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Abstract
Denoising is intuitively related to projection. In-
deed, under the manifold hypothesis, adding ran-
dom noise is approximately equivalent to orthog-
onal perturbation. Hence, learning to denoise is
approximately learning to project. In this paper,
we use this observation to interpret denoising dif-
fusion models as approximate gradient descent ap-
plied to the Euclidean distance function. We then
provide straight-forward convergence analysis of
the DDIM sampler under simple assumptions on
the projection error of the denoiser. Finally, we
propose a new gradient-estimation sampler, gener-
alizing DDIM using insights from our theoretical
results. In as few as 5-10 function evaluations, our
sampler achieves state-of-the-art FID scores on
pretrained CIFAR-10 and CelebA models and can
generate high quality samples on latent diffusion
models.

1. Introduction
Diffusion models achieve state-of-the-art quality on many
image generation tasks (Ramesh et al., 2022; Rombach et al.,
2022; Saharia et al., 2022). They are also successful in
text-to-3D generation (Poole et al., 2022) and novel view
synthesis (Liu et al., 2023). Outside the image domain, they
have been used for robot path-planning (Chi et al., 2023),
prompt-guided human animation (Tevet et al., 2022), and
text-to-audio generation (Kong et al., 2020).

Diffusion models are presented as the reversal of a stochas-
tic process that corrupts clean data with increasing levels of
random noise (Sohl-Dickstein et al., 2015; Ho et al., 2020).
This reverse process can also be interpreted as likelihood
maximization of a noise-perturbed data distribution using
learned gradients (called score functions) (Song & Ermon,
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2019; Song et al., 2020b). While these interpretations are
inherently probabilistic, samplers widely used in practice
(e.g. (Song et al., 2020a)) are often deterministic, suggest-
ing diffusion can be understood using a purely deterministic
analysis. In this paper, we provide such analysis by inter-
preting denoising as approximate projection, and diffusion
as distance minimization with gradient descent, using the
denoiser output as an estimate of the gradient. This in turn
leads to novel convergence results, algorithmic extensions,
and paths towards new generalizations.

Denoising approximates projection The core object in
diffusion is a learned denoiser ϵθ(x, σ), which, when given
a noisy point x ∈ Rn with noise level σ > 0, predicts the
noise direction in x, i.e., it estimates ϵ satisfying x = x0+σϵ
for a clean datapoint x0.

Prior work (Rick Chang et al., 2017) interprets denoising
as approximate projection onto the data manifold K ⊆ Rn.
Our first contribution makes this interpretation rigorous
by introducing a relative-error model, which states that
x − σϵθ(x, σ) well-approximates the projection of x onto
K when

√
nσ well-estimates the distance of x to K. Specif-

ically, we will assume that

∥x− σϵθ(x, σ)− projK(x)∥ ≤ ηdistK(x) (1)

when (x, σ) satisfies 1
νdistK(x) ≤

√
nσ ≤ νdistK(x) for

constants 1 > η ≥ 0 and ν ≥ 1.

This error model is motivated by the following theoretical
observations that hold when σ ≈ distK(x)/

√
n:

1. When σ is small and the manifold hypothesis holds,
denoising approximates projection given that most of
the added noise is orthogonal to the data manifold; see
Figure 1a and Proposition 3.1.

2. When σ is large, then any denoiser predicting any
weighted mean of the data K has small relative error;
see Figure 1b and Proposition 3.2.

3. Denoising with the ideal denoiser is a σ-smoothing
of projK(x) with relative error that can be controlled
under mild assumptions; see Section 3.3.

We also empirically validate this error model on sequences
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Figure 1: Denoising approximates projection: When σ is small (1a), most of the added noise lies in tanK(x0)
⊥ with high

probability under the manifold hypothesis. When σ is large (1b), both denoising and projection point in the same direction
towards K. We interpret the denoising process (1c) as minimizing dist2K(x) by iteratively taking gradient steps, estimating
the direction of∇ 1

2dist
2
K(x) = xt − projK(xt) with ϵθ(xt).

(xi, σi) generated by pretrained diffusion samplers, showing
that it holds in practice on image datasets.

Diffusion as distance minimization Our second contribu-
tion analyzes diffusion sampling under the error model (1).
In particular, we show it is equivalent to approximate
gradient descent on the squared Euclidean distance func-
tion f(x) := 1

2dist
2
K(x), which satisfies ∇f(x) = x −

projK(x). Indeed, in this notation, (1) is equivalent to

∥∇f(x)− σϵθ(x, σ)∥ ≤ η∥∇f(x)∥,

a standard relative-error assumption used in gradient-
descent analysis. We also show how the error parameters
(η, ν) controls the schedule of noise levels σt used in dif-
fusion sampling. Theorem 4.2 shows that with bounded
error parameters, a geometric σt schedule guarantees de-
crease of distK(xt) in the sampling process. Finally, we
leverage properties of the distance function to design a sam-
pler that aggregates previous denoiser outputs to reduce
gradient-estimation error (Section 5).

We conclude with computational evaluation of our sampler
(Section 6) that demonstrates state-of-the-art FID scores
on pretrained CIFAR-10 and CelebA datasets and compa-
rable results to the best samplers for high-resolution latent
models such as Stable Diffusion (Rombach et al., 2022)
(Figure 3). Section 7 provides novel interpretations of exist-
ing techniques under the framework of distance functions
and outlines directions for future research.

2. Background
Denoising diffusion models (along with all other generative
models) treat datasets as samples from a probability distri-
bution D supported on a subset K of Rn. They are used

to generate new points in K outside the training set. We
overview their basic features. We then state properties of
the Euclidean distance function distK(x) that are key to our
contributions.

2.1. Denoising Diffusion Models

Denoisers Denoising diffusion models are trained to es-
timate a noise vector ϵ ∈ Rn from a given noise level
σ > 0 and noisy input xσ ∈ Rn such that xσ = x0 + σϵ
approximately holds for some x0 in the data manifold K.
The learned function, denoted ϵθ : Rn × R+ → Rn, is
called a denoiser. The trainable parameters, denoted jointly
by θ ∈ Rm, are found by (approximately) minimizing the
following loss function using stochastic gradient descent:

L(θ) := E ∥ϵθ(x0 + σtϵ, σt)− ϵ∥2 (2)

where the expectation is taken over x0 ∼ D, t ∼ [N ], and
ϵ ∼ N (0, I). Given noisy xσ and noise level σ, the denoiser
ϵθ(xσ, σ) induces an estimate of x̂0 ≈ x0 via

x̂0(xσ, σ) := xσ − σϵθ(xσ, σ). (3)

Ideal Denoiser The ideal denoiser ϵ∗(xσ, σ) for a partic-
ular noise level σ and data distribution D is the minimizer
of the loss function

L(ϵ∗) = E
x0∼D

E
xσ∼N (x0,σI)

∥(xσ − x0)/σ − ϵ∗(xσ, σ)∥2 .

Informally, x̂0 predicted by ϵ∗ is an estimate of the expected
value of x0 given xσ . If D is supported on a set K, then x̂0

lies in the convex hull of K.

Sampling Aiming to improve accuracy, sampling algo-
rithms construct a sequence x̂t

0 := x̂0(xt, σt) of estimates
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from a sequence of points xt initialized at a given xN .
Diffusion samplers iteratively construct xt−1 from xt and
ϵθ(xt, σt), with a monotonically decreasing σ schedule
{σt}0t=N . For simplicity of notation we use ϵθ(·, σt) and
ϵθ(·, t) interchangeably based on context.

For instance, the randomized DDPM (Ho et al., 2020) sam-
pler uses the update

xt−1 = xt + (σt′ − σt)ϵθ(xt, σt) + ηwt, (4)

where wt ∼ N (0, I), σt′ = σ2
t−1/σt and η =√

σ2
t−1 − σ2

t′ (we have σt′ < σt−1 < σt, as σt−1 is the
geometric mean of σt′ and σt). The deterministic DDIM
(Song et al., 2020a) sampler, on the other hand, uses the
update

xt−1 = xt + (σt−1 − σt)ϵθ(xt, σt). (5)

See Figure 1c for an illustration of this denoising pro-
cess. Note that these samplers were originally presented
in variables zt satisfying zt =

√
αtxt, where αt satisfies

σ2
t = 1−αt

αt
. We prove equivalence of the original defini-

tions to (4) and (5) in Appendix A and note that the change-
of-variables from zt to xt previously appears in (Song et al.,
2020b; Karras et al., 2022; Song et al., 2020a).

2.2. Distance and Projection

The distance function to a set K ⊆ Rn is defined as

distK(x) := inf{∥x− x0∥ : x0 ∈ K}. (6)

The projection of x ∈ Rn, denoted projK(x), is the set of
points that attain this distance:

projK(x) := {x0 ∈ K : distK(x) = ∥x− x0∥}. (7)

When projK(x) is unique, i.e., when projK(x) = {x0},
we abuse notation and let projK(x) denote x0. Then x −
projK(x) is the direction of steepest descent of distK(x):
Proposition 2.1 (page 283, Theorem 3.3 of (Delfour &
Zolésio, 2011)). Suppose K ⊆ Rn is closed and x /∈ K.
Then projK(x) is unique for almost all x ∈ Rn (under the
Lebesgue measure). If projK(x) is unique, then∇distK(x)
exists, ∥∇distK(x)∥ = 1 and

∇ 1
2distK(x)

2 = distK(x),

∇distK(x) = x− projK(x).

In addition, we define a smoothed squared-distance function
for a smoothing parameter σ > 0 by using the softminσ2

operator instead of min.

dist2K(x, σ) :=
softminσ2

x0∈K ∥x0 − x∥2

= −σ2 log
(∑

x0∈K exp
(
−∥x0−x∥2

2σ2

))
.

In contrast to dist2K(x), dist
2
K(x, σ) is always differentiable

and lower bounds dist2K(x).

Figure 2: Ideal denoiser well-approximates projection onto
the CIFAR-10 dataset. Dashed line plots error for the ex-
ample shown, and density plot shows the error distribution
over 10k different DDIM sampling trajectories.

3. Denoising as Approximate Projection
In this section, we provide theoretical and empirical justifi-
cations for our relative error model, formally stated below:

Definition 3.1. We say ϵθ(x, σ) is an (η, ν)-approximate
projection if there exists constants 1 > η ≥ 0 and ν ≥ 1 so
that for all x with unique projK(x) and for all σ satisfying
1
νdistK(x) ≤

√
nσ ≤ νdistK(x), we have

∥x− σϵθ(x, σ)− projK(x)∥ ≤ ηdistK(x).

To justify this model, we will prove relative error bounds
under different assumptions on ϵθ, (x, σ) and K. Analy-
sis of DDIM based on this model is given in Section 4.
Formal statements and proofs are deferred to Appendix B.
Appendix E contains further experiments verifying our error
model on image datasets.

3.1. Relative Error Under the Manifold Hypothesis

The manifold hypothesis (Bengio et al., 2013; Fefferman
et al., 2016; Pope et al., 2021) asserts that “real-world”
datasets are (approximately) contained in low-dimensional
manifolds of Rn. Specifically, we suppose that K is a mani-
fold of dimension d with d≪ n. We next show that denois-
ing is approximately equivalent to projection, when noise
is small compared to the reach of K, defined as the largest
τ > 0 such that projK(x) is unique when distK(x) < τ .

The following classical result tells us that for small pertur-
bations w, the difference between projK(x0 + w) and x0

is contained in the tangent space tanK(x0), a subspace of
dimension d associated with each x0 ∈ K.
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Lemma 3.1 (Theorem 4.8(12) in (Federer, 1959)). Consider
x0 ∈ K and w ∈ tanK(x0)

⊥. If ∥w∥ < reach(K), then
projK(x0 + w) = x0.

When n ≫ d, the orthogonal complement tanK(x)⊥ is
large and will contain most of the weight of a random ϵ,
intuitively suggesting projK(x0+σϵ) ≈ x0 if σ is small. In
other words, we intuitively expect that the oracle denoiser,
which returns x0 given x0 + σϵ, approximates projection.

We formalize this intuition using Gaussian concentration
inequalities (Vershynin, 2018) and Lipschitz continuity of
projK(x) when distK(x) < reach(K).
Proposition 3.1 (Oracle denoising (informal)). Given
x0 ∈ K, σ > 0 and ϵ ∼ N (0, I), let xσ = x0 + σϵ ∈ Rn.
If n≫ d and σ

√
n ≲ reach(K), then with high probability,

∥projK(xσ)− x0∥ ≲
√

d
ndistK(xσ)

and for ν ≲ 1 +
√

d
n , 1

νdistK(xσ) ≤
√
nσ ≤ νdistK(xσ).

Observe this motivates both constants η and ν used by our
relative error model. We note prior analysis of diffusion un-
der the manifold hypothesis is given by (De Bortoli, 2022).

3.2. Relative Error in Large Noise Regime

We next analyze denoisers in the large-noise regime, when
distK(x) is much larger than diam(K) := sup{∥x − y∥ :
x, y ∈ K}. In this regime (see Figure 1b for an illustration),
any denoiser that predicts a point in the convex hull of
K approximates projection with error small compared to
distK(x).

Proposition 3.2. Suppose x− σϵθ(x, σ) ∈ convhull(K).
If
√
nσ ≤ νdistK(x), then ∥x− σϵθ(x, σ)− projK(x)∥ ≤

ν diam(K)√
nσ

distK(x).

Thus any denoiser that predicts any weighted mean of the
data, for instance the ideal denoiser, well approximates
projection when

√
nσ ≫ diam(K). For most diffusion

models used in practice,
√
nσN is usually 50-100 times the

diameter of the training set, with
√
nσt in this regime for a

significant proportion of timesteps.

3.3. Relative Error of Ideal Denoisers

We now consider the setting where K is a finite set and
ϵθ(x, σ) is the ideal denoiser ϵ∗(x, σ). We first show that
predicting x̂0 with the ideal denoiser is equivalent to projec-
tion using the σ-smoothed distance function:

Proposition 3.3. For all σ > 0 and x ∈ Rn, we have

∇x
1
2 dist

2
K(x, σ) = σϵ∗(x, σ).

This shows our relative error model is in fact a bound on

∥∇x dist
2
K(x, σ)−∇x dist

2
K(x)∥,

the error between the gradient of the smoothed distance
function and that of the true distance function. Since the
amount of smoothing is directly determined by σ, it is
therefore natural to bound this error using distK(x) when√
nσ ≈ distK(x). In other words, Proposition 3.3 directly

motivates our error-model.

Towards a rigorous bound, let Nα(x) denote the subset
of x0 ∈ K satisfying ∥x− x0∥ ≤ αdistK(x) for α ≥ 1.
Consider the following.

Proposition 3.4. If α ≥ 1 + 2ν2

n

(
1
e + log

(
|K|
η

))
and

1
νdistK(x) ≤

√
nσ, then

∥x− σϵ∗(x, σ)− projK(x)∥ ≤ ηdistK(x) + Cx,α,

where Cx,α := supx0∈Nα
∥x0 − projK(x)∥.

We can guarantee Cx,α is zero when distK(x) is small com-
pared to the minimum pairwise distance of points in K.
Combined with Proposition 3.2, this shows the ideal de-
noiser has low relative error in both the large and small
noise regimes. We cannot guarantee that Cx,α is small rela-
tive to distK(x) in all regimes, however, due to pathological
cases, e.g., x is exactly between two points in Nα. Neverthe-
less, Figure 2 empirically shows that the relative error of the
ideal denoiser ∥xt − σϵ∗(x, σt)− projK(xt)∥ /distK(xt)
is small at all pairs (xt, σt) generated by the DDIM sam-
pler, suggesting these pathologies do not appear in practice.

4. Gradient Descent Analysis of Sampling
Having justified the relative error model in Section 3, we
now use it to study the DDIM sampler. As a warmup, we
first consider the limiting case of zero error, where we see
DDIM is precisely gradient descent on the squared-distance
function with step-size determined by σt. We then general-
ize this result to arbitrary (η, ν), showing DDIM is equiv-
alent to gradient-descent with relative error. Proofs are
postponed to Appendix C.

4.1. Warmup: Exact Projection and Gradient Descent

We state our zero-error assumption in terms of the error-
model as follows.

Assumption 1. ϵθ is a (0, 1)-approximate projection.

We can now characterize DDIM as follows.

Theorem 4.1. Let xN , . . . , x0 denote a sequence (5) gen-
erated by DDIM on a schedule {σt}0t=N and f(x) :=
1
2distK(x)

2. Suppose that Assumption 1 holds, ∇f(xt)
exists for all t and distK(xN ) =

√
nσN . Then xt is
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a sequence generated by gradient descent with step-size
βt := 1− σt−1/σt:

xt−1 = xt − βt∇f(xt),

and distK(xt) =
√
nσt for all t.

We remark that the existence of ∇f(xt) is a weak assump-
tion as it is generically satisfied by almost all x ∈ Rn.

4.2. Approximate Projection and Gradient Descent with
Error

We next establish upper and lower-bounds of distance under
approximate gradient descent iterations. Given {σt}0t=N ,
let βt := 1− σt−1/σt and

Lσ,η
t :=

N∏
i=t

(1− βi(η + 1)), Uσ,η
t :=

N∏
i=t

(1 + βi(η − 1)).

Lemma 4.1. For K ⊆ Rn, let f(x) := 1
2distK(x)

2. If
xt−1 = xt − βt(∇f(xt) + et) for et satisfying ∥et∥ ≤
ηdistK(xt) and 0 ≤ βt ≤ 1, then

Lσ,η
t distK(xN ) ≤ distK(xt−1) ≤ Uσ,η

t distK(xN ).

Observe that the distance upper bound decreases only if
βi < 1 when η > 0. This conforms with our intuition that
step sizes are limited by the error in our gradient estimates.

The challenge in applying Lemma 4.1 to DDIM lies in
the specifics of our relative error model, which states that
ϵθ(xt, σt) provides an η-accurate estimate of ∇f(xt) only
if σt provides a ν-accurate estimate of distK(xt). Hence
we must first control the difference between σt and distance
distK(xt) by imposing the following conditions on σt.

Definition 4.1. We say that parameters {σt}0t=N are (η, ν)-
admissible if, for all t ∈ {1, . . . , N},

1
νU

σ,η
t ≤

∏N
i=t(1− βi) ≤ νLσ,η

t . (8)

Intuitively, an admissible schedule decreases σt slow
enough (corresponding to taking smaller gradient steps)
to ensure 1

νdistK(xt) ≤
√
nσt ≤ νdistK(xt) holds at each

iteration. Our analysis assumes admissibility of the noise
schedule and our relative-error model (Definition 3.1):
Assumption 2. For η > 0 and ν ≥ 1, {σt}0t=N is (η, ν)-
admissible and ϵθ is an (η, ν)-approximate projection.

Our main result follows. In simple terms, it states that
DDIM is approximate gradient descent, admissible sched-
ules σt are good estimates of distance, and the error bounds
of Lemma 4.1 hold.
Theorem 4.2 (DDIM with relative error). Let xt denote the
sequence generated by DDIM. Suppose Assumption 2 holds,
the gradient of f(x) := 1

2distK(x)
2 exists for all xt and

distK(xN ) =
√
nσN . Then:

• xt is generated by approximate gradient descent itera-
tions of the form in Lemma 4.1 with βt = 1− σt−1/σt.

• 1
νdistK(xt) ≤

√
nσt ≤ νdistK(xt) for all t.

• distK(xN )Lσ,η
t ≤ distK(xt−1) ≤ distK(xN )Uσ,η

t

4.3. Admissible Log-Linear Schedules for DDIM

We next characterize admissible σt of the form σt−1 =
(1− β)σt where β denotes a constant step-size. This illus-
trates that admissible σt-sequences not only exist, they can
also be explicitly constructed from (η, ν).

Theorem 4.3. Fix β ∈ R satisfying 0 ≤ β < 1 and suppose
that σt−1 = (1− β)σt. Then σt is (η, ν)-admissible if and
only if β ≤ β∗,N where β∗,N := c

η+c for c := 1− ν−1/N .

Suppose we fix (η, ν) and choose, for a given N , the step-
size β∗,N . It is natural to ask how the error bounds of The-
orem 4.2 change as N increases. We establish the limiting
behavior of the final output (σ0, x0) of DDIM.

Theorem 4.4. Let xN , . . . , x1, x0 denote the sequence gen-
erated by DDIM with σt satisfying σt−1 = (1 − β∗,N )σt

for ν ≥ 1 and η > 0. Then

• lim
N→∞

σ0

σN
= lim

N→∞ (1− β∗,N )N = ν−1/η .

• lim
N→∞

distK(x0)
distK(xN ) ≤ lim

N→∞ (1 + (η − 1)β∗,N )N = ν
η−1
η .

This theorem illustrates that final error, while bounded, need
not converge to zero under our error model. This motivates
heuristically updating the step-size from β∗,N to a full step
(β = 1) during the final DDIM iteration. We adopt this
approach in our experiments (Section 6).

Next we demonstrate an explicit construction of an admissi-
ble schedule using numerical estimates of the error parame-
ters on an image dataset.

Example 4.1 (Construction of admissible schedule). Let
the CIFAR-10 training set be K and the ideal denoiser be
ϵθ. From Figure 2, which plots the relative projection er-
ror relative to the training set, we see that η ≤ 0.1. Our
experiments comparing distK(xt) with

√
nσt suggest that

ν = 2 is a conservative estimate, as the error in distK(xt)
is bounded by this amount throughout the sampling trajec-
tories. Theorem 4.3 shows that if σt−1/σt ≥ η

η+1−ν−1/N ,
then σ0, . . . , σN is an admissible schedule. With η = 0.1,
ν = 2 and N = 50, we obtain σt−1/σt ≥ 0.88. This is
very close to the value of σt−1/σt = 0.85 in the schedule
used in our sampler in Section 6.1.
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Ours UniPC DPM++ PNDM DDIM
(Zhao et al., 2023) (Lu et al., 2022b) (Liu et al., 2022) (Song et al., 2020a)

FID 13.77 15.59 15.43 19.43 14.06

Figure 3: Outputs of our gradient-estimation sampler on text-to-image Stable Diffusion compared to other commonly
used samplers, when limited to N = 10 function evaluations. We also report FID scores for text-to-image generation on
MS-COCO 30K.

Algorithm 1 DDIM sampler (Song et al., 2020a)

Require: (σN , . . . , σ0), xN ∼ N (0, I), ϵθ
Ensure: Compute x0 with N evaluations of ϵθ

for t = N, . . . , 1 do
xt−1 ← xt + (σt−1 − σt)ϵθ(xt, σt)

return x0

Algorithm 2 Our gradient-estimation sampler

Require: (σN , . . . , σ0), xN ∼ N (0, I), ϵθ
Ensure: Compute x0 with N evaluations of ϵθ
xN−1 ← xN + (σN−1 − σN )ϵθ(xN , σN )
for t = N − 1, . . . , 1 do

ϵ̄t ← 2ϵθ(xt, σt)− ϵθ(xt+1, σt+1)
xt−1 ← xt + (σt−1 − σt)ϵ̄t

return x0

5. Improving Deterministic Sampling
Algorithms via Gradient Estimation

Section 3 establishes that ϵθ(x, σ) ≈
√
n∇distK(x) when

distK(x) ≈
√
nσ. We next exploit an invariant property of

∇distK(x) to reduce the prediction error of ϵθ via gradient
estimation.

The gradient ∇distK(x) is invariant along line segments
between a point x and its projection projK(x), i.e., letting

x̂ = projK(x), for all θ ∈ (0, 1] we have

∇distK(θx+ (1− θ)x̂) = ∇distK(x). (9)

Hence, ϵθ(x, σ) should be (approximately) constant on
this line-segment under our assumption that ϵθ(x, σ) ≈√
n∇distK(x) when distK(x) ≈

√
nσ. Precisely, for x1

and x2 on this line-segment, we should have

ϵθ(x1, σt1) ≈ ϵθ(x2, σt2) (10)

if ti satisfies distK(xi) ≈
√
nσti . This property suggests

combining previous denoiser outputs {ϵθ(xi, σi)}Ni=t+1 to
estimate ϵt :=

√
n∇distK(xt). We next propose a practical

second-order method 1 for this estimation that combines
the current denoiser output with the previous. Recently
introduced consistency models (Song et al., 2023) penal-
ize violation of (10) during training. Interpreting denoiser
output as ∇distK(x) and invoking (9) offers an alternative
justification for these models.

Let et(ϵt) = ϵt − ϵθ(xt, σt) be the error of ϵθ(xt, σt) when
predicting ϵt. To estimate ϵt from ϵθ(xt, σt), we minimize
the norm of this error concatenated over two time-steps.
Precisely, letting yt(ϵ) = (et(ϵ), et+1(ϵ)), we compute

ϵ̄t := argmin
ϵ
∥yt(ϵ)∥2W , (11)

1This method is second-order in the sense that the update
step uses previous values of ϵθ , and should not be confused with
second-order derivatives.
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xt+1

xt

ϵθ(xt+1)

ϵθ(xt)

ϵ̄

K

Figure 4: Illustration of our choice of ϵ̄t

where W is a specified positive-definite weighting matrix.
In Appendix D we show that this error model, for a particular
family of weight matrices, results in the update rule

ϵ̄t = γϵθ(xt, σt) + (1− γ)ϵθ(xt+1, σt+1), (12)

where we can search over W by searching over γ.

6. Experiments

Figure 5: Plot of different choices of log(σt) for N = 10.

Schedule CIFAR-10 CelebA

DDIM 16.86 18.08
DDIM Offset 14.18 15.38
EDM 20.85 16.72
Ours 13.25 13.55

Table 1: FID scores of the DDIM sampler (Algorithm 1)
with different σt schedules on the CIFAR-10 model for
N = 10 steps.

We evaluate modifications of DDIM (Algorithm 1) that
leverage insights from Section 5 and Section 4.3. Following
Section 5 we modify DDIM to use a second-order update
that corrects for error in the denoiser output (Algorithm 2).
Specifically, we use the Equation (12) update with an
empirically tuned γ. We found that setting γ = 2 works

well for N < 20; for larger N slightly increasing γ also
improves sample quality (see Appendix E for more details).
A comparison of this update with DDIM is visualized in
Figure 4. Following Section 4.3, we select a noise schedule
(σN , . . . , σ0) that decreases at a log-linear (geometric) rate.
The specific rate is determined by an initial and target
noise level. Our σt schedule is illustrated in Figure 5,
along with other commonly used schedules. We note that
log-linear schedules have been previously proposed for
SDE-samplers (Song et al., 2020b); to our knowledge we
are the first to propose and analyze their use for DDIM2.
All the experiments were run on a single Nvidia RTX 4090
GPU. Code for the experiments is available at https:
//github.com/ToyotaResearchInstitute/
gradient-estimation-sampler

6.1. Evaluation of Noise Schedule

In Figure 5 we plot our schedule (with our choices of σt

detailed in Appendix F) with three other commonly used
schedules on a log scale. The first is the evenly spaced
subsampling of the training noise levels used by DDIM.
The second “DDIM Offset” uses the same even spacing
but starts at a smaller σN , the same as that in our schedule.
This type of schedule is typically used for guided image
generation such as SDEdit (Meng et al., 2021). The third
“EDM” is the schedule used in Karras et al. (2022, Eq. 5),
with σmax = 80, σmin = 0.002 and ρ = 7.

We then test these schedules on the DDIM sampler Algo-
rithm 1 by sampling images with N = 10 steps from the
CIFAR-10 and CelebA models. We see that in Table 1 that
our schedule improves the FID of the DDIM sampler on
both datasets even without the second-order updates. This is
in part due to choosing a smaller σN so the small number of
steps can be better spent on lower noise levels (the difference
between “DDIM” and “DDIM Offset”), and also because
our schedule decreases σt at a faster rate than DDIM (the
difference between “DDIM Offset” and “Ours”).

6.2. Evaluation of Full Sampler

We quantitatively evaluate our gradient-estimation sampler
(Algorithm 2) by computing the Fréchet Inception Distance
(FID) (Heusel et al., 2017) between all the training images
and 50k generated images. We use denoisers from (Ho et al.,
2020; Song et al., 2020a) that were pretrained on the CIFAR-
10 (32x32) and CelebA (64x64) datasets (Krizhevsky et al.,
2009; Liu et al., 2015). We compare our results with other
samplers using the same denoisers. The FID scores are tab-
ulated in Table 2, showing that our sampler achieves better
performance on both CIFAR-10 (for N = 5, 10, 20, 50) and

2DDIM is usually presented using not σt but parameters αt

satisfying σ2
t = (1−αt)/αt. Linear updates of σt are less natural

when expressed in terms of αt.
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Table 2: FID scores of our gradient-estimation sampler compared to that of other samplers for pretrained CIFAR-10 and
CelebA models with a discrete linear schedule. The first half of the table shows our computational results whereas the
second half of the table show results taken from the respective papers. *Results for N = 25

CIFAR-10 FID CelebA FID
Sampler N = 5 N = 10 N = 20 N = 50 N = 5 N = 10 N = 20 N = 50

Ours 12.57 3.79 3.32 3.41 10.76 4.41 3.19 3.04
DDIM (Song et al., 2020a) 47.20 16.86 8.28 4.81 32.21 18.08 11.81 7.39

PNDM (Liu et al., 2022) 13.9 7.03 5.00 3.95 11.3 7.71 5.51 3.34
DPM (Lu et al., 2022a) 6.37 3.72 3.48 5.83 2.82 2.71
DEIS (Zhang & Chen, 2022) 18.43 7.12 4.53 3.78 25.07 6.95 3.41 2.95
UniPC (Zhao et al., 2023) 23.22 3.87
A-DDIM (Bao et al., 2022) 14.00 5.81* 4.04 15.62 9.22* 6.13

Figure 6: A comparison of our gradient-estimation sampler
with DDIM on the CelebA dataset with N = 5 steps.

CelebA (for N = 5, 10).

We also incorporated our sampler into Stable Diffusion (a
latent diffusion model). We change the noise schedule σt

as described in Appendix F. In Figure 3, we show some
example results for text to image generation in N = 10
function evaluations, as well as FID results on 30k images
generated from text captions drawn the MS COCO (Lin
et al., 2014) validation set. From these experiments we can
see that our sampler performs comparably to other com-
monly used samplers, but with the advantage of being much
simpler to describe and implement.

7. Related Work and Discussion
Learning diffusion models Diffusion was originally in-
troduced as a variational inference method that learns to
reverse a noising process (Sohl-Dickstein et al., 2015).
This approach was empirically improved by (Ho et al.,
2020; Nichol & Dhariwal, 2021) by introducing the train-
ing loss (2), which is different from the original varia-
tional lower bound. This improvement is justified from
the perspective of denoising score matching (Song & Er-
mon, 2019; Song et al., 2020b), where the ϵθ is interpreted
as ∇ log(p(xt, σt)), the gradient of the log density of the
data distribution perturbed by noise. Score matching is
also shown to be equivalent to denoising autoencoders with
Gaussian noise (Vincent, 2011).

Sampling from diffusion models Samplers for diffusion
models started with probabilistic methods (e.g. (Ho et al.,
2020)) that formed the reverse process by conditioning on
the denoiser output at each step. In parallel, score based
models (Song & Ermon, 2019; Song et al., 2020b) interpret
the forward noising process as a stochastic differential equa-
tion (SDE), so SDE solvers based on Langevian dynamics
(Welling & Teh, 2011) are employed to reverse this process.
As models get larger, computational constraints motivated
the development of more efficient samplers. (Song et al.,
2020a) then discovered that for smaller number of sampling
steps, deterministic samplers perform better than stochas-
tic ones. These deterministic samplers are constructed by
reversing a non-Markovian process that leads to the same
training objective, which is equivalent to turning the SDE
into an ordinary differential equation (ODE) that matches
its marginals at each sampling step.

This led to a large body of work focused on developing
ODE and SDE solvers for fast sampling of diffusion mod-
els, a few of which we have evaluated in Table 2. Most
notably, (Karras et al., 2022) put existing samplers into a
common framework and isolated components that can be
independently improved. Our gradient-estimation sampler
Algorithm 2 bears most similarity to linear multistep meth-
ods, which can also be interpreted as accelerated gradient
descent (Scieur et al., 2017). What differs is the error model:
ODE solvers aim to minimize discretization error whereas
we aim to minimize gradient estimation error, resulting in
different “optimal” samplers.

Linear-inverse problems and conditioning Several au-
thors (Kadkhodaie & Simoncelli, 2020; Chung et al., 2022;
Kawar et al., 2022) have devised samplers for finding im-
ages that satisfy linear equations Ax = b. Such linear
inverse problems generalize inpainting, colorization, and
compressed sensing. In our framework, we can interpret this
samplers as algorithms for equality constraint minimization
of the distance function, a classical problem in optimization.
Similarly, the widely used technique of conditioning (Dhari-
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wal & Nichol, 2021) can be interpreted as multi-objective
optimization, where minimization of distance is replaced
with minimization of distK(x)

2 + g(x) for an auxiliary
objective function g(x).

Score distillation sampling We illustrate the potential of
our framework for discovering new applications of diffusion
models by deriving Score Distillation Sampling (SDS), a
method for parameterized optimization introduced in (Poole
et al., 2022) in the context of text to 3D object genera-
tion. At a high-level, this technique finds (x, θ) satisfy-
ing non-linear equations x = g(θ) subject to the con-
straint x ∈ K, where K denotes the image manifold. It
does this by iteratively updating x with a direction pro-
portional to (ϵθ(x + σϵ, σ) − ϵ)∇g(θ), where σ is a ran-
domly chosen noise level and ϵ ∼ N (0, I). Under our
framework, this iteration can be interpreted as gradient
descent on the squared-distance function with gradient
1
2∇θdistK(g(θ))

2 = (x − projK(x))∇g(θ), with the as-
sumption that projK(x) ≈ projK(x + σϵ), along with
our Section 3 denoising approximation projK(x + σϵ) ≈
x+ σϵ− σϵθ(x+ σϵ, σ).

Flow matching Flow matching (Lipman et al., 2022) of-
fers a different interpretation and generalization of diffusion
models and deterministic sampling. Under this interpreta-
tion, the learned ϵθ represents a time-varying vector field,
defining probability paths that transport the initial Gaussian
distribution to the data distribution. For ϵθ learned with
the denoising objective, we can interpret this vector field
as the gradient of the smoothed squared-distance function
dist2K(x, σ) (where σ changes as a function of t), thus mov-
ing along a probability path in this vector field minimizes
the distance to the manifold.

Learning the distance function Reinterpreting denois-
ing as projection, or equivalently gradient descent on the
distance function, has a few immediate implications. First,
it suggests generalizations that draw upon the literature
for computing distance functions and projection operators.
Such techniques include Fast Marching Methods (Sethian,
1996), kd-trees, and neural-network approaches, e.g., (Park
et al., 2019; Rick Chang et al., 2017). Using concen-
tration inequalities, we can also interpret training a de-
noiser as learning a solution to the Eikonal PDE, given by
∥∇d(x)∥ = 1. Other techniques for solving this PDE with
deep neural nets include (Smith et al., 2020; Lichtenstein
et al., 2019; bin Waheed et al., 2021).

8. Conclusion and Future Work
We have presented a simple framework for analyzing and
generalizing diffusion models that has led to a new sampling
approach and new interpretations of pre-existing techniques.

Moreover, the key objects in our analysis —the distance
function and the projection operator—are canonical objects
in constrained optimization. We believe our work can lead
to new generative models that incorporate sophisticated ob-
jectives and constraints for a variety of applications. We
also believe this work can be leveraged to incorporate exist-
ing denoisers into optimization algorithms in a plug-in-play
fashion, much like the work in (Chan et al., 2016; Le Pendu
& Guillemot, 2023; Rick Chang et al., 2017).

Combining the multi-level noise paradigm of diffusion with
distance function learning (Park et al., 2019) is an interesting
direction, as are diffusion-models that carry out projection
using analytic formulae or simple optimization routines.

Impact Statement
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A. Equivalent Definitions of DDIM and DDPM
The DDPM and DDIM samplers are usually described in a different coordinate system zt defined by parameters ᾱt and the
following relations , where the noise model is defined by a schedule ᾱt:

y ≈
√
ᾱtz +

√
1− ᾱtϵ, (13)

with the estimate ẑt0 := ẑ0(zt, t) given by

ẑ0(y, t) :=
1√
ᾱt

(y −
√
1− ᾱtϵ

′
θ(y, t)). (14)

We have the following conversion identities between the x and z coordinates:

x0 = z0, xt = zt/
√
ᾱt, σt =

√
1− ᾱt

ᾱt
, ϵθ(y, σt) = ϵ′θ(y/

√
ᾱt, t). (15)

While this change-of-coordinates is used in Song et al. (2020a, Section 4.3) and in (Karras et al., 2022)–and hence not new–
we rigorously prove equivalence of the DDIM and DDPM samplers given in Section 2 with their original definitions.

DDPM Given initial zN , the DDPM sampler constructs the sequence

zt−1 =

√
ᾱt−1(1− αt)

1− ᾱt
ẑt0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt, (16)

where αt := ᾱt/ᾱt−1 and wt ∼ N (0, I). This is interpreted as sampling zt−1 from a Gaussian distribution conditioned on
zt and ẑt0 (Ho et al., 2020).

Proposition A.1 (DDPM change of coordinates). The sampling update (4) is equivalent to the update (16) under the change
of coordinates (15).

Proof. First we write (4) in terms of zt, ϵ′θ(zt, t) and wt using (14):

zt−1 =

√
ᾱt−1(1− αt)√
ᾱt(1− ᾱt)

(
zt −

√
1− ᾱtϵ

′
θ(zt, t)

)
+

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt

=
zt√
αt

+
αt − 1√

αt(1− ᾱt))
ϵ′θ(zt, t) +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt.

Next we divide both sides by
√
ᾱt−1 and change zt and zt−1 to xt and xt−1:

xt−1 = xt +
αt − 1√
ᾱt(1− ᾱt)

ϵθ(xt, σt) +

√
1− ᾱt−1

ᾱt−1

1− αt

1− ᾱt
wt.

Now if we define

η :=

√
1− ᾱt−1

ᾱt−1

1− αt

1− ᾱt
= σt−1

√
1− ᾱt/ᾱt−1

1− ᾱt
,

σt′ :=
√
σ2
t−1 − η2 = σt−1

√
ᾱt(1/ᾱt−1 − 1)

1− ᾱt
=

σ2
t−1

σt
,

it remains to check that

σt′ − σt =
σ2
t−1 − σ2

t

σt
=

1/ᾱt−1 − 1/ᾱt√
1− ᾱt/

√
ᾱt

=
αt − 1√
ᾱt(1− ᾱt)

.
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DDIM Given initial zN , the DDIM sampler constructs the sequence

zt−1 =
√
ᾱt−1ẑ

t
0 +

√
1− ᾱt−1ϵ

′
θ(zt, t), (17)

i.e., it estimates ẑt0 from zt and then constructs zt−1 by simply updating ᾱt to ᾱt−1. This sequence can be equivalently
expressed in terms of ẑt0 as

zt−1 =
√
ᾱt−1ẑ

t
0 +

√
1− ᾱt−1

1− ᾱt
(zt −

√
ᾱtẑ

t
0). (18)

Proposition A.2 (DDIM change of coordinates). The sampling update (5) is equivalent to the update (18) under the change
of coordinates (15).

Proof. First we write (17) in terms of zt and ϵ′θ(zt, t) using (14):

zt−1 =

√
ᾱt−1

ᾱt
zt +

(√
1− ᾱt−1 −

√
ᾱt−1

ᾱt

√
1− ᾱt

)
ϵ′θ(zt, t).

Next we divide both sides by
√
ᾱt−1 and change zt and zt−1 to xt and xt−1:

xt−1 = xt +

(√
1− ᾱt−1

ᾱt−1
−
√

ᾱt−1

1− ᾱt

)
ϵθ(xt, σt)

= xt + (σt−1 − σt)ϵθ(xt, σt).

B. Formal Comparison of Denoising and Projection
B.1. Proof of Proposition 3.1

First, we state the formal version of Proposition 3.1

Proposition B.1 (Oracle denoising). Fix σ > 0, t > 0 and let κ(t) :=
√

(
√
d+ t)2 + (

√
n− d+ t)2. Given x0 ∈ K and

ϵ ∼ N (0, I), let xσ = x0 + σϵ. Suppose that reach(K) > σκ(t) and
√
n− d −

√
d − 2t > 0. Then, for an absolute

constant α > 0, we have, with probability at least (1− exp(−αt2))2, that

σ(
√
n− d−

√
d− 2t) ≤ dist(xσ) ≤ σ(

√
n− d+

√
d+ 2t)

and

∥projK(xσ)− x0∥ ≤
C(t)(

√
d+ t)

√
n− d−

√
d− 2t

distK(xσ)

where C(t) := reach(K)
reach(K)−σκ(t) .

Our proof uses local Lipschitz continuity of the projection operator, stated formally as follows.

Proposition B.2 (Theorem 6.2(vi), Chapter 6 of (Delfour & Zolésio, 2011)). Suppose 0 < reach(K) < ∞. Consider
h > 0 and x, y ∈ Rn satisfying 0 < h < reach(K) and distK(x) ≤ h and distK(y) ≤ h. Then the projection map satisfies
∥projK(y)− projK(x)∥ ≤

reach(K)
reach(K)−h∥y − x∥.

We also use the following concentration inequalities.

Proposition B.3. Let w ∼ N (0, σ2In). Let S be a fixed subspace of dimension d and denote by wS and wS⊥ the projections
onto S and S⊥ respectively. Then for an absolute constant α, the following statements hold

• With probability at least 1− exp(−αt2),

σ(
√
n− t) ≤ ∥w∥ ≤ σ(

√
n+ t)

13
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• With probability at least (1− exp(−αt2))2,

σ(
√
d− t) ≤ ∥wS∥ ≤ σ(

√
d+ t), σ(

√
n− d− t) ≤ ∥wS⊥∥ ≤ σ(

√
n− d+ t),

Proof. The first statement is proved in (Vershynin, 2018, page 44, Equation 3.3). For the second, let B ∈ Rn×d

denote an orthonormal basis for S and define y = BTw Then ∥y∥ = ∥wS∥. Further, y ∼ N (0, σ2Id×d) given that
cov(y) = σ2BTB = σ2Id×d. Hence, the bounds on ∥wS∥ hold with probability at least p := 1− exp(−αt2) given the first
statement. By similar argument, the bounds on ∥wS⊥∥ also hold with probability p. Since wS and wS⊥ are independent, we
deduce that both sets of bounds simultaneously hold with probability at least p2.

To prove Proposition B.1, we decompose random noise σϵ as

σϵ = wN + wT (19)

for wT ∈ tanK(x0) and wN ∈ tanK(x0)
⊥ and use Lemma 3.1. The proof follows.

Proof of Proposition B.1. Let p := 1− exp(−αt2). Proposition B.3 asserts that, with probability at least p2,

σ(
√
d− t) ≤ ∥wT ∥ ≤ σ(

√
d+ t), σ(

√
n− d− t) ≤ ∥wN∥ ≤ σ(

√
n− d+ t), (20)

These inequalities imply the claimed bounds on distK(xσ), given that

∥wN∥ − ∥wT ∥ ≤ distK(xσ) ≤ ∥wN∥+ ∥wT ∥

by Lemma C.2 and the fact dist(x0 + wN ) = ∥wN∥ under the reach assumption and Lemma 3.1.

Using proj(x0 + wN ) = x0, we observe that

∥ proj(xσ)− x0∥ = ∥ proj(x0 + wN + wT )− x0∥
= ∥ proj(x0 + wN )− x0 + proj(x0 + wN + wT )− proj(x0 + wN )∥
= ∥ proj(x0 + wN )− proj(x0 + wN + wT )∥
≤ C∥wT ∥

≤ Cσ(
√
d+ t)

where the second-to-last inequality comes from Proposition B.2 using the fact that reach(K) > w and the inequalities
distK(x0 + wN ) = ∥wN∥ ≤ ∥w∥ and distK(x0 + wN + wT ) ≤ ∥w∥. The proof is completed by dividing by our lower
bound of distK(xσ).

B.2. Proof of Proposition 3.3

First we derive an explicit expression for the ideal denoiser for a uniform distribution over a finite set.

Lemma B.1. When D is a discrete uniform distribution over a set K, the ideal denoiser ϵ∗ is given by

ϵ∗(xσ, σ) =

∑
x0∈K(xσ − x0) exp(−∥xσ − x0∥2 /2σ2)

σ
∑

x0∈K exp(−∥xσ − x0∥2 /2σ2)
.

Proof. Writing the loss explicitly as

Lσ(ϵ
∗) =

∫ ∑
x0∈K

1

|K|σ
√
2π

exp

(
−∥xσ − x0∥2

2σ2

)
∥(xσ − x0)/σ − ϵ∗(xσ, σ)∥2 d(xσ),

It suffices to take the point-wise minima of the expression inside the integral, which is convex in terms of ϵ∗.

14
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From this expression of the ideal denoiser ϵ∗, we see that x̂0 can be written as a convex combination of points in K:

x̂0(x, σ) = σϵ∗(x, σ)− x =
∑
x0∈K

w(x, x0)x0,

where
∑

x0∈K w(x, x0) = 1.

By taking the gradient of the log-sum-exp function in the definition of dist2K(x, σ) then applying Lemma B.1, it is clear that

∇x
1
2 dist

2
K(x, σ) = σϵ∗(x, σ).

B.3. Proof of Proposition 3.4

We wish to bound the error between the gradient of the true distance function and the result of the ideal denoiser. Precisely,
we want to upper-bound the following in terms of distK(x) = ∥x− x∗

0∥, where x∗
0 = projK(x). We first define

w(x, x′) :=
exp(−∥x− x′∥2 /2σ2)∑

x0∈K exp(−∥x− x0∥2 /2σ2)
.

Note that by definition, we have
∑

x0∈K w(x, x0) = 1. Letting N̄α denote the complement of Nα in K, we have∥∥∇ 1
2 distK(x)

2 − σϵ∗(x, σ)
∥∥ =

∥∥∇ 1
2 distK(x)

2 −∇ 1
2 dist

2
K(x, σ)

∥∥
=
∥∥x∗

0 −
∑

x0∈K w(x, x0)x0

∥∥
=
∥∥∑

x0∈K w(x, x0)(x
∗
0 − x0)

∥∥
≤ ∥

∑
x0∈N̄α

w(x, x0)(x
∗
0 − x0)∥+ ∥

∑
x0∈Nα

w(x, x0)(x
∗
0 − x0)∥

≤ ∥
∑

x0∈N̄α

w(x, x0)(x
∗
0 − x0)∥+ Cx,α

The claim then follows from the following theorem.

Theorem B.1. Suppose K is a finite-set and let x∗
0 = projK(x). Suppose we have

α ≥ 1 +
2σ2

distK(x)2

(
1

e
+ log

(
m

η

))
, (21)

then
∥∥∑

x0∈N̄α
w(x, x0)(x

∗
0 − x0)

∥∥ ≤ ηdistK(x).

Proof. Applying the triangle inequality, it suffices to upper-bound each of w(x, x0) ∥x∗
0 − x0∥. For convenience of notation

let δ(x0) := ∥x− x0∥ / ∥x− x∗
0∥. Note that by construction δ(x0) ≥ 1 for all x0 ∈ K, and δ(x0) ≥ α for all x0 ∈ N̄α.

Then

∥x∗
0 − x0∥ ≤ ∥x∗

0 − x∥+ ∥x− x0∥ = (1 + δ(x0)) ∥x− x∗
0∥ ,

w(x, x0) ≤ exp

(
−∥x− x0∥2 − ∥x− x∗

0∥
2

2σ2

)
≤ exp

(
− (δ(x0)

2 − 1) ∥x− x∗
0∥

2

2σ2

)
.

From (21) and the fact that 1/e ≥ log(a)/a for a = δ(x0) + 1 ≥ 1, we have

δ(x0)− 1 ≥ α− 1 ≥ 2σ2

a ∥x− x∗
0∥

2

(
log(a) + log

(m
ϵ

))
=

2σ2

(δ(x0) + 1) ∥x− x∗
0∥

2 log

(
m(δ(x0) + 1)

ϵ

)
δ(x0)

2 − 1 ≥ 2σ2

∥x− x∗
0∥

2 log

(
m(δ(x0) + 1)

ϵ

)

15
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Putting these together, we have:

∥∥∑
x0∈N̄α

w(x, x0)(x
∗
0 − x0)

∥∥ ≤ ∑
x0∈N̄α

(1 + δ(x0)) ∥x− x∗
0∥ exp

(
− (δ(x0)

2 − 1) ∥x− x∗
0∥

2

2σ2

)

≤
∑

x0∈N̄α

ϵ ∥x− x∗
0∥

m

≤ ϵdistK(x)

C. DDIM with Projection Error Analysis

C.1. Proof of Theorem 4.1

We use the following lemma for gradient descent applied to the squared-distance function f(x).

Lemma C.1. Fix x ∈ Rn and suppose that∇f(x) exists. For step-size 0 < β ≤ 1 consider the gradient descent iteration
applied to f(x):

x+ := x− β∇f(x)
Then, distK(x+) = (1− β) distK(x) < distK(x).

Make the inductive hypothesis that dist(xt) =
√
nσt. From the definition of DDIM (5), we have

xt−1 = xt + (
σt−1

σt
− 1)σtϵθ(xt, σt).

Under Assumption 1 and the inductive hypothesis, we conclude

xt−1 = xt + (
σt−1

σt
− 1)∇f(xt)

= xt − βt∇f(xt)

Using Lemma C.1 we have that

dist(xt−1) = (1− βt) dist(xt) =
σt−1

σt
dist(xt) =

√
nσt−1

The base case holds by assumption, proving the claim.

C.2. Proof of Lemma C.1

Letting x0 = projK(x) and noting ∇f(x) = x− x0, we have

distK(x+) = distK(x+ β(x0 − x))

= ∥x+ β(x0 − x)− x0∥
= ∥(x− x0)(1− β)∥
= (1− β)distK(x)

C.3. Distance function bounds

The distance function admits the following upper and lower bounds.

Lemma C.2. The distance function distK : Rn → R for K ⊆ Rn satisfies

distK(u)− ∥u− v∥ ≤ distK(v) ≤ distK(u) + ∥u− v∥

for all u, v ∈ Rn.
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Proof. By (Delfour & Zolésio, 2011, Chapter 6, Theorem 2.1), |distK(u)− distK(v)| ≤ ∥u− v∥, which is equivalent to

distK(u)− distK(v) ≤ ∥u− v∥,distK(v)− distK(u) ≤ ∥u− v∥.

Rearranging proves the claim.

C.4. Proof of Lemma 4.1

We first restate the full version of Lemma 4.1.

Lemma C.3. For K ⊆ Rn, let f(x) := 1
2distK(x)

2. The following statements hold.

(a) If x+ = x− β(∇f(x) + e) for e satisfying ∥e∥ ≤ ηdistK(x) and 0 ≤ β ≤ 1, then

(1− β(η + 1))distK(x) ≤ distK(x+) ≤ (1 + β(η − 1))distK(x).

(b) If xt−1 = xt − βt(∇f(xt) + et) for et satisfying ∥et∥ ≤ ηdistK(xt) and 0 ≤ βt ≤ 1, then

distK(xN )

N∏
i=t

(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )

N∏
i=t

(1 + βi(η − 1).)

For Item (a) we apply Lemma C.2 at points u = x+ and v = x− β∇f(x). We also use dist(v) = (1− β)distK(x), since
0 ≤ β ≤ 1, to conclude that

(1− β)distK(x)− β∥e∥ ≤ distK(x+) ≤ (1− β)distK(x) + β∥e∥.

Using the assumption that ∥e∥ ≤ ηdistK(x) gives

(1− β − ηβ)distK(x) ≤ distK(x+) ≤ (1− β + ηβ)distK(x)

Simplifying completes the proof. Item (b) follows from Item (a) and induction.

C.5. Proof of Theorem 4.2

We first state and prove an auxiliary theorem:

Theorem C.1. Suppose Assumption 2 holds for ν ≥ 1 and η > 0. Given xN and {βt, σt}Ni=1, recursively define
xt−1 = xt + βtσtϵθ(xt, t) and suppose that projK(xt) is a singleton for all t. Finally, suppose that {βt, σt}Ni=1 satisfies
1
νdistK(xN ) ≤

√
nσN ≤ νdistK(xN ) and

1

ν
distK(xN )

N∏
i=t

(1 + βi(η − 1)) ≤
√
nσt−1 ≤ νdistK(xN )

N∏
i=t

(1− βi(η + 1)). (22)

The following statements hold.

• distK(xN )
∏N

i=t(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )
∏N

i=t(1 + βi(η − 1))

• 1
νdistK(xt−1) ≤

√
nσt−1 ≤ νdistK(xt−1)

Proof. Since projK(xt) is a singleton, ∇f(xt) exists. Hence, the result will follow from Item (b) of Lemma C.3 if we can
show that ∥βtσtϵθ(xt, t)−∇f(xt)∥ ≤ ηdistK(xt). Under Assumption 2, it suffices to show that

1

ν
distK(xt) ≤

√
nσt ≤ νdistK(xt) (23)

holds for all t. We use induction, noting that the base case (t = N) holds by assumption. Suppose then that (23) holds for
all t, t+ 1, . . . , N . By Lemma 4.1 and Assumption 2, we have

distK(xN )

N∏
i=t

(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )

N∏
i=t

(1 + (η − 1)βi)
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Combined with (22) shows

1

ν
distK(xt−1) ≤

√
nσt−1 ≤ νdistK(xt−1),

proving the claim.

Theorem 4.2 follows by observing the admissibility assumption and the DDIM step-size rule, which satisfies σt−1 =
(1− βt)σt, implies (22).

C.6. Proof of Theorem 4.3

Assuming constant step-size βi = β and dividing (8) by
∏N

i=1(1− β) gives the conditions(
1 + η

β

1− β

)N

≤ ν,

(
1− η

β

1− β

)N

≥ 1

ν
.

Rearranging and defining a = η β
1−β and b = ν

1
N gives

a ≤ b− 1, a ≤ 1− b−1.

Since b− 1− (1− b−1) = b+ b−1 − 2 ≥ 0 for all b > 0, we conclude a ≤ b− 1 holds if a ≤ 1− b−1 holds. We therefore
consider the second inequality η β

1−β ≤ 1− ν−1/N , noting that it holds for all 0 ≤ β < 1 if and only if 0 ≤ β ≤ k
1+k for

k = 1
η (1− ν−1/N ), proving the claim.

C.7. Proof of Theorem 4.4

The value of σ0/σN follows from the definition of σt and and the upper bound for distK(x0)/distK(xN ) follows from
Theorem 4.3. We introduce the parameter µ to get a general form of the expression inside the limit:

(1− µβ∗,N )N =

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)N

.

Next we take the limit using L’Hôpital’s rule:

lim
N→∞

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)N

= exp

(
lim

N→∞
log

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)
/(1/N)

)
= exp

(
lim

N→∞

ηµ log(ν)

(ν−1/N − η − 1)(ν1/N (η − µ+ 1) + µ− 1)

)
= exp

(
−µ log(ν)

η

)
= (1/ν)

µ/η
.

For the first limit, we set µ = 1 to get

lim
N→∞

(1− β∗,N )N = (1/ν)1/η.

For the second limit, we set µ = 1− η to get

lim
N→∞

(1 + (η − 1)β∗,N )N = (1/ν)
1−η
η .

C.8. Denoiser Error

Assumption 2 places a condition directly on the approximation of∇f(x), where f(x) := 1
2distK(x), that is jointly obtained

from σt and the denoiser ϵθ. We prove this assumption holds under a direct assumption on ∇distK(x), which is easier to
verify in practice.
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Assumption 3. There exists ν ≥ 1 and η > 0 such that if 1
νdistK(x) ≤

√
nσt ≤ νdistK(x) then ∥ϵθ(x, t) −√

n∇distK(x)∥ ≤ η

Lemma C.4. If Assumption 3 holds with (ν, η), then Assumption 2 holds with (ν̂, η̂), where η̂ = 1√
n
ην+max(ν−1, 1− 1

ν )

and ν̂ = ν.

Proof. Multiplying the error-bound on ϵθ by σt and using
√
nσt ≤ νdistK(x) gives

∥σtϵθ(x, t)−
√
nσt∇distK(x)∥ ≤ ησt ≤ ην

1√
n
distK(x)

Defining C =
√
nσt − distK(x) and simplifying gives

ην
1√
n
distK(x) ≥ ∥σtϵθ(x, t)−

√
nσt∇distK(x)∥

= ∥σtϵθ(x, t)−∇f(x)− C∇distK(x)∥
≥ ∥σtϵθ(x, t)−∇f(x)∥ − ∥C∇distK(x)∥
= ∥σtϵθ(x, t)−∇f(x)∥ − |C|

Since ( 1ν − 1)distK(x) ≤ C ≤ (ν − 1)distK(x) and ν ≥ 1, the Assumption 2 error bound holds for the claimed η̂.

D. Derivation of Gradient Estimation Sampler
To choose W , we make two assumptions on the denoising error: the coordinates et(ϵ)i and et(ϵ)j are uncorrelated for all
i ̸= j, and et(ϵ)i is only correlated with et+1(ϵ)i for all i. In other words, we consider W of the form

W =

[
aI bI
bI cI

]
(24)

and next show that this choice leads to a simple rule for selecting ϵ̄. From the optimality conditions of the quadratic
optimization problem (11), we get that

ϵ̄t =
a+ b

a+ c+ 2b
ϵθ(xt, σt) +

c+ b

a+ c+ 2b
ϵθ(xt+1, σt+1).

Setting γ = a+b
a+c+2b , we get the update rule (12). When b ≥ 0, the minimizer ϵ̄t is a simple convex combination of denoiser

outputs. When b < 0, we can have γ < 0 or γ > 1, i.e., the weights in (12) can be negative (but still sum to 1). Negativity
of the weights can be interpreted as cancelling positively correlated error (b < 0) in the denoiser outputs. Also note we can
implicitly search over W by directly searching for γ.

E. Further Experiments
E.1. Denoising Approximates Projection

We test our interpretation that denoising approximates projection on pretrained diffusion models on the CIFAR-10 dataset.
In these experiments, we take a 50-step DDIM sampling trajectory, extract ϵ(xt, σt) for each t and compute the cosine
similarity for every pair of t, t′ ∈ [1, 50]. The results are plotted in Figure 7. They show that the direction of ϵ(xt, σt) over
the entire sampling trajectory is close to the first step’s output ϵ(xN , σN ). On average over 1000 trajectories, the minimum
similarity (typically between the first step when t = 50 and last step when t′ = 1) is 0.85, and for the vast majority
(over 80%) of pairs the similarity is > 0.99, showing that the denoiser outputs approximately align in the same direction,
validating our intuitive picture in Figure 1.
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Figure 7: Plot of the cosine similarity between ϵθ(xt, t) and ϵθ(xt′ , t
′) over N = 50 steps of DDIM denoising on the

CIFAR-10 dataset. Each cell is the average result of 1000 runs.

(a) Plot of ∥ϵθ(xt, σt)∥ /
√
n against t. (b) Plot of ∥ϵθ(x0 + σtϵ, σt)− ϵ∥ /

√
n against t.

Figure 8: Plots of the norm of the denoiser at different stages of denoising, as well as the ability of the denoiser to accurately
predict the added noise as a function of noise added.
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CIFAR-10 CelebA

DDIM (w/o both) 16.86 18.08
Ours (w/o sampler) 13.25 13.55
Ours (w/o schedule) 8.30 11.87
Ours (with both) 3.85 4.30

Table 3: Ablation study of the effects of the schedule improvements in Section 4.3 and the sampler improvements in
Section 5, for N = 10 steps.

CIFAR-10 FID CelebA FID
DDIM Sampler N = 5 N = 10 N = 20 N = 50 N = 5 N = 10 N = 20 N = 50

DDIM 47.21 16.86 8.28 4.81 32.21 18.08 11.81 7.39
DDIM Offset 36.09 14.19 7.51 4.69 27.79 15.38 10.05 6.80
EDM 61.63 20.85 9.25 5.39 33.00 16.72 9.78 6.53
Ours (Log-linear) 40.33 13.37 6.88 4.71 28.07 13.63 8.80 6.79

CIFAR-10 FID CelebA FID
Our Sampler N = 5 N = 10 N = 20 N = 50 N = 5 N = 10 N = 20 N = 50

DDIM 51.65 8.30 4.96 3.33 28.64 11.87 8.00 4.33
DDIM Offset 14.95 7.50 4.58 3.29 12.19 9.49 6.58 4.80
EDM 34.26 4.87 3.64 3.67 18.68 5.30 3.95 4.11
Ours (Log-linear) 12.57 3.79 3.32 3.41 10.76 4.79 4.57 5.01

Table 4: Ablation of σt schedules for both the DDIM and GE sampler.

We perform an ablation study on different sampling schedules. We use the four different schedules as shown in Table 1:

• DDIM Default DDIM schedule with σN = 157, σ0 = 0.002

• DDIM Offset Truncated DDIM schedule starting with a smaller σ, with σN = 40, σ0 = 0.002.

• EDM Schedule used in (Karras et al., 2022) with σN = 80, σ0 = 0.002.

• Linear Log-linear schedule with σN = 40, σ1, σ0 selected based on Appendix F.3.

Our results are reported in Table 4. Our gradient-estimation sampler consistently outperforms the DDIM sampler for all
schedules and N . The DDIM Offset schedule that starts at σN = 40 offers an improvement over the DDIM schedule for
N = 5, 10, 20, but performs worse for N = 50. This suggests starting from a higher σN for larger N , which we have done
in our final evaluations.

E.2. Distance Function Properties

We test Assumption 1 and Assumption 2 on pretrained networks. If Assumption 1 is true, then ∥ϵθ(xt, σt)∥
√
n =

∥∇distK(xt)∥ = 1 for every xt along the DDIM trajectory. In Figure 8a, we plot the distribution of norm of the
denoiser ϵθ(xt, σt) over the course of many runs of the DDIM sampler on the CIFAR-10 model for N = 100 steps
(t = 1000, 990, . . . , 20, 10, 0). This plot shows that ∥ϵθ(xt, σt)∥ /

√
n stays approximately constant and is close to 1 until

the end of the sampling process. We next test Assumption 3, which implies Assumption 2 by Lemma C.4. We do this by first
sampling a fixed noise vector ϵ, next adding different levels of noise σt, then using the denoiser to predict ϵθ(x0 + σtϵ, σt).
In Figure 8b, we plot the distribution of ∥ϵθ(x0 + σtϵ, σt)− ϵ∥ /

√
n over different levels of t, as a measure of how well the

denoiser predicts the added noise.
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Figure 9: Plot of FID score against γ for our second-order sampling algorithm on the CIFAR-10 and CelebA datasets for
N = 5, 10, 20 steps.

E.3. Choice of γ

We motivate our choice of γ = 2 in Algorithm 2 with the following experiment. For varying γ, Figure 9 reports FID
scores of our sampler on the CIFAR-10 and CelebA models for N = 5, 10, 20 timesteps using the σt schedule described in
Appendix F.3. As shown, γ ≈ 2 achieves the optimal FID score over different datasets for N < 20. For sampling from the
CelebA dataset, we found that setting γ = 2.4 for N = 20 and γ = 2.8 for N = 50 achieves the best FID results.

F. Experiment Details
F.1. Pretrained Models

The CIFAR-10 model and architecture were based on that in (Ho et al., 2020), and the CelebA model and architecture
were based on that in (Song et al., 2020a). The specific checkpoints we use are provided by (Liu et al., 2022). We also use
Stable Diffusion 2.1 provided in https://huggingface.co/stabilityai/stable-diffusion-2-1. For
the comparison experiments in Figure 3, we implemented our gradient estimation sampler to interface with the HuggingFace
diffusers library and use the corresponding implementations of UniPC, DPM++, PNDM and DDIM samplers with default
parameters.

F.2. FID Score Calculation

For the CIFAR-10 and CelebA experiments, we generate 50000 images using our sampler and calculate the FID score
using the library in https://github.com/mseitzer/pytorch-fid. The statistics on the training dataset were
obtained from the files provided by (Liu et al., 2022). For the MS-COCO experiments, we generated images from 30k text
captions drawn from the validation set, and computed FID with respect to the 30k corresponding images.

F.3. Our Selection of σt

Let σDDIM(N)
1 be the noise level at t = 1 for the DDIM sampler with N steps. For the CIFAR-10 and CelebA models,

we choose σ1 =

√
σ

DDIM(N)
1 and σ0 = 0.01. For CIFAR-10 N = 5, 10, 20, 50 we choose σN = 40 and for CelebA

N = 5, 10, 20, 50 we choose σN = 40, 80, 100, 120 respectively. For Stable Diffusion, we use the same sigma schedule as
that in DDIM.

F.4. Text Prompts

For the text to image generation in Figure 3, the text prompts used are:
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• “A digital Illustration of the Babel tower, 4k, detailed, trending in artstation, fantasy vivid colors”

• “London luxurious interior living-room, light walls”

• “Cluttered house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k”
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