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ABSTRACT

Complex scientific inquiries rely increasingly upon large and autonomous mul-
tiscale simulation campaigns, which fundamentally require similarity metrics to
quantify “sufficient” changes among data and/or configurations. However, sub-
ject matter experts are often unable to articulate similarity precisely or in terms of
well-formulated definitions, especially when new hypotheses are to be explored,
making it challenging to design a meaningful metric. Furthermore, the key to
practical usefulness of such metrics to enable autonomous simulations lies in in
situ inference, which requires generalization to possibly substantial distributional
shifts in unseen, future data. Here, we address these challenges in a cancer biology
application and develop a meaningful similarity metric for “patches”— regions of
simulated human cell membrane that express interactions between certain proteins
of interest and relevant lipids. In the absence of well-defined conditions for simi-
larity, we leverage several biology-informed notions about data and the underlying
simulations to impose inductive biases on our metric learning framework, result-
ing in a suitable similarity metric that also generalizes well to significant distribu-
tional shifts encountered during the deployment. We combine these intuitions to
organize the learned metric space in a multiscale manner, which makes the metric
robust to incomplete and even contradictory intuitions. Our approach delivers a
metric that not only performs well on the conditions used for its development and
other relevant criteria, but also learns key temporal relationships from statistical
mechanics without ever being exposed to any such information during training.

1 INTRODUCTION

Many scientific phenomena involve wide ranges of spatial and temporal scales, but computational
models usually cannot cover all relevant scales with sufficient fidelity. This challenge has given rise
to multiscale simulations (Ayton & Voth, 2010; Hoekstra et al., 2014; Krzhizhanovskaya et al., 2015;
Voth, 2017; Enkavi et al., 2019; Ingólfsson et al., 2021), where coarse and, thus, inexpensive approx-
imations are used to explore large scales, whereas more-detailed but significantly more-expensive
models are used to provide details for smaller regions in space and time. Here, we are interested
in developing a similarity metric to facilitate such multiscale simulations in the context of cancer
biology. The overarching goal is to explore the interactions of RAS proteins and RAS-RAF pro-
tein complexes with the lipid bilayer that forms the human cell membrane (Ingólfsson et al., 2017;
2020; 2021). RAS-RAF activation is a crucial part of the signaling chain that controls cell growth,
and up to a third of all human cancers are driven by mutations of RAS proteins that corrupt this
chain (Simanshu et al., 2017; Prior et al., 2020). Consequently, understanding the signaling process
in detail is of significant interest (Waters & Der, 2018; Travers et al., 2018; Kessler et al., 2019).

The primary challenge is that signaling events are thought to depend on the spatial arrangement of
lipids in the neighborhood of RAS, the conformation of RAS, its orientation relative to the mem-
brane, and range of other factors. Yet, even using some of the largest supercomputers, only a few
potential events can be explored with fine-scale, molecular dynamics (MD) models. To maximize
the opportunity for discovery, computational scientists seek to employ coarse-scale models to con-
tinuously create wide-ranging membrane configurations and, from these, select a diverse subset
to explore in detail. Mathematically, this requirement translates into defining a similarity metric
between “patches”, which represent local membrane configurations characterized by lipid concen-
trations and proteins constellations, i.e., numbers and types of proteins (illustrated in Figure 1).
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Figure 1: A “patch” comprises zero or more proteins of two types and concentration distributions of
14 types of lipids . Facilitating target multiscale simulations requires determining similarity among
patches, even though there exists no well-formulated or widely-accepted notion of similarity.

Although similarity metrics are used widely, existing approaches employ simple, well-formulated
measures, such as well-defined norms (e.g., Lp-norms) or supervisory labels. However, in many
scientific applications, including the one of interest here, there exist no explicit labels and standard
norms do not match the biological understanding of the domain scientists. Instead, experts usu-
ally express various intuitions and hypotheses regarding what similar and dissimilar configurations
might look like. For example, one may consider different mean lipid concentrations as different, or
similar protein constellations as similar. However, the reverse usually does not hold, i.e., same mean
concentrations can differ in their spatial distribution and different protein configurations may show
similar lipid behavior. Furthermore, these intuitions and hypotheses, which are usually based on
experience or some initial observations, may also later turn out to be incomplete, inaccurate, or even
incorrect, e.g., when new data is obtained, new computational models are developed, or new phe-
nomena are studied. Broadly, such biology-informed intuitions lead to necessary-but-not-sufficient
conditions that might be under-constrained (too few necessary conditions) or even inconsistent

Contributions. We introduce an approach to learn a similarity metric from a set of necessary-
but-not-sufficient conditions of similarity/dissimilarity for complex, multimodal data and demon-
strate our method on patches generated from simulations of RAS-RAF-membrane interactions. Our
framework uses metric learning (Xing et al., 2003; Lu et al., 2017; Kaya & Bı́lge, 2019; Suárez-Dı́az
et al., 2020) to incorporate biology-informed, but incomplete and contradictory, notions of similar-
ity. We show that by casting such notions into a set of inductive biases, our approach yields a robust
metric that generalizes well to significant distributional shifts encountered during deployment. We
also demonstrate that our metric is scientifically relevant and captures the underlying biology, e.g.,
preserves additional scientific constraints not part of the training. Most notably, our metric exhibits a
strong correlation between similarity of patches and the timescales needed for one to evolve into the
other. This correlation emerged naturally through metric learning and matches the fundamental as-
sumptions of statistical mechanics approaches, despite the training data containing no notion of time
evolution. Our metric was deployed for in situ inference as an enabling technology for a massive
multiscale simulation of RAS-RAF-membrane biology to create the first-of-its-kind scientific cam-
paign (Anonymous, 2021) to study this phenomena. Our technique can be easily adapted to a wide
range of scientific problems, e.g., other protein systems, leading to better design of experiments,
more-stable predictive models, and better clustering, with the potential for significant impact.

2 MULTISCALE SIMULATIONS OF RAS-RAF-MEMBRANE BIOLOGY

Our goal is to facilitate massive multiscale simulations of RAS-RAF interactions with a human
cell membrane. During a multiscale campaign, a continuum model (the “coarse-scale”) simulation
evolves density distributions of lipids and single particle representations of RAS and RAF proteins
for a large (1 µm × 1 µm) portion of a membrane. With a particular interest in signaling events
in the vicinity of RAS proteins, the focus is on exploring local patches (30 nm × 30 nm regions
of the membrane) around proteins using molecular dynamics (MD, the “fine-scale”) simulations.
Whereas the ongoing continuum simulation creates a continuous stream of patches, all of which
are candidates for MD simulations, the high computational cost of MD allows only a small fraction
(e.g., 0.05%) of the patches to be explored. Unfortunately, the distribution of patches is highly non-
uniform with some types of configurations occurring orders of magnitude more often than others
making a uniform random selection inefficient. Simultaneously, there exist little a priori insight into
which patches might lead to interesting events to formulate a targeted acquisition function. Instead,
our collaborators are aiming to instantiate a diverse set of patches covering as much of the phase
space explored by the continuum model as possible. This implies a measure of similarity between
patches which unfortunately is not well defined but only understood qualitatively.

A patch is a complex biological configuration that comprises concentration distributions of 14 types
of lipids and two types of proteins (see Figure 1). Of particular interest is to understand how the
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different types of lipids rearrange themselves in response to these proteins — the different types
of lipids respond differently and with different intensities. Experts hypothesize (Ingólfsson et al.,
2021) that the spatial distribution of lipids correlate with types of protein constellations. Never-
theless, identifying this response or comparing the structure of these spatial patterns directly is not
straightforward, especially outside the region of strong and direct influence of the proteins (about
2–9 nm). Whereas the biology community often compares patches and other similar configura-
tions using simple criteria, such as protein constellations or mean lipid concentrations (Ingólfsson
et al., 2020), these metrics are not descriptive enough to be useful here. On the other hand, a direct
comparison of spatial patterns (e.g., pixel-wise) is also not suitable because it does not preserve
key invariances (discussed in Section 4) and is not biologically relevant. Instead, we utilize ideas
from metric learning to combine several relevant intuitions and known constraints from experts to
construct a suitable similarity metric for patches.

The practical relevance and utility of this similarity metric is that it has to be deployed for inference
in the target multiscale simulations to enable automated and in situ ML-driven selection of a diverse
set of patches from those generated by the continuously running continuum simulation. A key
practical challenge is that this metric has to be developed without even knowing in advance exactly
what types of patches will be generated during the multiscale simulation, and there is no opportunity
for retraining. Specifically, the multiscale simulation campaign evolves a coupled system of coarse
and fine scales, consuming almost 3.6 million GPU hours — a task that cannot be repeated. Prior
to the campaign, only an uncoupled continuum model may be run and only for a short period.
As a result, the data available to train the metric (the “pre-campaign data”) is expected to differ
considerably from the data generated for inference during the campaign (the “campaign data”),
although the extent and the exact type of differences are mostly speculation, since such a coupled
model has never been simulated before. Therefore, generalization of the metric from training data to
other relevant simulations is key to practical applicability. Here, we show that the inductive biases
used in our framework enable our metric to perform well, despite substantial drifts in the overall
distribution and characteristics of patches between the pre-campaign and the campaign datasets.

3 RELATED WORK

The concept of similarity is fundamentally important in almost all scientific fields and data-driven
analyses, such as medicine (Ma et al., 2019; Wei et al., 2020), security (Luo et al., 2020; Li et al.,
2020b), social media mining (Liu et al., 2017; 2018), speech recognition (Bai et al., 2020; Li
et al., 2020a), information retrieval (Hu et al., 2019; López-Sánchez et al., 2019), recommender
systems (Li & Tang, 2020; Wu et al., 2020), and computer vision (Nguyen & De Baets, 2019; Wang
et al., 2020; Zhao et al., 2020). Broadly, similarity is modeled using some kind of metric space,
(Z,dz), such that the distances, dz, capture the notion of similarity. Examples of traditional simi-
larity metrics include Lp-norms, Mahalanobis distance, cosine distance, and correlation coefficients.

Recent advances in ML have revitalized the detection of similarity through ability to focus on hidden
features that cannot be captured by straightforward metrics. For natural images, deep features have
been shown to be strongly correlated to perceptual quality (Zhang et al., 2018), resulting in capturing
perceptual similarity in a tractable manner. More relevant to this work, metric learning (Xing et al.,
2003; Lu et al., 2017; Kaya & Bı́lge, 2019; Suárez-Dı́az et al., 2020) has emerged as a powerful ap-
proach that aims to learn a metric space that captures similarity. In this context, triplet losses (Schultz
& Joachims, 2004; Hoffer & Ailon, 2015) have shown remarkable success, particularly in face
recognition and object detection problems (Schroff et al., 2015; Ge et al., 2018). Fundamentally, the
triplet loss relies on pairs of similar (xa and xp) and dissimilar (xa and xn) examples of the training
data; the network is trained to minimize the distance (dz) between learned representations (z) of
the examples from the same class and place a margin (α) between those of different classes or cate-
gories. Formally, a triplet loss is given as Lα(xa,xp,xn) = max(0, α+ dz(xa,xp)− dz(xa,xn)).
There also exist many other popular formulations of loss functions that employ similar strategies,
e.g., contrastive (Hadsell et al., 2006) and quadruple (Chen et al., 2017) losses, but all such ap-
proaches generally require well-formulated supervision, usually in the form of class labels.

Often suitable for scientific applications, unsupervised, autoencoder-based techniques (Bhowmik
et al., 2018; Bhatia et al., 2021; Jacobs et al., 2021) have also been utilized to identify similarities.
Nevertheless, reconstruction-based training in such approaches implies prescient notions of proper-
ties that need to be preserved, potentially disregarding other intuitions. This is also a limitation of
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the only known method that addresses this problem for patches (data of our interest; see Section 2).
Specifically, Bhatia et al. (2021) use a variational autoencoder to create a latent space and use it to de-
fine similarity among patches, although, their patches represent a simpler system, including only one
type of protein and capturing lipid concentrations at substantially lower resolution (5×5 as compared
to 37×37 in our case). These differences in data along with our requirement to obtain invariance
to certain rigid transformations of interest necessitate a departure from autoencoder-type networks
because reconstruction losses rely on pixel-wise comparison that directly contradicts the invariance
needed, making the problem unnecessarily difficult. Instead, our metric learning approach satisfies
all necessary conditions and delivers a 2130× reduction in data (37×37×14 to 9-D), whereas the
autoencoder-based method of Bhatia et al. (2021) reduces the data by 23× (5×5×14 to 15-D) only.

4 SIMILARITY METRIC FOR PATCHES

In this section, we describe the several biology-informed intuitions that we leverage to define a
suitable similarity metric for patches and how to morph those ideas into a metric learning framework.

Shown in Figure 1, a patch comprises a multichannel image, x(i, j, c), where channels 0 ≤ c < 14
represent lipid concentrations on a grid with indices 0 ≤ i, j < 37. A patch also contains a tuple,
y = (ys, yf ), where ys ≥ yf and yf ≥ 0 are the numbers of RAS and RAF proteins, respectively.
RAF localizes at the membrane only in association with RAS; therefore, for each RAF, there is a
RAS in the system. By construction, each patch with ys > 0 is centered around a RAS protein,
providing a consistent reference frame across patches. Without loss of generality and in the context
of the current application, patches are broadly categorized into four types: no protein, (y = (0, 0))
as control, 1 RAS (y = (1, 0)), 1 RAS-RAF (y = (1, 1)), and everything else (ys > 1, yf > 1).

We pose the goal of identifying similarity among patches as a metric learning problem and em-
ploy a neural network to learn this metric. Specifically, given a patch (x,y), we build a mapping,
(x,y)→ z, where z ∈ Z ⊂ Rd, such that (Z,dz) defines a metric space using Euclidean distance in
Rd, i.e., dz(xi,xj) = ‖z(xi)− z(xj)‖2. We subsequently use (Z,dz) to define similarity between
patches and express three relevant scientific intuitions mathematically to learn a suitable (Z,dz).

Supervised classification of protein constellations. Since the application focuses on exploring
lipids’ response to proteins (see Section 2), a metric that learns on lipid distributions and uses protein
constellations as a dependent variable is suitable to provide new insights. Therefore, given a patch
(x,y), we treat x as input and y as a label, and model this intuition as a clustering problem with
a classification loss formulated as a triplet loss, Llab = Lαlab(xyi

,xyi
,xyj

), where yi and yj are
distinct labels, and αlab the desired margin. More generally, this is an example of common scenarios
where task-specific information are available and may be used directly to supervise the learning.

Self-supervised invariance to axis-aligned rotations and reflections. As is common in many
scientific applications, the coordinate system of the simulation is arbitrary, i.e., the two coordinate
axes could be rotated or inverted without changing the biology simulated. A suitable metric that
learns the underlying biology must, therefore, be agnostic to the specific choice of the coordinate
system. Stated differently, our learned metric must be invariant to such transformations of patches.
Without loss of generality, let ρ(x) denote transformations of interest. In this work, we consider
only the three π/2 rotations and horizontal and vertical reflections of patches. Arbitrary transforma-
tions are irrelevant, e.g., continuous rotations either lose the corners (if image size is preserved) or
introduce “empty” corners (if image is expanded), in both cases resulting in unrealistic patches.

Given ρ, we require that dz(x, ρ(x)) = 0 for all x, and by implication dz(x1,x2) = dz(x1, ρ(x2))
for all x1 and x2. We model this invariance using a hard-triplet loss to force all transformations of
every patch, xi, closer to each other than any other pair of patches, xi and xj with i 6= j, by some
margin αinv. Formally, we define an invariance loss as Linv = Lαinv(xi, ρ(xi),xj).

Whereas in principle, two different and unrelated patches could still be exact transformations of each
others, in practice, the probability of finding such a pair is virtually zero. Therefore, we assume all
given patches are different and perform data augmentation in the form of online triplet mining by
transforming each patch in a given training batch to its five relevant transformations. Such augmen-
tations lead to a self-supervised approach for training the metric to identify invariance.

Feature proportionality for lipid spatial patterns. The spatial arrangement of lipids is also key
to describing similarity among patches (see Figure 1 and Figure 5). To this end, we define a new
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feature that is inspired by radial distribution functions, which are used extensively to study such
biological simulations and whose intuition is well favored by subject matter experts. This feature,
a radial profile, is attractive because it captures similarity in lipid arrangements, helps alleviate
contradictions with protein constellations, and synergizes with the required invariance.

Formally, given a patch x(i, j, c) and a reference pixel thereof, (i∗, j∗), we first compute a radial pro-
file per channel as γ(i∗,j∗)(x, r, c) = max(x(i, j, c)), where r = round(

√
(i− i∗)2 + (j − j∗)2).

We use max aggregation as it is sensitive to variations across r and, thus, is suitable to distinguish
patches. Since a patch has a protein at its center of the patch (when ys > 0), we compute the radial
profile from the center pixel spanning the incircle of the image (i.e., r < 19). To account for the
lipids outside the incircle, we compute radial profiles from each corner for r < 19 but only within the
corresponding quadrant (see Section A.1), and to preserve invariance to transformations of interest,
the corner profiles are averaged. Both the center profile and the mean of corner profiles are [19× 1]
vectors, which are then then concatenated to give a [38×1] vector for each channel. In this work, we
used only 8 lipid channels that the experts deemed to be more important than others. Our final radial
profile feature for a patch, Υ(x) is, therefore, a [38× 8] vector. We next define a feature proportion-
ality loss that forces the metric to keep similar Υ together in the learned metric space. Specifically,
we use Lrad(xi,xj) = |dz(xi,xj) − λrad dΥ(xi,xj)|, where, dΥ(xi,xj) = ‖Υ(xi)−Υ(xj)‖2
and λrad controls the span of the learned metric, dz, with respect to the valid ranges of dΥ.

Ultimately, the definition and use of radial profiles is a valuable heuristic that imposes inductive
biases on the metric to learn and capture spatial patterns without making specific assumptions about
the data and, therefore, is useful for generalization across datasets and simulations.
Combination of necessary-but-not-sufficient intuitions. Each of the three conditions discussed
above may be straightforward to satisfy in isolation; however, potential contradictions between them
pose significant challenges. Consider the scenario where two patches with different protein constel-
lations exhibit remarkably similar radial profiles, yet other pairs of patches within same protein
constellation classes exhibit a larger variability in spatial patterns. Given such contradictory condi-
tions, we develop a single and consistent framework that absorbs such contradictions by aiming to
organize the metric with respect to growing neighborhoods of data points, as illustrated in Figure 2.

Given a reference patch, we require all its transformations to be “really close” to it (as compared
to non-transformations) and all patches with different labels to be “much farther” (as compared to
the patches with the same label). The set of patches that are not transformations and have the same
label are distributed in between, based on the similarity in the radial profiles. We realize this mul-
tiscale organization using a small margin for invariance, αinv, a larger margin for labels, αlab, and a
proportionality factor that maps the range of distances between radial profiles to the desired range in
the latent space, i.e., λrad ∝ 1/(max(dΥ)−min(dΥ)). To combine the three requirements, we use
a weighted sum of the corresponding loss functions, i.e., L = winvLinv + wradLrad + wlabLlab. Our
framework allows balancing the conflicts described above through controlling the hyperparameters
and the weights of the three loss functions. For instance, relatively large values of αlab and wlab

will aim to obtain separability with respect to labels at the cost of separability in the feature space.
Therefore, the targets of discovery are identifying suitable hyperparameters that support good gener-
alizability: the weights (winv, wrad, andwlab), the margins (αinv and αlab), the ranking proportionality
factor (λrad), together with the dimension (d), of the resulting metric space.

a data point

Metric 

transformations data with same label but different configuration data with different labels

Figure 2: Our framework imposes inductive biases using biology-informed intuitions to organize
neighborhoods of data points into a “multiscale hierarchy” that represent different conditions (blue,
orange, and green). The “out-of-order” points (green in the orange cloud and orange in the green
cloud) represent contradictions in the intuitions that are resolved by the metric.

5 EVALUATION, SELECTION, AND UTILITY OF OUR METRIC

We use our framework to develop (see Section A.2) a similarity metric for patches using the “pre-
campaign” dataset (see Section 2). A suitable model was selected by systematically evaluating
models developed for ranges of relevant hyperparameters, the dimensionality of the metric space,
different network architectures, and ablation studies of the three conditions of interest (see Table 1).
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Metric Metric dimensionality (↓) Overlap % (↓) MARE*(↓) AUC (↑)

Standard:
`2 (x; images) 19,166 99.99 13.54 0.34
`2 (µ; mean conc.) 14 0 19.64 0.32
`2 (Υ; RDFs) 308 0 0 0.36

Ablations:

Linv 1 0.09 551.08 0.58
Lrad 9 0.06 0.98 0.30
Llab 9 99.73 117.26 0.76
Lrad + Llab 9 99.99 0.26 0.68

Our metric: Linv + Lrad + Llab 9 0.05 2.6 0.61

Table 1: Comparison with benchmarks and ablations indicate that our approach provides the best
balance among the criteria and maintains a low dimensionality of the metric space. This comparison
uses MARE* (units of dΥ), which differs from MARE (units of dz) by a scaling factor (Lrad).

5.1 METRIC EVALUATION AND SELECTION

In the absence of any ground truth, we use three evaluation criteria to assess the quality of metrics
learned using our method and to select a suitable model for the target application. These critera
correspond to the three conditions presented in Section 4. Here, we first describe these criteria
using our final, selected model that delivers a 9-D metric space and then present our model selection
procedure and other models. This evaluation was done on a set of 30,000 randomly selected patches
from the validation data, providing almost 450 million pairs of points that we compute distances for.

Separability of protein constellations. Figure 3 visualizes a 2-D t-SNE (van der Maaten & Hin-
ton, 2008) of z. As expected, the no-protein patches (type 1) form an isolated cluster, and 1-RAS
and 1-RAS-RAF patches (types 2 and 3) are also relatively well separated. Nevertheless, although
all other patches (type 4) appear to have a mostly-well-defined cluster, we observe notable overlap
with types 2 and 3 — these are the patches where the lipid configurations (images) do not exhibit
distinctive responses to protein compositions (classes), and are of substantial interest to the appli-
cation. As a result, it is important to not over-penalize this model for such misclassifications, but
instead strive for a balance with similarity in multichannel images. To quantify the model’s classi-
fication capability, we use the area under the precision-recall curve (AUC) in the metric space (see
Section A.3). For each validation data point, we compute these metrics for increasing numbers of
neighbors and compute the precision-recall curve. For the chosen model, the AUC is 0.61.

Invariance and separability of transformations. We define an overlap metric to quantify a
model’s ability to capture invariance to transformations and separate them from any pairs of patches
that are not transformations of each other. Overlap reports the proportion of points that cannot be
distinguished any more than the transformations of some data points. Specifically, overlap counts
pairs (xj , xk), where dz(xj ,xk) ≤ max(dz(xi, ρ(xi))) for all five transformations of interest of
all points, xi. Figure 3(middle) shows the distributions of these distances with an overlap of only
0.05% and, thus, demonstrates an excellent separability of transformations by the chosen model.

Preservation of proportionality with the similarity of lipid patterns. Finally, we quantify
the model’s capability to preserve the distances given by the feature space (radial profiles). Fig-
ure 3(right) shows the correlation between our metric and distances in the feature space for all 450
million pairs of points in the validation dataset. The plot highlights an excellent linear correlation
with an expected proportionally factor 0.1 (=λrad used for this model). This result demonstrates the
model’s capability to preserve the given distances (within the proportionality factor), even if at the
cost of clustering quality (discussed above), thus, addressing the contradictions where needed. We

Figure 3: We evaluate our similarity metrics using three criteria: (left) high ability to separate
different classes of data, using AUC. (middle) low overlap between the distances among data points
and those among transformations. (right) low residual error (MARE) between the distances captured
by the metric and those given by the feature space (within the chosen proportionality factor).
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further note that the model shows low error despite the large sample size (shown in gray) in the short-
range distances — which are of significant interest. We quantify this evaluation using the median
absolute residual error (MARE) of the correlation, i.e., the median of |dz(xi,xj)−λraddΥ(xi,xj)|
over all pairs of points. For the chosen model, this error is 0.26 (units of dz), which is well below
the overall distribution of distances in this metric space (see Figure 3(midlde) and Figure 3(right)).

Model selection. Figure 4 summarizes our evaluation of over 100 models using a parallel coordi-
nates plot and highlights the chosen model (black line), which provided the best balance between
the quality of the model (evaluation criteria) and the dimensionality of the metric. These models
represent different hyperparameters, different architectures, as well as ablations (e.g., MARE = −1,
i.e., an invalid value, indicates models without the radial profile condition). Zooming further on
narrow ranges of the three criteria (Figure 4(right)), we notice that several models offer good and
comparable quality, providing empirical indication that our framework is generally robust. We note
one 10-D model (purple) that marginally outperforms the chosen model (black) that we chose to
ignore in favor of a smaller dimensionality. For the selected model, αinv = 1, winv = 2, λrad = 0.1,
wrad = 2, αlab = 8, wlab = 1, and d = 9. The architecture of the chosen model is given in Section A.2.

5.2 METRIC UTILITY AND GENERALIZABILITY TO DISTRIBUTIONAL SHIFTS

The selected model was deployed on the Summit supercomputer as part of a large-scale workflow
to facilitate the target multiscale simulation campaign (Anonymous, 2021), which ran for more than
3 months and consumed over 3.6 million GPU hours. This simulation campaign generated over
6,000,000 patches (the “campaign” dataset) and our metric was used for in situ inference to select
patches for MD simulations. Here, we present retrospective analysis of our model’s performance on
the campaign dataset. First, we assess the quality of our metric visually by showing what the model
considers as similar vs. dissimilar. Figure 5 shows a randomly chosen reference patch (a) with two
proteins and its similarity (dz) to three other patches with same and different protein counts. When
compared against thousands of other two-protein patches (irrespective of the class label), (b) and (c)
are found to be most similar and most dissimilar patches, respectively. The figure also shows a patch
with ten proteins to illustrate that our metric returns high dz (low similarity) for this comparison.

Our metric performs well despite distributional shifts. Unlike the pre-campaign data (used for
training), the campaign data (used for inference) is generated from a coupled model (see Section 2).
To experts’ surprise, the campaign data exhibits significantly greater extent of distributional shifts
than expected (see Section A.4), emphasizing the need for generalizabity in our metric. As described
above, we utilized our framework’s flexibility to reduce the emphasis on the separability of protein
constellations, which ultimately allowed us to support the campaign data, as a stronger emphasis
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Figure 4: We evaluated over 100 models using three quantitative criteria and the dimension of the
metric space. Each model is shown as a curve along the four axes of this parallel coordinates plot
(lower is better on all axes). The chosen model (black) was selected by evaluating all models (left)
and then focusing on a subset (right) that provided good and comparable performance.

Figure 5: Visual depiction of our similarity metric for (a) a two-protein reference patch. (b) is a
two-protein patch that is similar to (a); dz(a, b) = 0.262. (c) is a two-protein patch that is dissimilar
to (a); dz(a, c) = 4.052. (d) is a ten-protein patch that is dissimilar to (a); dz(a, d) = 7.502. Patch
visualizations (rows) use the same layout as Figure 1; colormap is same for each lipid (column).
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on such separability would have led to poor inference. Instead, our framework absorbed such dif-
ferences by resolving them in favor of the radial profiles. We support this claim by computing our
evaluation criteria on a random subset of 30,000 patches taken from the campaign data and note that
the model provides comparable quality, with overlap = 0.01%, MARE = 0.03, and AUC = 0.59.

Our metric is superior to standard alternatives. We next evaluate the model against a standard
alternative, mean lipid concentrations, µ. Here, we show the correlation between the distances in
the space of dµ with those given by the learned metric, dz, for the pre-campaign and the campaign
data (see Figure 6) and draw attention to two observations. First, the range of the horizontal axes in
both plots is the same, which is the property of the simulated system. Although one expects to find
fluctuations for individual lipids, the system itself is conserved (when certain lipids deplete, others
replete the space) and, hence, the net ranges of the differences remain approximately the same.
Second, given considerable shifts in lipid concentrations, the campaign data produces markedly
different µ vectors that our metric captures by populating the extremes (previously unpopulated
regions) of the learned metric space, as indicated by the larger ranges of the similarity metric (vertical
axes in the plots). Regardless, even for the campaign data, our metric performs well at preserving
the differences in the mean concentrations for more than 78% of the data evaluated, whereas the
extreme regions in the metric space (e.g., dz > 4) appear to be less well understood.

Our metric understands the spatial locations of patches. Thus far, we have considered a patch
as comprising only lipids and proteins. In the simulation, however, each patch has a position in space
(and time). Whereas the spatial distance between patches is not a direct measure of similarity, the
goal of preventing redundant simulations requires delivering high similarity for patches that overlap
spatially. Figure 7 shows our similarity metric between patches that are within same time-steps of
the simulation. This result demonstrates that our metric naturally understands the spatial context
of patches, as it correlates spatial positions with similarity for overlapping patches, and shows no
correlation between patches that are more than 15 nm (half the patch size) away.

Our metric understands decorrelation time of patches. We further demonstrate the biological
relevance of our metric through the implicit connection between time and similarity founded in
statistical mechanics. Specifically, there is an expectation that, given infinite time, any patch may
evolve into any other one. Considering such evolution, a given patch is expected to remain consid-
erably similar for short time periods, but become arbitrarily dissimilar for large enough time. This
so-called decorrelation time (when patches along an evolution are not correlated anymore) is a key
concept often used to guide sampling, I/O rates, and lengths of simulations. More importantly, the
(shortest) time necessary for one patch to evolve into another represents a very intuitive and biolog-
ically relevant measure of similarity. However, given two arbitrary patches, directly computing this
time scale is practically infeasible (an upper-bound estimate is about 500 ns, see Appendix A.6).

To evaluate our metric in this context, we performed a post-campaign simulation that followed 300
unique RAS proteins saved at 100× the temporal frequency used for training (pre-campaign data)
and inference (campaign data), resulting in 300 histories that represent the temporal evolution of the
respective patches. Figure 7 plots our similarity metric against the time difference between pairs of
patches within the same history, i.e., around the same RAS protein. We note a strong correlation
between both concepts for hundreds of ns, flattening only around 500 ns with a marked increase
in standard deviation, which matches the expected decorrelation time past which there should not
exist any relationship between patches. This result demonstrates that our metric, which is trained on
patches at lower temporal resolution and without any explicit information on time, naturally learns
the inherent correlation between patch similarity and evolution time. Most importantly, establishing
this correlation, especially for shorter time scales, enables us, for the first time, to estimate the

Figure 6: Our metric (dz) captures the differences in mean concentration vectors, µ(x), for both pre-
campaign and campaign datasets. For the latter, the simulation generates many new and previously
unseen configurations, leading to a wider exploration in our metric space, resulting in a larger range
of dz. Yet, the metric performs well on more than 78% of the data (left of vertical line).
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Figure 7: Despite trained agnostic to spatiotemporal locations of patches, our model captures inher-
ent relationships with respect to both space and time. (left) As expected, patches with little to no
overlap (>15 nm apart) show no correlation with our metric. (middle and right) Our metric captures
the high similarity existent at small temporal neighbhoroods and also hints at the decorrelation time
in the simulation, after which, patches are considered equally dissimilar in statistical mechanics.

evolution time as a factor of the distance in the metric space. These insights will enable an entirely
new viewpoint for the analysis of the resulting simulation by directly correlating observed properties
of the membrane or the proteins with respect to their estimated difference in time.

6 CONCLUSION AND DISCUSSION

We present a framework to compute similarities among data generated by a computational biology
application crucial to cancer research. We address two key challenges. First, since complex scientific
applications, such as the one presented here, work at the cutting edge of contemporary knowledge,
well-formulated criteria for similarity are usually not available. In the absence of straightforward
metrics, we instead utilize biology-informed criteria gathered from experts and cast them into a
metric learning framework to learn a meaningful similarity metric. We show that our metric fuses
these necessary-but-not-sufficient conditions well and is robust to potential contradictions between
them. Through close collaboration with subject matter experts (e.g., to identify relevant conditions
and suitable features), our framework turns the lack of well-defined similarity criteria into a strength
by imposing the experts’ biology-informed intuitions as inductive biases that allow the metric to
generalize to new simulations exhibiting significant distributional shifts in data — addressing the
second challenge of deploying the model for in situ inference on unseen data. We demonstrate this
generalization on two new datasets and show that our model learns key behavior of interest in the
simulations, rather than focusing on the specific datasets themselves.

Our framework and the resulting similarity metric has been deployed as the key driving compo-
nent in the first-of-its-kind multiscale simulation campaign (Anonymous, 2021) to explore RAS-
RAF-membrane interactions, with a potential for significant impact in cancer biology (Anonymous,
2022a;b). Unfortunately, the massive scale of such simulations (3–4 months, consuming 3–5 mil-
lion GPU hours) makes it computationally infeasible to rerun the simulations to compare different
metrics, models, techniques, or benchmarks, necessitating evaluation and comparisons in a proxy
or development setting (Table 1 and Figure 4). Through suitable evaluation metrics and validation
of external criteria (e.g., decorrelation time), this manuscript also addresses the challenges of a lack
of ground truth to compare against and demonstrates a meaningful metric until the biology commu-
nity can test more hypotheses and develop a more widely-accepted understanding of similarity. By
showing a direct relationship between distance in the metric space and the expected evolution time
between patches, our work also leads to new insights and opens up new directions of research.

Our data and experiments highlight that realistic simulation are not restricted to small distributional
shifts. Therefore, despite our demonstration of generalizability, an opportunity for improvement lies
in updating the model in situ using new data from the running simulations. As such, we will explore
challenges, both computational and fundamental, associated with automatic detection of a model’s
suitability and online learning approaches to absorb new data to update the model.

Finally, although our work is presented in a specific application context, our framework is broadly
applicable to other applications, such as experimental design and other types of autonomous mul-
tiscale simulations, that face such challenges. Specifically, our framework can be easily adapted to
support different types of simulations in the space of biology or elsewhere using intuitions from the
application. As examples, we have since customized our framework to support a different biological
system where patches are periodic in both spatial dimensions, and we are also currently applying
this framework to different biological systems with GPCR proteins (Rosenbaum et al., 2009).
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A APPENDIX

A.1 COMPUTATION OF RADIAL PROFILES

To compute radial profiles efficiently, we use predefined spatial kernels (see Figure 8) that represent
distance r from the reference pixel (i∗, j∗) (shown in red) rounded to the nearest integer; each kernel
is defined for r < 19 pixels. For a given channel c within a patch x, a radial aggregation (max) is
applied using these kernels to create a 1-D radial profile, γ(i∗,j∗)(x, r, c). Each profile is represented
as a [19× 1] vector. To preserve invariance to transformations, the four corner profiles are averaged
and concatenated to the center profile, resulting in a [38×1] vector. Figure 9 shows these vectors for
each channel. Finally, in this work, we use the profiles of eight most-relevant channels are appended
to create Υ, which is a feature of size [38× 8]

Figure 8: Spatial kernels for creating radial profiles. From left to right, kernels for center radial
profile, γ(18,18) and the four corner profiles, γ(0,0), γ(36,0), γ(0,36), and γ(36,36) are shown.

Figure 9: Mean (black) and standard deviation (color) of radial profiles for patches in the training
dataset. The profiles are computed after the standardization of channels.

A.2 MODEL DEVELOPMENT

A set of 334,000 patches was generated through a small and uncoupled continuum simulation run
prior to the multiscale simulation campaign. This pre-campaign dataset was made available to us
for developing the ML model. We used this dataset to train and evaluate several models as well as
comparison against benchmarks (described in Table 1 and Figure 4).

The multichannel images were standardized per channel (to zero mean and unit standard deviation)
across the dataset to account for differences in ranges of different lipid concentrations. Labels (for
protein constellations) and radial profiles were precomputed and saved as auxiliary information for
model training. A 90%-10% random split of the dataset was used for training and validation.

All models were developed with TensorFlow v2.1 (Abadi et al., 2016) and Keras v2.2.4 (Chollet
et al., 2015) using one NVIDIA Volta V100 GPU each. Models were optimized using the Adam
optimizer (Kingma & Ba, 2017), and most models used a piecewise-constant learning rate decay
([1, 5, 0.1, 0.01]×10−3 switched after 10, 20, and 30 epochs). Training was performed until the
total loss appeared converged, which took 60–100 epochs (4–6 hours of walltime).

Whereas our framework appears generally robust to architecture changes, the chosen architecture)
gave superior results. Empirical evidence suggests that a separable convolution layer to account for
correlations across lipid channels unsurprisingly improves the model performance. The architecture
of the chosen model is as follows.
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x → SeparableConv2D(filters=6, depth mult=6, kernel sz=1, strides=1,
relu) → BatchNorm → Conv2D(filters=16, kernel sz=3, strides=2, relu) →
BatchNorm → Conv2D(filters=16, kernel sz=3, strides=2, relu) → BatchNorm
→ Flatten → Dense(shape=9) → BatchNorm → z.

A.3 PRECISION-RECALL STUDY FOR CLASSIFICATION OF CLASS LABELS

To supplement the discussion in Section 5.1 and Figure 3, we present the precision-recall curve
as well as accuracy of classification. To measure these quantities, we consider each point in the
evaluation dataset (30,000 points), and note the types of patches found within neighborhoods as
the number of neighbors are increased. Using the number of false positives and false negatives,
we compute accuracy, precision, and recall using the standard formulations. Figure 10 shows the
variations in these quantities with respect to the size of the neighborhoods. In this work, we are
mostly interested in short-range neighborhoods and note that the accuracy remains high (greater
than about 75%) for up to about 12,000 neighbors. The figure also shows precision-recall curve,
whose area under the curve is used for quantitative evaluation of our metric.

Figure 10: Accuracy, precision, and recall for our selected metric (left) with respect to the patch
type and increasing neighborhoods in the metric space. We use the area under the precision-recall
curve (right) to evaluate the metric.

A.4 DISTRIBUTIONAL SHIFTS IN DATA: Pre-Campaign VS. Campaign DATESETS

As described in Section 2, the subject matters expect to explore significantly different types of
patches during the simulation campaign than what may be modeled prior to the campaign. Al-
though the continuum simulation during the campaign starts with the same parameters and models
as available for pre-campaign, the primary reason of these anticipated differences is the evolution of
a coupled multiscale system during the campaign. In particular, during the multiscale campaign, all
of the several hundred thousand MD (fine scale) simulations are analyzed in situ and the resulting
analysis is aggregated and used to improve the parameters of the continuum (coarse scale) model.
As a result, the continuum model evolves and is expected to start exploring different regions of
the phase space of patches. This active feedback loop is a key characteristic of such autonomous
multiscale simulations (Ingólfsson et al., 2021).

In this work, the MD simulations indicate a higher degree of protein aggregation than previously
hypothesized, which also leads to significant differences in lipid accumulation around the proteins.
These shifts (highlighted in Figure 11) can be consequential to any ML model since inference has
to be made on patches that the model has not seen before. For example, inference in a patch that
contains around 10 proteins, whereas training data contains patches with only up to 4 or 5 proteins.

One of the key challenges in our model development was to guard against such expected yet not
fully understood differences between the training and inference datasets, necessitating focusing on
biology-informed inductive biases, rather than tailoring specifically to the data at hand.
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Figure 11: The distributional shifts observed between the pre-campaign data (used for training)
and the campaign data (used for inference) highlights the need for generalizability of the similarity
metric. The shifts become more drastic as the campaign simulation progresses in time.

A.5 ABLATION STUDIES

As highlighted in Table 1, the different metrics optimize for individual criterion, e.g., the RDF-
related metrics provide low overlap and low MARE* but perform poorly on AUC. On the other
hand, simply combining two of the metrics does not necessary give additive benefits (e.g., Lrad and
Llab). We note that our framework therefore produces a metric that is more useful than the sum of its
parts and allows finding the right balance between the criteria. Beyond the quantitative evaluation
(overlap, MARE*, and AUC), we also note the role of dimensionality of the corresponding space
for computational efficiency. During the campaign, several thousand of distance computations (for
nearest neighbor queries) are to be made in real- time. Therefore, a large dimensionality makes the
approach infeasible.

A.6 DERIVATION OF DECORRELATION TIME

The coarse-scale, continuum simulation, from which patches are collected, computes the time evo-
lution of the membrane system. Patches that evolve from times t1 through t2 (t1 ≤ t2) are physically
very similar if t2 − t1 is small, and become arbitrarily dissimilar as t2 − t1 goes to infinity. This
presents an opportunity to verify that the metric indeed shows decreased similarity as a function of
t2 − t1. Here we derive an estimate of how long time it takes for a patch to get decorrelated.

In the continuum model, diffusion of lipids is a major source of entropy production and, thus, decor-
relation. Given the system size and diffusivity, we can estimate the decorrelation time using the
diffusion equation:

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
,

where c = c(x, y, t) is the lipid distribution (for some lipid species) and D is the corresponding
diffusion coefficient. Given an L × L patch (for our data, L = 30 nm) and a standard value of D
= 43.36 nm2/µs (taken as average over several relevant lipids). The slowest decaying Fourier mode
of the diffusion equation above decays as exp

[
−D

(
2π
L

)2
t
]
, where using the values above we get

D
(
2π
L

)2 ≈ 0.53 µs.

The motion of the protein and inherent randomness (noise) in the lipid evolution equations introduce
further entropy and thus shortens the decorrelation time compared to the above estimate. We can see
that Figure 7 shows a decorrelation time roughly similar to this diffusive estimate.
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