
penalized GC, TNFA, CPM, ridge CPM, SVM, RF and CNN. Across varied
imaging modalities, outcome measures and populations, our method
consistently outperforms existing alternatives, demonstrating, for
example, an average improvement of 110% over TNFA and 150% over
CPM (Supplementary Figs. 1-3). These results validate LatentSNA as
aninteresting adaptation of statistical network analysis concepts and
methods for linking real-world networks to brain and behavior.

The lack of robustness and replicability of current fMRI studies
is a well-known challenge*-*2, We investigated the robustness and
replicability performance of our proposed method by comparing
covariance effect estimation across random samplings of the test data,
that is, replicability with the same data. We calculated the absolute
correlation of the estimated effects between replications (Fig. 4). Our
model-estimated effects (covariance and/or correlations between brain
and behaviors) were consistent across independent replications when
werandomly splitthe datainto 90% training and 10% test samples. The
CPM, on the other hand, shows lower replicability and robustness.
LatentSNA shows consistently higher replicability (with correlations
above 0.75) across datasets, while CPM shows substantially lower and
more variable reproducibility (correlations ranging from 0.25t0 0.75).

LatentSNA accurately predicts internalizing psychopathology and
connectivity in independent samples. We apply LatentSNA to mul-
tivariate internalizing profiles and functional connectivity during the
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Fig. 3| LatentSNA shows substantially improved predictive performance
over existing approaches. a, Model performance observed across imaging
modalities, outcome measures and population demographics. We include
datafrom ADNI Grand Opportunities, ADNI-GO/2, ADNI Phase 3, A4, HCP-A
and transdiagnostic data collected at Yale. The model is fitted to each imaging
modality and outcome measure with sample size outlined in Supplementary
Table 1. Box plots show the centra and 25% and 75% quantiles of prediction
accuracy using LatentSNA versus other methods. ADAS, Alzheimer’s Disease
Assessment Scale; ECog, Everyday Cognition Scale; BSI, Brief Symptom
Inventory; PACCN, Preclinical Alzheimer’s Cognitive Composite; nBack,
emotional N-back task. b, Box plots show the centra and 25% and 75% quantiles
of correlations between observed and predicted internalizing psychopathology

Region — Null — Biomarker Region — Null — Biomarker

for RS (blue), MID (light blue), SST (yellow) and EN-Back (red) for 100 test
participants across ten runs. From left to right, predictive correlations

based on CPM, LatentSNA (2) and LatentSNA (6) are reported. ¢, Bar plots
display correlations between observed and predicted connectivity for 100
test participants during resting and task conditions (same color scheme as
before). Error bars represent the range between the 25th and 75th quantiles of
prediction accuracy. From left to right, predictive correlations based on full
networks, networks of the top ten internalizing regions and networks of the
top five internalizing regions are reported. d, Scatterplot predicts internalizing
valuesinindependent samples using connectivity via the marginal correlation
test. e, Scatterplot predicts internalizing values inindependent samples using
connectivity via LatentSNA.

emotional n-back task (EN-back), the stop signal task (SST) and the mon-
etary incentive delay (MID) task conditions as well as the resting state
(RS) for5,000t07,000 childreninthe baseline ABCD study. Our aimisto
uncover functional fingerprints under different cognitive states for child-
hoodinternalization, replicate the results and investigate alterationsin
the fingerprints between different task and resting conditions. We show
the predictionaccuracy results for the ABCD baseline study (Fig.3b). We
randomly split the dataset into training and test sets with ten random
splits, each withatest sample size of 100 to maintain consistency across
task and resting conditions. LatentSNA (6) shows median correlation
above 0.9 between observed and predicted internalizing informationin
allfour cognitive states, and LatentSNA (2) shows correlations between
0.6and 0.8.0nthe other hand, CPM only provides correlations around or
below 0.1. This strongly supports the advantage of LatentSNA in dissect-
ingreliable predictive information from functional connectivity under
each cognitive state. Through those constructed joint learning mecha-
nisms by LatentSNA, we can effectively predict internalizing profiles for
new participants based on the available functional connectivity data.
Toassess the prediction accuracy of functional connectivity, we fit-
ted LatentSNA to training dataand calculated the correlation between
the observed and the estimated average connectivity (Fig. 3c). For 100

test participants, LatentSNA reports amedian correlation of 0.502 for
therecovery of whole-brain connectivity, 0.557 for connectivity among
thetop tenrisk-internalizing regions and 0.707 for connectivity among
the topfive risk-internalizing regions. This result shows that LatentSNA
provides sufficiently accurate prediction of the connectivity measure-
ments, posing a unique opportunity to uncover brain connectivity for
new participants incorporating their internalizing measures.

We compared model-identified biomarkers with null effects based
on how much they can explain individual differences in internalizing
psychopathology in new samples (Fig. 3d,e). We show scatterplots
predictinginternalizing values inindependent samples using the sum
of significant connectivity edges via marginal univariate tests (Fig. 3d)
and connectivity via LatentSNA (Fig. 3e). The marginal test cannot dif-
ferentiate the imaging biomarker from the null effect, as both predic-
tive models show close to zero predictability for internalizing values.
By contrast, LatentSNA is able to differentiate the imaging biomarker
from the null effect based on predictive R values. This result demon-
strates that the estimated connectivity in LatentSNA differentiates
biomarkers from null effects. The information flow between connectiv-
ity and internalizing, data integration, allows model-estimated brain
connectivity to beinformed by internalizing in a data-driven manner.
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Fig. 4| Reproducibility analysis of CPM and LatentSNA methods across
different behaviors, fMRI conditions and datasets. Box plots show the centra
and 25% and 75% quantiles of reproducibility using LatentSNA versus other
methods. Each box plot summarizes reproducibility performance through
correlations across tenindependent replications. We use the absolute correlation

between the estimated effects (regression coefficient estimatesin CPM (green)
and covariance estimatesin LatentSNA (red)) across replications to represent the
replicability and robustness of both methods. Higher correlation values indicate
better reproducibility. f, resting state functional connectivity.

LatentSNA learns whether arelationship exists between the func-
tional connectivity of abrainregion and internalizing psychopathology
and correctly uses or ignores thatrelationship depending on whether it
exists. In this manner, estimated latent connectivity variables contain
varying degrees of internalizing information, and a connectivity region
contains more internalizing information whenit s significantly linked
withinternalizing psychopathology and less whenitis not linked with
internalizing psychopathology.

Within the LatentSNA framework, we modeled internalizing psy-
chopathology as an abstract latent construct (or variable) underlying
three observed dimensions of internalizing psychopathology: the anx-
ious-depressed, withdrawn-depressed and somatic complaint dimen-
sions®. These three dimensions represent three conceptually distinct
but complementary manifestations of internalizing psychopathology.
Thus, by directly incorporating these dimensions into LatentSNA,
we allowed more information to be included than if the internalizing
psychopathology were simply modeled as the sum scores of the three
dimensions, asiscommoninthe currentliterature. To assess whether
theincorporation of dimensions hasimproved modeling, we also mod-
eled internalizing as the sum scores using LatentSNA and compared
the fit. We see improvements in predicting internalizing from 0.825
to 0.885 for MID, from 0.886 to 0.893 for SST, from 0.846 to 0.901 for
EN-Back and from 0.791to 0.846 for RS when multiple dimensions are
directlyincorporated. This result suggests that incorporating multiple
dimensions of psychopathology is superior to modeling internalizing
sum scores.

Large-scale disruptions of multiple functional systems are consist-
ently found with internalizing psychopathology across cognitive
conditions. We report the number of significant regions identified
in each of the ten functional systems****; we show the correspond-
ing 95% credible intervals, the uncertainty quantification obtained
from Markov Chain Monte Carlo (MCMC) under Bayesian inference
of covariance estimates for each of the 268 brain regions (Fig. 5a,b).
Across three task conditions, we found consistent involvement of 131
ofthe 268 brainregions and seven of ten functional systemsininternal-
izing psychopathology, supporting internalizing psychopathology as
acomplexandinvolvinglarge-scale affective interference of multiple
coordinating functional systems. While existing psychopathology
literature indicates the involvement of functional systems such as the
default mode network, the prefrontal cortex, theamygdala and other
structures®®, rarely do the studies have large enough power to test the
disruptionacross the whole brainand support large-scale involvement.

Using LatentSNA, we were able to identify and replicate this involve-
ment with other task conditions.

LatentSNA reveals ashared set of functional architectures attrib-
utable toindividual variations ininternalizing psychopathology when
participants are tasked to perform different emotional and cognitive
tasks. This finding corresponds to arecent ABCD study showing similar
predictive brain features for various cognitive, personality and mental
healthscores. During the MID task, functional connectivity shows the
strongest relationship with psychopathology with the highest average
covariance estimates (Supplementary Fig. 6). We show consistent
discrimination of the functional systems and their contributions to
developinginternalizing psychopathology across tasks (Fig. 5a). While
the motor system, the medial-frontal system, the basal ganglia system,
thelimbicsystem, the default mode network and the visual I systems are
consistently found to be implicated ininternalizing psychopathology,
there is also a consistent lack of implications of the fronto-parietal,
visual Il and visual association systems.

The functional architectures of internalizing psychopathology
are different for an intrinsic brain versus an active brain. While cur-
rent literature supports the existence of an intrinsic functional brain
during rest with a set of small changes common across tasks*, little is
known about differences in the functional architectures of internal-
izing psychopathology under different cognitive states. Our results
showevidence foradifferencein affective interference between RS and
task states due to internalizing psychopathology. Different functional
connectivity architectures are found to be implicated ininternalizing
psychopathology between rest and task states.

DuringRS, three functional systems emerge as thetop risk ones to
explainindividual variations ininternalizing psychopathology: the cer-
ebellum, visual land visual association systems. The cerebellum plays
animportantroleinsocialand emotion processing*’,and abnormalities
are found in the cerebellum during rest for individuals with depres-
sion®’ and schizophrenia®. Our results suggest that, during rest, the
cerebellumis amajor functional system contributing to internalizing
psychopathology, anditsrelationship tointernalizingis specifictoan
intrinsicbrain, notwhen the brainisactive. Individual differencesinthe
spontaneous functional activities of the RS visual network, including
visualland visual associations, are also related to individual differences
ininternalizing psychopathology across individuals.

The core-periphery functional network feature is more pro-
nounced with LatentSNA. LatentSNA differentiates signal from noise
in functional connectivity networks via latent variables. Different
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Fig. 5| Large-scale disruptions of multiple functional systems are consistently
found with internalizing psychopathology across cognitive conditions.
Sample size is outlined in Supplementary Table 1. a, Radar plot showing the
number of identified brain regions associated with ten functional systems for EN-
Back, SST, MID and RS. b, The 95% credible intervals of covariances between the
connectome and internalizing behaviors for each brain region. The centrais the

estimated posterior mean of the covariance. The connectivity edges that show
substantial differences between task states and resting state are highlighted in
red boxes. MF, medial-frontal; FP, fronto-parietal; DMN, default mode; MOT,
motor; VI, visual l; VII, visual II; VAs, visual association; LIM, limbic; BG, basal
ganglia; CBL, cerebellum.

from random noise, latent variables capture patterns of meaningful
variationsin functional signals across individuals. In LatentSNA, each
brainregionis allowed to exhibit different levels of variations in func-
tional signals acrossindividuals and different levels of association with
internalizing psychopathology. We captured true signal variations in
reduced dimensions that are much smaller than the dimensions of the
network, and we projected these reduced dimensions back to the net-
work dimensions. In this manner, we obtained the latent connectivity
network capturing true variations of functional signals distinct from
noise. Wereported observed versus estimated latent connectivity for
anaverage participantin the MID condition (Fig. 6b). Latent connectiv-
ity shows a different topological structure than the observed network.

We show densities of the node strength and closeness based on the
latent network and the observed network for an average participant in
the MID condition (Fig. 6¢). The distributions of node strength, for both
the latent network and the observed network, are approximately sym-
metric based on the d’Agostino skewness test™”. The observed network
shows a platykurtic distribution with significantly negative kurtosis
(P<107%, Anscombe-Glynn kurtosis test*?), while the latent network

failstoreject the null. Negative kurtosis suggests that the node strength
hasaflatdistribution with thintails. By comparison, the latent network
has more node strength in the tails with more extremely active and
extremely dormant regions. Closeness, for both the latent network and
the observed network, is positively skewed with highly positive kurtosis.
Compared with the observed network, the latent network shows larger
skewness and kurtosis. Centrality measures show that the latent network
more strongly discriminates core and peripheral regions, reflecting a
more pronounced core-periphery differentiation optimal for communi-
cation, parallel to those of an efficient information distribution system™*.

By preserving the topological structure of the brain, it is not sur-
prising that our identified imaging biomarkers are biologically mean-
ingful and show strong associations with anatomical structures of the
brain (Fig. 6a). Based on LatentSNA, the strongest biomarker signals
(with covariance estimates above 0.4 and top six biomarker regions)
come fromthe cuneus, the middle frontal gyrus, the middle temporal
gyrus, the superior temporal gyrus and Heschl’s gyrus. These regions
play key rolesinbrain functions and are the central actors of the overall
brain network connectivity.
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Functional architectures of internalizing psychopathology are
driven by the core actors of the connectivity network. We report
node strength for regions of the motor system (Extended Data Fig. 1a)
and other systems (Supplementary Fig. 7). We also show node strength,
closeness and betweenness for all regions (Supplementary Fig. 7). The
results show that malfunctions associated with internalizing psycho-
pathology are driven by the core actors of the connectivity network.
The location and connectivity edges of top imaging biomarker are
compared against those of the null effect (Extended Data Fig. 1b,c).
Core regions with high levels of connectivity across the whole brain
contribute toindividual differencesininternalizing psychopathology.
Compared to null effects, imaging biomarkers are the central actors
ofthe functional network with high node strength and high closeness:
they are able to transmit a large quantity of information effectively.
Development of internalizing psychopathology relies on regions that
transmit large quantities of information (high strength) efficiently
(high closeness). Low-strength and high-closeness regions are not
identified as biomarkers: they tend to be the peripheral actors of the
network with only localized connectivity edges.

Internalizing psychopathology in childrenis attributable to starlike
functional networks. As the brain is divisible into many coordinat-
ing functional systems with distinct connectivity architectures and
topology, wereportthe latent internalizing networks with significant

internalizing biomarkers and their connectivity edges in each func-
tional systemin Extended Data Fig. 2. Starlike structures emerge across
functional systems. These starlike structures consist of a few core
actors (stars) with many links and many peripheral actors with a few
links. The star nodes are almost completely connected with each other,
formingacentral clique, and almost all peripheral nodes are connected
with the star nodes. The starlike structure corresponds to therich club
structure often found with brain networks®. Inboth structures, there
are preferential connectivities among core regions. Different from
the rich club structure, in the starlike structure, peripheral regions
and central regions are efficiently linked with short path distances,
and the peripheral regions are rarely linked to each other with low
probability of connections. The starlike configurations contribute to
the core-peripheral structurein the latent functional network and the
skewness of the centrality distributions.

The starlike structure is consistent with the current literature on
our lack of efficiency when multitasking. The starlike structure is cheap
toassemble with asmall number of edges and efficient searchability>.
In an ideal one-star network, all peripheral actors are linked with the
star,and thereis no peripheral-to-peripheral edge. The number of steps
toreachanactorinthe networkisalways two, regardless of the network
size, making the one-star network the most optimal for communication
whenonly oneinformation searchis performed at one time. However,
searchonthe polarized starlike networks quickly becomes expensive
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when multiple searches occur simultaneously due to congestions at
the star nodes.

Our star structure theory provides validity evidence for the cur-
rent multitasking literature, which supports the idea that the brain is
prone to congestions when multiple mental tasks are to be performed*.
The highly connected star regions and their central cliques such as
the fronto-parietal control and dorsal attention systems are crucial
for completing goal-oriented tasks, but the capacities of these star
regions are not limitless. When we multitask, the star regions are likely
tobebombarded by competing streams of information with multiple
sources of relevant and irrelevant signals, which could lead to con-
gestion. On the other hand, with the star structure theory, the brain
is efficiently organized and robust to transmission failure. The star
topology reduces the impact of atransmission failure by independently
connecting each peripheral regionto the star clique. Peripheral regions
communicate with each other via transmission to and from the star.
Loss of links between peripheral regions has no impact on network
communication. When there is a failure of transmission between a
peripheral region and the star, the peripheral region is isolated, yet
communicationinthe networked brainis unaffected, makingit robust
to failures.

Duetothe efficiency of brain network communication and its gen-
eralrobustnessto transmission failure, degeneration of the functional
brainnetworkis damaging whenthe star regions are compromised. Our
results provide evidence for this hypothesis. Internalizing psychopa-
thology in children is attributable to star regions and core cliques of
the functional organization (Extended Data Fig. 2). Coherent starlike
internalizing functional architectures are concentrated in the motor,
limbic, medial-frontal, basal ganglia, default node network and visual
Ifunctional systems. By comparison, the internalizing functional net-
works identified through CPM do not exhibit a coherent pattern nor
do they follow central-peripheral differentiation. Our results show
that individual differences in the coordinating functional activities
of a few star regions can explain substantial individual differences
in psychopathology. Thus, the malefactions of star regions could
have major impacts on the development of psychopathology and its
further deterioration.

Discussion

Inthis study, we developed a network science-driven analytic method
that addresses the lack of power and inflated type Il errors in neuro-
imaging biomarker detection. The proposed method represents an
effort to extend SNA' to jointly model brain connectomes and outcome
measurements, enhancing the ability to detect region-specificimaging
biomarkers. While the current SNA methods mentioned above primarily
focus on modeling single networks, brain connectivity networks canbe
viewed as multiplex networks with multiple layers of brain connections
observed acrossashared set of brainregions. To model these multiplex
structures, a shared set of latent variables across layers can be used,
assuming ajointrelational structure across sets of connectivity®’. Alter-
natively, we candistinguish between shared and individual components
across layers™, In contrast to these approaches, LatentSNA captures
individual differences inbrain connectivity networks across layers and
identifies specific brain regions where the covariation between layers
of brain networks and outcome variables is substantial.

LatentSNA contributes to current neuroimaging connectivity
methods by offering ahigh-power whole-brainapproachforidentifying
brain-behavior links. A critical challenge of current neuroimaging con-
nectivity methodsis that connectivity edges are treated asindepend-
ent observations, resulting in low statistical power and inflated type
Ilerrors. Univariate and marginal association analyses independently
calculate associations between each connectivity edge and outcomes
toidentify significant links*. CPM°identifies imaging biomarker detec-
tion by vectorizing unique pairwise edges from symmetric functional
connectomes for behavior prediction.

LatentSNA makes a contribution to existing neuroimaging
regression methods such as network response regression®” and
scalar-on-network regression®. LatentSNA offers several advantages
over network response and scalar-on-network regressions by posit-
ing a shared data generation process for connectivity and outcomes.
First, unlike regression models that typically assume one-directional
relationships between brain and behaviors or outcomes, estimat-
ing either the impact of brain on behavior or vice versa, LatentSNA
acknowledges the mutual relationship between them. Changes inthe
brain often correlate with changes in behavior, but neuroplasticity sug-
geststhat disordered behaviors and dysfunctional environments can
alsoinfluence brain function over time. Second, in scalar-on-network
and network response regressions, using brain connectivity (or behav-
ior outcomes) as predictors assumes that these variables are fully
observed. This assumption becomes problematic when data include
partially missing observations for brain connectivity and individ-
ual outcomes. Regression methods struggle to handle situations in
which dataareincomplete for both brain connectivity and outcomes.
Lastly, traditional regression methods lack robustness in estimating
parameters related to brain connectivity or behavior when they do
not simultaneously model the reciprocal influence between them.
By contrast, LatentSNA integrates both brain and behavior within a
unified modeling framework, allowing mutual information exchange
during model estimation.

The LatentSNA model has limitations that prompt important
future extensions. First, with LatentSNA, researchers can obtain sat-
isfactorily accurate predictions of both connectivity and behavioral
variants in cross-section settings. Accurate prediction is achieved by
incorporating latent variables to separate signal from noise, using
jointmodeling frameworks and allowing information communication
between behavior and connectivity during model estimation. With
the increased availability of longitudinal datasets such as ADNI and
ABCD, itisofimportance to extend current LatentSNA to longitudinal
data. Longitudinal extensions would allow us to explore the temporal
dynamics of fMRI across developmental or aging stages.

Second, LatentSNA offers substantially improved interpretabil-
ity of neuroimaging studies, as it provides inferences about specific
neuroimaging connectivity features that contribute to behavior out-
comes. Future researchis needed to investigate the clinical relevance
of LatentSNA by exploring the specific contributions of different neu-
roimaging modalities in behavior predictions and investigating how
these features can translate to clinical applications that ultimately
improve the practical value of LatentSNA. In particular,amoreclinically
heterogeneous cohortis needed to understand functional substrates of
psychopathologies. The ABCD study offers an opportunity to explore
brain-behavior relationships in a large population of children. Yet,
at these ages (9-10 at baseline and 11-12 at ABCD-2), relatively few
children exhibit depression-related symptoms. Minimal participants
inthe ABCD study are diagnosed with depression, which limits the psy-
chopathology findings. A more clinically heterogeneous child cohort
isthus needed to explore psychopathologiesin children.

Future work should also consider the group structure among the
regions and how regions collectively contribute to internalizing psy-
chopathology: past work has documented the importance of group
structures of the functional brain viafunctional systemsin cognitionand
disease. Beyond neuroscience, LatentSNA allows the detection of depend-
ence between complex networks and nodal attributes, with potential
applications in many other domains of science. Many complex systems
suchassocial relationships, worldwide webs and transportation grids are
impacted by higher-level attributes, and LatentSNA is a statistical tech-
nique that can open up many fields with rigorous and powerful analysis.
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Methods

InSupplementary Table 1, we provide an overview of the study cohorts
and datasets included in our analysis, consisting of the following stud-
ies: ADNI Grand Opportunities and ADNI-GO/2, ADNI Phase 3, A4,
HCP-A, ABCD-B and its 2-year follow-up (ABCD-2) and the transdiagnos-
tic data collected at Yale. We fitted the model to each combination of
imaging modality and outcome measure. Our focusincludes cognition
outcomes, commonly used to assess the performance of new methods;
and emotion outcomes, closely aligned with internalizing outcomes
such as depression and anxiety; as well as disorder and focal tau PET
SUVR outcomes, which directly reflect biological changesin the brain.

Adolescent Brain Cognitive Development Study

We used brainimaging datafrom both thefirst and second releases of
the largest long-term study of brain development and child healthin
the US, gathered from 11,875 children aged between 9 and 10 years old*.
Here, we describe the data processing of the first-release data, and the
second release was processed using the same procedures.

Functional magnetic resonance imaging. To investigate links, blood
oxygen-level-dependent (BOLD) functional activation was recorded
for children during RS and while they performed three emotional and
cognitive tasks. The fMRI data underwent initial preprocessing using
Biolmage Suite®’. Standard preprocessing procedures, includingsslice
time and motion correction, and registration to the MNI template,
were described in detail by Greene et al.** and Horien et al.**. Eligible
scans exhibited no more thana mean frame-to-frame displacement of
0.10 mm. Brainimages were parceled into 268 regions of interest (ROIs)
ornodes using the Shen atlas, encompassing the cortex, subcortex and
cerebellum®. Within each node, voxel-level time courses were aggre-
gated. Functional connectivity was then constructed for each child in
the study during both RS and each task state. Functional connectivity
matrices were created, with each row and column representing all
nodes, and each entry (i, j) in the matrix denoting the Pearson correla-
tion coefficient between the ith and jth nodes, scaled to be normally
distributed via Fisher’s ztransformation.

Toinvestigate whether ashared set of neural substrates exists for
internalizing psychopathology across different emotional and cogni-
tive tasks and to determine whether these substrates differ from those
observed duringrest, we separately applied LatentSNA to RS functional
connectivity and functional connectivity during each task state. Our
analysis included 7,606 adolescents with RS functional connectivity
data, capturing intrinsic brain functional activity. Additionally, we
investigated the functional connectivity of 4,871 adolescents perform-
ing the EN-back task, 5,096 adolescents performing the SST and 5,298
adolescents performing the MID task.

Internalizing psychopathology. In the ABCD study, internalizing
psychopathology is assessed through self-reported surveys using the
Child Behavior Checklist (Stavropoulos et al.**), which comprises 119
items aggregated into eight empirical subscales. Three subscales of
the Child Behavior Checklist, namely anxious-depressed (13 items),
withdrawn-depressed (eight items) and somatic complaints (11items),
contribute to the assessment of internalizing psychopathology. We
applied the proposed LatentSNA to both multivariate and univariate
representations, interpreting the results based on the model with
superior fit, namely the multivariate internalizing measures.

Alzheimer’s Disease Neuroimaging Initiative
Datausedinthe preparation of this article were obtained from the ADNI
database (http://adni.loni.usc.edu).

Structural magnetic resonance imaging and diffusion tensor imag-
ing. We downloaded T;-weighted sMRIand DTl datafromthe ADNI-GO/2
database from 174 participants. We applied an overcomplete local

principal-component analysis®® to process DTl data following standard
steps including denoising, motion correction and distortion correc-
tion. We performed probabilistic white matter fiber tractography using
fiber assignmentby continuous tracking®. We registered sMRI scans to
thelower-resolution b, volume of the DTl data using the FLIRT toolbox
in the FMRIB Software Library®®, and we then defined cortical ROls in
FreeSurfer space using the Lausanne 2008 parcellation with 68 corti-
cal ROIs®. We obtained the number of the fibers connecting each pair
of ROIs as well as the surface area of the regions. Fiber density-based
structural connectivity was calculated by dividing the number of fib-
ers between two ROIs with their average surface areas’™. Three types
of structural brain networks were constructed as the number of fibers
between a pair of brain regions, the length of the fibers as well as the
fiber density of tracts connecting pairs of ROls.

Functional magnetic resonance imaging. We used RS functional
neuroimaging data from the third release of the ADNI study. We pro-
cessed the images using the Connectome Mapper 3 pipeline” built
in Nipype’>. RS fMRI images were processed with despiking and slice
timing correction following the method of Cox”’; the images were also
motion corrected and distortion corrected using FSL. RS fMRIimages
wereregistered to the b, sSMRIusing the FLIRT toolbox™. The BOLD time
signals of each ROl were bandpass filtered and then detrended using a
linear regression. We constructed functional brain networks for each
participantas the Pearson correlation between the BOLD time signals
for pairs of ROls.

Disorder-cognition outcomes. For outcomes, weincluded the ADAS,
Cognitive Subscale”, a rating of dysfunction by AD. We included the
ADAS score as the sum of 13 diagnostic questions collected at baseline.
In addition, we included the sum score of the Everyday Cognition
Scale’, a questionnaire measuring the patient’s cognitive function. We
applied the proposed LatentSNA to both the ADAS and the Everyday
Cognition Scale to assess the model’s generalizability to alternative
outcomes for the aging population.

Anti-Amyloid Treatment in Asymptomatic Alzheimer’s
Disease

The A4 study is a secondary prevention trial targeted toward older
people with amyloid accumulation and at highrisk for AD dementia.

Structural and functional magnetic resonance imaging. For the fMRI
data, we used the same processing procedure as that for the ABCD.
MPRAGE scans were skull stripped using optiBET”” and nonlinearly
aligned to the MNI-152 template using Biolmage Suite.

Focal tau PET SUVR metrics. We used PETSurfer within FreeSurfer for
anintegrated MRI-PET analysis’®. We derived focal tau PET ([*F]flor-
taucipir) SUVR metrics from the A4 images using 90-110-min (4 x 5-min
frames) post-injectionimages, preprocessed and analyzed using PET-
Surferin FreeSurfer (version 6.0+). We summed and motion corrected
the 5-mintau PET frames. We then aligned the composite PET images
to corresponding MRIimages, parcellated using the Desikan—Killiany
Atlas” and partial-volume corrected using FreeSurfer. We gathered
the average tracer absorption values for each region defined by the
atlas and computed SUVRs using the whole cerebellar cortex as the
reference region.

Cognition outcome. To assess cognition changes, we included the
Preclinical Alzheimer’s Cognitive Composite (PACC, Donohue et al.*)
collected as part of the A4 project. PACC is acomposite cognitive score
combiningtests that assess episodic memory, executive functionand
general cognition, anditis the primary outcome measure for A4 target-
ing the preclinical AD population. PACC is found to be sensitive to the
earliest disease-related changes®.
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Human Connectome Project in Aging

The Lifespan HCP-A aims to characterize how brain organization and
connectivity change during typical aging, compared to an’abnormal’
aging process?.

Functional magnetic resonance imaging. For the fMRI data, we used
the same processing procedure as that for the ABCD.

Emotion-cognition outcomes. For the HCP-A project, we focused on
cognition and emotion measures. To assess the cognitive capability of
the healthy aging population, we included the composite scores for
the Picture Sequence Memory Test as well as the Cognition Composite
scoreincluding Fluid Composite and Crystallized Composite, derived
from all National Institutes of Health (NIH) Toolbox Cognition tasks®.
For the emotion outcomes, we chose Emotional Distress Depression
and PROMIS Anxiety to maintain relative consistency with the inter-
nalizing outcome. Emotional Distress Depression is captured by the
Sadness Survey from NIH Toolbox Emotion Battery®’, which measures
negative mood and perceptions. PROMIS Anxiety is captured by the
Fear Affect Survey, a self-report measure assessing fear and anxious
misery from NIH Toolbox Emotion Battery.

Transdiagnostic project

The Transdiagnostic project aims to recruit clinically naturalistic and
demographically diverse participants to more effectively study the
links between imaging and behaviors*; the project was conducted at
Yale between February 2018 and March 2021. Participants inthe Trans-
diagnostic project tended to show a wide range of symptom severity
and commonly had multiple psychiatric diagnoses. Allimaging infor-
mation was collected at the Yale Magnetic Resonance Research Center.

Functional magnetic resonance imaging. Preprocessing of fMRI data
fromthe Transdiagnostic project is the same as the processing of fMRI
data from the ABCD study.

Disorder outcomes. We included the global severity index of the
Brief Symptom Inventory®*®, a rating scale aiming to identify clini-
cally relevant psychological symptomsinadolescents and adults. The
globalindices measure the level of symptomatology, its intensity and
number of occurrences.

LatentSNA
Our method makes use of techniques of Bayesian statistical inference,
in which we propose a generative network model to theorize how
neuroimaging connectivity and individual behaviors and outcomes
intertwine with each other under random statistical processes with
noise. We fitted the neuroimaging connectivity dataand accompanying
outcome measures and estimated covariances between the connectiv-
ity of each brain region with outcome measures across participants.
LatentSNA is motivated by the need to improve the power for
detecting meaningful biomarkers of individual behaviors and out-
comes using noisy imaging connectivity networks. To achieve thisaim,
we propose LatentSNA with a few distinctive features. First, LatentSNA
isajoint modelintegrating imaging connectivity and behavior variants.
Consider asymmetric connectivity tensor, X € R"*Y*N, where Vis the
number of nodes for the brain atlas and Nis the number of participants.
Simultaneously, we have information about the behavior of the par-
ticipants, denoted by the N x Pmatrix ¥, where each row includes the
response value for participant i with p outcome measurements. The
proposed LatentSNA is distinct from a network response regression,
where the network is the response and the effect of behavior on the
network is estimated as the regression coefficient of covariates. Simi-
larly, the model differs from a connectivity-based predictive model
with behavior as the response and the network as the predictor®.
Instead, we proposed a joint data generation process that allows

connectivity alternations to inform behavior variations and vice versa:
both brain connectivity and behavior are the targeted
modelinginterests.

Second, LatentSNA has roots in statistical network methods and
preserves the topological structure of the network. When modeling
brain connectivity (one of the three components of the model), we
made use of the symmetric bilinear interaction effect to capture
third-order dependence patterns (transitivity, balance and cluster-
ability) often present in symmetric networks®**, While additive effects
only capture variations across the rows and the columns of the network
(variationinnode degrees), bilinear interaction effects capture trian-
gular structures of the network and relatedness among multiple brain
regions. This isimportant because these higher-order dependencies
exist in brain connectivity. For example, functional systems capture
the coactivation of three or more brain regions that creates behavior,
cognition and psychopathology. Bilinear effects capture how the dis-
tributed patterns of interactions create function and account for the
complexity of integrated multimodal brain systems not possible with
additive effects. For each participant, we introduced unidimensional
region-specificlatentvariables z,; to represent connectivity informa-
tion for participantiand region uand use z, z,;as the driver of connec-
tionbetween brainregions uand vfor participanti. Eachnode uis part
of adependent network with strength of connection tonode v via the
bilinear effect of the two nodes. Specifically, the connectivity between
nodesuandv,u<v,u,v=1,2,..., Vismodeled by

o
eupi ~ N(0,02), o

Xuyp,i = w,Tﬁ +a; + 2,2y + €y
where g, is the fixed connectivity intercept for participanti, e, is the
error term, ¢ is the error variance and iid stands for independent and
identically distributed. We adjusted for Q covariates, for example, age
and gender, denoted by w,withthe firstelement tobe1corresponding
totheintercept with their effects onthe connectivity matrix character-
ized by B. Given that each connectivity value is standardized across
persons, node-level additive effects are not necessary. The mean of the
connectivity values for each node across persons is zero. In matrix
form, we used Zto denote the N x Vmatrix of latent variable values, z;
todenotethe Vx 1vector of latent variable values for participantiand
E;todenote the Vx Vmatrix of errors. The approximation of the pos-
terior distributions of the unknown quantities is facilitated by setting
an MVN(ug, 25), ;= (0, 0,..., 0, 0)7, 2g=1I, prior distribution for 8, a
gamma(V2, V2) prior distribution for o;2and anN(O, 1) prior distribution
for a; (where MVN stands for multivariate normal and N for normal).
The prior for the covariance of the latent network dimensions is
described in the joint component.

The third distinguishing feature of LatentSNA is that it focuses on
the inference of relationships between connectivity and behaviors.
For each participant i, the probability of pairwise brain connectivity
also depends on the participant’s behavior y;, and this influence is
achieved viajoint multivariate normal distribution of the connectivity
and behavior parameters. Suppose that we have 6, the unidimensional
random latent variable representing the behavior information for
participanti. The connectivity and individual behaviors and outcomes
areintegrated in the following way:

N 0 A, AT
(21,35 22,45 - ’ZV,isei)T X MVN (( V)s):V+D>’ I= ( : ZB>, 2)
Op Az Ag

where A, is the V' x D matrix modeling the relationship between con-
nectivity and behaviors, D=1. When there are nonzero elements in the
A, matrix, the connectivity and the attributes regulate and inform each
other, whichleadsto better estimation for both connectivity and behav-
iors. Approximation of the posterior distribution of X is facilitated by
settingaprior distribution of Wishart(/,.,, V+ D +2). Toinfer whether the
connectivity of abrain regionisrelated to behaviors, we tested whether
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the corresponding covariance parameter equals zero, controlling for
reflection indeterminacy. We delved deeper into the issue of reflection
indeterminacy whendiscussing estimation. Viathe joint distribution, we
assumethatthereisalatent dependence structure between the network
andthebehavior, 2, ,. This dependence structureis region specific, with
behavior having significant links with some brain regions and not oth-
ers. This dependence structure captures the true (in a statistical sense)
covariation between connectivity and behaviors across individuals,
separate from variations due torandomnoise. If acovariance parameter
is significantly different from zero, we can conclude that the associated
brain region is significantly linked with behaviors, and its differences
acrossindividuals can explain individual differencesin behaviors.

Last but not least, using latent behavior variables, LatentSNA
allows multivariate modeling of individual behaviors and outcomes
with more information to improve its estimation precision than uni-
variate modeling. In this manner, observed individual outcomes are
generated following amodified version of a psychometric Rasch model.
The original Rasch model® proposes a data generation process for
random test responses in which each test question has a unique dif-
ficulty parameter and each person is ranked based on the number of
correct responses. We modified this model in a few ways. The original
Rasch model does poorly at accommodating data types that are not
binary. We included a more flexible linking mechanism for the latent
responses and the observed data, allowing for both discrete and con-
tinuous data distributions. The original Rasch model also does not
account for covariate effects such gender and race, and, to improve,
weincluded a covariate term that allows the probability of responses
tovary dependingon participant demographics. Mostimportantly, we
introduced a dependence between the latent behavior variables and
connectivity, which allows the latent space of behaviors to be informed
by brain connectivity. The degree of dependence is learned via data,
and it organically influences how much the behavior information is
integrated. As the behavior component of the joint model, participant
i'sresponse on variable p is modeled by

€ip = N(0,72), )

Yip=hly+b,+6;+¢,
where b, is the fixed intercept for variable p. We adjusted for Q' covari-
ates, for example, age and gender, denoted by h; with the first element
tobelcorrespondingto the intercept with their effects on the connec-
tivity matrix characterized by y. In matrix notation, we used bto denote
the P x 1vector of theintercepts, 8to denote the N x D matrix of latent
variables and ¥ to denote the N x Pmatrix of psychopathology errors.
AsiscommoninRasch models, the parameters for the questionitems
are fixed and the person variables are random. Approximation of the
posterior distribution of the intercept parametersis facilitated by set-
ting a standard normal prior distribution. We set a prior distribution
of gamma(V, V%) for t2.

Estimation

Fitting the model involves iterative samples of the full conditional
distributions of each parameter defined in the model until we find
stable and converged Markov chains to approximate various quanti-
ties of the targeted posterior distributions via the Gibbs sampler. To
achieve the global optimum for parameter estimation, we start with
ten random initializations for parameter values and choose the most
optimal results based on out-of-sample prediction accuracy. We iter-
ated the following steps:

« simulate 3, a from their full conditional distributions,

« simulated®given,a,%,y,b,7,6,%,X, Y,

« simulate y, b from their full conditional distributions,

« simulate ’ givenB,a,0%y,b,7,6,%,X, Y,

- simulate {Zand 6} from their full conditional distributions and
« simulate X from its full conditional distribution.

Toallow theinformation in connectivity and individual behaviors and
outcomes to flow between each other and mutually inform parameter
estimation, we sampled {Zand 6} from their joint full conditional dis-
tribution given both the connectivity and behaviors. For participant
i, thejoint full conditional distribution of z;and 6;is the product of the
three parts (connectivity, behaviors and joint):

Zj - N
A

- Z; P
o« p(t116:, 0P, 120 0P (( . ) |2) x exp (—§052 T (- eoz) @)
i p=

1 . 2 1% Tz_l Z;
€Xp _Eu 123 u(fuul Czu,,'zu,i) &exp _5 ei 9,- >

where T=Y—1b" - Hyl] and F;is X; — a; — w;8 = z;z| + E;. We can trans-
form F;in such a way that the transformed error term is a standard
normal distribution using F; = cF;, where c¢=g;!. Therefore,
i = cz;z] + E;, where ¢, ,; follows a standard normal distribution. The
joint part of the distribution p((zu')\z) can be written as

Qz QBZ )

exp(—;(zu,,-szu,,- +24,Q,.0; + 0,Q ;2. + 6]Q,0)) , where 51 = (g

(each component is afunction of As) and 2" is part of X only mvolvmg
the specific brain region. Extracting relevant terms from

p((gi )t f, 2, 02), we can see that the full conditional distribution of
; :

Z,,;18
14 (Zu,ilfu,p 3, 61)
1 v
 exp (— 5Zui (UﬂZ’,;#u 22,2, + Q’) 2y )
T 4 17
+2,; (v 12 cfu“zy, ;929,- - EQIU 6;)),

amultivariate normaldlstrlbutlon w1th variance (Zu s © 2, ,z,, +Q )
and mean (ZU Lotu c%z,,z,; + Q') (ZH vt 0 iZ0i — . 0i — QfTB)
The latent varlable value for psychopathology is mlgormed by bram
connectivity and should be sampled from

p(6ilt, %, 2,,A, 02)

»
 exp (—%9[(0;2 > apal + Qp)b; ©
p=1

+ BT ( Z O¢ t, pqp — QGz Q2621>)

a multlvarlate normal dlstrlbuqon with vanance (2 A a,,a + Qg)
and mean (3" - o 20l + Qp) (E L Lip0 e, — Q ngz,) Cru-
cially, we sampled the covariance matrlefrom an mverse Wlshart w)
(lsp+ FF,N+V+D+2)withF asanN x (V+1) matrix with the ith row
as (z],60).

Theintroduction of the bilinear effect z, z,;induces partial reflec-
tion indeterminacy. For each set of latent variable values, z,;and Z,;,
the positions given by -2, ; and —2,; give the same set of product and
consequently the same likelihood. During the MCMC chain, the sign
of z,;, u=1canchange while maintaining the same connectivity value.
Crucially, the connectivity latent variables are also related to individual
behaviors and outcomes, whether z,; is estimated as 2,; or -2, ; has
consequences on the correlation between z,;and 6,. Putin a different
way, z,;is softly identified, as the signs of z,; need to satisfy the correla-
tionbetween z,;and 6. To estimate such a model, we assume that, after
asufficient burn-in period, the signs of z, ;have reached a sufficiently
optimal point, where its correlation with 6;has researched a stabilized
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estimate resembling the true correlation. After this burn-in period, we
fix thesigns of z,;to the same as those of the target, thatis, target = esti-
mated z,; from the first iteration after burn in. Therefore, there is no
reflectionindeterminacy issue after burnin.

The estimation algorithm for this paper wasimplementedinR. The
code is available via the user-friendly GitHub page at https://github.
com/selenashuowang/latentSNA with a tutorial. For each task condi-
tion, we performed posterior inference based on the MCMC algorithm
underrandominitialization. No obvious nonconvergence issues were
found via trace plots. For each task condition of the ABCD study, we
compared the model fit of the multivariate behaviors with that of the
univariate behavior outcome. The univariate outcome is the sum of
the threeinternalizing variables as mentioned before.

Identification of imaging biomarkers is based on whether the
estimated covariances between connectivity and behavior are sig-
nificantly different from zero. Therefore, itis of interest to expand on
the sensitivity of the prior specification of the covariance parameters.

InLatentSNA, the approximation of the posterior distribution of X
isfacilitated by setting a prior distribution of IW(/,;, V+1+2) with the
identify scale matrix S, =/and degree of freedomequaltom,=V+1+2.
The use of an IW distribution as a prior for the variance-covariance
parameter matrix is fairly common in Bayesian analysis; see discus-
sions of Leonard and Hsu®. The IW prior is a conjugate prior for the
covariance matrix of the normal data. In LatentSNA, we are interested
in estimating the covariance matrix X of the joint distribution of the
latent connectivity and behavior variables, D = (z;, z, ..., 2,;, 6;). With
the IW prior, the posterior distribution of X can be obtained through
Bayes’ theorem:

POIEDP(E).

(D) <

p(EID) =

Fromit, we can obtain the posterior distribution of 2 with the specified
prior distribution as

IID ~ IW(Sg + FTF,mg +2), 8

where F’is an N x (V +1) matrix with the ith row as (z], 67). Therefore,
the posterior mean of X'is a weighted average of the sample covariance
matrix F'F’ and the prior mean S,. When the sample size N > «, the
posterior mean approaches the sample mean.

In a sensitivity analysis conducted by Zhang®®, the author set the
scale matrix asidentity and varied the degrees of freedom by increas-
ing m,. With the increase in m,, the posterior means become smaller
andthe posterior variances alsobecome smaller. Thus, given the large
samplesizeinthe data, we expect the posterior mean of 2to approach
the sample mean.

Simulation

The datageneration process for the simulation was as follows. For sim-
plicity and consistency, the number of behavior variables was assigned
as one in all generated data. We first generated the connectivity latent
variables as well as the latent behavior variables from the multivariate
normal distribution with the mean zero and the predefined covariance
matrix with unit variances. To conduct a comprehensive assessment
of the model performance, we created a range of data situations with
varying sample sizes, connectivity scale, signal-to-noise ratio and sig-
nal proportions. To assess the model’s ability to accurately identify
trueimaging biomarkers for outcomes that have both strong and weak
biological signals, we varied the amount of true signals in the data by
assigning the signal proportion to 0.1and 0.3. When the signal propor-
tionequaled 0.1(0.3), we randomly assigned 10% (30%) of the covariance
parameters between connectivity and behavior to be nonzero. Toensure
the positive definiteness of 2, we assigned both the covariances between
connectivity and behavior and the corresponding dimensions in the

latent connectivity covariance matrix as 0.9. We randomly sampled the
errors for the connectivity from a normal distribution with mean 0 and
variance defined by the signal-to-noiseratio. Errors for the behavior were
sampled fromthe normal distribution withthe mean 0 and variance 0.5.

We considered three samplesizes, N=500,N=1,000and N=2,000
and two conditions for the number of nodes V=20 and V=70, and we
specified two levels of the signal-to-noiseratio, 0.5and 1, controlled by
theerrorvariance while keeping the variance of the latent variables con-
stant. The individual-specificintercepts for connectivity and behavior
were set to 0. Intotal, we considered 24 different scenarios combining
from different signal proportions, sample sizes, node numbers and
signal-to-noise ratios. Under each scenario, we simulated the 100 data.

We compared LatentSNA with CPM, Lasso and CCA. For Lasso,
wefitted the model to the training set using the glmnet package®. We
selected significant edges based on minimizing mean squared error
with tenfold cross-validation. For CCA, we fitted the model to the
training set using the CCA package®’, and regions with strong loadings
were considered to be related to behavior. The cutoff thresholds are
determined by the true signal proportions. Forexample, whenthe true
signal proportion equals 0.1, we considered the top 10% of regions
with highest absolute loadings to be significantly linked with behavior.

Predicting outcomes

For LatentSNA (6), predicting the behavior outcome of a new partici-
pant amounts to additional draws for each new y, from a distribution
with probability determined by the model. For LatentSNA (2), on the
other hand, predicting the behavior outcome of a new participant is
based on the estimated latent connectivity variable Z from the train-
ing data. We evaluated the out-of-sample predictive performance for
LatentSNA (Z) and LatentSNA (6) as follows:

«  Werandomly sampled 100 participants and their behavior
outcome as the test data and the other sets of data points as
the training data.

» Wefitted the training data to LatentSNA and obtained the
posterior mean of the model parameters.

» For LatentSNA (6),

- Predicting the behavior outcome of anew participant amounts
to additional draws for each new y, from a distribution with
probability determined by the model.

- The full conditional of the new observations ¥V is, for any
y; € ytesv, determined by n(y,|0, b, ¥)).

* For LatentSNA (2),

- Predicting the behavior outcome of anew participantis based
onthe estimated latent connectivity variable Z fromthe train-
ing data.

- We first selected significant imaging biomarkers based on
95% posterior credible intervals of the covariance parameters
and used latent connectivity variables of significant imaging
biomarkers as predictors.

- Second, we split the estimated latent connectivity variables

~(test) ~(train)
intothetestset Z “andthetrainingset 7 followmg the
splitof the data.

- Third, we fitted the training model using 7™ as the predic-
tors and the observed psychopathology outcomes for the
training participants as the response.

- Weobtained the estimated regression coefficients gbased on
the training model.

- Lastly, we predicted the psychopathology outcome of a new
participant, forany y; € ys9, under LatentSNA (2) following
;= [3 % 2(test)

We repeated the process ten times. Figure 3b shows the
out-of-sample correlations between the observed and predicted inter-
nalizing values on the test data using LatentSNA (2) and LatentSNA
(6). Between LatentSNA (2) and LatentSNA (0), the former does not
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directly, butindirectly, incorporate training internalizing information
for prediction, while the latter does. This shows that, by constructing
jointlearning mechanismsusing LatentSNA, we can effectively predict
internalizing profiles for new participants based onthe available data.

Comparison methods. We have added model evaluation results
against two network-based brain analysis methods, the penalized GC
approach® and the TNFA. Additionally, we have incorporated compari-
sons with three widely used machine learning techniques, SVM’, RF®
and CNNs’, to provide a comprehensive assessment of our methods’
performance. The GC approach uses brain connectivity as predictors
and adopts both L1 penalty, the absolute value of coefficient magni-
tudes and a generic group Lasso penalty. We fitted the GC approach
using the graphclass R package’. The tuning of the penalty factor
pair (4, p) was conducted on a 3 x 4 grid, with A selected from the set
{10°¢,107%,10*} and p € {1, 10, 20, 30}. It was observed that a A value
exceeding 107 and a p value surpassing 40 result in the penalization
of all coefficients to zero.

For the TNFA approach, similar to the tensor network
principal-component analysis method®, we embedded the Vx V
symmetric adjacency matrices into a low-dimensional matrix; each
row contains participants’ principal-component scores, and each
column contains the basis network; only significant basis networks
wereincluded as predictors. We then performed a network predictor
regression with the embedded low-dimensional basis networks as pre-
dictors of the outcome variables. SVM predicted behavioral outcomes
based on alow-dimensional matrix derived from the V x Vsymmetric
adjacency matrices, akin to the TNFA approach. This process involves
embedding the adjacency matrices into a reduced space, where only
significant basis networks were retained as predictors. These features
were then used to train an SVM model with a linear kernel using the
el071R package®”. The model undergoes parameter tuning using agrid
search to optimize the cost parameter, and the best model is used to
predict behavioral outcomes from test data. The RF method isimple-
mented using the ranger package within the caret framework in R,
and, similarly to SVM, it uses features derived from a low-dimensional
matrix of brain connectivity data. A grid search strategy optimizes
key parameters: the number of variables per split (mtry), the node
splitting criterion (splitrule) and the minimum node size (min.node.
size). For CNN, we fitted the model with the torch package in R**. Our
CNNarchitecture consists of sequential dense layers with ReLU activa-
tions, specifically designed to handle the features extracted from the
low-dimensional connectivity data. The model undergoes training
using an Adam optimizer and a cross-entropy loss function across
multiple epochs, ensuring optimal learning from the training data.
Aftertraining, the CNNisused to predict outcomes onthetest dataset.

Predicting connectivity
We evaluated the out-of-sample performance for predicting connectiv-
ity of new participants as follows:

«  Werandomly sampled 100 participants and their connectivity
values as the test data and the other part of data points as the
training data.

«  Wefitted the training data to LatentSNA and obtained the poste-
rior mean of the model parameters.

« Predicting the connectivity of a new participant amounts to
additional draws for each missing x; € X9 from a distribution
with probability determined by the model.

» Thefull conditional of the new observations xes9 is, for any
x; € XV, determined by m(x;|z;, a,, E;).

We repeated the process ten times. Figure 3¢ shows the average
out-of-sample correlations between the observed and predicted con-
nectivity valuesin the test data for predicting the whole graph, the top
ten internalizing regions and the top five internalizing regions. The

results show that LatentSNA provides sufficiently accurate prediction
of the connectivity measurements, posing a unique opportunity to
uncover brain connectivity for new participants, incorporating their
internalizing measures.

Comparison method. The Average method and its extensions repre-
sent one of the most common methods to capture group-level con-
nectivity and to perform subsequent analysis”, often with satisfactory
predictionaccuracy’®. We first randomly divided the connectivity data
into ten equal sizes, using one set of data points as the test data and
the other sets of data points as the training data. We then captured
the group-level connectivity using the entry-wise sample mean of
individual connectivity matrices in the training data. We performed
predictions for connectivity in the test set using estimated connec-
tivity from the training data. We show the average out-of-sample cor-
relations between the observed and predicted connectivity values
across 100 random samples (Supplementary Fig. 3a). Our results sug-
gest that LatentSNA shows satisfactory prediction accuracy for brain
connectivity using individual-level estimates, and it outperforms the
Average method when the signal proportionislarge. When predicting
connectivity using group-level estimates, LatentSNA and the Average
method both show satisfactory performance for the whole graph, and
LatentSNA outperforms the Average method for regions with strong
relational ties with behavior.

Network statistics

Node strength, an extension of degree in weighted networks, isthe sum
of the edge weights associated with each node”. Closeness reflects
how quickly one node canreach others. We calculated closeness in the
weighted graphs using the igraph R package®®, and a uniform magni-
tude equaling the largest negative edge isadded to alledges to ensure
that all weights are positive. Among the shortest paths in a network
that passthroughintermediate nodes, betweenness reflects how many
timesanodeis presentin those paths and demonstrates the extent to
whichanodeis part of connections among other nodes”. We calculated
the betweenness of the connectivity networks with positive weights
defined as before using the igraph R package'°°. High betweenness
reflects power as it positions the region with an important bridging
role allowing the neighboring regions to connect'”, aninvestmentinto
the communication between distant clusters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The individual-level imaging and behavior data used in the present
study are available from four publicly accessible data resources:
ABCD (https://abcdstudy.org/), HCP (https://www.humanconnec-
tome.org/), A4 (https://www.a4studydata.org) and ADNI (https://
adni.loni.usc.edu). Transdiagnostic data are available via the NDA
website (https://nda.nih.gov/).

Code availability

The estimation algorithm for this paper was implemented in R. The
code is available at https://github.com/selenashuowang/latentSNA
with a tutorial. The code is released under the MIT License. In this
GitHub repository, we have provided instructions for installation
(specifying prerequisite packages), explanations of outputs and a
sample toy example with evaluations.
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Extended Data Fig. 1| Functional architectures of internalizing
psychopathology are driven by the core actors of the connectivity network.
(A) The strength of each brain region in MOT based on the latent network

(left) and the observed network (right) for an average participant during MID
condition. Regionsidentified to play a significant role in explaining individual
differences ininternalizing behaviors are colored as green, and non-significant
regions are colored as red. (B) The location and connectivity networks of an
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imaging biomarker (top) versus a null effect (bottom) with no identifiable
contribution tointernalizing. The 3D brain plots show the front (top left), back
(top right), right (bottom left) and left (bottom right) views. (C) The circle plots
of the connectivity edges associated with the imaging biomarker (top) and the
null effect (bottom). In B and C, red line indicates positive connectivity edges,
and blue lineindicates negative connectivity edges.
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Extended Data Fig. 2 | Internalizing psychopathology in children are
attributable to star-like functional networks. Latent internalizing networks
(left) against CPM networks (right) for an average participantineach
functional system during MID task. Node positions of the latent networks

are then determined using the fruchterman-reingold force-directed graph
layout algorithm. The nodes are fixed in the same positions when plotting
the internalizing connectivity edges identified via CPM. We also show the

CPM Latent CPM Latent CPM

corresponding (whole) latent networks, with both significant and non-significant
connectivity edges, estimated via LatentSNA, as well as the average observed
networks. MF: Medial-Frontal, FP: Fronto-parietal, DMN: Default Mode, MOT:
Motor, VI: Visual I, VII: Visual II, VAs: Visual Association, LIM: Limbic, BG: Basal
Ganglia, CBL: Cerebellum. Blue represents the positive connectivity edges, and
red represents negative edges.
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|:| Flow cytometry

D Palaeontology and archaeology D MRI-based neuroimaging
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Magnetic resonance imaging

Experimental design
Design type

Design specifications

resting state and and different cognitive, emotional and behavioral task states

We use functional brain imaging data from the first and second releases of the Adolescent Brain Cognitive Development
(ABCD) study, collected from 11, 875 children aged between 9 to 10 years old (Casey et al, 2018).

Behavioral performance measures Internalizing psychopathology data represents a spectrum of conditions characterized by negative emotion including

Acquisition
Imaging type(s)
Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used
Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

depression, anxiety and phobias. In the ABCD study, the internalizing psychopathology is collected via self-reported
survey using the Child Behavior Checklist (CBCL, Stavropoulos et al., 2017), which includes 119 items aggregated into 8
empirical sub-scales. Three sub-scales of CBCL, anxious-depressed (13 items), withdrawn-depressed (8 items) and
somatic complaints (11 items) are parts of the internalizing psychopathology. The multivariate representation of the
internalizing psychopathology with anxious-depressed, withdrawn-depressed and somatic complaints variables likely
outperforms the univariate representation (sum of the three variables) due to the loss of information in the latter.

functional
3T

High spatial and temporal resolution multiband echo-planar imaging (EPI) resting-state fMRI data with fast integrated
distortion correction are acquired using three 3T scanner platforms: Siemens Prisma, General Electric (GE) 750, and
Phillips. Resting-state fMRI parameters are similar across platforms: a standard multiband EPI sequence, repetition
timeTR)/echo time (TE) = 800/30 ms, voxel spacing size = 2.4 x 2.4 x 2.4 mm, slice number = 60, flip angle (FA) =52,
field oiview (FOV) = 216 x 216 mm, multiband acceleration = 6.

ABCD_Website_MRI_Acq link: https://abcdstudy.org/wp-content/uploads/2021/05/ABCD_Website_ MRI_Acq.pdf

Whole brain scans were acquired.

X| Not used

Biolmage Suite and SPM5.
We removed the linear trend from all signals in accordance with the methodologydetailed in Shen et al. (2013).

MNI
We deleted scans with more than 0.10 mm mean frame-to-frame displacement.

First, we performed motion correction and slice-time correction using SPM5; and via Biolmage Suite, the data were
registered to a standardized 3mm X 3mm x 3mm common space, where we generated masks representing white matter,
gray matter, and cerebrospinal fluid (CSF) and computed the mean time courses for both white matter and CSF. We
orthogonalized each gray matter time course with respect to the mean time courses of both white matter and CSF, and we
orthogonalized each gray matter timec ourse to the six motion-related signals via SPM5. We then applied a bandpass
Butterworth filterwith a frequency range of 0.02Hz to 0.1Hz to the orthogonalized time courses. We used a Gaussiankernel
with a full-width at half-maximum (FWHM) of 6mm to enhance spatial coherence and spatialsmoothing. Lastly, we removed
the linear trend from all signals in accordance with the methodologydetailed in Shen et al. (2013). We deleted scans with
more than 0.10 mm mean frame-to-framedisplacement. Additional details about the standard preprocessing procedures,
such as slice timeand motion correction, registration to the MNI template can be found in Greene et al 2018) andHorien et al
(2019).
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Statistical modeling & inference

Model type and settings Imaging Biomarker effects described in the method section. It is built on joint bayesian framework

Effect(s) tested Co-variation between functional connectivity and internalizing

Specify type of analysis: - [X| Whole brain [ | ROI-based [ | Both

Statistic type for inference New method is proposed to test region-specific co-variation in whole functional connectivity and internalizing
(See Eklund et al. 2016)
Correction Inference under Bayesian posterior sampling

Models & analysis

n/a | Involved in the study
|:| |Z Functional and/or effective connectivity

|:| & Graph analysis

|:| Multivariate modeling or predictive analysis

>
Q
Y
(e
)
1®)
o
=
o
S
_
(D
1®)
o
=
5
(@}
wm
[
=
3
Q
<

Functional and/or effective connectivity pearson correlation

Graph analysis Joint modeling framework with both connectivity and behavior as dependent variables, statistical network
analysis is used for modeling graphs

Multivariate modeling and predictive analysis  Statistical network analysis is used to reduce dimension via latent variable modeling. Predictions of future
behaviors and connectivity are performed under the joint modeling framework.
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