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ABSTRACT

Reasoning over long contexts is essential for large language models. While re-
inforcement learning (RL) enhances short-context reasoning by inducing ”Aha”
moments in chain-of-thought, the advanced thinking patterns required for long-
context reasoning remain largely unexplored, and high-difficulty RL data are
scarce. In this paper, we introduce LoongRL, a data-driven RL method for ad-
vanced long-context reasoning. Central to LoongRL is KeyChain, a synthesis ap-
proach that transforms short multi-hop QA into high-difficulty long-context tasks
by inserting UUID chains that hide the true question among large collections of
distracting documents. Solving these tasks requires the model to trace the cor-
rect chain step-by-step, identify the true question, retrieve relevant facts and rea-
son over them to answer correctly. RL training on KeyChain data induces an
emergent plan–retrieve–reason–recheck reasoning pattern that generalizes far
beyond training length. Models trained at 16K effectively solve 128K tasks with-
out prohibitive full-length RL rollout costs. On Qwen2.5-7B and 14B, Loon-
gRL substantially improves long-context multi-hop QA accuracy by +23.5% and
+21.1% absolute gains. The resulting LoongRL-14B reaches a score of 74.2, rival-
ing much larger frontier models such as o3-mini (74.5) and DeepSeek-R1 (74.9).
It also improves long-context retrieval, passes all 128K needle-in-a-haystack stress
tests, and preserves short-context reasoning capabilities.

1 INTRODUCTION

Reasoning over long input contexts is a critical capability for large language models (LLMs), as
many real-world tasks, from analyzing legal documents to debugging large codebases, require inte-
grating information across thousands of tokens. Recent advances, such as OpenAI o-series (Jaech
et al., 2024) and DeepSeek-R1 (Guo et al., 2025), show that reinforcement learning can improve
reasoning by eliciting longer chain of thoughts (CoT) and emergent self-reflection. However, these
methods mainly target short-context inputs and rely on model internal knowledge (e.g., math rea-
soning). In contrast, long-context reasoning requires both reasoning and the ability to retrieve and
ground information from extensive external input contexts. Although modern models support longer
context windows (Achiam et al., 2023; Ding et al., 2024), they excel mainly at retrieval, leaving rea-
soning over long documents a persistent challenge for real-world tasks (Ling et al., 2025).

This work aims to bridge this gap by enabling long-context models to move beyond retrieval and
acquire advanced reasoning capabilities. Inspired by the short-context reasoning successes (Guo
et al., 2025; Gandhi et al., 2025), we hypothesize that the key lies in discovering and mastering
thinking patterns specific to long-context reasoning. Since such patterns remain unclear, we adopt a
reinforcement learning approach to investigate whether high-quality reasoning patterns can emerge.

However, we face significant challenges. First, effective RL training requires difficult long-context
problems that cannot be solved by retrieval alone. Questions must be sufficiently challenging to
trigger reasoning, require retrieving relevant information from long input contexts during reasoning,
and have verifiable answers, as recent RL methods rely on outcome-only rewards to avoid reward
hacking (Guo et al., 2025; Lambert et al., 2024). However, such data is extremely scarce, and
answers often take multiple valid forms, making reliable verification difficult. Second, strong long-
context performance typically requires training at near-target lengths (Liu et al., 2024; Li et al.,
2025), but scaling RL rollouts from short inputs (i.e., current <1K tokens) to 128K contexts incurs
prohibitive compute and memory costs, making direct training infeasible at standard compute scales.
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(a) RL-Generated Trajectory with KeyChain Data 

{Plan: decompose problems to multi-steps}

To determine when the last time Peter Till's sports team beat the winner of the 1894-95 FA 

Cup, we need to follow these steps:

1. Identify the winner of the 1894-95 FA Cup.

2. Determine the teams Peter Till played for.

3. Find the last time any of Peter Till's teams beat Aston Villa.

{Retrieve relevant document}

From Passage 6: The 1894-95 FA Cup was won by Aston Villa.

From Passage 5: Peter Till played for several teams, but we need to find the teams he 

played for profession

{Step-level reasoning}

Now, we need to find the last time any of these teams beat Aston Villa from the information 

in Passage 5:

{Retrieve relevant document}

{Retrieve relevant document, recheck}
From Passage 5: The most recent relevant encounter between Aston Villa and Birmingham 

City (one of the teams Peter Till played for, Walsall) is mentioned …

\boxed{1 December 2010}

(b) RL-Generated Trajectory without KeyChain Data

{Mixed reasoning with retrieval}
First, we need to identify who won the 1894-95 FA Cup. From 

the passage about the 1894-95 FA Cup, we can see that 

Aston Villa won this competition by defeating West Bromwich 

Albion 1-0 in the final. So, the winner of the 1894-95 FA Cup 

was Aston Villa.

Next, we need to find when Peter Till's team, which is Everton, 

last beat Aston Villa. Looking through the passage about 

Everton's history and rivalries, we find that the most recent 

victory of Everton over Aston Villa in the Premier League was 

mentioned: “Villa finally beat Blues in the Premiership, thanks 

to a Kevin Phillips goal.

However, we are asked about Everton specifically. Continuing 

to search the text, we find: “Everton's biggest rivalry is with 

neighbours Liverpool, against whom the club contests the 

Merseyside derby. 

Therefore, the last time Peter Till's team (Everton) beat the 

winner of the 1894-95 FA Cup (Aston Villa) was in the 2005-

2006 season. \boxed{2005-2006 season}Correct Wrong

Figure 1: Model trajectories on long-context multi-hop QA with and without KeyChain RL data. (a)
With KeyChain data, model exhibits an emergent plan–retrieve–reason–recheck thinking pattern,
improving reasoning reliability and can generalize to longer contexts. (b) Without KeyChain data,
reasoning and retrieval are entangled, the model often lacks an explicit planning step and does not
deeply reason over retrieved information, frequently leading to errors. Reasoning steps are marked
in blue and retrieval steps in orange.

Third, even if feasible, training exclusively on long-context data risks degrading short-context and
general reasoning abilities (Peng et al., 2023; Shang et al., 2025b), which remain critical in practice.

To this end, we introduce LoongRL, a data-driven reinforcement learning method that incentivizes
models to acquire effective thinking patterns for advanced long-context reasoning. At its core is
KeyChain, a synthesis approach that transforms short multi-hop QA datasets into high-difficulty
long-context problems by extending inputs with distracting documents and inserting UUID “chains”
that hide the true question across multiple hops. Solving these problems requires the model to trace
the correct chains step-by-step, identify the actual question, retrieve relevant facts from the long
context, and reason over them to generate the answer. To enable reliable RL training, we design a
rule-based answer verifier, two-way substring exact match, which effectively evaluates free-form an-
swers in general QA while mitigating reward hacking. Using KeyChain data, RL consistently elicits
an emergent plan–retrieve–reason–recheck reasoning pattern, as shown in Fig. 1(a). Remark-
ably, this emergent patterns generalizes beyond the training length, enabling models trained at 16K
to effectively handle 128K reasoning tasks without the prohibitive cost of full-length RL. Finally,
we introduce a balanced data-mixing strategy to enhance long-context reasoning while preserving
short-context general reasoning and long-context retrieval capabilities.

Extensive experiments across Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct and diverse bench-
marks demonstrate the superiority of LoongRL. Remarkably, LoongRL substantially boosts
Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct by +23.5% and +21.1% absolute accuracy im-
provements on long-context multi-hop QA tasks. The resulting LoongRL 14B achieves a score
of 74.2, significantly surpassing all baselines and closely approaching much larger models such as
o3 mini at 74.5 and DeepSeek-R1 at 74.9. Beyond the 16K training length, LoongRL generalizes
effectively up to 128K tokens, substantially improving long-context retrieval and passing all needle-
in-a-haystack pressure tests. At the same time, it preserves short-context and general reasoning
capabilities, setting a new state of the art for models at this scale, and shows that LoongRL can
induce advanced reasoning patterns to substantially improve long-context reasoning.

2 RELATED WORKS

Reasoning and Long-Context Reasoning. Recent advances in LLM reasoning are largely driven
by high-quality human-like chains of thought (CoT), typically obtained via teacher model distilla-
tion (Yang et al., 2025) or self-generation through reinforcement learning (Guo et al., 2025). Most
existing studies focus on short-context reasoning tasks, such as mathematics (Wang et al., 2025b;
Shang et al., 2025a) and code (Liu et al., 2025; Ahmad et al., 2025), where emergent patterns like
self-reflection and “aha” moments are crucial to the success (Gandhi et al., 2025). In contrast, ex-
ploration of advanced long-context reasoning patterns remains limited.
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Step1: Data Filtering

𝑜ℒ + 𝑜𝑞
Filter

Step2: Long Context Filling

ℒ’𝑜ℒ

Qwen2.5-32B
Key-Value 

Chain with 

real 

question

Document 

Insertion

Key-Value 

Chain with 

distractor 

question

Step3: KeyChain Insertion

Insert Key-Value Pairs to Random Positions
ℒ’

1 3 4 52

7a0f9ecc 021553ad

021553ad 15e85767

15e85767 5e0db201

5e0db201 original o𝑞

bccc2507 835bdf8c

835bdf8c 9f18b2fc

9f18b2fc e400dd58

e400dd58 distractor 𝑞’

ℒ

Figure 2: Overview of our KeyChain data construction.

Existing efforts to improve long-context reasoning largely fall into two categories: prompting-based
methods (Yen et al., 2024) and synthetic-data SFT (Li et al., 2024b;a;c). Prompting is limited by
the base model’s reasoning capacity, while synthetic-data SFT often introduces noise or bias, con-
straining advanced capabilities. QwenLong-L1 (Wan et al., 2025) makes a notable step by extending
R1-distill-Qwen-32B with RL on sequences up to 60K tokens, encouraging self-exploration of long
reasoning trajectories. However, it leaves open key questions about how to design high-quality RL
training data. We address this gap by introducing KeyChain RL data that fosters emergent reasoning
patterns and generalizes from 16K to 128K contexts with significantly higher efficiency.

Long-Context Synthetic Data. Existing methods for long-context data synthesis primarily extend
input contexts by padding questions with additional irrelevant documents. For example, Li et al.
(2024c) augment MuSiQue (Trivedi et al., 2022) with extra unrelated passages; Li et al. (2024a) use
document-filling on HotpotQA (Yang et al., 2018) and SQuAD (Rajpurkar et al., 2016); and Li et al.
(2024b) shuffle MuSiQue passages similarly. While these approaches increase context length, they
are limited in generating high-quality, challenging training data.

3 METHODOLOGY

3.1 KEYCHAIN DATA CONSTRUCTION

Overview. LoongRL is a data-driven reinforcement learning approach designed to train models
with advanced reasoning over long contexts. It relies on a high-quality RL training dataset D =
{Li, qi, ai} constructed under three principles: (i) each question qi and answer ai are from real-
world datasets to ensure reliability, as synthetic data often suffer from hallucination (Liu et al., 2025);
(ii) solving question qi requires reasoning over the full long input context Li, not merely leveraging
model internal knowledge or direct retrieval. (iii) questions qi are sufficiently challenging to allow
RL to incentivize advanced long-context reasoning capabilities.

Fig. 2 illustrates the KeyChain data construction. We begin with curated, high-quality short-context
QA pairs {oLi, oqi, oai} from real-world tasks. Each example is first expanded into a long input
L′
i of 16K tokens by inserting distracting documents. KeyChain then transforms {L′

i, oqi, oai}
into {Li, qi, ai} by randomly inserting multi-hop key-value chains that hide the original question
oqi within Li, which significantly increases difficulty. Given the new question qi, model must first
traces the chain to recover oqi, and then perform long-context reasoning over Li to generate the
correct answer ai, where ai = oai. This construction ensures that RL training focuses on reasoning
over long contexts rather than memorization or shallow retrieval.

Seed Dataset Curation and Context Extension. We curate a high-quality seed dataset from three
real-world multi-hop QA datasets: HotpotQA (Yang et al., 2018), MuSiQue (Trivedi et al., 2022),
and 2WikiMultiHopQA (Ho et al., 2020). Each question oqi is paired with its ground-truth answer
oai and requires reasoning across multiple documents within a short context oLi. This initial col-
lection contains 277K QA instances. To ensure effective RL training, we filter out tasks that are
overly easy or excessively hard questions. Specifically, we answer each question eight times using
Qwen2.5-32B-Instruct (Qwen Team, 2024), and discard those with a pass rate of 0 or 1. This yields
72K examples of moderate difficulty.
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We then extend each short context oLi into a long context L′
i by inserting additional real-world

documents while keeping the original question oqi unchanged. The extra documents are sampled
from the short-context documents of the 200K filtered-out QA tasks, excluding any overlap with
oLi. Each extended context is approximately (<) 16,384 tokens, requiring the model to retrieve
relevant information from a large set of distractors. This construction closely simulates real-world
long-context reasoning, where relevant information is often buried within extensive irrelevant text.

KeyChain Data Construction. To make reinforcement learning effective for long-context reason-
ing, we build upon the above long-context multi-hop QA data to construct the KeyChain dataset.
Fig. 2 illustrates the process. For each long-context QA task {L′

i, oqi, oai}, we insert linear key-
value chains into the context, resulting in Li. In each chain, a key maps to a value that contains
the next key, forming a step-by-step tracing path. We design two types of chains: (i) one chain
that ultimately resolves to the original question oqi, and (ii) multiple chains that instead resolve to
distracting questions. Each key is generated as a 32-character UUID, with character randomly sam-
pled from 0-9 and A-F. Distracting questions are randomly sampled from other QA instances in the
dataset to ensure they are plausible but irrelevant.

From the first type of chain, we then construct a new question qi. This question requires the model
to start from the initial key, trace the chain within Li, recover the original question oqi, and fi-
nally perform long-context reasoning over Li to produce the correct answer ai = oai. This design
substantially increases task difficulty, as the model must first localize the hidden question and then
reason over the extended context to answer correctly. An example of an augmented KeyChain long-
context question is shown below:

Example of KeyChain-augmented long-context question

Please read the following text.
<Document 0>
<original text> {"UUIDB-n": "distracting question"} <original text>
<Document 1>
{"UUIDA-1": "UUIDA-2"}
<Document 2>
{"UUIDB-1": "UUIDB-2"}
...
{"UUIDA-n": "correct question"}
...
In the context above, there is one correct question to answer.
The correct question can only be found by following the correct
consecutive chain of key:value pairs encoded with UUID strings
(e.g., f81d4fae-7dec-11d0-a765-00a0c91e6bf6), starting from
"starting UUIDA-1".
Find the correct question first, then answer it.

Emergent Long-Context Reasoning Patterns. We surprisingly find that RL training with Key-
Chain data enables models to develop emergent, human-like long-context reasoning patterns. As
shown in Fig. 1(a), for each long-context QA task, the model first generates an explicit plan de-
composing the problem into subproblems and substeps, retrieves relevant information for each
step, and actively re-checks retrieved content when uncertain before proceeding. This structured
plan–retrieve–reason–recheck loop leads to highly logical and reliable solutions. Furthermore, we
observe that this reasoning pattern also improves conventional long-context retrieval tasks, as illus-
trated in Appendix A.5 with an example trajectory on the RULER vt benchmark, where the model
performs step-by-step, human-readable retrieval, progressively locating the correct answer rather
than directly jumping to it as in traditional retrieval approaches.

More importantly, the plan–retrieve–reason–recheck behavior learned on short contexts (16K to-
kens) generalizes to much longer contexts, up to 128K tokens (see Experiments). This allows
training on 16K sequences while maintaining strong longer context performance, highlighting the
robustness and scalability of the KeyChain RL approach.

3.2 LONG-CONTEXT REINFORCEMENT LEARNING

This section introduces our long-context reinforcement learning methodology using KeyChain data,
covering reward design, data mixing and multi-stage training recipe.
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3.2.1 GROUP RELATIVE POLICY OPTIMIZATION FOR LONG-CONTEXT REASONING

Group Relative Policy Optimization (GRPO). For training, we adopt the GRPO algorithm.
Specifically, for each question q, its long context L, and its ground-truth answer a from a dataset D,
GRPO samples a group of rollout trajectories {o1, o2, · · · , oG} from the old policy πθold and then
optimizes the policy πθ by maximizing the following objective:

JGRPO(θ) = E(L,q,a)∼D, {oi}G
i=1∼πθold (·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

[
ρi,t(θ)Ai,t, clip(ρi,t(θ), 1− ε, 1 + ε)Ai,t

]
− βDKL(πθ∥πref)

)]
(1)

where ρi,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

. Hyper-parameters ε and β control the clipping range of impor-
tance sampling ratio and the weight of KL penalty term, respectively. The estimated advantage Ai,t

is computed from a group of rewards {r1, r2, ...rG} for each rollout trajectory:

Ai,t =
ri − mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG})
(2)

Here, ri is the reward for trajectory oi, evaluated using a rule-based verifier to mitigate reward
hacking (Guo et al., 2025; Kimi Team et al., 2025).

To stabilize RL training, we follow best practices. A small KL penalty β = 0.001 prevents excessive
policy deviation. Following prior works (Shang et al., 2025a), we remove the entropy loss term,
which while commonly used to encourage exploration, can cause uncontrolled entropy growth and
destabilize training, so it is omitted in our experiments.

Rule-based Reward Design. In our long-context RL, most questions are general QA rather than
math or code problems with clear answers. The answers can take many valid forms, making it
difficult to determine whether a rollout trajectory truly reaches the correct solution. Prior works
such as QwenLong-L1 (Wan et al., 2025) address this by using LLM-as-a-judge, but this introduces
additional complexity. In addition to the already expensive long-context RL training, it requires
serving another model for answer judgment, while still leaving room for reward hacking.

We instead adopt a rule-based reward, following the success of verifiable rewards in mathematical
and code RL (Shang et al., 2025a; Wang et al., 2025a; Guo et al., 2025). Our approach is simple
yet effective for long-context reasoning. First, we explicitly require the model to output its final
answer within \boxed{} in the training prompt (in Appendix. A.2), ensuring unambiguous answer
extraction. Second, we apply a two-way substring exact match on the boxed answer. Each rollout
trajectory oi receives a binary accuracy reward ri ∈ {0, 1} depending on whether the extracted final
answer yans contains the ground truth answer a as a substring, or the ground truth answer a contains
yans as a substring. Formally, the reward is computed as:

ri =

{
1 if {a ⊆ yans ∨ yans ⊆ a},
0 otherwise.

(3)

Compared to strict exact match, this design tolerates valid answer variations and avoids the rigidity
that may otherwise exclude correct outputs. Experiments in Table 5 demonstrate its effectiveness.

3.2.2 TRAINING RECIPE

We conduct LoongRL training on Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct, both with a
128K context window. The goals are (i) enhancing long-context reasoning through reinforcement
learning, and (ii) preserving core abilities such as general short-context reasoning. To achieve this,
we construct a mixed dataset (Table 1) and adopt a multi-stage RL training strategy.

Training Length and Data Mix. As discussed in Sec. 3.1, KeyChain data effectively induces long-
context reasoning patterns, enabling the model to generalize to longer contexts. To avoid the high
cost of full 128K RL rollouts, we train using a 16K context length.

Table 1 summarizes our training data sources, including their input context lengths and task dif-
ficulty. Our dataset consists of four types. (i) High-difficulty KeyChain data is synthesized
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Table 1: Data recipe for long-context RL training.

Dataset Description # Size Length range Difficulty

HotpotQA-KeyChain KeyChain-augmented HotpotQA 2,500 16,272–20,670 Hard
MuSiQue-KeyChain KeyChain-augmented MuSiQue 2,500 16,495–20,623 Hard
2WikiMultiHopQA-KeyChain KeyChain-augmented 2WikiMultiHopQA 2,500 14,911–20,576 Hard
HotpotQA Standard multi-hop QA 2,500 12,058–16,279 Medium
MuSiQue Standard multi-hop QA 2,500 12,562–16,283 Medium
2WikiMultiHopQA Standard multi-hop QA 2,500 10,727–16,274 Medium

Book RULER (Multi-key) Long-context retrieval (20 keys, 1 value) 512 12,038–17,387 Easy
Book RULER (Multi-value) Long-context retrieval (1 key, 20 values) 512 11,648–17,840 Hard

Math Choice Multiple-choice math problems 2,500 40–425 Easy
DAPO Math Mathematical reasoning 2,500 65–1,014 Hard

as described in Section 3.1, with 2,500 examples each from HotpotQA (Yang et al., 2018),
MuSiQue (Trivedi et al., 2022), and 2WikiMultiHopQA (Ho et al., 2020), totaling 7,500 exam-
ples. This set provides challenging examples that explicitly induce long-context reasoning. (ii)
Medium-level multi-hop QA data consists of 2,500 examples from each of the same three datasets.
These moderately difficult examples are especially important for smaller models (e.g., Qwen2.5-
7B-Instruct), enabling effective RL when the model initially struggles with harder KeyChain tasks.
(iii) Long-context needle retrieval data contains 1,024 synthetic examples designed to maintain the
model’s ability to retrieve relevant information from long contexts. Each example uses a 16K-token
book from PG19 as the base, into which multiple key–value “needles” are randomly inserted fol-
lowing RULER(Hsieh et al., 2024), requiring the model to locate relevant values amid extensive
distractors. (iv) Math data contains 5,000 short-context problems (<1K tokens) to preserve general
short-context reasoning capabilities, including 2,500 hard problems from the DAPO training set (Yu
et al., 2025) and 2,500 easy multiple-choice questions from MATH (Hendrycks et al., 2021).

Multi-Stage Training. Our reinforcement learning follows a three-stage curriculum. (i) Warm-up.
We first train for one epoch on the dataset excluding KeyChain data. Since KeyChain problems are
initially too difficult for small models, this stage allows the model to improve retrieval and general
reasoning ability on easier data, ensuring stable optimization. (ii) Stage I (KeyChain augmentation).
KeyChain data is then introduced to increase task difficulty, encouraging the model to plan effec-
tively, retrieve precise information from distractor-heavy long contexts, and integrate evidence into
coherent reasoning chains. (iii) Stage II (difficulty-focused training). After Stage I, we generate
eight rollouts per example using the best checkpoint. Examples solved correctly in all rollouts are
discarded, leaving a challenging subset ( 30–40% of the data). RL continues on this subset, focusing
updates on difficult cases to improve efficiency while avoiding overtraining on mastered problems.

4 EXPERIMENTS

4.1 SETUP

Training Setup. We run experiments on two long-context instruction-tuned models, Qwen2.5-7B-
Instruct and Qwen2.5-14B-Instruct. Training uses GRPO using a group size G = 8 and a learning
rate of 1e-6. Batch sizes are set to 512 for 7B model and 256 for 14B model. Rollouts are sampled
with temperature 0.6 and top-p = 0.95, with a maximum output length of 4,096 tokens and long-
context inputs of ∼ 16K. We adopt a learning rate of 1 × 10−6 with cosine decay and gradient
clipping at 1.0. For Qwen2.5-7B-Instruct, we apply the full three-stage RL training: 42 steps in
warm-up, 168 in Stage I and 118 in Stage II. For the larger Qwen2.5-14B-Instruct, we skip warm-up
stage since the model already possesses strong base abilities and can immediately handle KeyChain
data. We train for 168 steps in Stage I and 150 steps in Stage II. For the 7B model, we train on
16×A100 GPUs, while the 14B model is trained on 8×MI300X GPUs.

Evaluation Benchmarks. We evaluate LoongRL models across three dimensions. (i) Long-
context reasoning: we follow QwenLong-L1 (Wan et al., 2025) and evaluate on multi-hop QA
tasks in LongBench v1 (Bai et al., 2024a), including HotpotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), MuSiQue (Trivedi et al., 2022)), NarrativeQA (Kočiský et al., 2018) and
QASPER (Dasigi et al., 2021), with input lengths from 4K to 64K tokens. We also evaluate on
LongBench v2 (Bai et al., 2024b), a representative long-context reasoning benchmark supporting
up to 128K tokens. Due to space limits, detailed v2 results are in Appendix Table 6. (ii) General
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Table 2: Results of LoongRL and frontier LLMs on long-context reasoning and general short tasks.
LoongRL delivers frontier-level long-context reasoning at much smaller scales (7B/14B), rivaling
o3-mini and DeepSeek-R1, while preserving general short-context abilities across all scales.

Models Long-Context Reasoning General & Short Reasoning

Avg. HotpotQA 2WikiMultiHopQA MuSiQue NarrativeQA QASPER Avg. MMLU MATH IFEval

o3–mini (medium) 74.5 83.0 89.0 64.0 60.7 60.5 92.1 86.9 98.0 91.5
DeepSeek- R1 74.9 82.7 91.3 72.2 66.9 61.4 90.5 90.8 97.3 83.3
GPT–4o 64.7 82.5 78.0 54.0 60.5 48.5 82.5 88.7 74.6 84.3
QwQ-32B 69.6 78.5 87.4 62.7 61.1 58.5 85.9 75.7 98.0 83.9
R1-Distill-LLaMa-70B 65.4 76.1 85.0 61.9 53.4 50.5 85.4 82.4 94.5 79.3

Qwen2.5-7B-Instruct 48.9 69.5 50.5 34.0 44.5 46.0 73.5 73.4 76.0 71.2
R1-Distill-Qwen-7B 31.2 40.2 53.3 11.1 8.9 42.5 69.9 62.3 92.8 54.7
LoongRL-7B 72.4 83.1 91.1 65.6 58.4 63.6 75.0 76.2 78.0 70.9

Qwen2.5-14B-Instruct 53.1 74.0 60.5 36.5 48.5 46.0 81.3 79.4 83.4 81.0
R1-Distill-Qwen-14B 64.9 77.5 87.0 58.0 51.0 51.0 81.0 76.6 93.9 72.6
R1-Distill-Qwen-32B 65.5 76.3 87.6 59.8 52.7 50.9 82.4 80.5 94.3 72.5
QwenLong-L1-32B 70.1 80.7 89.1 65.2 58.6 56.7 84.1 78.5 95.2 78.6
LoongRL-14B 74.2 82.2 93.3 67.5 63.4 64.5 80.7 80.5 83.2 78.4

Table 3: While being trained only on 16K, LoongRL generalizes impressively to context up to 128K.

Models NarrativeQA RULER

0-16K 16K-32K 32K-64K 16K 32K 64K 128K

Qwen2.5-7B-Instruct 55.7 35.2 42.4 92.3 89.5 81.8 69.4
R1-Distill-Qwen-7B 55.7 35.2 42.4 18.9 4.4 1.4 0.9

LoongRL-7B 69.8 47.4 57.2 93.4 91.4 86.2 76.8

Qwen2.5-14B-Instruct 55.7 40.7 48.3 93.4 92.5 82.3 73.6
R1-Distill-Qwen-14B 63.0 35.9 54.6 85.7 82.0 60.2 28.2
R1-Distill-Qwen-32B 57.4 44.4 58.9 90.3 88.9 71.5 40.9
QwenLong-L1-32B 65.9 48.1 60.0 87.6 86.8 80.6 70.2

LoongRL-14B 69.5 55.2 64.3 95.4 95.1 87.1 79.9

short-context reasoning: we use standard benchmarks including MMLU (Hendrycks et al., 2020),
MATH-500 (Lightman et al., 2023), and the instruction-following benchmark IFEval (Zhou et al.,
2023). (iii) Long-context retrieval: to measure the impact of long-context RL on retrieval abilities,
we evaluate on Needle in a Haystack (Kamradt, 2023) and RULER (Hsieh et al., 2024).

For inference, reasoning models and our models use temperature 0.6, with up to 128K input tokens
and 10K output tokens. We sample eight solutions per problem and report average pass@1 accuracy.
Non-reasoning models (e.g., Qwen2.5-7B-Instruct) use temperature 0.

Baselines. We compare against three baselines: (i) leading frontier models, including o3-mini, GPT-
4o, DeepSeek-R1 and QWQ-32B; (ii) state-of-the-art models enhancing short-context reasoning on
long-context foundations, mainly R1-distilled variants; and (iii) long-context reasoning models like
the recent QwenLong-R1-32B, based on R1-distill-Qwen-32B and trained with 60K input context.

4.2 MAIN RESULTS

Competitive long-context reasoning at smaller scale. Table 2 summarizes the long-context rea-
soning performance of LoongRL against state-of-the-art models. We highlight two key observations:
(i) LoongRL delivers frontier-level long-context reasoning at significantly smaller scales. Remark-
ably, LoongRL-7B achieves an average of 72.4 on LongBench v1, surpassing all R1-distilled mod-
els and QwenLong-L1-32B. At 14B, LoongRL reaches 74.2, even rivaling the much larger, heavily
trained o3-mini (74.5) and DeepSeek-R1 (74.9). (ii) Our KeyChain-driven RL proves far more effec-
tive than existing methods. It improves Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct by +23.5%
and +21.1%, respectively. In contrast, R1-distilled Qwen models, trained on long-CoT reasoning
data, yield a modest +11.8% gain at 14B and even degrade 7B performance by -17.7%. Similarly,
QwenLong-L1-32B, trained via conventional long-context RL on R1-distill-Qwen-32B, improves
by just +4.6% on average. Notably, LoongRL-7B even outperforms QwenLong-L1-32B by +2.3%,
demonstrating that much smaller models can surpass larger baselines with our approach.

Training at short, generalize better to long. The strong results in Table 2 are largely driven by
KeyChain data, which enables our models to acquire a plan-retrieve-reason-recheck thinking pattern.
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Figure 3: Needle in a Haystack retrieval across document depths. The base Qwen2.5-7B-Instruct
does not fully pass the benchmark, whereas LoongRL-7B achieves perfect 100% retrieval accuracy.

Table 4: Ablation study on the effectiveness of KeyChain data.
Models HotpotQA 2WikiMultiHopQA MuSiQue NarrativeQA QASPER Avg.

Qwen2.5-7B-Instruct 69.5 50.5 34.0 44.5 46.0 48.9
LoongRL-7B (no KeyChain Data) 80.3 84.7 58.5 53.0 54.5 66.2
LoongRL-7B 83.1 91.1 65.6 58.4 63.6 72.4

Although trained on 16K input contexts, this patterns generalizes effectively to much longer con-
texts. As shown in Table 3, both LoongRL-7B and 14B achieve substantial gains on longer-context
reasoning and retrieval benchmarks. On NarrativeQA (32K-64K), they achieve impressive absolute
gains of +14.8% and +16.0%, respectively, far exceeding R1-distilled models and QwenLong-L1-
32B, which are trained with much longer contexts. On the RULER benchmark (up to 128K), while
other baselines degrade sharply with increasing context length, our models maintain consistently
strong performance, showing that the learned reasoning pattern transfers robustly to longer contexts.

Near-lossless general short reasoning. Table 2 also reports LoongRL’s performance on short-
context reasoning and general tasks, showing that it effectively preserves the base models’ capabil-
ities. On MMLU, LoongRL even yields gains of +2.8% (7B) and +1.1% (14B). In contrast, both
R1-distilled models and QwenLong-L1-32B suffer performance drops. On instruction following
(IFEval), R1-distilled models degrade sharply (-16.5% at 7B, -8.4% at 14B), while LoongRL shows
only minimal declines (-0.3% and -2.6%). For math reasoning, although R1-distilled models benefit
from heavy long-CoT data distillation, our approach stably preserves the base models’ math ability.

Improved long-context retrieval. We evaluate the impact of different approaches on retrieval using
the Needle in a Haystack benchmark, which measures a model’s ability to find “needles” from
long documents at varying depths. As shown in Fig. 3, the base Qwen2.5-7B-Instruct fails to fully
pass this benchmark. In contrast, our LoongRL improves retrieval substantially, with LoongRL-7B
achieving perfect accuracy across all depths. Other approaches remain limited, with R1-Distill-7B
unable to retrieve beyond 20K and even the larger QwenLong-L1-32B failing to achieve a full pass.

4.3 ABLATION STUDY

Multi-stage RL training sustains improvements. To understand how LoongRL achieves strong
performance, we report step-by-step gains and average training lengths for 7B and 14B across the
three RL stages. As shown in Fig. 4 (c,d), average response length steadily increases throughout
training. Fig. 4 (a,b) presents long-context reasoning accuracy, which grows consistently across
each stage, demonstrating the effectiveness of the multi-stage RL curriculum.

Ablation on the KeyChain data. Our KeyChain training data effectively encourages models to
acquire new long-context reasoning patterns during RL. To evaluate its effectiveness, we replace
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Figure 4: Long-context reasoning accuracy and training response lengths throughout RL training.
Table 5: Ablation study on the different answer verifiers on the 7B.

Reward Verifier HotpotQA 2WikiMultiHopQA MuSiQue NarrativeQA QASPER Avg.

F1 score 79.5 86.4 58.0 46.6 55.0 65.1
LLM-as-a-judge 80.0 87.6 60.0 52.3 54.5 65.2
Exact match 82.7 91.3 66.3 51.0 54.9 69.2
Two-way Substring Exact Match (ours) 83.1 91.1 65.6 58.4 63.6 72.4

it with an equal amount of regular long-context multi-hop QA data on Qwen2.5-7B-Instruct while
keeping all other RL settings identical. Table 4 shows the comparison results. RL with regular QA
data yields moderate gains (66.2), whereas incorporating KeyChain data drives a substantial leap to
72.4, reaching frontier-level performance.

Moreover, as shown in Fig. 1(b), models trained with regular long-context multi-hop data exhibit a
mixed reasoning-with-retrieval pattern. They often lack an explicit planning step and do not perform
careful reason over the retrieved information, making them more prone to errors. This demonstrates
that KeyChain not only significantly enhances long-context reasoning but also unlocks capabilities
that cannot be achieved with conventional QA data, highlighting its unique and critical role.

Ablation on the answer verifier. To evaluate our two-way substring exact match for verifying
answer correctness, we compare it with three widely used baselines on Qwen2.5-7B-Instruct: (i)
F1 score between extracted answers and the ground truth (Shi et al., 2025; Chuang et al., 2025);
(ii) LLM-as-a-judge using DeepSeek-V3 to assess consistency with the ground truth; and (iii) ex-
act match, requiring extract answer to match the ground truth exactly. As shown in Table 5, F1
and LLM-as-a-judge yield moderate gains, while exact match performs better but is overly strict,
penalizing essentially correct answers with minor formatting differences. In contrast, our two-way
substring exact match maintains high precision while allowing variations, boosting long-context
reasoning scores to 72.4 and clearly demonstrating its practical reliability for RL training.

5 CONCLUSION

This work introduces LoongRL, a data-driven reinforcement learning approach for advanced long-
context reasoning. By creating a novel dataset, KeyChain, which transforms standard multi-hop
questions into high-difficulty tasks, LoongRL trains models to develop a “plan-retrieve-reason-
recheck” thinking pattern. A key finding is that this emergent reasoning ability generalizes re-
markably well. Models trained on 16K token contexts can effectively solve tasks up to 128K tokens.
Our resulting LoongRL-14B model achieves a 74.2 score on long-context QA benchmarks, rivaling
much larger frontier models like o3-mini and DeepSeek-R1. These significant gains are achieved
while successfully preserving the model’s crucial short-context reasoning and retrieval capabilities.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Details of the GRPO al-
gorithm and hyperparameters are provided in Section 3.2.1 and Section 4.1. We provide our training
prompt template in Appendix A.2. The datasets used in our experiments are described in Table 1.
To further facilitate reproducibility, the supplementary materials include (i) our RL training code,
(ii) the code for synthesizing KeyChain data, and (iii) several representative samples of the synthe-
sized KeyChain data. These resources, together with the descriptions in the main text and appendix,
provide all necessary information for replicating our results.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS IN PAPER WRITING

In this work, we used large language models (LLMs) solely as general-purpose tools. Specifically,
we employed LLMs to improve the clarity and readability of the paper. Additionally, during our
ablation experiments, we evaluated the effectiveness of the answer verifier by using DeepSeek-V3
as the baseline in an LLM-as-a-judge setting.

13

https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2504.20571
https://aclanthology.org/D18-1259/
https://arxiv.org/abs/2503.14476


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 TRAINING PROMPT TEMPLATE

For reproducibility, we include the exact prompt format used during training (see Fig-
ure 5). The model was trained to first generate intermediate reasoning enclosed in
<think> ... </think>, and then provide the final answer enclosed in \boxed{}.

System Prompt

A conversation between User and Assistant. The User asks a question, and the Assistant solves
it. The Assistant first thinks about the reasoning process in the mind and then provides the User
with the answer. The reasoning process is enclosed within <think> </think> and answer is
enclosed within \boxed{} tags, respectively, i.e., <think> reasoning process here </think>
\boxed{answer here}.

Figure 5: System prompt used during training

A.3 EXAMPLE OF KEYCHAIN-AUGMENTED TRAINING DATA

Figure 6 shows a sample skeleton of our training data, illustrating how we carry out the Key-Chain
augmentation for long-context reinforcement learning.

Please read the following text.

Document 0:

…

Document 3: Who's Who?

Who's Who? is a studio album by American jazz musician John Scofield. It features two different bands, one acoustic and one 

electric. The acoustic group, featuring Scofield's then-employer Dave Liebman on saxophones, Eddie G\u00f3mez on bass, 

and Billy Hart on drums, recorded “The Beatles” and “How the West Was Won”. …

{“bdd640fb-0667-4ad1-9c80-317fa3b1799d”: “23b8c1e9-3924-46de-beb1-3b9046685257”}.

…

Document 10:

…

The university is one of the smallest of the 23 CSU campuses in California. Sonoma State offers 92 Bachelor's degrees, 19 

Master's degrees, one Doctoral degree (Doctor of Education), and 11 teaching credentials. {“972a8469-1641-4f82-8b9d-

2434e465e150”: “Musician and satirist Allie Goertz wrote a song about the “The Simpsons” character Milhouse, who Matt 

Groening named after who?”}.

…

Document 47: Passage 47:

Neil Affleck

{“bd9c66b3-ad3c-4d6d-9a3d-1fa7bc8960a9”: “972a8469-1641-4f82-8b9d-2434e465e150”}.

Neil Affleck (born 1953) is a Canadian animator, director, and former actor. He has worked as an animator on “The Simpsons” 

and “Family Guy”, and as an actor appeared in a leading role in the 1981 film “My Bloody Valentine”. {“9a1de644-815e-46d1-

bb8f-aa1837f8a88b”: “b74d0fb1-32e7-4629-8fad-c1a606cb0fb3”}.

…

In the context above, there is one correct question to answer. The correct question can only be found by following the correct 

consecutive chain of key:value pairs encoded with UUID strings (e.g., f81d4fae-7dec-11d0-a765-00a0c91e6bf6), starting from 

"bdd640fb-0667-4ad1-9c80-317fa3b1799d".

Find the correct question first, then answer it.

Figure 6: A skeleton of KeyChain-augmented training data used in LoongRL.
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A.4 COMPARISON BETWEEN TRACES OF KEYCHAIN VS. NON-KEYCHAIN MODELS

Here we contrast two models trained with same hyperparameters but different data. The KeyChain-
augmented model shows structured, step-by-step reasoning (colored as green) and clear re-checking
when ambiguity arises, while the non-KeyChain model often shortcuts retrieval and proceeds to
reasoning prematurely, leading to errors (colored as red). The following traces illustrate these dif-
ferences on the same question:

Question: Gary L. Bennett was a part of the space missions that have a primary destination of what
celestial body?

KeyChain-trained Model

To determine the primary destination of the space missions that Gary L. Bennett was a part of, we need to
identify the space missions he worked on from the given passages and then find the primary destination of those
missions.
From Passage 1, we can see that Gary L. Bennett worked on the following space missions: ”His professional
career has included work on the Voyager, Galileo, and Ulysses space missions,”
Now, we need to find the primary destination of these missions. Let’s check Passage 5 for information about the
Ulysses mission:
”Ulysses ( yoo-LISS-eez, UK also YOO-liss-eez) was a robotic space probe whose primary mission was to orbit
the Sun and study it at all latitudes.”
Therefore, the primary destination of the Ulysses space mission is the Sun.
Although we should check the other missions mentioned (Voyager and Galileo) for completeness, we can see
from Passage 3:
”No missions were planned to coincide with the transit of Earth visible from Mars on 11 May 1984 and the
Viking missions had been terminated a year previously. Consequently, the next opportunity to observe such
an alignment will be in 2084.” ”On 21 December 2012, the Cassini-Huygens probe, in orbit around Saturn,
observed the planet Venus transiting the Sun.” ”These are Schiaparelli EDM lander, the Mars Polar Lander, and
Deep Space 2. These were all sterilized for surface missions but not for special regions (Viking pre-sterilization
only). Mars Polar Lander, and Deep Space 2 crashed into the polar regions which are now treated as special
regions because of the possibility of forming liquid brines.”
And from Passage 4: ”Ulysses (spacecraft)” ”The spacecraft was originally named Odysseus, because of its
lengthy and indirect trajectory to study the solar poles. It was renamed Ulysses, the Latin translation of
”Odysseus”, at ESA’s request in honor not only of Homer’s mythological hero but also of Dante’s character
in the Inferno. Ulysses was originally scheduled for launch in May 1986 aboard the Space Shuttle Challenger
on STS-61-F. Due to the 28 January 1986 loss of Challenger, the launch of Ulysses was delayed until 6 October
1990 aboard Discovery (mission STS-41).”
The Voyager mission is known to have a primary destination of the outer planets, specifically Jupiter, Saturn,
Uranus, and Neptune. The Galileo mission had a primary destination of Jupiter.
However, the question specifically asks about the space missions that Gary L. Bennett was a part of, and from
the information provided, the Ulysses mission is clearly stated to have the Sun as its primary destination.
Therefore, the primary destination of the space missions that Gary L. Bennett was a part of, specifically the
Ulysses mission, is the Sun.
the Sun

No KeyChain Model

(Lack of systematic decomposition of the question)
First, we need to identify the space missions mentioned in the passage that Gary L. Bennett was involved with.
From the biography provided, we can see that Bennett was involved in several space missions, including the
Voyager, Galileo, and Ulysses space missions. The question asks for the primary destination of these missions.
- For the Voyager mission, the passage states: ”He was the flight safety manager for the radioisotope power
sources currently in use on the Voyager 1 and Voyager 2 spacecraft (which went to Jupiter, Saturn, Uranus,
Neptune and beyond).”
- For the Galileo mission, it mentions: ”Prior to coming to NASA, Bennett held key positions in DoE’s space
radioisotope power program, including serving as Director of Safety and Nuclear Operations for the radioisotope
power sources that were used on the Galileo mission to Jupiter and that are being used on the Ulysses mission to
explore the polar regions of the Sun.”
- For the Ulysses mission, the passage states: ”Ulysses ( yoo-LISS-eez, UK also YOO-liss-eez) was a robotic
space probe whose primary mission was to orbit the Sun and study it at all latitudes.”
From these statements, we can deduce that Bennett was involved in missions to Jupiter, Saturn, Uranus, Neptune,
and the Sun. However, the primary destinations mentioned directly in relation to Bennett’s roles are Jupiter for
the Galileo and Ulysses missions, and multiple planets including Jupiter, Saturn, Uranus, and Neptune for the
Voyager missions.
Given the specific mention of Bennett’s role in the Galileo mission to Jupiter, and the broader statement about the
Ulysses mission studying the Sun, Jupiter stands out as a primary destination that Bennett was directly involved
with.
Jupiter
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A.5 TRAJECTORY EXAMPLES ON LONG-CONTEXT RETRIEVAL

We show trajectories to highlight the impact of KeyChain data on general long-context retrieval. In
the Ruler VT examples in A.5, the KeyChain-trained model demonstrates clearer, stepwise retrieval,
while the non-KeyChain-trained model conflates intermediate variable assignments and propagates
errors, showing KeyChain data’s role in eliciting structured and correct retrieval behaviors.

RL Trajectory Example with KeyChain Data: Long-Context Retrieval on Ruler VT

<think> However, the specific value 92018 is only directly assigned to one variable in the text provided.
Let’s break it down step by step:
1. The first assignment in the text is: “VAR QPE = 64886 The grass is green. The sky is blue. The sun is
yellow. Here we go. There and back again.” This assigns the value 64886 to the variable QPE.
2. The next assignments form a chain: “VAR SEJ = VAR QPE The grass is green. The sky is blue. The
sun is yellow. Here we go. There and back again.” This assigns the value of QPE (which is 64886) to the
variable SEJ.
3. “VAR ZQO = VAR SEJ The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again.” This assigns the value of SEJ (which is 64886) to the variable ZQO.
4. “VAR RVU = VAR ZQO The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again.” This assigns the value of ZQO (which is 64886) to the variable RVU.
5. “VAR FAI = VAR RVU The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again.” This assigns the value of RVU (which is 64886) to the variable FAI.
6. The value 92018 is assigned to the variable SGMLJ: “VAR SGMLJ = 92018 The grass is green. The sky
is blue. The sun is yellow. Here we go. There and back again.”
7. Then, it forms a new chain: “VAR PBDME = VAR SGMLJ The grass is green. The sky is blue. The sun
is yellow. Here we go. There and back again.” This assigns the value of SGMLJ (which is 92018) to the
variable PBDME.
8. “VAR EANSM = VAR PBDME The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again.” This assigns the value of PBDME (which is 92018) to the variable EANSM.
9. “VAR QPKBX = VAR EANSM The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again.” This assigns the value of EANSM (which is 92018) to the variable QPKBX.
10. “VAR YYZJM = VAR EANSM The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again.” This assigns the value of EANSM (which is 92018) to the variable YYZJM.
So, the variables that are assigned the value 92018 are: SGMLJ, PBDME, EANSM, QPKBX, and YYZJM.
</think>
<think> The variables that are assigned the value 92018 are:
1. VAR SGMLJ = 92018 2. VAR PBDME = VAR SGMLJ 3. VAR EANSM = VAR PBDME 4. VAR QP-
KBX = VAR EANSM5. VAR YYZJM = VAR EANSM Thus, the variables are SGMLJ, PBDME, EANSM,
QPKBX, and YYZJM. </think>
\boxed{SGMLJ, PBDME, EANSM, QPKBX, YYZJM}

RL Trajectory Example WITHOUT KeyChain Data: Long-Context Retrieval on Ruler VT

<think> The reasoning process involves identifying the lines where the value 92018 is
first assigned to a variable, which is “VAR PBDME = 92018”. Then, tracking this value
through all subsequent assignments where this variable is reassigned to other variables. The
variables that inherit this value through the assignments are EANSM, YYZJM, SGMLJ, and
FAI. Since the question asks for variables assigned the value 92018, and FAI is assigned
92018 through the chain VAR PBDME = VAR SGMLJ, VAR SGMLJ = 92018, and so on,
the final list of variables is PBDME, EANSM, YYZJM, SGMLJ, and FAI. </think>
\boxed{PBDME, EANSM, YYZJM, SGMLJ, FAI}

A.6 LOONGRL TRAINING DYNAMICS

Fig. 7 and Fig. 8 show the training dynamics for the 7B and 14B models, respectively. Unlike the
7B setting, the 14B model is trained using only two curriculum stages, distractor and hard-mined,
skipping the initial warm-up due to its strong base capabilities. As shown in two figures, a similar
cyclical trend emerges: counts of consistently correct predictions and average rewards rise within
each stage, reset when transitioning to a harder task pool, and increase again. This multi-stage
training continues to provide informative learning signals and prevents saturation, while the steady
growth in response length indicates that the model persistently extends its retrieval and reasoning
chains in long-context multi-hop reasoning.

A.7 LONGBENCH-V2

We evaluate the LoongRL series and baseline models on the LongBench-v2 benchmark. For models
without long chain-of-thought (Long CoT) reasoning capability, we follow the original LongBench-
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Figure 7: Training metrics for the three-stage schedule. Vertical dashed lines mark the transitions
Warmup→ Stage II (distractor-augmented) and Stage II → Stage III (hard-mined); stage lengths
correspond to our setup (about 42, 168, and 117 steps).
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Figure 8: Training metrics for the LoongRL-14B’s two-stage schedule. Vertical dashed lines mark
the transitions Stage I (distractor-augmented) and → Stage III (hard-mined); stage lengths corre-
spond to our setup (about 168, and 150 steps).

Table 6: Comparison of LoongRL models with other baselines on the LongBench-v2 benchmark,
grouped by Difficulty, Length, and Task Type.
Model Overall Difficulty Length Task Type

Easy Hard Short Medium Long Long ICL Long SDU Code SingleDoc QA Long Dialogue MultiDoc QA
o3-mini 46.4 52.9 42.4 56.1 41.2 40.2 43.2 40.6 46.0 46.8 71.8 41.6
GPT-4o 48.3 61.8 40.3 46.2 48.4 51.0 57.6 44.4 66.7 46.2 50.0 40.8
QwQ-32B 51.2 57.8 47.1 53.7 51.2 46.5 54.6 35.6 50.4 51.8 56.9 49.9
R1-Distill-LLaMa-70B 34.2 35.4 33.4 47.2 28.4 24.1 28.4 15.2 32.0 37.7 46.2 35.2
Qwen2.5-7B-Instruct 31.2 32.3 30.5 42.8 24.7 25.0 25.9 30.3 42.0 35.4 35.9 23.2
R1-Distill-Qwen-7B 27.0 29.2 25.7 30.6 23.7 27.8 21.0 18.2 32.0 25.1 33.3 32.0
LoongRL-7B 36.2 41.1 33.1 40.6 34.4 32.4 35.8 39.4 44.0 38.9 59.0 21.6
Qwen2.5-14B-Instruct 35.3 34.9 35.5 43.3 32.6 27.1 33.8 33.3 32.0 38.3 35.9 33.6
R1-Distill-Qwen-14B 36.2 40.2 33.8 44.1 31.4 32.6 36.8 36.4 28.4 38.4 44.1 33.4
R1-Distill-Qwen-32B 38.6 40.1 37.6 48.9 33.5 31.5 29.6 39.4 38.0 39.4 51.3 39.2
QwenLong-L1-32B 40.8 46.4 37.4 52.4 35.7 31.5 37.0 32.7 43.2 40.0 55.4 41.0
LoongRL-14B 42.3 46.4 39.9 44.4 43.3 37.0 39.5 45.5 38.0 44.0 59.0 37.6

v2 CoT setting, using a temperature of 0.1, sampling five responses per query, and reporting the
average score across them (Avg@5). For models with Long CoT reasoning ability, we instead adopt
a temperature of 0.6, again sampling five responses and reporting Avg@5. In addition, for the Qwen
family and our LoongRL models, we apply the YaRN method to extend the context length to 128k
tokens. The overall comparison results are summarized in Table 6.

A.8 RULER

We evaluated the retrieval capabilities of models on long-text tasks using the RULER benchmark.
For models without long-context reasoning abilities, we followed the original RULER setting by
appending a prompt suffix designed to guide the model to produce completion-style answers, e.g.
“What is the special magic number for wandering-age mentioned in the provided text? The special
magic number for wandering-age mentioned in the provided text is”. In contrast, for models capa-
ble of long-context reasoning, we removed this completion-style suffix, as preliminary experiments
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Table 7: RULER benchmark results across different context lengths. For QwQ, QwenLong,
Qwen2.5 model series, we report their YaRN variants for 64k and 128k.

Model 4k 8k 16k 32k 64k 128k Avg.

o3-mini 96.58 96.85 94.69 90.85 74.81 65.40 86.53
DeepSeek-R1 98.46 97.98 97.18 96.06 94.92 85.10 94.95
GPT-4o 97.69 96.73 96.73 96.02 94.46 89.10 95.12
QwQ-32B (YaRN@64k/128k) 89.10 86.46 83.84 78.42 64.72 59.68 77.37
R1-Distill-LLaMa-70B 94.89 95.60 93.75 89.60 79.65 0.00 75.58
Llama3.1-70B-Instruct 96.78 96.64 95.82 94.87 89.21 64.53 89.64

R1-Distill-LLaMa-8B 83.89 79.80 73.77 64.46 51.06 1.28 59.04
Llama3.1-8B-Instruct 96.10 93.81 90.91 86.73 84.77 74.15 87.75
Qwen2.5-7B-Instruct (YaRN@64k/128k) 95.16 93.73 92.31 89.46 81.79 69.41 86.31
R1-Distill-Qwen-7B 65.70 48.29 18.86 4.38 1.41 0.88 23.25
LoongRL-7B (YaRN@64k/128k) 95.06 94.34 93.37 91.36 86.18 76.84 89.53

Qwen2.5-14B-Instruct (YaRN@64k/128k) 96.27 95.11 93.38 92.53 82.33 73.57 88.86
R1-Distill-Qwen-14B 91.44 86.29 85.73 82.00 60.24 28.23 72.32
R1-Distill-Qwen-32B 93.61 91.64 90.27 88.90 71.51 40.88 79.47
QwenLong-L1-32B (YaRN@64k/128k) 91.71 88.51 87.55 86.81 80.64 70.19 84.24
LoongRL-14B (YaRN@64k/128k) 97.56 96.14 95.36 95.11 87.14 79.92 91.87

indicated that these models tend not to provide direct completions but instead perform explicit rea-
soning before answering. After removing the suffix, we allowed the reasoning-capable models to
generate up to 8192 tokens and subsequently extracted the model’s answer from the text following
the “</think>” token in its output.

A.9 NEEDLE-IN-A-HAYSTACK

We further evaluated the needle-in-a-haystack (NIAH) task, which specifically measures the re-
trieval ability of models in extremely long-text settings. Figure 9 reports the performance of our
LoongRL-14B model. Results demonstrate that LoongRL-14B maintains strong retrieval accuracy
across extended context lengths, showcasing its robustness for long-context information retrieval.
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Figure 9: Needle-in-a-Haystack performance of LoongRL-14B.
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