
FedSHIBU: Federated Similarity-based Head
Independent Body Update

Athul Sreemathy Raj 1, Irene Tenison 2,3, Kacem Khaled 1, Maroua Ben Attia 4,
Felipe Gohring de Magalhães 1, Gabriela Nicolescu 1

1 Polytechnique Montréal , 2 Mila , 3 Université de Montréal , 4 Humanitas Solutions

Abstract

Most federated learning algorithms like FedAVG aggregate client models to obtain
a global model. However, this leads to loss of information, especially when the data
distribution is highly heterogeneous across clients. As a motivation for this paper,
we first show that data-specific global models (where the clients are grouped based
on their data distribution) produce higher accuracy over FedAVG. This suggests a
potential performance improvement if clients trained on similar data have a higher
importance in model aggregation. We use data representations from extractors of
client models to quantify data similarity. We propose using a weighted aggregation
of client models where the weight is calculated based on the similarity of client
data. Similar to FedBABU, the proposed client representation similarity-based
aggregation is applied only on extractors. We empirically show that the proposed
method enhances global model performance in heterogeneous data distributions.

1 Introduction

Epoch

Te
st

 a
cc

ur
ac

y

0.0

0.2

0.4

0.6

100 200 300 400 500

Classes 0-9 Classes 0-4 Classes 5-9 Average of 0-4 & 5-9

Figure 1: FL global models benefit from the group-
ing of clients based on their data distributions.

Federated learning is a distributed machine
learning framework where several devices col-
lectively train a model without accessing the
data distributed across these devices. The de-
vices or clients utilize the data collected or gen-
erated at their end, to train their local models.
These local models are used to effectively train
a global model housed in the server without
direct access to the data. The most common al-
gorithm to train the global model at the server
in this setting is FedAVG [1], where the trained
local model parameters are averaged to form
the global model. FedAVG and similar aggrega-
tion strategies are particularly helpful when the
distribution of data across the clients is homoge-
neous. However, the real-world data distributed
across the clients are heterogeneous since they
are dependent on user behavior and other client
specifics. This is a major challenge in federated learning since it induces client-drift [2] which
prevents global model convergence. Several researchers are focusing on enhancing the global model
performance by effectively tackling the heterogeneity in data distribution [3–5]. Researchers have
also been leveraging the data heterogeneity to enhance the personalization of the client models aiming
at enhancing the client experience while the collective behavior is retained. [6–9] focus on building

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

Broadcasting
aggregated

models
to clients

Sending client
extractors & data
representations

to server

Extractor
1

Extractor
2

Extractor
k

1

1R 2
R 1

R k

R 2R 1 R k
1

Weighted
average

Classifier 1

Representation

New
Extractor

1

Aggregated model for
client 1

Classifier 2

Representation

New
Extractor

2

Aggregated model for
client 2

Classifier k

Representation

New
Extractor

k

Aggregated model for
client k

Server

Similarity-based
body aggregation

Classifier 1

Representation

Extractor
1

Client 1

Classifier 2

Representation

Extractor
2

Client 2

Classifier k

Client k

Extractor
k

Clients in the network

Representation

Figure 2: FedSHIBU - Extractors from individual clients are sent to the server, where the weighted
average of models occurs. Afterward, the server broadcasts the updated models back to all clients.

multiple personalized models. FedBABU [10] focuses on building a global model capable of fitting
to the local data of all clients. To enable this, FedBABU decouples the model into extractors and
classifiers; the extractors are aggregated while the classifiers are only fine-tuned. The aggregated
extractor and fine-tuned classifier together form the local model. They show that this enhances the
personalization of client models since decoupling and fine-tuning protect classifiers from learning
unnecessary and irrelevant information [10].

In this paper, we focus on extractors. We investigate whether the extractors are learning unnecessary
information through aggregation and if this leads to performance degradation. To answer this question
empirically, we simulate a simple federated setting with 10 clients. We distribute the CIFAR-10
dataset across these clients such that clients 0 to 4 each have examples from labels 0 to 4 and clients
5 to 9 each have examples from labels 5 to 9. In the first case, all extractors are aggregated during
training. In the second case, clients 0 to 4 will have an extractor obtained by aggregating those from
0 to 4 only, and similarly, clients 5 to 9 will have an extractor obtained by aggregating those from
5 to 9 only. This is an explicit grouping of clients based on their data distribution. We run both
experiments for 500 epochs and we observe that the average performance of all clients where the
extractors were grouped is better than in the case where all client extractors are aggregated. The
results are shown in Figure 1. This indicates that aggregation of client models having dissimilar or
heterogeneous data distributions diminishes model performance, unlike cases when data distribution
across clients is similar or homogeneous. This decrease in performance is due to information loss
with model aggregation under heterogeneous data distribution [5].

Inspired by the above observation, we propose an algorithm that aggregates the extractors based on
the similarity of data distributions across clients. This similarity-based aggregation is implemented
on top of FedBABU. FedBABU training involves three stages - local client model updates, extractor
aggregation at the server, and classifier fine-tuning at the clients. The proposed algorithm focus
on extractor aggregation. A naive aggregation of extractors of all clients in the federated network
is replaced by a weighted aggregation of other client extractors. The weighting is based on the
similarity between a client’s data distribution with the other clients in the network. We call this
FedSHIBU, Federated Similarity based Head Independent Body Update. The proposed algorithm
has been summarized in Figure 2. Through similarity-based aggregation, FedSHIBU prioritizes
client extractors trained on similar data distributions. This ensures that irrelevant information is not
injected into the extractors. Our contributions are summarized as follows:

• We demonstrate that aggregation of all extractors as in FedBABU and other federated
algorithms leads to client performance degradation and that selective aggregation based on
data distribution likeliness diminishes this performance degradation.

• We propose a novel algorithm, FedSHIBU, which introduces a data distribution similarity-
based aggregation as an alternative to aggregation of all extractors in FedBABU. A client
representation similarity-matrix (CRSM) is calculated to quantify the similarity across data
distributions and extractors are aggregated corresponding to their respective similarity score.

2

Figure 3: Similarity matrix from various phases of training using the proposed FedSHIBU algorithm.
As training progresses we observe emerging patterns and groups and as it converges the groups
become more prominent.

• We empirically show that similarity-based aggregation improves the performance of clients
in both model-decoupled setting (FedBABU) and full-model setting (FedAVG).

The remainder of the paper is organized as follows: Section 2 reviews the background and the
state-of-the-art that relates to our work; Section 3 introduces the basics of federated learning and
FedBABU, along with our experiment setup; we explain our algorithm, experiments and obtained
results inß Section 4; and Section 5 concludes this paper.

2 Related Works

Federated Learning proposed in [1] aims to learn a global model from multiple local models
using decentralized data. They propose averaging the local model parameters to obtain the global
model. Multiple iterations at the local model enable reduction of communication rounds required
for convergence compared to FedSGD [1] where the local models are sent to the server after each
iteration. However, multiple iterations cause client drift [2] when the data distribution across
clients is heterogeneous. This bars the global model from converging to the optimal minima of the
federated network. Several solutions have been proposed to handle this. [11] propose balancing
the data distributions using data augmentation techniques to make it closer to an IID distribution.
FedDyn [12] introduces a regularization term and FedProx [3] proposes a proximal term on the local
objectives so as to penalize the clients diverging from the global model. Control variates were used in
SCAFFOLD [2] to minimize the drift of local models from the global model. [13] aligns the features
from the client networks to improve performance. FedNova [4] normalizes the gradients before
averaging gradients and FedGMA [5] masks inconsistent gradients to enhance convergence of the
global model. Personalized FL aims to make the local models cater to the specific data distribution at
each client. Local models without federation are an alternative but every client may not have enough
data to train their respective models. [14] clusters clients using unsupervised clustering algorithms on
local client updates. Federated multi-task learning proposes task-based global models [15]. [16]
uses transfer learning to transfer knowledge across clients. Regularizers are used by [17, 18] for
personalization by preventing the models from being closer to global models. PerFedAVG [19] uses
bi-level optimization.

Representation Similarity Analysis (RSA) is a data-analysis framework first introduced to correlate
brain activities quantitatively in neuroscience [20]. This method uses pair-wise comparisons of data
to reveal more information [21]. RSA methods in neuroscience use distance matrices to compute
similarity [22]. It is widely used to analyze fMRI images of the brain and its specific regions
of interest [23, 21] or to differentiate between stimuli [24]. It was later adopted to quantify the
relationship between deep neural networks. In transfer learning and task taxonomy, RSA was used to
quantify task similarity and cluster tasks [25]. It has been used to study the evolution of networks
as training progresses [26]. Various matrices like CCA [26] and CKA [27] were developed by
extending this principle. However, RSA is not devoid of pitfalls. In neuroscience, when the stimuli
are confounding it tends to have higher RSA scores though they are from dissimilar systems. This is
called the "mimic effect" [28] and leads to false inferences.

3

3 Preliminaries

3.1 Federated Learning

Algorithm 1 FedSHIBU - adapted from FedBABU [10]
function FEDSHIBU

initialize θ0G = {θ0G,ext, θ
0
G,cls}

for each round k = 1,...,K do
Ck ← random subset of m clients
for each client Ck

i in parallel do
θki (0)← θk−1

G = {θk−1
G,ext, θ

0
G,cls}

θki,ext, D̂i ← ClientBodyUpdate(θki (0), τ)
end for
θkG,ext,{1,2,..m} ← CRSMAggregation(θkext, D̂)

end for
return θkG = {θKG,ext, θ

0
G,cls}

Algorithm 2 Updating body of client
function CLIENTBODYUPDATE(θki , τ)

for each local epoch 1,...,τ do
θki,ext ← SGD(θki,ext, θ

k
0,cls)

end for
Di ← random subset of data samples at client i
D̂i ← f(θki,ext, D)

return θki,ext, D̂i

Algorithm 3 Client Representation Similarity Matrix (CRSM)
based Aggregation of extractors

function CRSMAGGREGATION(θkext, D̂)
for each client, Ccur=1,...,m do

for each client, Crel=1,...,m do
CRSM [Ccur, Crel]← SimMet(D̂Ccur

, D̂Crel
)

end for
θkG,ext,Ccur

←
∑m

Crel=1
CRSM [Ccur,Crel]∑

CRSM [Ccur]
× θkext,Crel

end for
return θkG,ext,1,..,m

We summarize FL training procedure and no-
tations used in Algorithm 1. Assume 1, , N
is the set of all clients in the network. In ev-
ery communication round , a random subset of
m clients are chosen to participate in training.
The local model parameters of all participating
clients θk(0)mi=1 are initialized with the global
model parameters θk−1

G . θki (0) ← θk−1
G ∀ i =

1, ..,m. θki (0) is the local model parameters of
client i in communication round k at local epoch
τ = 0. θ0G is randomly initialized for the first
communication round, k = 1. Each client then
updates its local models for τ iterations through
their local data, Di. The local model parame-
ters, θk(τ) from all clients are returned to the
server where they are aggregated to obtain the
global model θkG for that communication round
k; θkG =

∑m
i=1 θ

k
i (τ). Our research focuses on

a balanced data distribution. When the num-
ber of data samples per client varies, the local
model parameters are weighted propotional their
sample size; θkG =

∑m
i=1

Di∑m
j=1 Dj

θki (τ).

3.2 FedBABU

In FedBABU [10], client models are decou-
pled into classifiers(head) θcls and extrac-
tors(body) θext. After training of local models
at all participating clients, the extractor param-
eters are sent back to the server for aggrega-
tion. The extractors are aggregated θkG,ext =∑m

i=1
Di∑m

j=1 Dj
θki,ext(τ) leaving the classifiers

unchanged. Decoupling of the network to ex-
tractors and classifiers helps reduce the bias in
the classifiers in settings where the data distri-

bution varies like class-imbalance settings [29]. The classifiers θkG,ext are fine-tuned to enhance
the personalization performance of the client models. For client updates in the ClientBodyUpdate
function, the local extractor parameter θki,ext are updated based on the same classifier θ0G,cls such that
the global parameters have the same classifier parameter as explained in Section 5.2 of [10]. It is to
be noted that in FedBABU [29], all extractors are aggregated to form the global extractor which is
passed over to all clients. We propose a client representation similarity matrix-based aggregation as
given in the CRSMAggregation function of Algorithm 3 and further explained in Section 4 C.

3.3 Experimental Setup and Evaluation

ResNet18 has been used on CIFAR10 and CIFAR100 for all experiments. The separation of extractors
and classifiers has been defined similarly to that in [29]. All convolutional layers including the pool
layers in between form the extractor. That is, the representation returned in Algorithm 2 is the output
of the last convolutional layer in the network. All dense layers following the extractor form the
classifier. Heterogeneous distribution of data across clients also followed the pattern of [29] and [1].
m is the number of participating clients in each communication round and we assume m = N in our
experiments. s is the shards per user [1] and it determines the level of heterogeneity. A lower value
of s implies a higher heterogeneity in the data distribution. τ is the number of local epochs during
client model training. A learning rate of 0.1 is used and it is decayed as in [29].

4

Table 1: Test Accuracy of FedSHIBU, FedBABU, and FedAVG on CIFAR100 and CIFAR10
distributed across 100 clients with full participation. The algorithms are compared across varying
data heterogeneity where s=2 implies extreme heterogeneity and s=100 implies homogeneity.

CIFAR100 CIFAR10

s FedSHIBU
(CKA Linear)

FedSHIBU
(CKA RBF) FedBABU FedAVG FedSHIBU

(CKA Linear)
FedSHIBU
(CKA RBF) FedBABU FedAVG

2 91.12 41.65 15.55 24.92 94.04 90.69 68.43 58.13
3 54.12 41.95 33.03 37.98 81.12 78.62 77.74 69.58
4 57.96 49.47 47.22 47.27 85.07 85.9 84.06 83.88
5 59.48 53.62 53.88 52.36 89.26 88.18 86.93 85.96
8 63.63 62.71 60.77 60.36 89.32 89.92 89.38 89.01
10 69.72 66.07 66.46 62.45 90.34 90.28 90.24 89.67
20 72.33 69.97 71.86 67.31 90.64 90.93 90.85 90.58
50 73.88 70.93 73.44 69.01 90.88 90.94 91.03 91.28
100 72.97 71.31 73.37 70.17 90.93 91.23 90.87 90.94

4 FedSHIBU - Federated Similarity-based Head Independent Body Update

FedSHIBU uses RSA to enhance the personalization of clients, by utilizing a data representation
similarity matrix to weigh the clients based on their relative similarity.

4.1 FedBABU in heterogeneous data distribution

FedBABU averages all extractors to form a global model extractor. It then initializes the extractor of
client models. This is particularly helpful when the data across clients are similar and the extractors
retrieve features that are relevant to all clients. FedBABU performs better than FedAVG [1] when
data distribution across clients is heterogeneous (s > 5). However, when the data is extremely
heterogeneous (s < 5), the features learned by an extractor will be less relevant to classifiers of
clients having distant data distributions. In these cases, FedBABU fails to outperform FedAVG.
Heterogeneity in FedBABU [29] evaluation is limited to s ≥ 10. From our experiments in Table 1,
we observe that when s < 5 in CIFAR100, FedAVG outperforms FedBABU. However, the same
was not observed in CIFAR10 which is a 10-class dataset, and the heterogeneity with s < 5 is not
as severe as in CIFAR100 which is a 100-class dataset. We hypothesize that this is because of the
presence of less-relevant extractors in the aggregation which results in an extractor with diminished
abilities to extract relevant features. We propose to handle this by using a similarity based weighted
aggregation of extractors.

4.2 Client Similarity

Figure 4: FedSHIBU outperforms FedBABU when
data is extremely heterogeneous. With decreasing
heterogeneity, the difference in performance de-
creases.

Representation Dissimilarity Matrix(RDM)
used in [20] constitutes of (1−Pearson’s
correlation) of the pairwise conditions. In com-
puter vision transfer learning [25], Spearman’s
correlation was used on these matrices to com-
pute the similarity score of two DNNs. This
was because RDM cannot be used directly since
the comparison is across tasks and the shapes
of representations across tasks will be different.
However, in our federated scenario, all client
models are assumed to have the same architec-
ture. Hence the shape of representations from
extractors is expected to be the same. To quan-
tify the relationship between clients in federated
learning, we propose using a client represen-
tation similarity matrix (CRSM). CRSM is a
square matrix of size NxN , where each element
is a pairwise similarity score of neural network

5

representations from client extractors. CRSM [Ccur, Crel] is the similarity of the current client Ccur

to another relative client Crel. To measure the similarity score of neural network representations we
use CKA linear and CKA RBF [27].

CRSM at various levels of training is shown in Figure 3. The matrices are from 10 client federated
networks where the data distribution is heterogeneous (s = 5). We observe that initially, the grouping
of clients changes very frequently. As training progresses and nears convergence, patterns are formed.
The sub-figures in Figure 3 are from rounds 0, 150, 250, and 300 respectively. Until round 150,
the values in CRSM varies drastically and in round 150 client 3 and 8 identifies each other as
relatively similar to each other. As training progresses and reaches 200 rounds, the relevance is further
strengthened and almost all clients have identified their relatives. With further training towards round
300, the gap between the groups are widened making the groups more prominent.

4.3 FedSHIBU algorithm

We propose a new FL algorithm called FedSHIBU (Federated Similarity based Head Independent
Body Update), an improvement upon the decoupled federated training strategy introduced in Fed-
BABU [10]. By decoupling extractors and classifiers, only the body is trained while the head is never
trained. This enhances the performance of client models since extractors hold information on data
representations that are useful for all clients. Aggregating them enhances client performance. The
classifiers hold information related to linear decision boundaries of clients and these are client data
specific. Aggregating these leads to performance degradation. The algorithm and implementation are
explained in detail in section 5.2 of [10].

Unlike FedBABU, extractors for each client in FedSHIBU are calculated at the server with a weighted
aggregation of other client extractors in the network, where the weighting is dependent on the data
representation similarities across clients. For the same, FedSHIBU requires client data representations
to be sent to the server besides client updates. A fixed number of data samples are randomly chosen
from each client and their representations from the extractors are retrieved after local training.
Additional privacy mechanisms can be introduced to further enhance the privacy. The representations
from clients are used to quantify the similarity of data across the clients in the network. The scores
are collected as a matrix. A client extractor is obtained by aggregating other client extractors in the
network with a weighting corresponding to their score in the matrix. This ensures that similar clients,
having useful features gets weighed more in the aggregation than dissimilar clients, whose features
may be less useful for the client model under consideration.

Figure 5: FedAVG with Similarity outperforms
naive FedAVG under extremely heterogeneous
data distributions.

The training procedure of FedSHIBU is de-
scribed in Algorithm 1. FedSHIBU intro-
duces CRSMAggregation as given in Algo-
rithm 3. CRSMAggregation function requires
all client extractor parameters θkext,1,2,..m(also
represented as θkext) and all client representa-
tions from their extractors D̂1,2,..m (also repre-
sented as D̂). It calculates the similarity of repre-
sentations to each other as a proxy of the similar-
ity of data distributions at the clients. SimMet
in Algorithm 3 can be any similarity metric. The
similarities are compiled into a matrix - CRSM.
The aggregated extractor for each client Ccur is
calculated by aggregating the client extractors
by weighting them proportional to their similar-
ity to other clients Crel in the federated network.
This similarity is quantified in the correspond-
ing row of CRSM CRSM [Ccur] as given in
Algorithm 3. Each client’s aggregated extrac-
tors would differ since the weightage of different
clients would vary in each aggregation.

FedSHIBU aims to handle extreme data heterogeneity, where FedBABU fails as observed in Table 1.
Figure 4 plots test accuracy of FedSHIBU and FedBABU across varying heterogeneity represented

6

by s. When the data is heterogeneous, FedSHIBU outperforms FedBABU, and with increasing
heterogeneity, the difference between the accuracy of FedSHIBU and FedBABU increases. That is,
FedSHIBU is significantly better under extreme heterogeneity. This supports our hypothesis that
FedSHIBU is capable of better handling information loss than FedBABU. When the data distribution
is homogeneous, all clients would be weighed equally and FedSHIBU would equal FedBABU.

4.4 Similarity based aggregation in FedAVG

To understand the effect of representation similarity-based aggregation, we apply CRSMAggregation
on full federated averaging without model decoupling. This helps understand the performance
improvement contributed by similarity-based aggregation specifically. Figure 5 plots test accuracies
of FedAVG and FedAVG with similarity-based aggregation on heterogeneous data (s = 5). We
observe significant performance improvement along with faster convergence when similarity-based
aggregation is employed. This further validates the claim of using similarity-based aggregation in
federated learning. FedAVG with similarity-based aggregation is given in the Algorithm 4.

5 Conclusion

This work is an improvement of FedBABU[10] algorithm, by implementing an intelligent selection
of clients for producing personalized client models. FedSHIBU converges faster than FedBABU
and shows higher accuracy on client-specific datasets. However, calculating the similarity matrix
is an overhead for the central node and costs compute. But since this activity is on a device with
adequate resources, this wouldn’t be a limiting factor in real-life scenarios. The generalization
performance of FedSHIBU should be considered outside the scope of this work, and hence, is not
bench-marked in this paper. It is true that this algorithm deviates from the core ideas of FL to have a
global model. Again, since the target of this project is to improve personalization performance, it
could be considered out of the scope of this work. In the future, we would like to experiment with
more metrics to quantify client data similarity. We would also like to investigate the performance
improvements of FedSHIBU in more complex datasets and distribution skews to further back the
claims of this paper.

References
[1] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y

Arcas. Communication-efficient learning of deep networks from decentralized data. 2016.

[2] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning,
2019.

[3] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks, 2018.

[4] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization, 2020.

[5] Irene Tenison, Sreya Francis, and Irina Rish. Gradient masked federated optimization. 2021.

[6] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning
with fast convergence and efficient communication, 2018.

[7] Canh T.Dinh, Tung Vu, Nguyen Tran, Minh Dao, and Hongyu Zhang. Fedu: A unified
framework for federated multi-task learning with laplacian regularization, 02 2021.

[8] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021.

[9] Gary Cheng, Karan Chadha, and John Duchi. Federated asymptotics: a model to compare
federated learning algorithms, 2021.

7

[10] Jaehoon Oh, SangMook Kim, and Se-Young Yun. FedBABU: Toward enhanced representation
for federated image classification. In International Conference on Learning Representations,
2022.

[11] Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao, and Liang Liang.
Astraea: Self-balancing federated learning for improving classification accuracy of mobile
deep learning applications. In 2019 IEEE 37th International Conference on Computer Design
(ICCD), pages 246–254, 2019.

[12] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021.

[13] Fuxun Yu, Weishan Zhang, Zhuwei Qin, Zirui Xu, Di Wang, Chenchen Liu, Zhi Tian, and
Xiang Chen. Heterogeneous federated learning, 2020.

[14] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical cluster-
ing of local updates to improve training on non-iid data, 2020.

[15] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 4427–4437, Red Hook, NY, USA, 2017. Curran Associates Inc.

[16] Yiqiang Chen, Jindong Wang, Chaohui Yu, Wen Gao, and Xin Qin. Fedhealth: A federated
transfer learning framework for wearable healthcare, 2019.

[17] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization, 2020.

[18] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning with
moreau envelopes, 2020.

[19] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A
meta-learning approach, 2020.

[20] Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity analysis
- connecting the branches of systems neuroscience, 2008.

[21] Ingrid R Olson Haroon Popal, Yin Wang. A guide to representational similarity analysis for
social neuroscience, 2020.

[22] Hamed Nili, Cai Wingfield, Alexander Walther, Li Su, William Marslen-Wilson, and Nikolaus
Kriegeskorte. A toolbox for representational similarity analysis. PLOS Computational Biology,
10, 04 2014.

[23] Halle Dimsdale-Zucker and C. Ranganath. Representational Similarity Analyses: A Practical
Guide for Functional MRI Applications, pages 509–525. 01 2019.

[24] Peter Bandettini Nikolaus Kriegeskorte, Marieke Mur. Representational similarity analysis –
connecting the branches of systems neuroscience, 2008.

[25] Kshitij Dwivedi and Gemma Roig. Representation similarity analysis for efficient task taxonomy
& transfer learning, 2019.

[26] Ari S. Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in
neural networks with canonical correlation, 2018.

[27] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited, 2019.

[28] Marin Dujmović, Jeffrey S Bowers, Federico Adolfi, and Gaurav Malhotra. The pitfalls of
measuring representational similarity using representational similarity analysis. bioRxiv, 2022.

[29] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and
Yannis Kalantidis. Decoupling representation and classifier for long-tailed recognition. 2019.

8

A Appendix

Algorithm 4 FedAVG with CRSM Aggregation
initialize θ0G = {θ0G,ext, θ

0
G,cls}

for each round k = 1,...,K do
Ck ← random subset of m clients
for each client Ck

i in parallel do
θki (0)← θk−1

G = {θk−1
G,ext, θ

0
G,cls}

θki , D̂i ← ClientBodyUpdate(θki (0), τ)
end for
θkG,{1,2,..m} ← CRSMAggregation(θk, D̂)

end for
return θkG
function CLIENTBODYUPDATE(θki , τ)

for each local epoch 1,...,τ do
θki ← SGD(θki)

end for
Di ← random subset of data samples at client i
D̂i ← f(θki,ext, D)

return θki , D̂i

9

	Introduction
	Related Works
	Preliminaries
	Federated Learning
	FedBABU
	Experimental Setup and Evaluation

	FedSHIBU - Federated Similarity-based Head Independent Body Update
	FedBABU in heterogeneous data distribution
	Client Similarity
	FedSHIBU algorithm
	Similarity based aggregation in FedAVG

	Conclusion
	Appendix

