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ABSTRACT

In recent years, many studies utilize Convolutional Neural Networks (CNNs) to
deal with non-grid graph data, known as Graph Convolutional Networks (GCNs).
However, there exist two main limitations of the prevalent GCNs. First, GCNs
have a latent information loss problem since they use scalar-valued neurons rather
than vector-valued ones to iterate through graph convolutions. Second, GCNs are
presented statically with fixed architectures during training, which would restrict
their representation power. To tackle these two issues, based on a capsule GCN
model (CapsGNN) which encodes node embeddings as vectors, we propose Adap-
tive Graph Capsule Convolutional Networks (AdaGCCN) to adaptively adjust the
model architecture at runtime. Specifically, we leverage Reinforcement Learning
(RL) to design an assistant module for continuously selecting the optimal modi-
fication to the model structure through the whole training process. Moreover, we
determine the architecture search space through analyzing the impacts of model’s
depth and width. To mitigate the computation overhead brought by the assistant
module, we then deploy multiple workers to compute in parallel on GPU. Eval-
uations show that AdaGCCN achieves SOTA accuracy results and outperforms
CapsGNN almost on all datasets in both bioinformatics and social fields. We also
conduct experiments to indicate the efficiency of the paralleling strategy.

1 INTRODUCTION

Graph-structured data is ubiquitous in real-world scenarios such as biological networks, citation
networks, recommender systems, and social networks. It has seen a surge in research on extending
deep learning methods like Convolutional Neural Networks (CNNs) (LeCun & Bengio, 1998) or
Recurrent Neural Networks (RNNs) (Mikolov et al., 2011) to process tasks on graphs. Graph Neural
Networks (GNNs) were first proposed in (Gori et al., 2005) and further elaborated in (Scarselli
et al., 2009) to handle graphs based on recursive neural networks (RecGNNs). RecGNNs learn to
represent nodes by constantly exchanging neighbor information until reaching a stable equilibrium,
which is computationally expensive. Encouraged by the success of CNNs, many studies (Bruna
et al., 2014; Henaff et al., 2015; Defferrard et al., 2016; Kipf & Welling, 2017) borrowed the idea
of convolutions and redefined them for graph data. These convolutional networks on graphs are
known as Graph Convolutional Networks (GCNs) by stacking multiple graph convolutional layers
to present high-level graph representation. Moreover, GCNs can save much time in computing
compared to RecGNNs. In this paper, we focus on the research on GCNs.

SOTA GCNs methods (Zhang et al., 2018; Verma & Zhang, 2018) generate graph embeddings in
the form of scalar, which may not help capture enough node features. Therefore, it is of great
necessity to improve the information extraction ability of current GCNs. In 2011, (Hinton et al.,
2011) pointed out that traditional pooling mechanism (Scherer et al., 2010) on CNNs may suffer
from the information loss problem. Later (Sabour et al., 2017) proposed a novel neural network
called CapsNet without using pooling. CapsNet encodes the features of images as vectors and uses
a dynamic routing algorithm to obtain the right local-global relationship. Owing to its capability
to capture inner relations among entities, CapsNet has been converged with GCNs to grasp higher
quality graph information (Verma & Zhang, 2018; Xinyi & Chen, 2019).

CapsGNN (Xinyi & Chen, 2019) extracts multi-scale node features from different convolutional
layers and represents the extracted features in the form of capsules. Compared to classic GCN
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models, CapsGNN has been proven to have better representation ability on graph data. However,
CapsGNN still uses a static model structure to conduct training, which inherently restricts its ability
to cope with the enhancing abstraction level of graph information during the whole training process.
Therefore, it is crucial to explore a method for dynamically adjusting the structure of CapsGNN to
improve its classification performance.

Many research efforts (He et al., 2016; Szegedy et al., 2016; Huang et al., 2017; Szegedy et al., 2017;
Li et al., 2018; Rong et al., 2019) have demonstrated that the number of convolutional layers (i.e.,
depth, denoted by D) and the number of neurons in each layer (i.e., width, denoted by W ) impact
significantly on the performance of neural networks. However, these methods are often inefficient
in training due to overly complex model structures. In this paper, we simplify the architecture
search problem and focus on the exploration of the best depth-width setting on particular dataset,
considering the balance between efficiency and accuracy.

To evaluate the effects of the depth and width in CapsGNN, we change them to observe the perfor-
mance of the model on two graph datasets, ENZYMES and IMDB-MULTI (Kersting et al., 2016),
in bioinformatics and social fields, respectively. It is shown in Figure 1 that if the model has small
D and W , it can not sufficiently extract the features of graphs. On the contrary, when the model
structure is too complicated, overfitting occurs frequently. Thus, CapsGNN is sensitive to changes
in depth and width just because of the vectorized graph representation in it. Since the impacts of D
and W are distinct on different datasets, it is necessary to adaptively adjust the model architecture
according to the latent characteristics of particular workloads.
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Figure 1: Results of classification accuracy when increasing D and W . The third subfigure depicts
the changes of bothD andW , and the x-axis represents the increase of either of them (for simplicity,
the growth scales of D and W are set the same here).

With respect to the search for the optimal structure of a model, there has been increasing interest
in designing automatic methods in Neural Architecture Search (NAS) (Zoph & Le, 2017; Liu et al.,
2018; Luo et al., 2018; Real et al., 2019; Pham et al., 2018). There exist mainly three kinds of tech-
niques to search for the best model architecture in NAS, i.e., Reinforcement Learning (RL) based,
Evolution Algorithm (EA) based, and gradient-based methods. RL-based methods (Zoph & Le,
2017; Pham et al., 2018; Zoph et al., 2018) use RNN as the controller to train different architectures
and select the optimal one according to their validation accuracy results. EA-based methods (Real
et al., 2017; Xie & Yuille, 2017; Real et al., 2019; Shu et al., 2019) utilize the evolutionary algorithm
to search for superior model structures from a set of initialized candidate networks. Gradient-based
methods (Liu et al., 2019; Wu et al., 2019; Xie et al., 2019) construct a SuperNet and leverage the
attention mechanism to remove weak connections after searching. The former two methods can be
regarded as offline and are often time-consuming. Although the third method is an online method
and shows good efficiency due to gradient descent optimization, it lacks variety in searching for the
optimal architecture.

To achieve the balance between efficiency and accuracy, we propose Adaptive Graph Capsule Con-
volutional Networks (AdaGCCN) to address the issues discussed above. We utilize Reinforcement
Learning (RL) to design an online assistant module for evaluating different changes to depth and
width. Differing from the RL agent in an RL-based NAS task that considers the choices of various
model structures as actions, we move the RL procedure into only one full training and choose one
action (i.e., one alteration to the model structure) in a sliding epoch window at one time, according
to not only the accuracy results on the validation data set but also the rate of reduction in training
loss. However, the introduction of the assistant module would result in extra computational over-
head. To accelerate the selection process described above, we further assign multiple workers to
train in parallel on the GPU. Three main contributions are made in this paper:
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• We optimize the model architecture at runtime by tuning depth and width of convolutional
layers by observing both the change in validation accuracy and the reduction speed of
training loss after each sliding epoch window. Following this scheme, we can dynamically
refine our model while sharing the weights parameters learned at previous training stages.

• The assistant module is formalized as a Reinforcement Learning (RL) agent. We define
the depth-width setting of graph convolutions as a state and consider the changes of the
setting as actions. We leverage the RL mechanism to update the rewards corresponding to
different actions.

• To simplify the search space of the assistant module, we discuss the adequacy of only
adjusting depth and width of the convolution operations. To ease the computation burden
that arises from the assistant module, we split the whole validation process into multiple
tasks to run them synchronously.

We organize the rest of the paper as follows. Section 2 introduces the background of this work.
Section 3 elaborates the fundamental architecture and implementation of AdaGCCN. In Section 4,
we evaluate the classification performance of our model against the baseline methods. We discuss
related work in Section 5 and conclude this paper in Section 6.

2 PRELIMINARIES

Here, we give a brief revisit to common GCNs and a capsule-based GCN, i.e., CapsGNN.

2.1 GRAPH CONVOLUTIONAL NETWORKS

A graph can be represented by G = (V,X,A), in which V = {v1, v2, ..., vN} (N is the number of
nodes) is the set of nodes in the graph,A ∈ {0, 1}N×N is the adjacency matrix ofG andX ∈ RN×d

represents the features of each node (d is the number of feature dimensions).

GCNs, inspired by CNNs, extract richer information of one node by aggregating features of the
nodes from its neighborhood. At each layer of GCNs, each node and its neighbors are operated
through convolutions. Then an activation function is applied to return the updated representation of
each node. The procedure in GCNs can be written as:

Zl+1 = A
′
ZlW l, X l+1 = f(Zl+1) (1)

whereZl ∈ RN×dl implies node features at layer l (Z0 = X),W l ∈ Rdl×dl+1 is a trainable weights
matrix which serves as a convolution filter, A

′ ∈ RN×N is the regularized form of the adjacency
matrix A, and f is a nonlinear activation function.

2.2 CAPSULE GRAPH NEURAL NETWORK

Although classic CNNs perform decent classification results in image processing, they face a severe
robust problem. For example, when training with human faces, CNNs could learn good statistical
representations of them, but can not tell whether the relative positions of different parts of a face are
correct. The reason behind this is mainly due to the pooling mechanism in CNNs which extracts
information through down-sampling, thus causing the losses on some essential features of images.

Unlike extracting image features as scalar values in CNNs, CapsNet was proposed (Hinton et al.,
2011; Sabour et al., 2017; Hinton et al., 2018) to build vector-based capsules to learn the inherent
part-whole relationships in images. Inspired by CapsNet, CapsGNN (Xinyi & Chen, 2019) fuses
the capsule mechanism with GCNs to handle graph data. CapsGNN extracts multi-dimension node
features from different graph convolutional layers to serve as basic node capsules. Then it combines
the attention mechanism and dynamic routing to generate higher-level graph capsules. To this end,
each graph can be abstracted as multiple graph capsules, and different graph capsules represent
the properties of the graph from different aspects. At last, CapsGNN uses dynamic routing again
to produce class capsules which are applied to do graph classifications. However, like traditional
GCNs models, CapsGNN does not try to adjust the model architecture when more fine-grained
graph information needs to be learned as training proceeds, which leaves potential in enhancing its
representation power.
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3 OVERVIEW OF ADAGCCN

In this section, we outline the overall design of AdaGCCN (depicted in Figure 2). We first intro-
duce the assistant module (AM) and the principle for determining the search space in it. Then we
elaborate on how AM dynamically changes the model structure to extract higher-quality graph rep-
resentations. Finally, we describe the parallel execution in AdaGCCN which accelerates the search
process in AM.

Figure 2: AdaGCCN Architecture.

3.1 THE ASSISTANT MODULE

We build an AM to select the changes to model structure from different branches. Each branch
indicates an alteration to D and W . The changes of D and W are represented by ∆D and ∆W ,
respectively. We formalize the procedure of the assistant module as an RL procedure. RL usually
uses an agent to interact with an environment by choosing actions at different periods. In AdaGCCN,
the depth-width setting at the t-th (t ≥ 1) training epoch is treated as the state in the RL agent
(denoted by (Dt,Wt)). We specify two lists, the ∆D list and the ∆W list, for the changes of
(Dt,Wt). The length of the ∆D list and the ∆W list are len1 and len2, respectively. Note that
we focus on the impacts ofD andW in this paper rather than the complex situation in common NAS,
len1 and len2 can not be very large with considering both the overfitting problem and computation
efficiency. An action ati (1 ≤ i ≤ m) is defined as one of the m (m = len1 ∗ len2) choices in
changing (Dt,Wt) at the t-th epoch:

ati = [∆D list[p],∆W list[q]], 0 ≤ p ≤ len1 − 1, 0 ≤ q ≤ len2 − 1. (2)

3.2 ADAPTIVE D-W TUNING

There are two key issues we need to address upon building an AM:

• Q1: how to select the optimal ∆D and ∆W during training?
• Q2: how to share the model parameters derived at previous training epochs when D and
W are updated?

Through training, we record the training loss (denoted by losst) and the accuracy on the validation
hold (denoted by valacct) after epoch t ends. Unlike the original RL method, we can not predict
which action performs the best before running the model with updated D and W . Thus we design a
reward evaluation function to compare the loss reduction rate and the variation of validation accuracy
over a sliding epoch window. Specifically, the length of this sliding window is set to three, and then
the loss decrease speed is calculated within three consecutive epochs. We could broaden the size of
the sliding window according to specific requirements. When the action with the maximal Q-value
is obtained, we take it to update the model structure for training in the next sliding window.

We let Q(ati) represent the reward of taking the action ati. The goal of AM is to constantly select
the action ati∗ with the maximal reward. The update on Q(ati) is determined whether ati is chosen at
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Algorithm 1: The updating strategy in the assistant module.
Input: The number of training epochs: E, the length of the sliding epoch window: 3, the

reward discount rate: γ (0 ≤ γ ≤ 0.5), the threshold reflecting the reward for the loss
decrease at the last two training epochs: θ (0 ≤ θ ≤ 0.5), the ∆D list (length: len1)
for updating D, the ∆W list (length: len2) for updating W , the set of losses during E
epochs: {losst}, the set of accuracies on the validation data set during E epochs:
{valacct}, the set of Q-values of m (m = len1 ∗ len2) actions: {Qi} (1 ≤ i ≤ m).

Output: Optimal ∆D and ∆W .
1 for 3 ≤ t < E do
2 if t mod 3 = 0 then
3 ∆loss1 ← losst−2 − losst−1, ∆loss2 ← losst−3 − losst−2;
4 eval(ati∗)← ∆loss1/∆loss2;
5 ∆valacc1 ← valacct−1 − valacct−4, ∆valacc2 ← valacct−1 − valacct−2;
6 ∆valacc = ∆valacc1 + ∆valacc2;
7 if ∆valacc1 ∗∆valacc2 > 0 then
8 if ∆loss1 ∗∆loss2 > 0 then
9 flag ← (Max(∆loss1, 0)−Min(∆loss1, 0))/∆loss1;

10 if eval(ati∗) ≥ 1 then
11 Q[ati∗ ]+ = flag ∗ (1− γ) ∗ (eval(ati∗) + 10 ∗∆valacc);
12 else
13 if 0 < ∆loss1 < θ then
14 Q[ati∗ ]− = (1− γ) ∗ (10 ∗ eval(ati∗) + 10 ∗∆valacc);
15 else
16 Q[ati∗ ]+ = γ ∗ eval(ati∗);
17 if ∆loss1 > θ then
18 Q[ati∗ ]+ = 10 ∗ γ ∗∆valacc;

19 else
20 if eval(ati∗) ≤ −1 then
21 Q[ati∗ ]− = flag ∗ (1− γ) ∗ (eval(ati∗) + 10 ∗∆valacc);
22 else
23 Q[ati∗ ]+ = γ ∗ (10 ∗ eval(ati∗));
24 if ∆loss1 < 0 then
25 Q[ati∗ ]+ = γ ∗ (10 ∗∆valacc− 9 ∗ eval(ati∗));

26 else
27 Q[ati∗ ]+ = (1− γ) ∗ (10 ∗ (Min(∆valacc1, 0) +Min(∆valacc2, 0)));

28 Q maxindex← index of Max{Qi};
29 action maxindex← actions[Q maxindex];
30 return ∆D = action maxindex[0], ∆W = action maxindex[1];

epoch t− s (s is the length of the sliding epoch window and we let s = 3 in this paper). Suppose we
pick at−3

i∗ = [∆D list[p∗],∆W list[q∗]] at the (t−3)-th epoch, then we reviseQ(ati∗) (ati∗ = at−3
i∗ )

by Algorithm 1 where eval(ati∗) describes the loss reduction speed at the last three epochs and
∆valacc implies how the validation accuracy varies within two consecutive sliding epoch windows.
As to the actions that are not taken, the rewards of them would remain unchanged. Note that at the
first three epochs, we random select an action a1i∗ from the action list, and initialize the Q-values of
m actions to 0. After updating all the Q-values, if the maximal reward corresponds to more than one
action, we randomly choose an action with the maximal Q-value. Once we acquire the updated ∆D
and ∆W , D and W that AdaGCCN uses at epoch t are:

Dt = Dt−3 + ∆D list[p∗], Wt = Wt−3 + ∆W list[q∗]. (3)

Suppose D and W are changed at the t-th epoch, the model would be reinitialized if we do not
utilize the parameters produced at epoch t−1. In other words, the modifications to D and W would
influence the shape of 2-D weight tensors in GCN layers. It urges us to consider how to maximize the
retention of the weight parameters learned at the last epoch. Regarding the resampling techniques
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in image processing, an interpolation solution called bilinear interpolation (BI) helps scale images
using the distance weighted average of the four nearest pixel values to estimate a new pixel value.
As opposed to other interpolation methods (e.g., nearest-neighbor interpolation) which would make
some pixels appear larger than others in the resized image, BI reduces some of the visual distortions
in image transformation. Thus we adopt BI in this paper to reshape the weight matrices upon tuning
the D and W of the model without losing much information extracted in previous iterations.

3.3 PARALLEL PROCESSING

We follow the same validation method as in CapsGNN, i.e., the 10-fold cross validation, which
splits the original dataset into ten groups. Each time we take eight groups as train holds, one group
as the validation hold, and the remained one group as the test hold. In the end, we would obtain 10
test accuracy results on 10 different splittings. We take the average of these results as the final test
accuracy.

Since the ten splittings are independent to each other, to alleviate the computation overhead brought
by AM, we dispatch these splittings to ten workers on one GPU card and explore a scheduling strat-
egy (see Algorithm 2 in Appendix A) for dynamically assigning an appropriate number of workers
through monitoring the running status of them. Specifically, we observe that the device memory re-
quired by an individual worker almost keeps constant, so we could estimate the memory requirement
of a worker through pre-run, and then launch multiple workers in parallel while their total memory
is not larger than the device memory.

However, when processing multiple workers concurrently on a single dataset, sometimes GPU mem-
ory is not fully utilized. Thus we extend Algorithm 2 to do scheduling on multiple datasets, i.e.,
combinatorilly assigning workers on different datasets to maximize the utilization of GPU memory,
shown in Algorithm 3 in Appendix A.

4 EVALUATION

We conduct elaborate experiments in this section on ten typical datasets to evaluate the performance
of AdaGCCN against the baseline models.

4.1 PREPARATIONS FOR EXPERIMENTS

Baseline models. AdaGCCN is compared with four graph kernel algorithms, GK (Shervashidze
et al., 2009), WL (Shervashidze et al., 2011), DGK (Yanardag & Vishwanathan, 2015), and
AWE (Ivanov & Burnaev, 2018)), four GNNs-based methods, PATCHY-SAN (PSCN) (Niepert
et al., 2016), DGCNN (Zhang et al., 2018), GIN (Xu et al., 2019), and SOM-GCNN (Pasa et al.,
2020), and two capsule-based GNNs methods, GCAPS-CNN (Verma & Zhang, 2018) and Caps-
GNN (Xinyi & Chen, 2019). We also take the results reported in (Errica et al., 2020) as a baseline,
namely FGNN, which proposed a fair validation method of GNNs for graph classification.

Experimental settings. We evaluate AdaGCCN on a machine equipped with dual 2.40 GHz Intel
Xeon Gold 6240R processors (24 cores in total), 256 GB main memory, and 1 NVIDIA Tesla V100
GPU (32 GB memory). The installed operating system is CentOS 7.5.1804, using CUDA 11.2 and
cuDNN 7.6.5. PyTorch 1.8 (Paszke et al., 2019) and Python 3.6.5 are used for training.

Datasets. Since our work focuses on graph-level classifications (not node-level classifications),
we experiment on the datasets frequently used in graph classification tasks including five biologi-
cal datasets, ENZYMES, D&D, MUTAG, NCI1, and PROTEINS and five social network datasets,
COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-M5K, and REDDIT-M12K. The details of
these datasets are described in Table 1.

4.2 ADAGCCN PERFORMANCE

We first compare the classification accuracy between AdaGCCN and the baseline methods. Then
we demonstrate the efficiency of the scheduling strategies applied in the parallel process.
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Table 1: Datasets Information (Kersting et al., 2016).
Description MUTAG ENZYMES NCI1 PROTEINS D&D IMDB-B IMDB-M COLLAB REDDIT-M5K REDDIT-M12K
Type Bio Bio Bio Bio Bio Social Social Social Social Social
Graphs 188 600 4110 1113 1178 1000 1500 5000 4999 11929
Classes 2 6 2 2 2 2 3 3 5 11
Nodes Avg. 17.93 32.46 29.87 39.06 284.31 19.77 13 74.49 508.5 391.4
Edges Avg. 19.79 63.14 32.30 72.81 715.65 193.06 131.87 4914.99 1189.74 456.89
Node Labels 7 6 23 4 82 - - - - -

4.2.1 THE EFFECTIVENESS OF AM

Based on the neural network method, AdaGCCN takes advantage of the multi-dimension represen-
tation ability of capsules, and further explores to strengthen the information extraction ability of
the model by changing depth and width of graph convolutional layers. We reproduce CapsGNN in
this paper and take the test accuracies reported in other baseline works for the comparison with our
model.

It is shown in Table 2 that our model outperforms CapsGNN on 6 out of 7 datasets by up to 6.57%
on ENZYMES except for the performance on PROTEINS. Note that the graphs on PROTEINS
are more complex in inner relationships, and the ∆D list and the ∆W list in current AM are
manually set, thus the extraction ability of AdaGCCN would be restricted somehow. However, the
main point in this paper is to propose an RL-based methodology in adaptively adjusting the model
structure to improve its representation ability on various workloads, some hyper-parameters defined
in the assistant module could be tuned to present better model performance in the future. Besides,
AdaGCCN achieves state-of-the-art results almost on all datasets including biological and social
graphs, which further demonstrates the effectiveness of adjusting D and W during only one full
training.

Table 2: Test accuracies on the benchmark datasets. The bold values represent the methods with
top-2 performance on each dataset.

Model MUTAG ENZYMES NCI1 PROTEINS IMDB-BINARY IMDB-MULTI COLLAB
GK 81.58± 2.11 32.7± 1.20 62.49± 0.27 71.67± 0.55 65.87± 0.98 43.89± 0.38 72.84± 0.28
WL 82.05± 0.36 52.22± 1.26 82.19± 0.18 74.68± 0.49 73.40± 4.63 49.33± 4.75 79.02± 1.77
DGK 87.44± 2.72 53.43± 0.91 80.31± 0.46 75.68± 0.54 66.96± 0.56 44.55± 0.52 73.09± 0.25
AWE 87.87± 9.76 35.77± 5.93 - - 74.45± 5.83 51.54± 3.61 73.93± 1.94
PSCN 88.95± 4.37 - 76.34± 1.68 75.00± 2.51 71.00± 2.29 45.23± 2.84 72.60± 2.15
DGCNN 85.83± 1.66 51.00± 7.29 74.44± 0.47 75.54± 0.94 70.03± 0.86 47.83± 0.85 73.36± 0.49
GIN 89.40± 5.60 - 82.70± 1.70 76.20± 2.80 75.10± 5.10 52.30± 2.80 80.20± 1.90
SOM-GCNN - 50.01± 2.92 82.32± 0.52 75.22± 0.61 - - -
FGNN - 65.17± 6.00 69.83± 2.20 75.75± 3.70 70.77± 5.00 49.09± 3.50 70.19± 1.50
GCAPS-CNN - 61.83± 5.39 82.72± 2.38 76.40± 4.17 71.69± 3.40 48.50± 4.10 77.71± 2.51
CapsGNN 85.26± 5.43 50.67± 6.52 79.98± 1.69 77.59± 2.85 72.30± 4.57 50.27± 2.59 77.24± 2.79
AdaGCCN 89.36± 1.97 54.01± 2.78 81.07± 1.13 74.93± 1.54 74.20± 2.23 52.27± 1.76 80.70± 1.59

Figure 3 depicts the change of accuracies on the test fold when training with CapsGNN or
AdaGCCN. Since the assistant module in AdaGCCN evaluates the loss reduction speed on the train
fold and the accuracy change on the validation fold, as the training process goes on, it helps to select
the ∆D and ∆W with the biggest accumulated reward. It is observed in the figure that AdaGCCN
presents higher test accuracy than CapsGNN at arbitrary intermediate training stages. Besides, the
dynamic adjustment in our model does not do any harm to its convergency compared to static Caps-
GNN. Note that the number of training epochs is set to be large on all datasets to ensure either
CapsGNN or AdaGCCN achieves optimal classification performance during training.

4.2.2 PARALLEL EXECUTION

Taking into consideration the computational cost brought by the assistant module, we adaptively
adjust the number of workers at runtime. It implies in Figure 4 that when with Algorithm 2, the par-
allel AdaGCCN on all datasets could averagely speedup the sequential AdaGCCN by up to 2.99×.
To make full use of GPU memory, we adopt Algorithm 3 to let workers on different datasets run
combinatorilly, which further decreases the computation time when handling the datasets one at a
time, e.g., by 16.7% within 300 training epochs. Besides, the memory consumption of CapsGNN
and AdaGCCN are displayed in Table 4 in Appendix A.
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Figure 3: The comparison of the test accuracies between CapsGNN and AdaGCCN at different
training stages.
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Figure 4: Time costs of CapsGNN, AdaGCCN, and their parallel versions, i.e., CapsGNN P and
AdaGCCN P.

4.3 DISCUSSION

4.3.1 GENERALITY AND EXPLAINABILITY OF THE ASSISTANT MODULE (AM)

The NAS nature of the RL-based AM enables it to be applied to other GNNs. We add an experiment
on the effect of AM on GIN, the model with the best classification performance in all the baseline
methods, and record its test accuracy results on different datasets in Table 3. Moreover, to show
the explainability of AdaGCCN on different datasets, we compare the D and W selected by the
assistant module with the original depth and width in CapsGNN in Table 5 in Appendix A.
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Table 3: Test accuracies on GIN with or without the assistant module. GIN AM means GIN applying
AM in it.

Model MUTAG ENZYMES NCI1 PROTEINS IMDB-BINARY IMDB-MULTI COLLAB
GIN 89.40± 5.60 - 82.70± 1.70 76.20± 2.80 75.10± 5.10 52.30± 2.80 80.20± 1.90
GIN AM 91.32± 2.53 - 83.24± 1.26 77.69± 2.52 76.27± 4.63 54.15± 2.37 81.64± 1.26

4.3.2 LIMITATIONS OF ADAGCCN

In our experiments, both CapsGNN and AdaGCCN can not run successfully on D&D, REDDIT-
M5K, and REDDIT-M12K either due to GPU memory limitation or heavy time overhead. There
are two reasons behind this phenomenon. First, CapsGNN and AdaGCCN have more complex
structures than normal GNNs due to the vector-based capsule modules in them, resulting in more
model parameters generated during training that the GPU can not hold. Second, both CapsGNN and
our model set the batch size to 32 on small graphs, which is not appropriate on large ones. If we
use a smaller batch size on D&D and REDDIT, the accuracy results would be affected compared to
adopting a larger batch size, and the time costs would be unbearable, e.g., more than 3 GPU days on
REDDIT-M12K. Here we provide probable directions in optimizing our work, e.g., designing fine-
grained parallelism to improve the utilization of GPU, or refining the rewards evaluation function in
the assistant module to increase the efficiency of the search process.

5 RELATED WORK

Following the success of neural networks on data with grid structures (LeCun & Bengio, 1998;
Mikolov et al., 2011), considerable research interests have been devoted to non-grid graph data,
i.e., Graph Neural Networks (GNNs) (Gori et al., 2005), especially Graph Convolutional Networks
(GCNs) (Bruna et al., 2014; Henaff et al., 2015). GNNs have already obtained remarkable achieve-
ments in various tasks, e.g., graph classification (Defferrard et al., 2016), link prediction (Zhang
& Chen, 2018), and node classification (Kipf & Welling, 2017). GCNs inherits the convolutional
operations in CNNs, however, they are unable to learn graphs sufficiently which contains multiple
attributes of nodes and complicated inner connections.

CapsNet was proposed by Hinton’s team (Hinton et al., 2011) and improved by them (Sabour et al.,
2017; Hinton et al., 2018) to represent local-global features of images. Inspired by the promising
explainability of CapsNet, some studies (Verma & Zhang, 2018; Mallea et al., 2019; Xinyi & Chen,
2019) combine GCNs and CapsNet to extract multi-scale information in graphs. However, the static
structure employed in these capsule-based GCNs would restrict their representation ability, which
motivates us to explore dynamic adjustment of model structures at runtime.

The design of neural network structure is turning from manual efforts into automatic machine search.
The landmark event of this process occurred in the paper (Zoph & Le, 2017) published by Google,
which leverages reinforcement learning to search the optimal neural network structure, known as
neural architecture search (NAS). Later, great efforts (Zoph & Le, 2017; Zoph et al., 2018; Chen
et al., 2018; Gao et al., 2020) have been made to seek for the optimal architectures of CNNs, RNNs,
or GNNs within a pre-determined search space according to the validation accuracy results. Al-
though NAS has achieved impressive performance, the design of the search strategy is complicated
and introduces numerous additional complete training processes.

6 CONCLUSION

In this work, we propose an adaptive framework AdaGCCN. We implement AdaGCCN by adjusting
the model structure through an RL-based searching process, which improves the explainability of
the model by finding the optimal depth and width of convolutions. To decrease the computation
burden caused by the proposed assistant module, we assign multiple workers to execute in parallel.
Once the device could not hold all the workers in it or has unused memory, AdaGCCN processes
the workers on multiple datasets combinatorilly by monitoring the launches and exits of them. We
demonstrate through experiments that AdaGCCN can adaptively refine its representation ability on
different workloads, considering the trade-off between efficiency and accuracy.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally
connected networks on graphs. In International Conference on Learning Representations (ICLR),
2014.

Liang-Chieh Chen, Maxwell D. Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian
Schroff, Hartwig Adam, and Jonathon Shlens. Searching for efficient multi-scale architectures
for dense image prediction. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 8713–8724, 2018.
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A APPENDIX

The comparison of the memory consumption when experimenting with CapsGNN and our model are
recorded in Table 4. Using the parallel strategies proposed in Section 3.3, as shown in Algorithm 2
amd Algorithm 3, AdaGCCN can achieve the balance between efficiency and accuracy.

Table 4: Memory consumption of CapsGNN and AdaGCCN.
Model MUTAG ENZYMES NCI1 PROTEINS IMDB-BINARY IMDB-MULTI COLLAB
CapsGNN 1521Mb 2279Mb 2695Mb 6135Mb 2501Mb 1975Mb 8111Mb
AdaGCCN 1990Mb 3162Mb 5526Mb 11120Mb 4692Mb 4730Mb 10572Mb

The D and W selected by the assistant module in AdaGCCN compared to the original depth and
width in CapsGNN on different datasets are displayed in Table 5. Note that the optimal D and W
determined by AM are different on the 10 splittings. We take the D and W on the splitting with the
best test accuracy for the comparison against CapsGNN.
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Algorithm 2: Scheduling within a dataset.
Input: Number of running workers: k, GPU memory allocated to each worker: Ms, available

GPU memory: Ma, number of maximal concurrent workers: K = bMa/Msc.
1 Launch K workers and initialize k as K;
2 while k < K do
3 Launch K − k workers from the unexecuted workers;
4 Update k;
5 if k = 0 then
6 Break;

Algorithm 3: Scheduling among multiple datasets.
Input: The list of datasets: {dsi} (length: lends ≥ 2), GPU memory allocated to each worker

on dsi: Mi, available GPU memory: Ma.
1 for i in [1, lends] do
2 if training on dsi not begins then
3 Ui ← number of unexecuted splittings in dsi;
4 Ki ← min(bMa/Mic, Ui);
5 Initialize Ki workers on dsi;
6 for j in [i, lends] do
7 if training on dsj not begins then
8 if Ma −Ki ×Mi ≥Mj then
9 Uj ← number of unexecuted splittings in dsj ;

10 Kj ← min(b(Ma −Ki ×Mi)/Mjc, Uj);
11 Initialize Kj workers in dsj ;

12 Repeat lines 1 to 11, and schedule on dsi and dsj with Algorithm 2, until all splittings from all
datasets are executed.

Table 5: Comparison of (D, W ) in CapsGNN and AdaGCCN.
Model MUTAG ENZYMES NCI1 PROTEINS IMDB-BINARY IMDB-MULTI COLLAB
CapsGNN (5, 2) (5, 2) (5, 2) (5, 2) (5, 2) (5, 2) (5, 2)
AdaGCCN (7, 4) (7, 3) (6, 4) (6, 2) (5, 3) (7, 2) (6, 3)

13


	Introduction
	Preliminaries
	Graph Convolutional Networks
	Capsule Graph Neural Network

	Overview of AdaGCCN
	The Assistant Module
	Adaptive D-W Tuning
	Parallel Processing

	Evaluation
	Preparations for Experiments
	AdaGCCN Performance
	The Effectiveness of AM
	Parallel Execution

	Discussion
	Generality and Explainability of the Assistant Module (AM)
	Limitations of AdaGCCN


	Related Work
	Conclusion
	Appendix

