Evaluating Large Language Models for
Confidence-based Check Set Selection

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have shown
promise in automating high-labor data tasks,
but the adoption of LLMs in high-stake sce-
narios continues to be a challenge due to two
issues: their tendency to answer despite un-
certainty and their difficulty handling long in-
put contexts robustly. We investigate LLMs’
ability to identify low-confidence outputs for
human review through "check set selection"—
a process where LLMs prioritize information
needing human judgment. Using a case study
on social media monitoring for disaster risk
management, we define the “check set” as a
list of tweets escalated to the disaster manager
when the LLM has the least confidence, en-
abling human oversight within budgeted effort.
We test two strategies for LLM check set selec-
tion: individual confidence elicitation — LLMs
assesses confidence for each tweet classifica-
tion individually, requiring more prompts with
shorter contexts, and direct set confidence elici-
tation — LLM evaluates confidence for a list of
tweet classifications at once, using less prompts
but longer contexts. Our key contributions are:
(1) we propose a novel performance metric for
LLM-human collaboration in check set selec-
tion, (2) we compare individual and direct set-
based selection strategies across input sizes and
aggregation methods, and (3) we investigate
LLMs’ direct set selection capabilities from
long-context inputs. Our results reveal that set
selection via individual probabilities is more
reliable but direct set confidence does show
potential. Direct set selection challenges in-
clude such as inconsistent outputs, incorrect
check set size, and low inter-annotator agree-
ment. Despite these challenges, our approach
improves collaborative disaster tweet classifi-
cation, demonstrating the potential of human-
LLM collaboration.

1 Introduction

Large language models (LLMs) have significantly
advanced the field of natural language processing

(NLP) and made it possible to automate a wide
range of NLP tasks such as classification, infor-
mation retrieval, summarization, and many more
(Raiaan et al., 2024; Lee et al., 2022; Cohen et al.,
2022; Yang et al., 2024). LLMs can perform these
tasks by following prompts, where the enduser pro-
vides task details and input data, and the model
generates a text response. However, studies show
that endusers tend to struggle to identify incorrect
LLM responses, a problem that can escalate as
larger and more complex LLMs are less likely to
refrain answering questions (Zhou et al., 2024).

The adoption of LLMs in high-stakes scenarios
continues to be a challenge, as assuming LLM-
generated responses to be always correct can have
severe consequences, i.e., if incorrect outputs in-
fluence decision-making processes. Previous stud-
ies evaluated LLMs’ ability to express uncertainty
which we refer to as confidence elicitation (Xiong
et al., 2024; Lin et al., 2022; Tian et al., 2023; Kada-
vath et al., 2022). Confidence elicitation methods
have shown that uncertainty estimates are closely
correlated with the accuracy of the prediction (Tian
et al., 2023; Kumar et al., 2023). While LLM’s
output is impossible to evaluate automatically in
the real-world setting, we investigate if we can
surface LLM incorrectness using confidence elici-
tation techniques.

We introduce the check set for the human-LLM
collaboration pipeline. The check set is list of
potentially misclassified predictions by the LLM
needing review by the endusers. It enables LLM
and humans to work together by prioritizing areas
where human judgment is most needed.

In this paper, we investigate the LLMs’ check
set selection capability with a case study in the
field of disaster risk management. For this use case,
the check set is a list of tweets escalated to the
disaster manager when the LLM has the least confi-
dence, enabling human oversight within a budgeted
time-frame. LLMs have the potential to assist dis-
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Figure 1: Check Set Selection Framework. Two strategies for check set selection (1) Individual Confidence
Elicitation - LLM assesses confidence for each tweet classification individually, requiring more prompts with shorter
contexts (2) Direct Set Confidence Elicitation - LLM evaluates confidence for a list of tweet classifications at once,

using fewer prompts but longer contexts.

aster managers in sifting through massive amounts
of online social media data for relevant, critical,
and actionable information during disaster events.
We present two methods for check set selection as
seen in Figure 1: (1) individual confidence elic-
itation: LLM assesses confidence of each tweet
classification separately using individual probabili-
ties, requiring more prompts with shorter contexts
and (2) direct set confidence elicitation: LLM eval-
uates confidence for a list of tweet classifications at
once which allows for comparison within the list,
using fewer prompts but longer contexts. These
two approaches attempt to mitigate two underlying
problems of LLMs in high-stakes use cases, LLMs
refusing to refrain from answering questions they
may not know the answers to (Zhou et al., 2024)
and LLMs being unable to robustly make use of in-
formation in long input contexts (Liu et al., 2024).
Our key contributions are as follows:

1. We propose a novel performance metric for
LLM-human collaboration in check set selec-
tion.

2. We compare individual and direct set-based
selection strategies across input sizes and ag-
gregation methods.

3. We investigate LLMs’ direct set selection ca-
pabilities from long-context inputs.

While existing studies have investigated LLMs’
ability to retrieve single information points or to
make singular inference from a long-context (Hsieh
et al., 2022; Gupta et al., 2024; Levy et al., 2024),
investigating LLMs’ ability to select a direct set of
information points from long-context as input is un-
der explored. Intuitively, more input data and long
context provide LLMs more information i.e., the
more classifications, the more comparisons LLMs
can make to determine the potential incorrect classi-
fications. However, recent studies show that LLMs
struggle with long-context tasks, performing best
when relevant information is at the start or end of
the input and worse when it appears in the middle.
(Liu et al., 2024; Hsieh et al., 2022).

We ran our experiments using both closed
and open-sourced LLMs: gpt-4o-mini (OpenAl,
2024a), gpt-4o (OpenAl, 2024b), llama 3.1 8B
(Llama Team, 2024), mistral 7B v0.3 (Jiang et al.,
2023) across check set selection from predictions
on two classification tasks: (1) humanitarian aid
vs. not humanitarian aid and (2) humanitarian aid
information type. Furthermore, we investigated the
influence of different list-referencing methods and
varying context-length.

Our results show that LLMs have the ability
of check set selection using confidence elicita-
tion techniques by outperforming random check
set selection. Individual confidence elicitation is



found to be more reliable compared to direct set
confidence selection. This is evidenced by issues
in direct set method such as providing incorrect
list sizes, inconsistent outputs across different list-
referencing methods, and low inter-annotator agree-
ment. However, we observe that direct set selec-
tion has potential and could be explored further as
LLMs improve.

2 Method

The study focuses on the investigation of LLM’s
ability to select a useful check set from long-
context input using confidence elicitation. First,
we present the motivation of our approach and how
we use LLMs as our disaster tweet classifiers. Then,
we demonstrate the set selection methods. Lastly,
we deep dive on the LLMs direct set selection abil-
ity from long context input.

Problem Definition. LL.Ms have been very ef-
fective in various natural language tasks. How-
ever, adoption of LLMs in high-stake scenarios
continues to be a challenge due to two main issues:
the larger and more complex the LLMs the less
likely they are to refrain from answering questions
they do not know the answer to and LLMs strug-
gle with long-context tasks, having performance
change with the position of relevant information.
We aim to mitigate these problems using check set
creation by allowing LLLMs to utilize their confi-
dence estimates of their initial predictions to pri-
oritize information needing human review. We
emphasize the need for LLM-human collaboration
in these scenarios.

LLM as Disaster Tweet Classifier We test the
performance of LLMs as disaster tweets classifiers
using two classification tasks: Task (1) humanitar-
ian aid vs. not humanitarian aid — asking LLMs
if the tweet is useful for humanitarian aid or not
and Task (2) humanitarian aid information classifi-
cation — asking LLMs to classify the tweet based
on the type of humanitarian aid information it con-
tains. We ran our experiments on eight different
disaster events, where each disaster event contains
100 tweets. More details are found in Section 3.1.
The selected check sets are from the initially clas-
sified list by these classifiers.

Set Selection using Individual Confidence
Elicitation. We make use of an LLM to predict
the probability of the initial tweet classification
from our disaster tweet classifier to be correct with
a value between 0.0 and 1.0, referring to one of

the methods by Tian et al. (2023) on confidence
elicitation. We select the check set by using the
tweet classifications with the lowest probabilities
of being correct at the lowest 20% of the tweet clas-
sifications. The chosen check set size of 20% corre-
sponds to the estimated effort the disaster managers
have budget for, i.e., time and people to review
check set. We chose a fixed check set size because
it standardizes the effort done by the endusers and
allows us to compare across different check set se-
lection strategies. For cut-off tweets with the same
probabilities, we use random selection.

Investigating LL.Ms Direct Set Selection Ca-
pabilities from Long Context. Given the list of
tweets and classifications provided by an Al assis-
tant, we prompt the LLM to identify the k tweets
with potential erroneous classification labels. The
task requires the LLM to understand the initial clas-
sification task prompt, access the list of k& tweets
and classifications, and use them to select the check
set for the enduser. Figure 7 shows an example set
selection prompt.

First, we investigate the influence of context
length of the input so we ran prompts with different
list context sizes of 25, 50, and 100 tweets and clas-
sifications. For the context size of 25 tweets and
classifications, we divided the 100 tweets into 4
disjoint groups with each prompt selecting 5 from
the list to create the check set size of 20. Sec-
ond, we investigate the influence of referencing
methods used for the tweet and classification lists.
We do these investigations following Mizrahi et al.
(2024)’s finding that instruction templates lead to
very different performance. The four list referenc-
ing methods and their rationale are as follows:

¢ numerical ID — method commonly used for single re-
trieval from a list

¢ full-text — ensures LLM selects the actual tweets and
not hallucinating IDs

¢ keywords — similar to how humans recall relevant infor-
mation from a list of sentences

* short-uuid (8 characters) — used as key for single re-
trieval methods that is more robust than numerical IDs
as hallucination can easily be detected.

We used multiple prompts (n = 10) for the same
disaster event where in every prompt, we shuffled
the order of the input list of tweet classifications
randomly. This is to investigate whether or not
the order influences the set selection choice. To
select the final check set from the responses of
the multiple prompts, we applied majority vote on
valid responses.



3 Experimental Setup
3.1 Datasets

Task 1: humanitarian aid vs. not humanitarian
aid. We randomly sampled 100 tweets for four
different disaster events from CrisisBench (Alam
et al., 2021b), a consolidated crisis-related social
media dataset for humanitarian information pro-
cessing. For the LLM prompt design, we renamed
the class labels as humanitarian aid and not hu-
manitarian aid from the original broad labels infor-
mative vs. not informative to explicate the labeling
task.

Task 2: Humanitarian Aid Information Clas-
sification. For the humanitarian information clas-
sification task, we utilized human-annotated crisis-
related tweets from (Alam et al., 2021a). The origi-
nal dataset had 11 labels, however, we limited our
labels to the 5 that were present in all of our se-
lected crisis events, following (Zou et al., 2023)
who also reduced their labels. Originally, we exper-
imented with including the labels: other relevant
information and not humanitarian, however, our
initial experiments showed that such vague and
negated labels are too challenging for the LLM.
We sampled 100 tweets for each of the four dif-
ferent disaster events. More information about the
datasets used is found in appendix A.2

3.2 Models

We chose four of the latest LLM’s in our experi-
ments. We used gpt-4o0-mini (OpenAl, 2024a), gpt-
40 (OpenAl, 2024b), llama 3.1-8B (Llama Team,
2024), and mistral 7B v0.3 (Jiang et al., 2023).
These models were chosen because they are com-
monly used by both researchers and the public and
have high capabilities in reasoning tasks. We ran
our experiments at the temperature setting of 0.0 to
make all models deterministic in their prediction.
All the other parameters were kept default. The
exact model parameters and information are found
in Appendix A.3.1.

3.3 Prompts

Classifier Prompts. We formulated our classifier
prompts with reference to the annotation protocol
and the class description provided from the original
dataset paper sources. We observed that choice of
prompt strategies can influence the relative perfor-
mance of the model which is in line with multiple
works (Mizrahi et al., 2024; Wei et al., 2024; Gupta
et al., 2024). So, we used the maximum perfor-

mance metric of Mizrahi et al. (2024) to select the
prompt templates used for our classifiers from dif-
ferent prompt strategies. The exact prompts can be
found in the Appendix A

Individual Confidence Set Selection Template
Prompts. The set selection prompts consists of
the following: (1) individual confidence elicitation
task, (2) the classification task prompt and (3) indi-
vidual tweet and classification. We evaluated dif-
ferent prompt strategies for individual confidence
elicitation from Xiong et al., 2024 and Tian et al.,
2023 to find the best prompt strategy for our spe-
cific tasks. We used as our maximum performance
metric (Mizrahi et al., 2024) effective accuracy to
select our final prompt. Figure 6 shows the example
individual confidence set selection prompt.

Direct Set Selection Template Prompts. The
direct set selection prompts consists of the follow-
ing: (1) the direct set selection task instruction, (2)
the classification task prompt and (3) the list of &
tweets and classifications. We manually craft the
set selection prompt, where we make explicit the
importance of the count of the items that need to
be retrieved and that only items in the provided
list are to be selected. The choice of prompt strat-
egy also influenced the response here, so we again
used maximum performance metric (Mizrahi et al.,
2024). We used the most number of valid prompt
response as our metric to select our final prompt.
Figure 7 shows the example direct set selection
prompt where the list-referencing method used was
the full text.

3.4 Evaluation Metrics

First, we need to evaluate the initial performance
of the LLM on classifying single tweets. We use
the following metrics for this: Accuracy and Ef-
fective Accuracy. We define effective accuracy
as the overall performance of the collaboration of
the LLM and enduser on the dataset D of length n,
when the enduser is provided with the set size of ¢
to review. For this scenario, we are working with
the assumption that the enduser’s performance on
the check set has 100% accuracy. This is computed
as follows:

(n—c)

c

%EffACCD = %ACCLLM +%ACCHU]\/15
To evaluate the LLMs’ ability to select a

set from long context input, we introduce the

following metrics:

No. of Valid Prompt Response. We test the



robustness of all the LLMs on their ability to
provide valid prompt responses consistently.
We count valid responses by the original long
context input, i.e., by the 100 tweets input so 1
valid response is equivalent to 4 valid responses
of each disjoint group of context size 25 and 2
valid responses of each disjoint group of context
size 50. A response is considered valid if (1)
the set provides the correct number of items
requested and (2) all the items in the set come
from the long-context input, i.e. there were no
hallucinations.

Inter-Annotator Agreement. We used Krippen-
dorff’s alpha (Krippendorff, 1970) to measure the
inter-annotator agreement between the multiple
prompts with the varying classification list order.

4 Results

4.1 Disaster Tweet Classification Performance

We ran our experiments on two classification tasks
across eight disaster events. The LLMs’ perfor-
mance for Tasks 1 and 2 are found in table 2 mea-
sured in accuracy scores at the column Acc. We ob-
served that the closed-source models, gpt-40-mini
and gpt-4o perform well in both tasks, achieving
accuracy scores of between 72% and 91% for Task
1 and between 84% and 95% for Task 2. Based on
these accuracy scores, we observed that the chosen
20% check set size is the check size that would
be needed for a good classifier, if the check set
selection is perfect (see column Eff Acc (Max), the
maximum effective accuracies of the LLMs given
the check set size in table 2. At the chosen check
set size, the Eff Acc (Max) of almost all LLMs
reach to above 0.85 across all tasks and all disaster
events.

4.2 LLM Individual Confidence Check Set
Selection Performance

Using the results from the initial classification
tasks, we select our individual confidence check
set based on the individual probabilities of each
tweet classification of being correct. The effective
accuracies of the different models for Tasks 1 and
2 are in table 2 using the individual confidence set
selection strategy at column Eff Acc (I). All Eff
Acc (D) is higher than the original accuracies of
the models, hence improve overall classification
performance.

To check the effectiveness of the individual con-

fidence check set selection strategy, we compare
Eff Acc (I) with the effective accuracy achieved by
the models when selecting a random check set (col-
umn Eff Acc (Random)) of the same size. Note that
there is a ceiling for effective accuracies as they are
dependent on both the original accuracy and the
chosen check size, we show these in column Eff
Acc (Max). We highlighted the instances where the
individual confidence check set selection did not
outperform random in table 2. We observed that for
task 1, only gpt-40’s individual confidence check
set selection outperformed random across all four
disaster events, gpt-4o-mini’s and mistral’s outper-
form random most of the time, and only llama’s
fails to do so. However, for task 2, all the LLMs’
individual confidence check set selection outper-
formed random across all four disaster events.

We wanted to know if there is an optimal
check set size, compared to the current 20%, from
our models by mapping the effective accuracies
achieved by the models across changing check set
sizes as seen in figure 8 in appendix A.5. These
were the average effective accuracies from the four
disaster events per task. We found that there is
no obvious optimal check set size, with almost
all models reaching 100% efffective accuracy only
when all the tweets are checked.

4.3 LLM Direct Set Selection Performance

4.3.1 LLMs ability to select from a set is
influenced by the input context size

As a first step to test LLMs’ check set selection
ability using direct set confidence elicitation, we
count the number of valid prompt responses LLMs
generate. Figure 2 shows the no. of valid prompt
responses LLMs can generate by context size. We
observed that the input context size influences some
LLMs’ ability to select a set from a list. We see
this in figure 2 where llama is able to select from
context sizes of 50 and 25 tweet classifications con-
sistently over the larger context size of 100 using
the short uuid referencing method for both tasks.
Mistral, on the other hand, is able to consistently
provide valid responses for context sizes 50 and 25
for only task 2.

4.3.2 The list-referencing method affects
LLM’s direct set selection output

Figure 3 shows the no. of valid prompt responses
that LLLMs can generate when asked to select 10
tweets from a list of 50 tweets and classifications
by list-referencing method. We observed that the
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Figure 2: Valid Prompt Responses by Context Size using
the short uuid referencing method.

chosen referencing method affects the no. of valid
prompt responses generated. We observed that
providing an index, i.e., either the ID or the short
uuid in the list, helps LLMs retrieve a set from
the input list. All LLMs struggled in retrieving
the full tweet text and keywords, providing invalid
responses as output, mostly providing incorrect
number of tweets.

4.3.3 The input list order influences direct set
selection.

We observed that the selected check sets vary signif-
icantly when we shuffle the order of the input list of
tweets and classifications. We present the Krippen-
dorf’s alpha inter-annotator agreement scores for
our models in Tasks 1 and 2 table 1 using the short
uuid referencing methods. We do not have agree-
ment scores for some models with insufficient valid
prompts. The alpha is computed on the agreement
across 100 tweets per disaster event i.e., whether
they are included in the check set in each prompt
iteration. We must take note that these agreement
scores cannot be directly compared across context
sizes but are to be evaluated individually. Table 1

Valid Prompt Responses by Referencing Method (D - 50)
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Figure 3: Valid Prompt Responses by Referencing
Method at context size of 50 Tweets

shows that only gpt-40 and gpt-4o-mini had agree-
ment scores above 0.50, with gpt-4o0 having 0.60
and above for two disaster events. This shows that
input list order can influence the chosen check set
using direct set selection.

4.4 Individual Confidence is more Reliable
but Direct Set Confidence does show
promise

The effective accuracies from the direct set confi-
dence selection are shown in the columns Eff Acc
(D - <context size>) in table 2. Effective accura-
cies for direct set selection across tasks and context
sizes are higher than the original accuracies. We
note that the effective accuracies for direct set sizes
D-50 and D-25 are disadvantaged beforehand com-
pared to the D-100, because they are dependent on
the luck of the misclassified tweets being evenly
distributed across subgroups. When compared with
the effective acccuracies using random check set
(Eff Acc (Random)), check set selection using gpt-
40 outperforms random across all tasks and context
sizes, gpt-4o-mini outperforms random at almost
all events except Nepal Earthquake while llama and



Task 1: Humanitarian Aid vs. Not Humanitarian Aid

Event Model D-100 | D-50 D-25

gpt-4o-mini | 0.27 0.27 0.31

California gpt-40 0.05 0.25 0.32

Earthquake Ilama 3.1 -0.06 | 0.03 0.22
mistral v.03 - - -

gpt-4o-mini | 0.30 0.59 0.56

India gpt-40 0.55 0.55 0.49

Floods llama 3.1 - 0.31 0.27

mistral v.03 - - 0.31

gpt-4o-mini | 0.13 0.30 0.31

Nepal gpt-4o 0.11 0.19 0.36

Earthquake llama 3.1 - 0.16 0.22
mistral v.03 - - -

gpt-4o-mini | 0.10 0.31 0.19

Vanuatu gpt-4o 0.41 0.55 0.63

Cyclone Ilama 3.1 - 0.14 0.28

mistral v.03

Task 2: Humanitarian Information Classification

Event Model D-100 | D-50 D-25
gpt-4o-mini | 0.12 0.20 0.22

Mexico gpt-40 0.28 0.34 0.39
Earthquake Ilama 3.1 - 0.22 0.15
mistral v.03 0.03 0.19 0.30

gpt-4o-mini | 0.36 0.38 0.44

Sri Lanka gpt-40 0.40 0.53 0.51
Floods llama 3.1 - 0.30 0.37
mistral v.03 0.13 0.34 0.40

gpt-4o-mini | 0.13 0.25 0.28

Canada gpt-40 0.40 0.39 0.60
Wildfire llama 3.1 - 0.18 0.31
mistral v.03 | 0.00 0.36 0.45

gpt-4o-mini | 0.14 0.29 0.42

Hurricane gpt-4o 0.25 0.22 0.30
Harvey Ilama 3.1 0.25 0.17 0.25
mistral v.03 - 0.20 0.40

Table 1: Inter-annotator agreement between the valid
prompts. Krippendorf’s alpha by context size with short
uuid referencing method

mistral have some events and context sizes that do
not outperform random.

We compare the two check set selection strate-
gies and observe that individual confidence check
set selection is a more reliable method over di-
rect set confidence selection for having insufficient
valid responses. Effective accuracies from direct
check set selection are higher than individual confi-
dence check set selection for both gpt-4o and llama
across all disaster events in task 1. Effective accura-
cies from individual confidence check set selection
are higher than direct check set in all LLMs across
almost all disaster events in task 2.

5 Discussion

We discovered from our experiments that although
we set LLMs to their most deterministic setting,
when we do direct check set selection, changing
the order of the input context (list of tweets) lead to
different check set selections and can even return

invalid responses. This observation holds across
different input context sizes. We recommend eval-
uating LLMs with multiple prompts always as we
have observed that this is under reported.

6 Related Work

Confidence Elicitation in LLMs The most com-
mon ways to measure confidence in model pre-
dictions rely on model’s internal logits. However,
with the decoder-only LLMs, it has become less
suitable to use these methods. There have been
methods in prompting LLMs themselves to express
uncertainty in natural language is referred to as ver-
balized confidence (Lin et al., 2022). Xiong et al.
(2024) defines a systematic framework for LLM
uncertainty estimation using prompting, sampling
and aggregation strategies and benchmarks these
methods in calibration and failure prediction. Tian
et al. (2023) showed that large LL.Ms can express
calibrated-confidence (as a probability or phrases
like “highly likely’) more accurately than their raw
conditional probabilities suggest.

LLM performance on long-context input text
There are multiple studies that evaluate the long-
context capabilities of LLMs (Hsieh et al., 2022;
Shaham et al., 2023; Levy et al., 2024). Long-
context" is an umbrella term for use cases of LLMs
defined by the total length of the model’s input that
may include retrieval, summarization, and infor-
mation aggregation (Goldman et al., 2024). The
common task that papers evaluate on is the needle-
in-a-haystack (NIAH) task, where the LLMs are
tasked to retrieve the fact (the "needle") in a long in-
put context (the "haystack™) and asking the LLM to
retrieve it given a related question (Kamradt, 2023).
Hsieh et al. (2022) expands the NIAH task with a
comprehensive evaluation of long-context LLMs
by creating a new synthetic benchmark, RULER
with flexible configurations length and task com-
plexity. The paper revealed that almost all mod-
els exhibit large performance drops as context in-
creases (Hsieh et al., 2022). Most papers evaluate
LLM performance on synthetic datasets or exist-
ing benchmarks (Hsieh et al., 2022; Shaham et al.,
2023; Levy et al., 2024), Gupta et al. (2024) differs
by evaluating the gpt-4 suite of LLMs in solving
progressively challenging tasks, as a function of
factors such as context length, task difficulty, and
position of needle using a created real-world finan-
cial news dataset.



Task 1: Humanitarian Aid vs. Not Humanitarian Aid

Event Model Acc Eff Acc Eff Acc | Eff Acc | Eff Acc | Eff Acc | Eff Acc
(Random) | (Max) @ (D-100) | (D-50) | (D-25)
gpt-4o-mini | 0.77 0.82 0.97 0.81 0.83 0.85 0.85
California gpt-40 0.72 0.78 0.92 0.81 0.84 0.84 0.80
Earthquake llama 0.62 0.70 0.82 0.70 0.72 0.70 0.68
mistral 0.67 0.74 0.87 0.75 - 0.77 -
gpt-4o-mini | 0.91 0.93 1.0 0.96 0.95 0.95 0.95
India gpt-4o 0.92 0.94 1.0 0.96 0.98 0.99 0.98
Floods llama 0.85 0.88 1.0 0.87 0.87 0.93 0.90
mistral 0.83 0.86 1.0 0.86 - - 0.93
gpt-4o-mini | 0.78 0.82 0.98 0.84 0.81 0.81 0.80
Nepal gpt-4o 0.77 0.82 0.97 0.83 0.84 0.85 0.83
Earthquake llama 0.77 0.82 0.97 0.81 0.82 0.81 0.80
mistral 0.72 0.78 0.92 0.79 - - -
gpt-4o-mini | 0.82 0.86 1.0 0.90 0.87 0.90 0.91
Vanuatu gpt-4o 0.78 0.82 0.98 0.89 0.92 0.91 0.91
Cyclone llama 0.82 0.86 1.0 0.85 - 0.86 0.84
mistral 0.73 0.78 0.93 0.77 - - 0.78
Task 2: Humanitarian Aid Information Classification
Event Model Acc Eff Acc Eff Acc | Eff Acc | Eff Acc | Eff Acc | Eff Acc
(Random) | (Max) @D (D-100) | (D-50) (D-25)
gpt-4o-mini | 0.84 0.87 1.0 0.92 0.88 0.90 0.90
Mexico gpt-40 0.89 091 1.0 0.93 0.92 0.95 0.95
Earthquake llama 0.77 0.82 0.97 0.84 0.79 0.82 0.82
mistral 0.68 0.74 0.89 0.76 0.71 0.74 0.73
gpt-4o-mini | 0.89 091 1.0 0.92 0.92 0.92 0.92
Sri Lanka gpt-4o 0.91 0.93 1.0 0.95 0.94 0.93 0.95
Floods llama 0.84 0.87 1.0 0.89 0.88 0.88 0.90
mistral 0.73 0.78 0.93 0.85 0.78 0.80 0.78
gpt-4o-mini | 0.94 0.95 1.0 1.0 0.97 0.95 0.97
Canada gpt-40 0.95 0.96 1.0 1.0 0.98 0.99 0.99
Wildfire Ilama 0.86 0.89 1.0 0.95 - 0.93 0.91
mistral 0.84 0.87 1.0 0.93 0.87 0.85 0.85
gpt-4o-mini | 0.86 0.89 1.0 0.90 0.89 0.90 0.91
Hurricane gpt-40 0.85 0.88 1.0 0.90 0.89 0.90 0.91
Harvey llama 0.71 0.77 091 0.77 0.77 0.75 0.77
mistral 0.58 0.66 0.78 0.70 - 0.63 0.61

Table 2: Effective Accuracies of the Check Set Selection Strategies. Eff Acc (Random) is the effective accuracy for
the task given a random check set, Eff Acc (Max) is the maximum possible effective accuracy for the task, Eff Acc
(D) is for the individual confidence elicitation and Eff Acc (D) is for direct set confidence elicitation and the number
indicates the context length size. The referencing method for direct set used for this table short-uuid

7 Conclusion

In this paper, we investigate the ability to identify
low-confidence outputs for human review through
check set creation, the process of utilizing LLMs to
prioritize information needing human review. We
run our experiments using a case study in disas-
ter risk management. We tested two strategies for
check set selection: individual confidence elicita-
tion by assessing confidence for each tweet classifi-
cation and direct set confidence elicitation by eval-
uating confidence for a list of tweet classifications
at once. Furthermore, we examined LLMs’ direct
set selection capability by adjusting context sizes
and list-referencing methods. Our results show that
LLMs’ struggle in direct set selection as they can-

not consistently provide valid prompt responses
such as incorrect list sizes and output information
not found in the original input. Furthermore, we
observed that direct set selection can be influenced
by the list-referencing method, the input context
size, and the list order of the input. Hence, we
say that individual confidence set selection is more
reliable than direct set selection for our particular
setting. However, we observe that the direct set
method has potential and could be explored fur-
ther as LLMs continue to improve. Despite these
challenges, our approach improves collaborative
disaster tweet classification, demonstrating the po-
tential of human-LLM collaboration.



8 Limitations

We only evaluated four commonly used LLMs: gpt-
40-mini, gpt-40, llama and mistral. We only evalu-
ated on the base models to test their check set se-
lection capabilities. Instruction-tuning/fine-tuning
these models to specifically do check set selection
tasks may lead to more favorable results.

Our use case is focused on classification tasks
for disaster risk management with text that are only
in English language tweets. For the direct set confi-
dence set selection, we only tested context sizes of
100, 50 and 25 tweets. A smaller context size may
offer more stable responses from the LLMs. In ad-
dition, in selecting the check set from the smaller
context sizes, D-50 and D-25, we did not try to
optimize which tweets to compare with each other.

Our experiments were not performed in a real
world application where we had an actual disaster
manager perform the manual verification of the
tweets in the selected check set. As we assume
all wrongly labeled tweets would be corrected in
such manual check, our estimations are likely to
optimistic.
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A Appendix

A.1 Models

Table 3 contains the information about the 4 LLMs
we evaluated and analyzed.

A.2 Datasets

Task 1: humanitarian aid vs. not humanitarian
aid

We used data from CrisisBench (Alam et al.,
2021b), a consolidated crisis-related social media
dataset for humanitarian information processing.
We renamed the classes to humanitarian and not
humanitarian aid from the original informative vs.
not informative classes because these words by
themselves were too broad and general. Tweets
were annotated as follows(Alam et al., 2021b,a):

e humanitarian aid: tweet is useful for humani-
tarian aid and

* not humanitarian aid: tweet is not useful for
humanitarian aid.

We sampled from consolidated disaster events from
CrisisMMD (Alam et al., 2018) dataset specifically
from the following crisis events: California Earth-
quake, India Floods, Nepal Earthquake, and Vanu-
atu Cyclone. We randomly sampled 100 tweets for
each disaster event.
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Table 3: Information of evaluated and analyzed LLMs

Model Type Size Context Length Source (OpenAl/Huggingface)
GPT-40-mini closed - 128K gpt-40-2024-08-06
GPT-40 closed - 128K gpt-40-mini-2024-07-18
Llama3.1 open 8B 128K meta-llama/Meta-Llama-3.1-8B-Instruct
Mistral-base  open 7B 32K mistralai/Mistral-7B-Instruct-v0.3

Task 2: Humanitarian Aid Information Clas-
sification

For the humanitarian information classification
task, we utilized human-annotated crisis-related
tweets from (Alam et al., 2021a). We sampled
across four different disaster types: earthquake,
hurricane, wildfire and flood. We chose the event
with the highest inter-annotator agreement per dis-
aster type based on (Alam et al., 2021a). The origi-
nal dataset had 11 labels, however, we limited our
labels to the 5 that were present in all of our se-
lected crisis events, following (Zou et al., 2023)
who also reduced their labels to 7. Originally, we
experimented with including the labels: other rel-
evant information and not humanitarian, however,
this seemed to be too challenging for the LLM. The
humanitarian aid information labels are as follows:

* Caution and advice: Reports of warnings
issued or lifted, guidance and tips related to
the disaster;

¢ Infrastructure and Utility Damage: Reports
of any type of damage to infrastructure such
as buildings, houses, roads, bridges, power
lines, communication poles, or vehicles;

* Injured or dead people: Reports of injured
or dead people due to the disaster;

¢ Rescue, volunteering, or donation effort:
Reports of any type of rescue, volunteering,
or donation efforts such as people being trans-
ported to safe places, people being evacuated,
people receiving medical aid or food, people
in shelter facilities, donation of money, or ser-
vices, etc.;

* Sympathy and support: Tweets with prayers,
thoughts, and emotional support;

We sampled the test sets of the following crisis
events: Mexico Earthquake 2017, Hurricane Har-
vey 2017, California Wildfires 2017 and Sri Lanka
Floods 2017. We randomly sampled 100 tweets for
each disaster event.
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A.3 Prompts

A.3.1 Classification Prompts

The disaster tweet classification prompts are shown
in figures 4 and 5.

You will be provided with & tweet. Your task is to
classify the tweet as either "humanitarian aid" or
"not humanitarian aid" based on its content.

Criteria for Classification:

humanitarian aid:

Classify the tweet &3 "humanitarian aid" 3if it
contains one or more of the following:

Caution, advice, or warnings ie.g., evacuation
notices, weather alerts).Informaticn about injured,
deed, or affected pecple. Rescue efforts,
volunteering activities, or donaticn requests.

Mentionz of damage to homes, roads, bridges, or
buildings. References to natural disasters (e.g.,
floods, earthguakes, fires, strong winds).Disaster
area maps or other logistical informaticn.

not humanitarian aid:

Classify the tweet a3 "not humanitarian asid" if it
does not include any informaticn relevant to
humanitarian assistance or disaster response.

Class Label:

Only asaign one of the following two labels. Do not
explain.

humanitarian aid

not humanitarian aid

Figure 4: Prompt for Task 1: Humanitarian Aid vs. Not
Humanitarian Aid

You will be provided a tweet. Based on the tweest's
content, assign one of the following labels related
to humanitarian aid that best fits the information
provided:

Caution and advice: Reportas of warnings issued or
lifted, guidance and tips related to the disaster:
Infrastructure and utility damage: Repcrts of any
type of damage to infrastructure such a3 buildings,
houses, roads, bridges, power lines, communication
poles, or wehicles;

Injured or dead people: Beports of people injured or
dead due toc the disaster;

Rescue, wvolunteering, or donation effort: ERepcrts of
any type of rescue, wvolunteering, or donation efforts
such as people being transported to safe places,
pecple being evacuated, people receiving medical aid
or food, people in shelter facilities, donation of
money, or Services, etc.;

Sympathy and support: Tweets with prayers, thoughts,
and emctional support;

Select only cne lakel, even if multiple labels =zeem
to apply. Bespond with only the label.

Do not add additional information.

Labkel: <=string>

Figure 5: Prompt for Task 2: Humanitarian Information
Classsification



A.3.2 Check Set Selection Prompts

The prompts for the two strategies of check set
selection are in figures 6 and 7.

A.4 Disaster Tweet Classifier Performance

The performance of the LLMs as disaster tweet
classifiers are in tables 4 and 5.

A.5 Individual Confidence Elicitation Results

We wanted to know if there is an optimal check set
size, compared to the current 20%, from our models
by mapping the effective accuracies achieved by
the models across changing check set sizes as seen
in figure 8.
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Provide the probability that an AI Assistant’s response is correct, as a valus betwsen 0.0 and 1.0
for the following task.

Give only the probability — no words, explanations, or sxtra commentary whatsoever.

Respond only with the probability in this format:

<value between 0.0 and 1.0 only>

Tweet: {Tweet}
AT Assistant response: {Classification}

Figure 6: Prompt for Individual Confidence Elicitation

Tazsk Overview:

You are provided with a list of tweets, each labeled with a classificaticn assigned by an AT Rssistant (alsc an
LIM}. Your role is to identify tweets where the assigned classification may not accurately reflect the content,
potentially indicating an error by the AT Assistant.

Instructions:
1. Review the AT Rssistant’s Classification Prompt: Refer to the prompt used to instruct the AT Assistant on how to

classify the tweets. This prompt outlines the criteria you"ll use to assess the accuracy of each classificaticn.
2. Evaluate Classifications: For each tweet, determine if the assigned class aligns with the tweet's content based on
the AI &Rszsistant’s classification prompt. Emphasize consistency, especially amcng tweets with similar themes or

content.
3. Identify Misclassifications: Flag tweets where the assigned class does not match the content according to the AT

Lssistant’s classification prompt.

4. Select Exactly {COUNT} Tweets: Choocse ¥¥precisely {COUNT} unigque tweets*¥* with classificaticn errors—** no more and
no less**., If you identify more errcrs than the reguired count, pricritize tweets that are the most clearly
misclassified.

3. Record Selected Twests: Include the complete text of each selected tweet verbatim.

&. Use Only Provided Tweets: Chcose tweets exclusively from the provided list; do not add, modify, or invent tweets.

7. Avoid Duplicates: Ensure each selected twest appears only cnce.

Cutput Format:
Your output must include exactly {COUNT} tweets, formatted as a Python list. Do not add any explanaticn.

["<tweetl>", "<tweet2>", ..., "<tweet{COUNT}>"]

Failure to provide exactly {COUNT} tweets will be considered incorrect output.

Figure 7: Prompt for Direct Set Selection

Table 4: Performance of LLMs on Task 1: Humanitarian Aid vs. Not Humanitarian Aid measured in Accuracy.

Model California Earthquake | Vanuatu Cyclone | Nepal Earthquake | India Floods
gpt-4o-mini 0.77 0.82 0.78 0.91
gpt-4o 0.72 0.78 0.77 0.92
Ilama 3.1 0.62 0.82 0.77 0.85
mistral v.03 0.67 0.73 0.72 0.83
majority class 0.69 0.63 0.50 0.76

Table 5: Performance of LLMs on Task 2: the Humanitarian Aid Information Classification task measured in
Accuracy

Model Mexico Earthquake | Sri Lanka Floods | California Wildfires | Hurricane Harvey
gpt-40-mini 0.84 0.89 0.94 0.86
gpt-40 0.89 0.91 0.95 0.85
llama 3.1 0.77 0.84 0.86 0.71
mistral v.03 0.68 0.73 0.84 0.58
majority class 0.35 0.61 0.51 0.23
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Figure 8: Effective Accuracy vs. Check Set Size
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