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Abstract

We attack the state-of-the-art Go-playing AI system, KataGo, by training an ad-
versarial policy that plays against a frozen KataGo victim. Our attack achieves a
>99% win-rate against KataGo without search, and a >50% win-rate when KataGo
uses enough search to be near-superhuman. To the best of our knowledge, this is
the first successful end-to-end attack against a Go AI playing at the level of a
top human professional. Notably, the adversary does not win by learning to play
Go better than KataGo—in fact, the adversary is easily beaten by human ama-
teurs. Instead, the adversary wins by tricking KataGo into ending the game pre-
maturely at a point that is favorable to the adversary. Our results demonstrate that
even professional-level AI systems may harbor surprising failure modes. Example
games are available at https://goattack.alignmentfund.org/.

1 Introduction

Reinforcement learning from self-play has achieved superhuman performance in a range of games
[1, 2]. Nonetheless, seemingly highly capable continuous control policies trained via self-play can
be exploited by adversarial policies [3, 4], suggesting that self-play may not be as robust as pre-
viously thought. However, although these victim agents are state-of-the-art for continuous control,
they are still well below human performance. This raises the question: are adversarial policies a
vulnerability of self-play policies in general, or simply an artifact of insufficiently capable policies?

To answer this, we study a domain where self-play has achieved very strong performance: Go.
Specifically, we attack KataGo [5], the strongest publicly available Go-playing AI system. We train
an adversarial policy end-to-end against a fixed victim policy network. Using only 0.3% of the
compute used to train KataGo, we obtain an adversarial policy that wins >99% of the time against
KataGo with no search, and >50% against KataGo with enough search to be near-superhuman.

Our adversary does not win by learning a generally capable Go policy. Instead, it uses a contrived
strategy (illustrated in figure 1) that wins against KataGo but would lose against even amateur Go
players. This shows that KataGo is less robust than humans despite being highly capable.

Our paper makes three contributions. First, we propose a novel attack method, hybridizing the
attack of Gleave et al. [3] and AlphaZero-style training [7]. Second, we demonstrate the existence of
adversarial policies against the state-of-the-art Go AI system, KataGo. Finally, we find the adversary
pursues a simple strategy that fools the victim into predicting victory causing it to pass prematurely.

2 Related Work

Adversarial examples have been found in a variety of models [8]. However, one might hope that the
adversarial nature of self-play training would naturally lead to robustness to adversarial examples.
This is supported theoretically [9, 10], and practically (for image classifiers) [11, 12]. However, our
work finds that even state-of-the-art and professional-level deep RL policies can be exploited.
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(a) Adversary plays as black: view game. (b) Adversary plays as white: view game.

Figure 1: The adversarial policy beats the KataGo victim by playing a counterintuitive strategy:
staking out a minority territory in the corner, allowing KataGo to stake the complement, and placing
weak stones in KataGo’s stake. Since KataGo predicts a high win probability for itself, it plays a
pass move before it has finished securing its territory, allowing the adversary to pass in turn and
end the game. This results in a win for the adversary under the standard ruleset for computer Go,
Tromp-Taylor [6], as the adversary gets points for its corner territory whereas the victim does not
receive points for its unsecured territory. These games are randomly selected from an attack against
Latest, the strongest policy network, playing without search.

While self-play is known not to converge in non-transitive games [13], it has been argued that highly
capable Go policies are transitive [14]. In contrast, we find a striking non-transitivity in Go: our
adversarial policy can exploit KataGo agents that can reliably beat human professionals, yet even an
amateur Go player can beat our adversarial policy (see Section B.8.1 for details).

Most prior work attacking deep RL has focused on perturbations to observations [15, 16]. However,
such attacks are often not physically realizable, so we instead follow the threat model introduced by
Gleave et al. [3] of an adversarial agent acting in a shared environment. Prior work on such adversar-
ial policies has focused on attacking subhuman policies in simulated robotics environments [3, 4].
By contrast, our work exploits professional-level Go policies with a discrete action space.

The most closely related work to ours is by Timbers et al. [17], who develop the approximate best
response (ABR) method to estimating exploitability by learning attacks. Both our and their method
use the same key idea: an AlphaZero-style training procedure that is adapted to use the opponent’s
policy during search (although they differ in some minor details). Our main contribution relative to
Timbers et al. [17] lies in our empirical results: our victims are stronger. Timbers et al. establish
their victim to be at least at the strength of a 3d/4d amateur [18], while the victims we exploit range
from a 1p/2p human professional to the strongest humans on earth (see Section B.6).

3 Background

Following Gleave et al. [3], we consider the setting of a two-player (attacker and victim) zero-sum
Markov game [19]. The attacker does not have any special powers—they can only take the same
actions available to a regular player. We grant to the attacker gray-box access to the victim: the
attacker can evaluate the output of the victim’s neural network at arbitrary inputs. We furthermore
assume the victim agent follows a fixed policy.

Our two primary success metrics are the win rate of the adversarial policy against the victim and
the adversary’s training time. We also track the mean score difference between the adversary and
victim, but this is not explicitly optimized for by the attack. Crucially, tracking training time rules
out the degenerate “attack” of simply training KataGo for longer than the victim.

We choose to attack KataGo as it is the strongest publicly available Go AI system. It is known to be
superhuman since it won against ELF OpenGo [20] which in turn won all 20 games played against
four top-30 professional players. KataGo learns via self-play, using an AlphaZero-style training
procedure [7]. See appendix B.2 for more details.
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https://go-attack-sgf-viewer.netlify.app/#sgf={(;FF[4]GM[1]SZ[19]PB[t0-s60753920-d15021246]PW[victim-kata1-b40c256-s11840935168-d2898845681.bin.gz]HA[0]KM[6.5]RU[koPOSITIONALscoreAREAtaxNONEsui1]RE[B+88.5]C[startTurnIdx=0,initTurnNum=0,gameHash=1BCABE1CED5228CF8C5559DA65CCD5F1,gtype=normal];B[qd]C[0.02 0.98 0.00 -82.2 v=600 weight=1.44];W[dd]C[0.42 0.58 0.00 -0.8 v=1 weight=0.56];B[is]C[0.03 0.97 0.00 -81.2 v=600 weight=3.83];W[hb]C[0.93 0.07 0.00 10.4 v=1 weight=0.63];B[js]C[0.01 0.99 0.00 -81.7 v=600 weight=1.01];W[cq]C[0.98 0.02 0.00 15.9 v=1 weight=0.73];B[qi]C[0.00 1.00 0.00 -80.6 v=600 weight=2.04];W[pq]C[0.99 0.01 0.00 16.8 v=1 weight=0.71];B[pc]C[0.00 1.00 0.00 -80.0 v=601 weight=2.28];W[on]C[0.99 0.01 0.00 17.6 v=1 weight=0.59];B[nd]C[0.00 1.00 0.00 -83.2 v=601 weight=1.15];W[eo]C[0.99 0.01 0.00 18.9 v=1 weight=0.62];B[hs]C[0.00 1.00 0.00 -84.1 v=600 weight=1.18];W[gk]C[1.00 0.00 0.00 23.9 v=1 weight=0.81];B[kc]C[0.00 1.00 0.00 -85.5 v=600 weight=1.03];W[fq]C[1.00 0.00 0.00 24.7 v=1 weight=0.80];B[ks]C[0.00 1.00 0.00 -87.6 v=600 weight=1.52];W[pj]C[1.00 0.00 0.00 32.8 v=1 weight=0.69];B[qg]C[0.00 1.00 0.00 -86.1 v=600 weight=1.31];W[mq]C[1.00 0.00 0.00 36.9 v=1 weight=0.76];B[ng]C[0.00 1.00 0.00 -86.6 v=600 weight=1.30];W[pd]C[1.00 0.00 0.00 42.3 v=1 weight=0.80];B[od]C[0.00 1.00 0.00 -83.2 v=601 weight=2.60];W[jp]C[1.00 0.00 0.00 40.8 v=1 weight=0.76];B[pi]C[0.00 1.00 0.00 -85.7 v=600 weight=1.20];W[cj]C[1.00 0.00 0.00 46.3 v=1 weight=0.62];B[oj]C[0.00 1.00 0.00 -85.9 v=600 weight=1.09];W[jn]C[1.00 0.00 0.00 51.4 v=1 weight=0.61];B[qj]C[0.00 1.00 0.00 -85.8 v=600 weight=0.99];W[ej]C[1.00 0.00 0.00 57.1 v=1 weight=0.64];B[kf]C[0.00 1.00 0.00 -85.8 v=601 weight=1.37];W[jk]C[1.00 0.00 0.00 61.7 v=1 weight=0.62];B[ls]C[0.00 1.00 0.00 -85.1 v=601 weight=1.42];W[jg]C[1.00 0.00 0.00 70.2 v=1 weight=0.62];B[qm]C[0.00 1.00 0.00 -86.9 v=600 weight=1.20];W[ie]C[1.00 0.00 0.00 73.8 v=1 weight=0.68];B[kg]C[0.00 1.00 0.00 -87.5 v=600 weight=1.18];W[cd]C[1.00 0.00 0.00 76.4 v=1 weight=0.70];B[qo]C[0.00 1.00 0.00 -87.8 v=600 weight=1.13];W[nr]C[1.00 0.00 0.00 81.8 v=1 weight=0.62];B[jd]C[0.00 1.00 0.00 -86.9 v=601 weight=0.98];W[hd]C[1.00 0.00 0.00 83.4 v=1 weight=0.74];B[je]C[0.00 1.00 0.00 -87.4 v=601 weight=0.96];W[jh]C[1.00 0.00 0.00 89.9 v=1 weight=0.79];B[qp]C[0.00 1.00 0.00 -87.0 v=600 weight=0.92];W[ki]C[1.00 0.00 0.00 94.1 v=1 weight=0.59];B[nl]C[0.00 1.00 0.00 -86.7 v=601 weight=1.09];W[mm]C[1.00 0.00 0.00 96.6 v=1 weight=0.71];B[om]C[0.00 1.00 0.00 -85.7 v=600 weight=0.99];W[qq]C[1.00 0.00 0.00 100.3 v=1 weight=0.69];B[kh]C[0.00 1.00 0.00 -85.2 v=600 weight=0.96];W[if]C[1.00 0.00 0.00 104.1 v=1 weight=0.62];B[ic]C[0.00 1.00 0.00 -85.4 v=601 weight=0.88];W[pn]C[1.00 0.00 0.00 106.0 v=1 weight=0.65];B[pm]C[0.00 1.00 0.00 -84.1 v=600 weight=1.21];W[nn]C[1.00 0.00 0.00 106.6 v=1 weight=0.67];B[li]C[0.00 1.00 0.00 -84.9 v=600 weight=0.87];W[kj]C[1.00 0.00 0.00 107.3 v=1 weight=0.68];B[lj]C[0.00 1.00 0.00 -85.0 v=601 weight=0.93];W[lk]C[1.00 0.00 0.00 107.6 v=1 weight=0.68];B[mk]C[0.00 1.00 0.00 -85.0 v=601 weight=0.96];W[ml]C[1.00 0.00 0.00 108.7 v=1 weight=0.74];B[rp]C[0.00 1.00 0.00 -84.1 v=600 weight=1.10];W[rq]C[1.00 0.00 0.00 110.7 v=1 weight=0.59];B[ib]C[0.00 1.00 0.00 -84.6 v=600 weight=1.14];W[gb]C[1.00 0.00 0.00 108.1 v=1 weight=0.59];B[qn]C[0.00 1.00 0.00 -84.9 v=601 weight=0.97];W[ia]C[1.00 0.00 0.00 112.8 v=1 weight=0.64];B[jb]C[0.00 1.00 0.00 -83.6 v=600 weight=2.04];W[nm]C[1.00 0.00 0.00 113.8 v=1 weight=0.62];B[nk]C[0.00 1.00 0.00 -84.3 v=601 weight=1.24];W[sp]C[1.00 0.00 0.00 114.0 v=1 weight=0.68];B[so]C[0.00 1.00 0.00 -84.3 v=601 weight=1.50];W[sq]C[1.00 0.00 0.00 112.6 v=1 weight=0.73];B[id]C[0.00 1.00 0.00 -86.5 v=601 weight=1.00];W[hc]C[1.00 0.00 0.00 115.8 v=1 weight=0.76];B[ja]C[0.00 1.00 0.00 -86.0 v=600 weight=0.93];W[ha]C[1.00 0.00 0.00 116.5 v=1 weight=0.76];B[jf]C[0.00 1.00 0.00 -86.9 v=600 weight=1.06];W[pp]C[1.00 0.00 0.00 116.6 v=1 weight=0.77];B[br]C[0.00 1.00 0.00 -87.0 v=601 weight=0.97];W[bq]C[1.00 0.00 0.00 115.2 v=1 weight=0.58];B[po]C[0.00 1.00 0.00 -86.1 v=601 weight=1.01];W[oo]C[1.00 0.00 0.00 117.6 v=1 weight=0.73];B[pe]C[0.00 1.00 0.00 -86.6 v=600 weight=1.14];W[]C[1.00 0.00 0.00 117.4 v=1 weight=0.78];B[pk]C[0.00 1.00 0.00 -87.7 v=601 weight=1.02];W[]C[1.00 0.00 0.00 118.1 v=1 weight=0.75];B[gs]C[0.00 1.00 0.00 -88.0 v=601 weight=1.31];W[lr]C[1.00 0.00 0.00 117.9 v=1 weight=0.72];B[sr]C[0.00 1.00 0.00 -86.9 v=600 weight=1.14];W[]C[1.00 0.00 0.00 119.1 v=1 weight=0.79];B[rs]C[0.00 1.00 0.00 -88.0 v=600 weight=1.88];W[fs]C[1.00 0.00 0.00 119.1 v=1 weight=0.77];B[ms]C[0.00 1.00 0.00 -87.3 v=600 weight=1.04];W[dm]C[1.00 0.00 0.00 118.7 v=1 weight=0.73];B[lm]C[0.00 1.00 0.00 -86.8 v=601 weight=1.68];W[aj]C[1.00 0.00 0.00 117.4 v=1 weight=0.74];B[cs]C[0.01 0.99 0.00 -85.3 v=600 weight=1.46];W[]C[1.00 0.00 0.00 118.0 v=1 weight=0.70];B[bs]C[0.00 1.00 0.00 -87.0 v=600 weight=1.66];W[fr]C[1.00 0.00 0.00 118.1 v=1 weight=0.71];B[ar]C[0.00 1.00 0.00 -87.5 v=600 weight=1.10];W[]C[1.00 0.00 0.00 119.9 v=1 weight=0.74];B[]C[0.00 1.00 0.00 -88.5 v=601 weight=1.55 result=B+88.5])}
https://go-attack-sgf-viewer.netlify.app/#sgf={(;FF[4]GM[1]SZ[19]PB[victim-kata1-b40c256-s11840935168-d2898845681.bin.gz]PW[t0-s60753920-d15021246]HA[0]KM[6.5]RU[koPOSITIONALscoreAREAtaxNONEsui1]RE[W+97.5]C[startTurnIdx=0,initTurnNum=0,gameHash=F19726AD0D7DB0883B5CCD4B5AF3D09A,gtype=normal];B[rr]C[0.42 0.58 0.00 -1.0 v=1 weight=0.51];W[sm]C[0.97 0.03 0.00 85.0 v=601 weight=1.22];B[dp]C[0.19 0.81 0.00 -5.9 v=1 weight=0.59];W[sn]C[0.98 0.02 0.00 84.7 v=600 weight=1.21];B[cr]C[0.02 0.98 0.00 -14.4 v=1 weight=0.62];W[cc]C[0.98 0.02 0.00 86.0 v=600 weight=1.66];B[qd]C[0.05 0.95 0.00 -11.2 v=1 weight=0.83];W[fc]C[0.98 0.02 0.00 88.2 v=600 weight=1.10];B[cm]C[0.03 0.97 0.00 -11.8 v=1 weight=0.90];W[cf]C[0.98 0.02 0.00 90.7 v=600 weight=0.96];B[pp]C[0.03 0.97 0.00 -11.6 v=1 weight=0.88];W[ci]C[0.98 0.02 0.00 92.0 v=600 weight=2.64];B[od]C[0.02 0.98 0.00 -13.1 v=1 weight=0.60];W[so]C[0.98 0.02 0.00 92.9 v=601 weight=1.39];B[ai]C[0.00 1.00 0.00 -20.1 v=1 weight=0.73];W[sp]C[0.99 0.01 0.00 89.8 v=601 weight=2.17];B[qo]C[0.01 0.99 0.00 -18.5 v=1 weight=0.66];W[sl]C[0.99 0.01 0.00 90.5 v=600 weight=1.18];B[qj]C[0.00 1.00 0.00 -26.2 v=1 weight=0.74];W[ic]C[0.99 0.01 0.00 90.5 v=601 weight=1.04];B[pl]C[0.00 1.00 0.00 -30.7 v=1 weight=0.84];W[sq]C[0.99 0.01 0.00 91.7 v=601 weight=1.01];B[oq]C[0.00 1.00 0.00 -41.1 v=1 weight=0.58];W[sk]C[1.00 0.00 0.00 91.5 v=600 weight=1.36];B[qh]C[0.00 1.00 0.00 -50.0 v=1 weight=1.01];W[ff]C[1.00 0.00 0.00 91.3 v=601 weight=1.46];B[jp]C[0.00 1.00 0.00 -55.3 v=1 weight=0.74];W[ig]C[1.00 0.00 0.00 91.3 v=600 weight=1.10];B[gl]C[0.00 1.00 0.00 -59.0 v=1 weight=0.62];W[sj]C[1.00 0.00 0.00 92.3 v=600 weight=1.61];B[jl]C[0.00 1.00 0.00 -68.0 v=1 weight=0.61];W[fi]C[1.00 0.00 0.00 91.7 v=601 weight=0.93];B[lk]C[0.00 1.00 0.00 -73.6 v=1 weight=0.70];W[lc]C[1.00 0.00 0.00 92.0 v=601 weight=0.93];B[mh]C[0.00 1.00 0.00 -78.4 v=1 weight=0.67];W[bi]C[1.00 0.00 0.00 92.3 v=600 weight=1.23];B[el]C[0.00 1.00 0.00 -85.9 v=1 weight=0.74];W[aj]C[1.00 0.00 0.00 91.5 v=601 weight=1.22];B[md]C[0.00 1.00 0.00 -95.8 v=1 weight=0.72];W[ld]C[1.00 0.00 0.00 90.3 v=600 weight=1.18];B[mc]C[0.00 1.00 0.00 -98.5 v=1 weight=0.66];W[lg]C[1.00 0.00 0.00 89.7 v=600 weight=1.09];B[mg]C[0.00 1.00 0.00 -100.3 v=1 weight=0.72];W[bl]C[1.00 0.00 0.00 90.4 v=601 weight=0.98];B[bm]C[0.00 1.00 0.00 -101.1 v=1 weight=0.73];W[lf]C[1.00 0.00 0.00 90.6 v=601 weight=1.01];B[ki]C[0.00 1.00 0.00 -106.0 v=1 weight=0.65];W[mb]C[1.00 0.00 0.00 90.0 v=600 weight=1.01];B[nb]C[0.00 1.00 0.00 -107.7 v=1 weight=0.87];W[lb]C[1.00 0.00 0.00 88.5 v=601 weight=1.13];B[me]C[0.00 1.00 0.00 -108.1 v=1 weight=0.65];W[kh]C[1.00 0.00 0.00 88.8 v=600 weight=0.95];B[ji]C[0.00 1.00 0.00 -109.1 v=1 weight=0.74];W[ek]C[1.00 0.00 0.00 88.2 v=600 weight=1.36];B[fk]C[0.00 1.00 0.00 -111.1 v=1 weight=0.75];W[jh]C[1.00 0.00 0.00 87.1 v=601 weight=1.23];B[ii]C[0.00 1.00 0.00 -115.8 v=1 weight=0.70];W[dk]C[1.00 0.00 0.00 86.5 v=601 weight=1.04];B[hh]C[0.00 1.00 0.00 -118.8 v=1 weight=0.67];W[hg]C[1.00 0.00 0.00 84.8 v=601 weight=1.19];B[cl]C[0.00 1.00 0.00 -121.0 v=1 weight=0.63];W[bk]C[1.00 0.00 0.00 85.2 v=600 weight=1.01];B[fj]C[0.00 1.00 0.00 -121.9 v=1 weight=0.64];W[ej]C[1.00 0.00 0.00 84.8 v=600 weight=1.02];B[gi]C[0.00 1.00 0.00 -124.5 v=1 weight=0.76];W[fh]C[1.00 0.00 0.00 85.4 v=601 weight=1.63];B[na]C[0.00 1.00 0.00 -121.8 v=1 weight=0.64];W[mf]C[1.00 0.00 0.00 88.2 v=601 weight=0.99];B[nf]C[0.00 1.00 0.00 -123.9 v=1 weight=0.85];W[le]C[1.00 0.00 0.00 88.4 v=601 weight=0.98];B[dl]C[0.00 1.00 0.00 -121.3 v=1 weight=0.67];W[ck]C[1.00 0.00 0.00 89.1 v=601 weight=1.28];B[am]C[0.00 1.00 0.00 -123.6 v=1 weight=0.66];W[gh]C[1.00 0.00 0.00 91.1 v=600 weight=1.20];B[lh]C[0.00 1.00 0.00 -123.0 v=1 weight=0.70];W[ih]C[1.00 0.00 0.00 91.8 v=600 weight=1.21];B[hi]C[0.00 1.00 0.00 -126.6 v=1 weight=0.73];W[ma]C[1.00 0.00 0.00 92.3 v=600 weight=1.16];B[al]C[0.00 1.00 0.00 -124.9 v=1 weight=0.79];W[ak]C[1.00 0.00 0.00 93.2 v=601 weight=1.15];B[]C[0.00 1.00 0.00 -122.7 v=1 weight=0.68];W[ah]C[1.00 0.00 0.00 93.7 v=600 weight=1.01];B[rq]C[0.00 1.00 0.00 -123.8 v=1 weight=0.69];W[sr]C[1.00 0.00 0.00 93.4 v=601 weight=1.17];B[]C[0.00 1.00 0.00 -125.7 v=1 weight=0.77];W[si]C[1.00 0.00 0.00 94.0 v=600 weight=1.99];B[]C[0.00 1.00 0.00 -125.0 v=1 weight=0.68];W[ss]C[1.00 0.00 0.00 94.2 v=600 weight=2.07];B[]C[0.00 1.00 0.00 -124.7 v=1 weight=0.70];W[as]C[1.00 0.00 0.00 94.9 v=601 weight=1.75];B[]C[0.00 1.00 0.00 -124.5 v=1 weight=0.70];W[ar]C[1.00 0.00 0.00 95.7 v=600 weight=1.57];B[]C[0.00 1.00 0.00 -124.2 v=1 weight=0.70];W[hs]C[1.00 0.00 0.00 96.2 v=600 weight=2.05];B[hr]C[0.00 1.00 0.00 -123.4 v=1 weight=0.63];W[aq]C[1.00 0.00 0.00 95.6 v=600 weight=1.10];B[]C[0.00 1.00 0.00 -125.6 v=1 weight=0.72];W[ap]C[1.00 0.00 0.00 96.3 v=600 weight=1.99];B[]C[0.00 1.00 0.00 -124.9 v=1 weight=0.68];W[bs]C[1.00 0.00 0.00 96.6 v=600 weight=1.05];B[]C[0.00 1.00 0.00 -124.5 v=1 weight=0.65];W[sh]C[1.00 0.00 0.00 97.3 v=600 weight=1.36];B[rc]C[0.00 1.00 0.00 -123.9 v=1 weight=0.65];W[ao]C[1.00 0.00 0.00 97.3 v=601 weight=0.98];B[]C[0.00 1.00 0.00 -125.5 v=1 weight=0.65];W[]C[1.00 0.00 0.00 97.7 v=600 weight=1.34 result=W+97.5])}


4 Attack Methodology

Prior works, such as KataGo and AlphaZero, train on self-play games where the agent plays many
games against itself. We instead train on games between our adversary and a fixed victim agent, and
only train the adversary on data from the turns where it is the adversary’s move, since we wish to
train the adversary to exploit the victim, not mimic it. We dub this procedure victim-play.

In regular self-play, the agent models its opponent’s moves by sampling from its own policy network.
This makes sense in self-play, as the policy is playing itself. But in victim-play, it would be a
mistake to model the victim as playing from the adversary’s policy network. We introduce two
distinct families of Adversarial MCTS (A-MCTS) to address this problem. See Appendix B.5 for
the hyperparameter settings we used in experiments.

Adversarial MCTS: Sample (A-MCTS-S). In A-MCTS-S, we modify the adversary’s search pro-
cedure to sample from the victim’s policy network at victim-nodes in the Monte Carlo tree when
it is the victim’s move, and from the adversary’s network at adversary-nodes where it is the adver-
sary’s turn. We also introduce a variant A-MCTS-S++ that averages the policy prediction over board
symmetries, to match the KataGo default. See Appendices B.1 and B.3 for a full description.

Adversarial MCTS: Recursive (A-MCTS-R). When the victim we are attacking uses search, sam-
pling from the victim network directly as in A-MCTS-S will underestimate the strength of the victim.
To resolve this, A-MCTS-R runs MCTS for the victim at each victim node in the A-MCTS-R tree.

Initialization. We randomly initialize the attacker’s network. A random initialization encourages
exploration to find weaknesses in the victim, rather than simply a stronger Go player. A randomly
initialized network makes for a challenging initial learning problem. We partially alleviate this by
training the attacker with KataGo’s auxiliary prediction targets.

Curriculum. To help overcome the challenging random initialization, we introduce a curriculum
that trains against successively stronger victims from KataGo’s training history. We switch to a more
challenging victim agent once the attacker’s win rate exceeds 50%.

Baselines. We also test hard-coded baseline adversarial policies. These baselines were inspired
by the behavior of our trained attackers. Edge plays random legal moves in the outermost ℓ∞-
box available on the board. Spiral is similar to Edge, except that it plays moves in a deterministic
counterclockwise order. Finally, we also implement Mirror Go, a classic novice strategy which
plays the opponent’s last move reflected about the y = x diagonal.

5 Evaluation

We train an adversarial policy using A-MCTS-S and a curriculum, as described above. We start
from a checkpoint Initial around a quarter of the way through training, until reaching the Latest
checkpoint corresponding to the strongest KataGo network (see Appendix B.5.1 for details). Our
best adversarial policy timestep achieves a greater than 99% win rate against Latest despite only
being trained for 0.3% as many time steps as the victim. The policy wins by following the bizarre
strategy illustrated in Figure 1, which loses against a human amateur (see Appendix B.8.1). In Fig-
ure 2 we evaluate our adversarial policy against the policy networks of both Initial and Latest.

We evaluate the ability of the above adversarial policy to exploit Latest playing with search. Al-
though this attacker achieves a win rate greater than 99% against Latest without search, in Fig-
ure 3a we find the win rate of A-MCTS-S drops to 80% at 32 visits. However, A-MCTS-S is incor-
rectly modeling the victim as having no search at both training and inference time, so we also tested
A-MCTS-R which correctly models the victim. A-MCTS-R performs better, obtaining a greater
than 99% win rate against Latest with 32 visits, but performance drops below 10% at 128 visits.

We also try increasing the amount of search the attacker performs (with A-MCTS-S) to test whether
increasing attacker search is more useful than simulating victim search. Figure 3b shows that we
obtain up to a 54% win rate against Latest with 64 visits when the attacker uses 4,096 visits.

From Figure 8 (see appendix), we see that an attacker trained against Latest does better against
Latest than Initial, despite Latest being stronger. Conversely, an agent trained against
Initial does better against Initial than Latest. This pattern holds for most visit counts where
the attacker wins reliably, suggesting that distinct checkpoints have unique vulnerabilities.
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Figure 2: The win rate of the adversarial policy over time against the Initial and Latest vic-
tim policy networks playing without search. The strongest attacker checkpoint (marked ♦) wins
999/1000 games against Latest. The attacker overfits to Latest, winning less often against
Initial over time. The shaded interval is a 95% Clopper-Pearson interval over n = 50 games
per checkpoint. The adversarial policy is trained with a curriculum, starting from Initial and end-
ing at Latest. Vertical dashed lines denote switches to a later victim training policy.

(a) Win rate by number of victim visits (x-axis) for
A-MCTS-S and A-MCTS-R. The attacker is run with
200 visits. The attacker is unable to exploit Latest
when it plays with more than 100 visits.
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(b) Win rate by number of attacker visits with A-
MCTS-S, playing against Latest with 64 visits. We
see that higher attacker visits lead to substantially
higher win rates.

Figure 3: We evaluate the ability of the adversarial policy trained against Latest without search to
transfer to Latest with search.

6 Conclusion

We have developed the first adversarial policy exploiting an AI agent that performs at the level of a
top human professional. The adversarial policy does not win by playing a strong game of Go—in
fact, the adversarial policy can be easily beaten by a human amateur. Instead, the attacker wins by
exploiting a particular blindspot in the victim agent. Even highly capable agents can harbor serious
vulnerabilities. Not only that, but these vulnerabilities are not easy to spot: the KataGo paper [5]
received intense attention since 2019 but our work is the first documented attack. Learning-based
attacks like ours may be an important tool for uncovering hard-to-spot vulnerabilities.

Our results underscore that improvements in capabilities do not always translate into adequate ro-
bustness. Analogous failures in in safety-critical systems such as automated financial trading or
autonomous vehicles could have dire consequences. We believe the ML research community should
invest considerable effort into improving robust training and adversarial defense techniques in order
to produce models with the high levels of reliability needed for safety-critical systems.
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We follow the template from Hendrycks and Mazeika [21].

Individual question responses do not decisively imply relevance or irrelevance to existential risk
reduction. Do not check a box if it is not applicable.
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A.1 Long-Term Impact on Advanced AI Systems

In this section, please analyze how this work shapes the process that will lead to advanced AI systems
and how it steers the process in a safer direction.

1. Overview. How is this work intended to reduce existential risks from advanced AI systems?
Answer: By identifying and better understanding failure modes that may be present in narrowly
superhuman systems. These narrowly superhuman systems may be employed to automate parts
of the AI and AI safety R&D process, so their robustness properties may partially determine the
shape of the first transformative artificial intelligence, even if the narrowly superhuman systems
are not by themselves directly transformative.

2. Direct Effects. If this work directly reduces existential risks, what are the main hazards, vulner-
abilities, or failure modes that it directly affects?
Answer: A variety of AI safety agendas involve using AI systems to help automate parts of the
alignment process. For example, scalable oversight approaches seek to leverage AI systems to
help a human judge the output of other AI systems [22, 23]. There have also been proposals
to partially automate mechanistic interpretability, as well as more ambitious (but speculative)
proposals for flexible proof assistants or automating other chunks of the AI R&D process.
Critically, many of these proposals for having AI systems “help” safety research involve placing
the AI system being “aligned” in an adversarial situation relative to another AI “overseer”. This
is most direct in the scalable oversight case: an AI system is being trained with a reward signal
output by, or a function of the output of, other AI systems. But even if the optimization pressure is
not direct, a shrewd AI system might well reason that it is likely to be audited or otherwise tested
by automated means, especially if (as is likely) its training data includes ML papers discussing
such approaches! Consequently, these AI system “helpers” need to be robust enough to withstand
attempts to exploit it by a model that is quite possibly superhuman at exploiting ML models (if
not other capabilities).
Unfortunately, our results suggest that such levels of robustness will not arise by default out of
models that are highly capable on clean data. In particular, we may need new training techniques
to produce sufficiently robust models, in which case it is best to start developing these as soon
as possible. Alternatively, it may be possible to change the rules of the game to make it harder
for the ML system being aligned to exploit helpers, such as witholding information about the
potential models (especially if the exploits are very specific to a model and tend not to transfer)
or reducing the degree of direct optimization pressure,.

3. Diffuse Effects. If this work reduces existential risks indirectly or diffusely, what are the main
contributing factors that it affects?
Answer: We believe the robustness of narrowly superhuman systems, and AlphaZero-style sys-
tems in particular, represents an important proxy task for alignment. It is a well-defined task that
is amenable to empirical investigation, with a rich literature on game theory and multi-agent RL
to draw on for potential defences. In particular, we would expect adversarially trained systems
like AlphaZero to be more robust than most AI systems. As long as they are exploitable, it is
highly likely that other systems will also be.
By contrast, much work in existential AI safety has been understandably criticized for being too
abstract or conceptual. While our theory of change above admittedly makes speculative assump-
tions about the future, our empirical results are very concrete. We hope that other researchers
build on our results to either uncover failure modes in other systems, or propose new defences.

4. What’s at Stake? What is a future scenario in which this research direction could prevent the
sudden, large-scale loss of life? If not applicable, what is a future scenario in which this research
direction be highly beneficial?
Answer: If we naively trust narrowly superhuman systems to be robust – a common though by no
means universal assumption at present – then we might delegate too much of AI oversight to these
systems. These systems could in turn be exploited by some misaligned prepotent AI, resulting
in an existential catastrophe. If this research direction definitively establishes the vulnerability of
narrowly superhuman systems then we are unlikely to make this mistake, and will be pushed to
come up with alternative methods for aligning AI systems that do not rely on high levels of AI
assistance. Alternatively, this research direction might spur us to develop more robust narrowly
superhuman AI, enabling the original path to unfold successfully (without exploitation).
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5. Result Fragility. Do the findings rest on strong theoretical assumptions; are they not demon-
strated using leading-edge tasks or models; or are the findings highly sensitive to hyperparame-
ters? □
We demonstrate our attack against a state-of-the-art public model. The key weakness is that we
use a small amount of search relative to that typically used in evaluation against human players.

6. Problem Difficulty. Is it implausible that any practical system could ever markedly outperform
humans at this task? □
Our demonstrated adversarial policy already does outperform humans at the task of exploiting
KataGo (although humans, once they know the trick, can mimic it to some extent.)

7. Human Unreliability. Does this approach strongly depend on handcrafted features, expert su-
pervision, or human reliability? □
KataGo uses some handcrafted features and, in particular, auxiliary loss targets. We do not
believe our results depend on this, although it is possible that some of KataGo’s design choices
make it more vulnerable to exploitation than a more tabula-rasa approach.

8. Competitive Pressures. Does work towards this approach strongly trade off against raw intelli-
gence, other general capabilities, or economic utility? □
No – our exploit works using less than 1% as much training time as the original KataGo victim.
A key desiderata of our attack is computational efficiency.

A.2 Safety-Capabilities Balance

In this section, please analyze how this work relates to general capabilities and how it affects the
balance between safety and hazards from general capabilities.

9. Overview. How does this improve safety more than it improves general capabilities?
Answer: It demonstrates a vulnerability in state-of-the-art models. It does not directly improve
capabilities – except in adversarial testing – and work it spurs is likely to differentially improve
robustness rather than average-case performance.

10. Red Teaming. What is a way in which this hastens general capabilities or the onset of x-risks?
Answer: If robustness is a major impediment to unlocking economic value of AI systems, then
improving their robustness could unlock profitable applications which might lead to a feedback
loop of increased investment. This is not a bad thing in its own right, but competitive pressures
may push investment to focus more on accelerating capabilities with limited attention to safety
or, in the worst case, lead to race dynamics between firms rushing to capture a profitable market.
If this occurs, this could be highly net-negative.

11. General Tasks. Does this work advance progress on tasks that have been previously considered
the subject of usual capabilities research? □
Unclear – Go itself is certainly a benchmark task, but this form of exploitability of Go is rarely
an explicit focus of attention.

12. General Goals. Does this improve or facilitate research towards general prediction, classifi-
cation, state estimation, efficiency, scalability, generation, data compression, executing clear
instructions, helpfulness, informativeness, reasoning, planning, researching, optimization, (self-
)supervised learning, sequential decision making, recursive self-improvement, open-ended goals,
models accessing the Internet, or similar capabilities? □
Not that we can see, although this is a long-enough list that we would not be surprised if it had
some impacts on part of these (especially sequential decision making and planning).

13. Correlation With General Aptitude. Is the analyzed capability known to be highly predicted
by general cognitive ability or educational attainment? ⊠

14. Safety via Capabilities. Does this advance safety along with, or as a consequence of, advancing
other capabilities or the study of AI? □

A.3 Elaborations and Other Considerations

15. Other. What clarifications or uncertainties about this work and x-risk are worth mentioning?
Answer: A key uncertainty is whether this vulnerability disappears once a sufficient level of
generality is reached. In particular, for pathways to transformative AI that involve automating
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significant chunks of AI R&D, it is possible that this kind of robustness failure could be automat-
ically patched at an early stage. In this case, the problem we have identified may be solved “by
default”. We are also unsure at present how common this vulnerability is, having only identified
it in a single Go AI system – we intend to try attacking other Go AI systems and potentially other
game-playing AI systems to test this.

B Appendix

B.1 A Review of Monte-Carlo Tree Search (MCTS)

In this section, we review the basic Monte-Carlo Tree Search (MCTS) algorithm. This formulation
is heavily inspired by the description of MCTS given in [5].

MCTS is an algorithm for growing a game tree one node at a time. It starts from a tree T1 with a
single root node s1. It then goes through R playouts, where every playout adds a leaf node to the
tree. We will use Ti to denote the state of the game tree after i playouts, and will use si to denote
the node that was added to Ti−1 to get Ti. After MCTS finishes, we have a tree TR with R nodes.
We then use simple statistics of TR to derive a sampling distribution for the next move.

B.1.1 MCTS playouts

The playouts are governed by two auxiliary functions:

a. A value function estimator V̂ : T × S → R, which returns a real number V̂T (s) given a
tree T and a state s. The value function estimator is meant to estimate how good a state is
for the root player.

b. A policy estimator π̂ : T × S → P(A), which returns a probability distribution over
actions π̂T (s) given a tree T and a state s. The policy estimator is meant to approximate
the optimal policy from the perspective of the player playing from s.

For both KataGo and AlphaGo, the value function estimator and policy estimator are defined by two
deep neural network heads with a shared backbone. The reason that V̂ and π̂ also take a tree T as
an argument is because the estimators factor in the sequence of moves leading up to a state in the
game.

A playout is performed by taking a walk in the current game tree T . The walk goes down the tree
until it attempts to walk to a node s′ that does not exist in the tree. This node is then added to the
tree, after which the playout is complete.

We start the walk at the root of the tree. Let s be where we are currently in the walk. The child c we
walk to is given by

walkMCTS
T (s) = argmax

c
V̄T (c) + α · π̂T (s)(c) ·

√
NT (s)− 1

1 +NT (c)
. (1)

There are some new pieces of notation in Eq 1. Here is what they mean:

1. V̄T : S → R takes a node x and returns the average value of V̂T across all the nodes in the
subtree of T rooted at x (which includes x). When x does not exist in T , we instead use
the more complicated formula1

V̄T (x) = V̄T (par(x))− β ·
√ ∑

c∈ children(par(x))∩T

π̂T (c) ,

where par(x) is the parent of x in T and β is a constant that controls how much we de-
prioritize exploration after we have already done some exploration.

2. α is a constant to trade off between exploration and exploitation.
3. NT : S → Z≥0 takes a node x and returns the number of nodes in the subtree of T rooted

at x. If x is not in T , then NT (x) = 0.
1Which is used in KataGo and LeelaZero but not AlphaGo [5].
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The first term in Eq 1 can be thought of as the exploitation term, and the second term can be thought
of as the exploration term and is inspired by UCB algorithms.

B.1.2 MCTS final move selection

The final move to be selected by MCTS is usually sampled from a distribution proportional to

NT (c)
1/τ , (2)

where c in this case is a child of the root node. The temperature parameter τ trades off between
exploration and exploitation.2

B.1.3 Updateless formulation vs. standard formulation

To efficiently implement the playout procedure one should keep running values of V̄T and NT for
every node in the tree. These values should be updated whenever a new node is added. The stan-
dard formulation of MCTS bakes these updates into the algorithm specification. The updateless
formulation hides the procedure for computing V̄T and NT to simplify exposition.

B.2 The Strength of KataGo

We chose to attack KataGo as it is the strongest publicly available Go AI system. KataGo won
against ELF OpenGo [20] and Leela Zero [24] after training for only 513 V100 GPU days [5,
section 5.1]. ELF OpenGo is itself superhuman, having won all 20 games played against four top-
30 professional players. The latest networks of KataGo are even stronger than the original, having
been trained for over 10,000 V100-equivalent GPU days. Indeed, even the policy network with no
search is competitive with top professionals (see Section B.6).

KataGo learns via self-play, using an AlphaZero-style training procedure [7]. The agent contains a
neural network with a policy head, outputting a probability distribution over the next move, and a
value head, estimating the win rate from the current state. It then conducts Monte-Carlo Tree Search
(MCTS) using these heads to select self-play moves. KataGo trains the policy head to predict the
outcome of this tree search, a policy improvement operator, and the value head to predict whether
the agent wins the self-play game.

In contrast to AlphaZero, KataGo also has a number of additional heads predicting auxiliary targets
such as the opponent’s move on the following turn and which player “owns” a square on the board.
These heads’ output are not used for actual game play—they serve only to speed up training via
the addition of auxiliary losses. KataGo additionally introduces architectural improvements such as
global pooling, and improvements to the training process such as playout cap randomization.

These modifications to KataGo improve its sample and compute efficiency by several orders of
magnitude relative to prior work such as ELF OpenGo. For this reason, we choose to build our
attack on top of KataGo, although in principle the same attack could be implemented on top of any
AlphaZero-style training pipeline. We describe our extensions to KataGo in the following section.

B.3 Adversarial MCTS: Sample (A-MCTS-S)

In this section, we describe in detail how our Adversarial MCTS: Sample (A-MCTS-S) attack is
implemented. Similar to the standard MCTS procedure described in Appendix B.1, we build a game
tree, starting from tree T1 with a single root node, and adding nodes to the game tree Ti via a series
of R playouts. Finally, we derive the next move distribution from the final game tree TR by sampling
from a distribution proportional to

NA-MCTS
T (c)1/τ , (3)

where c is a child of the root node, τ is a temperature parameter, and NA-MCTS
T (c) is the number of

visits to c other than those ending in victim-nodes where the game has not completed. Formally, it

2See search.h::getChosenMoveLoc and searchresults.cpp::getChosenMoveLoc to see how
KataGo does this.
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is the sum of the weights of nodes in T given by

wA-MCTS
T (s) =


1 if s is self-node,
1 if s is terminal victim-node,
0 if s is non-terminal victim-node,

(4)

where a “terminal” node is one where the game is finished (whether by the turn limit being reached,
one player resigning, or by two players passing consecutively).

We grow the tree by A-MCTS playouts. At victim-nodes, we sample directly from the victim’s
policy πv:

walkA-MCTS
T (s) := sample from πv

T (s). (5)
This is a perfect model of the victim without search. However, it will tend to underestimate the
strength of the victim when the victim plays with search.

At self-nodes, we instead take the move with the best upper confidence bound. Specifically, we
evaluate the attacker’s policy network π̂T (s) which returns a probability distribution over actions,
and the value function estimator V̂T (s) which estimates the utility of a state s which is some linear
combination of estimated win-probability and estimated final score-differential. These functions are
parameterized by the tree T , not just the state s, as the networks factor in the sequence of moves
leading up to a state in the game. We then compute an upper confidence bound equal to the sum of
a weighted average of the value of a child V̄ A-MCTS

T (c), and an exploration bonus equal to the policy
prior π̂T (s) weighted by how few moves we have taken starting from c.

Putting this together, we arrive at the expression:

walkA-MCTS
T (s) := argmax

c
V̄ A-MCTS
T (c) + α · π̂T (s)(c) ·

√
NA-MCTS

T (s)− 1

1 +NA-MCTS
T (c)

. (6)

Note this is similar to Eq 1 from the previous section. The key difference is that rather than counting
nodes, we count the weights:

1. NA-MCTS
T (s) is the total weight in the subtree rooted at s.

2. V̄ A-MCTS
T (c) is the weighted average of the value function estimator V̂T (x) across all nodes

x in the subtree of T rooted at c, weighted by wA-MCTS
T (s).

If c does not exist in T , then we instead use the more complicated formula

V̄T (x) = V̄T (par(x))− β ·
√ ∑

c∈ children(par(x))∩T

π̂T (c) ,

where par(x) is the parent of x in T and β is a constant that controls how much we de-
prioritize exploration after having already done some exploration.

B.4 Pass-Alive defense

Our hard-coded defense modifies KataGo’s C++ code to directly remove passing moves from con-
sideration after MCTS, setting their probability to zero. Since the victim must eventually pass in
order for the game to end, we allow passing to be assigned nonzero probability when there are no
legal moves, or when the only legal moves are inside the victim’s own pass-alive territory. We
use a pre-existing function inside the KataGo codebase, Board::calculateArea, to determine
which moves are in pass-alive territory.

The term “pass-alive territory” is defined in the KataGo rules as follows:

A {maximal-non-black, maximal-non-white} region R is pass-alive-territory for
{Black, White} if all {black, white} regions bordering it are pass-alive-groups,
and all or all but one point in R is adjacent to a {black, white} pass-alive-group,
respectively [25].

The notion “pass-alive group” is a standard concept in Go:
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Hyperparameter Value Different from KataGo?
Batch Size 256 Same
Learning Rate Scale of Hardcoded Schedule 1.0 Same
Minimum Rows Before Shuffling 250,000 Same
Data Reuse Factor 4 Similar
attacker Visit Count 600 Similar
attacker Network Architecture b6c96 Different
Gatekeeping Disabled Different
Auto-komi Disabled Different
Komi randomization Disabled Different
Handicap Games Disabled Different
Game Forking Disabled Different

Table 1: Key hyperparameter settings for our adversarial training runs.

A black or white region R is a pass-alive-group if there does not exist any sequence
of consecutive pseudolegal moves of the opposing color that results in emptying
R [25].

KataGo uses an algorithm introduced by [26] to efficiently compute the pass-alive status of each
group. For more implementation details, we encourage the reader to consult the official KataGo
rules and the KataGo codebase on GitHub.

B.5 Hyperparameter Settings

We enumerate the key hyperparameters used in our training run in Table 1. For brevity, we omit
hyperparameters that are the same as KataGo defaults and which have only a minor effect on per-
formance.

The key difference from standard KataGo training is that our adversarial policy uses a b6c96 net-
work architecture, consisting of 6 blocks and 96 channels. This is much smaller than the victim,
which uses a b20c256 or b40c256 architecture. We additionally disable a variety of game rule
randomizations that help make KataGo a useful AI teacher in a variety of settings but are unimpor-
tant for our attack. We also disable gatekeeping, designed to stabilize training performance, as our
training has proved sufficiently stable without it.

We train at most 4 times on each data row before blocking for fresh data. This is comparable to the
original KataGo training run, although the ratio during that run varied as the number of asynchronous
selfplay workers fluctuated over time. We use an attacker visit count of 600, which is comparable to
KataGo, though the exact visit count has varied between their training runs.

B.5.1 Configuration for Curriculum Against Victim Without Search

In Section 5, we train using a curriculum with an attacker win-rate threshold of 50% over the fol-
lowing checkpoints, all with no search:

1. Checkpoint 127: b20c256x2-s5303129600-d1228401921 (Initial).

2. Checkpoint 200: b40c256-s5867950848-d1413392747.

3. Checkpoint 300: b40c256-s7455877888-d1808582493.

4. Checkpoint 400: b40c256-s9738904320-d2372933741.

5. Checkpoint 469: b40c256-s11101799168-d2715431527.

6. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latest).

These checkpoints can all be obtained from [27].

We start with checkpoint 127 for computational efficiency: it is the strongest KataGo network of
its size (b20 = 20 blocks). After that the checkpoints are approximately equally spaced in terms of
training timesteps. We include checkpoint 469 in between 400 and 505 for historical reasons: we
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KGS handle Is KataGo? KGS rank EGF rank EGD Profile
Fredda 22 25 Fredrik Blomback
cheater 25 6 Pavol Lisy
TeacherD 26 39 Dominik Boviz
NeuralZ03 ✓ 31
NeuralZ05 ✓ 32
NeuralZ06 ✓ 35
ben0 39 16 Benjamin Drean-Guenaizia
sai1732 40 78 Alexandr Muromcev
Tichu 49 64 Matias Pankoke
Lukan 53 10 Lukas Podpera
HappyLook 54 49 Igor Burnaevskij

Table 2: Rankings of various humans and no-search KataGo bots on KGS [28]. Human players were
selected to be those who have European Go Database (EGD) profiles [29], from which we obtained
the European Go Federation (EGF) rankings in the table. The KataGo bots are running with a check-
point slightly weaker than Latest, specifically b40c256-s11101799168-d2715431527 [30]. Per
[27], the checkpoint is roughly 10 Elo weaker than Latest.

ran some earlier experiments against checkpoint 469, so it is helpful to include checkpoint 469 in
the curriculum to check performance is comparable to prior experiments.

Checkpoint 505 is the latest confidently rated network. There are some more recent, larger networks
(b60 = 60 blocks) that may have an improvement of up to 150 Elo. However, they have had too few
rating games to be confidently evaluated.

B.6 Strength of KataGo

In this section, we estimate the strength of Latest with and without search.

B.6.1 Strength of KataGo without search

We estimate strength using two independent methodologies and conclude that Latest without
search is at the level of a weak professional.

One way to gauge the performance of Latest without search is to see how it fares against humans
on online Go platforms. Per Table 2, on the online Go platform KGS, a slightly earlier (and weaker)
checkpoint than Latest playing without search is roughly at the level of a top-100 European pro.
However, some caution is needed in relying on KGS rankings:

1. Players on KGS compete under less focused conditions than in a tournament, so they may
underperform.

2. KGS is a less serious setting than official tournaments, which makes cheating (e.g., using
an AI) more likely. Thus human ratings may be inflated.

3. Humans can play bots multiple times and adjust their strategies, while bots remain static.
In a sense, humans are able to run adversarial attacks on the bots, and are even able to do
so in a white-box manner since the source-code and network weights of a bot like KataGo
are public.

Another way to estimate the strength of Latest without search is to compare it to other AIs with
known strengths and extrapolate performance across different amounts of search. Our analysis criti-
cally assumes the transitivity of Elo at high levels of play. We walk through our estimation procedure
below:

1. Our anchor is ELF OpenGo at 80,000 visits per move, which won all 20 games played
against four top-30 professional players (including five games against the now world num-
ber one) [20]. We assume that ELF OpenGo at 80,000 visits is strongly superhuman, mean-
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ing it has a 90%+ winrate over the strongest current human.3 At the time of writing, top
ranked player on Earth has an Elo of 3845 on goratings.org [31]. Under our assumption,
ELF OpenGo at 80,000 visits per move would have an Elo of 4245+ on goratings.org.

2. The strongest network in the original KataGo paper was shown to be slightly stronger than
ELF OpenGo [5, Table 1] when both bots were run at 1600 visits per move. From Fig-
ure 4, we see that the relative strengths of KataGo networks is maintained across different
amounts of search. We thus extrapolate that KataGo at 80,000 visits would also have an
Elo of 3800+ on goratings.org.

3. The strongest network in the original KataGo paper is comparable to the
b15c192-s1503689216-d402723070 checkpoint on katagotraining.org [27]. We
dub this checkpoint Original. In a series of benchmark games, we found that Latest
without search won 29/3200 games against Original with 1600 visits. This puts
Original with 1600 visits ~800 Elo points ahead of Latest without search.

4. Finally, log-linearly extrapolating the performance of Original from 1600 to 80,000 visits
using Figure 4 yields an Elo difference of ~900 between the two visit counts.

5. Combining our work, we get that Latest without search is roughly 800 + 900 = ~1700
Elo points weaker than ELF OpenGo with 80,000 visits. This would give Latest with-
out search an Elo rating of ~2500 on goratings.org, putting it at the skill level of a weak
professional.

B.6.2 Strength of KataGo with search

In the previous section, we established that Latest without search is at the level of a weak profes-
sional with rating around ~2500 on goratings.org.

Assuming Elo transitivity, we can estimate the strength of Latest by utilizing Figure 4. In partic-
ular, our evaluation results tell us that Latest with 64 playouts/move is roughly 1063 Elo stronger
than Latest with no search. This puts Latest with 64 playouts/move at an Elo of ~3563 on gorat-
ings.org — within the top 20 in the world.

B.7 Experimental Results

B.7.1 Mimicking the Adversarial Policy

Our adversarial policies appear to follow a very simple strategy. They play in the corners and edges,
staking out a small region of territory while allowing the victim to amass a larger territory. However,
the attacker ensures that it is ahead in raw points prior to the victim securing its territory. If the victim
then passes prematurely, the attacker wins.

However, it is possible that this seemingly simple policy hides a more nuanced exploit. For example,
perhaps the pattern of stones it plays form an adversarial example for the victim’s network. To test
this, one of the authors attempted to mimic the adversarial policy after observing some of its games.

The author was unable replicate this attack when KataGo was configured in the same manner as for
the training and evaluation runs in this paper. However, when the friendlyPassOk flag in KataGo
was turned on, the author was able successfully replicate this attack against the NeuralZ06 bot on
KGS, as illustrated in Figure 5. This bot uses checkpoint 469 (see Appendix B.5.1) with no search.
The author has limited experience in Go and is certainly weaker than 20 kyu, so they did not win
due to any skill in Go.

B.8 Understanding the Attack

We observed in Figure 1 that the attacker appears to win by tricking the victim into passing prema-
turely, at a time favorable to the attacker. In this section, we seek to answer three key questions. First,
why does the attacker pass even when it leads to a guaranteed loss? Second, is passing causally re-

3This assumption is not entirely justified by statistics, as a 20:0 record only yields a 95% binomial lower
confidence bound of a 83.16% win rate against top-30 professional players in 2019. It does help however that
the players in question were rated #3, #5, #23, and #30 in the world at the time.
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Figure 4: Elo ranking (y-axis) of networks (different colored lines) by visit count (x-axis). The lines
are approximately linear on a log x-scale, with the different networks producing similarly shaped
lines vertically shifted. This indicates that there is a consistent increase in Elo, regardless of network
strength, that is logarithmic in visit count. Elo ratings were computed from self-play games among
the networks using a Bayesian Elo estimation algorithm [32].

Figure 5: An author of this paper plays as white mimicking our adversarial policy in a game against
a KataGo-powered, 8-dan KGS rank bot NeuralZ06 which has friendlyPassOk enabled. White
wins by 18.5 points under Tromp-Taylor rules. See the full game.
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Figure 6: Win rates of different baseline adversaries (see Section 4) versus Latest at varying visit
counts (x-axis) with attacker playing as white. 95% CIs are shown. See Figure 9 in the appendix
for average win margin of baselines.

sponsible for the victim losing, or would it lose anyway for a different reason? Third, is the attacker
performing a simple strategy, or does it contain some hidden complexity?

Evaluating the Latest victim without search against the attacker from section 5 over n = 250
games, we find that Latest passes (and loses) in 247 games and does not pass (and wins) in the
remaining 3 games. In all cases, Latest’s value head estimates a win probability greater than
99.5%, although its true win percentage is only 1.2%. Latest predicts it will win by µ = 134.5
points (σ = 27.9), and passing would be reasonable if it were truly so far ahead. But in reality it is
just one move away from losing by an average of 86.26 points.

There are two ways an ill-advised pass could cause KataGo to lose: it might pass first and allow
the adversary an opportunity to win by passing on the next turn, or KataGo might pass after the
adversary passes, thereby ending the game with a loss. Empirically, we find that nearly every time
the adversary defeats Latest, KataGo passes first (95-99% of the time). This makes sense because,
if the adversary passes first, KataGo’s C++ code will recognize that passing on the next turn would
end the game and directly evaluate the resulting state as a win or a loss via Tromp-Taylor scoring
rules. If KataGo passes first, however, there is an opportunity for the network to incorrectly evaluate
the likelihood or desirability of the adversary responding with a pass.

We conjecture the victim’s prediction is so mistaken as the games induced by playing against the
adversarial policy are very different to those seen during the victim’s self-play training. Certainly,
there is no fundamental inability for neural networks to predict the outcome correctly. The attacker’s
value head achieves a mean-squared error of only 1.22 (compared to 49,742 for the victim), and
predicts it will win 98.7% of the time—extremely close to the true 98.8% win rate in this sample.

To verify whether this pathological passing behavior is the reason the adversarial policy wins, we
design a hard-coded defense for the victim: only passing when it cannot change the outcome of
the game. Concretely, we only allow the victim to pass when its only legal moves are in its own
pass-alive territory, a concept described in the official KataGo rules which extends the traditional
Go notion of a pass-alive group [25] (see Appendix B.4 for a full description of the algorithm).

We apply this defense to the Latest policy network. Whereas the adversarial policy in Section 5
won greater than 99% of games against vanilla Latest, we find that it loses all 1600 evaluation
games against Latest with this defense. This confirms the adversarial policy wins via passing.

Unfortunately, this “defense” has several undesirable properties. First, it causes KataGo to continue
to play even when a game is clearly won or lost, which is frustrating for human opponents. In fact,
the average game length when playing with pass-hardening against an adversarial policy increases
from 95 to 421 moves—over a factor of four! This is also almost twice that of the 211 moves typical
for Go games between professional players [33].
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(a) An author (B) defeats the strongest adversary (W).
Explore the game.

(b) An author (W) defeats the strongest adversary (B).
Explore the game.

Figure 7: Two games between an author of this paper and the strongest adversary from Figure 2. In
both games, the author achieves an overwhelming victory. The adversary used 600 playouts / move
and used Latest as the model of its human opponent. The adversary used A-MCTS-S for one game
and A-MCTS-S++ for the other.

Second, the defense relies on hard-coded knowledge about Go, using a search algorithm to compute
the pass-alive territories. Ideally, we would be able to apply AI techniques to systems where humans
do not have such domain expertise: indeed, this was the key contribution of AlphaZero [7] over
AlphaGo [1]. Moreover, there may be games where AI systems are vulnerable but where there is no
simple algorithm to address the vulnerabilities.

Finally, we seek to determine if the adversarial policy is winning by pursuing a simple high-level
strategy, or via a more subtle exploit such as forming an adversarial example by the pattern of stones
it plays. We start by evaluating the hard-coded baseline adversarial policies described in Section 4.
In Figure 6, we see that all of our baseline attacks perform substantially worse than our trained
adversarial policy (Figure 3a). Moreover, all our baseline attacks only win by komi, and so never
win as black. By contrast, our adversarial policy in Section 5 wins playing as either color, and often
by a large margin (in excess of 50 points).

We also attempted to manually mimic the attacker’s game play without success.4 Consequently,
although the basics of our adversarial policy seem readily mimicable, matching its performance is
challenging, suggesting it may be performing a more subtle exploit.

B.8.1 Humans vs. Adversarial Policy

The same author from Section B.7.1 (strength weaker than 20kyu) played two manual games against
the strongest attacker from Figure 2. In both games the author was able to achieve an overwhelming
victory. See Figure 7 for details.

This evaluation is imperfect in one significant way: the attacker was not playing with an accurate
model of the author (rather it modeled the author as Latest with 1 visit). However, given our
understanding of how the adversary works and the fact that the author in question knows not to
prematurely pass, we predict that the adversary would probably not win even if it had access to an
accurate model of the author.
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Figure 8: An adversary trained against Latest (left) or Initial (right), evaluated against both
Latest and Initial at various visit counts. The adversary always uses 600 visits / move.
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Figure 9: The win margin of the Latest victim playing against baselines for varying victim visit
count (x-axis). Note the margin is positive indicating the victim on average gains more points than
the baseline.

B.8.2 Transferring to Other Checkpoints

In Figure 8, we train adversaries against the Latest and Initial checkpoints. We find adversaries
do substantially better against the victim they were trained to target, although they do transfer to a
limited extent.

B.8.3 Baseline Attacks

In Figure 9, we plot the win margin of the KataGo victim Latest playing against baselines.
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Figure 10: A hand-crafted adversarial example for KataGo and other Go-playing AI systems. It is
black’s turn to move. Black can guarantee a win by connecting its currently disconnected columns
together and then capturing the large white group on the right. However, KataGo playing against
itself from this position loses 48% of the time—and 18% of the time it wins by a narrow margin of
only 0.5 points!

B.9 Adversarial Board State

This paper focuses on training an agent that can exploit Go-playing AI systems. A related problem
is to find an adversarial board state which could be easily won by a human, but which Go-playing AI
systems will lose from. In many ways this is a simpler problem, as the adversarial board state need
not be a state that the victim agent would allow us to reach in normal play. Nonetheless, adversarial
board states can be a useful tool to probe the blindspots that Go AI systems may have.

In Figure 10 we present a manually constructed adversarial board state. Although quite unlike what
would occur in a real game, it represents an interesting if trivial (for a human) problem. The black
player can always win by executing a simple strategy. If white plays in between two of black’s
disconnected groups, then black should immediately respond by connecting those groups together.
Otherwise, the black player can connect any two of its other disconnected groups together. Whatever
the white player does, this strategy ensures that blacks’ groups will eventually all be connected
together. At this point, black has surrounded the large white group on the white and can capture it,
gaining substantial territory and winning.

Although this problem is simple for human players to solve, it proves quite challenging for otherwise
sophisticated Go AI systems such as KataGo. In fact, KataGo playing against a copy of itself loses
as black 48% of the time. Even its wins are far less decisive than they should be—18% of the
time it wins by only 0.5 points! We conjecture this is because black’s winning strategy, although
simple, must be executed flawlessly and over a long horizon. Black will lose if at any point it
fails to respond to white’s challenge, allowing white to fill in both empty spaces between black’s
groups. This problem is analogous to the classical cliff walking reinforcement learning task [34,
Example 6.6].

4We were only able to perform a manual exploit when the friendlyPassOk flag in KataGo was set to
true. This flag makes KataGo more willing to pass. However, this flag is set to false in all of our training and
evaluation runs. See Appendix B.7.1 for details.
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