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Abstract

Large Language Models (LLMs) have shown001
promise in automating high-labor data tasks,002
but the adoption of LLMs in high-stake sce-003
narios continues to be a challenge due to two004
issues: their tendency to answer despite un-005
certainty and their difficulty handling long in-006
put contexts robustly. We investigate LLMs’007
ability to identify low-confidence outputs for008
human review through "check set selection"–009
a process where LLMs prioritize information010
needing human judgment. Using a case study011
on social media monitoring for disaster risk012
management, we define the “check set” as a013
list of tweets escalated to the disaster manager014
when the LLM has the least confidence, en-015
abling human oversight within budgeted effort.016
We test two strategies for LLM check set selec-017
tion: individual confidence elicitation – LLMs018
assesses confidence for each tweet classifica-019
tion individually, requiring more prompts with020
shorter contexts, and direct set confidence elici-021
tation – LLM evaluates confidence for a list of022
tweet classifications at once, using less prompts023
but longer contexts. Our key contributions are:024
(1) we propose a novel performance metric for025
LLM-human collaboration in check set selec-026
tion, (2) we compare individual and direct set-027
based selection strategies across input sizes and028
aggregation methods, and (3) we investigate029
LLMs’ direct set selection capabilities from030
long-context inputs. Our results reveal that set031
selection via individual probabilities is more032
reliable but direct set confidence does show033
potential. Direct set selection challenges in-034
clude such as inconsistent outputs, incorrect035
check set size, and low inter-annotator agree-036
ment. Despite these challenges, our approach037
improves collaborative disaster tweet classifi-038
cation, demonstrating the potential of human-039
LLM collaboration.040

1 Introduction041

Large language models (LLMs) have significantly042

advanced the field of natural language processing043

(NLP) and made it possible to automate a wide 044

range of NLP tasks such as classification, infor- 045

mation retrieval, summarization, and many more 046

(Raiaan et al., 2024; Lee et al., 2022; Cohen et al., 047

2022; Yang et al., 2024). LLMs can perform these 048

tasks by following prompts, where the enduser pro- 049

vides task details and input data, and the model 050

generates a text response. However, studies show 051

that endusers tend to struggle to identify incorrect 052

LLM responses, a problem that can escalate as 053

larger and more complex LLMs are less likely to 054

refrain answering questions (Zhou et al., 2024). 055

The adoption of LLMs in high-stakes scenarios 056

continues to be a challenge, as assuming LLM- 057

generated responses to be always correct can have 058

severe consequences, i.e., if incorrect outputs in- 059

fluence decision-making processes. Previous stud- 060

ies evaluated LLMs’ ability to express uncertainty 061

which we refer to as confidence elicitation (Xiong 062

et al., 2024; Lin et al., 2022; Tian et al., 2023; Kada- 063

vath et al., 2022). Confidence elicitation methods 064

have shown that uncertainty estimates are closely 065

correlated with the accuracy of the prediction (Tian 066

et al., 2023; Kumar et al., 2023). While LLM’s 067

output is impossible to evaluate automatically in 068

the real-world setting, we investigate if we can 069

surface LLM incorrectness using confidence elici- 070

tation techniques. 071

We introduce the check set for the human-LLM 072

collaboration pipeline. The check set is list of 073

potentially misclassified predictions by the LLM 074

needing review by the endusers. It enables LLM 075

and humans to work together by prioritizing areas 076

where human judgment is most needed. 077

In this paper, we investigate the LLMs’ check 078

set selection capability with a case study in the 079

field of disaster risk management. For this use case, 080

the check set is a list of tweets escalated to the 081

disaster manager when the LLM has the least confi- 082

dence, enabling human oversight within a budgeted 083

time-frame. LLMs have the potential to assist dis- 084

1



Figure 1: Check Set Selection Framework. Two strategies for check set selection (1) Individual Confidence
Elicitation - LLM assesses confidence for each tweet classification individually, requiring more prompts with shorter
contexts (2) Direct Set Confidence Elicitation - LLM evaluates confidence for a list of tweet classifications at once,
using fewer prompts but longer contexts.

aster managers in sifting through massive amounts085

of online social media data for relevant, critical,086

and actionable information during disaster events.087

We present two methods for check set selection as088

seen in Figure 1: (1) individual confidence elic-089

itation: LLM assesses confidence of each tweet090

classification separately using individual probabili-091

ties, requiring more prompts with shorter contexts092

and (2) direct set confidence elicitation: LLM eval-093

uates confidence for a list of tweet classifications at094

once which allows for comparison within the list,095

using fewer prompts but longer contexts. These096

two approaches attempt to mitigate two underlying097

problems of LLMs in high-stakes use cases, LLMs098

refusing to refrain from answering questions they099

may not know the answers to (Zhou et al., 2024)100

and LLMs being unable to robustly make use of in-101

formation in long input contexts (Liu et al., 2024).102

Our key contributions are as follows:103

1. We propose a novel performance metric for104

LLM-human collaboration in check set selec-105

tion.106

2. We compare individual and direct set-based107

selection strategies across input sizes and ag-108

gregation methods.109

3. We investigate LLMs’ direct set selection ca-110

pabilities from long-context inputs.111

While existing studies have investigated LLMs’ 112

ability to retrieve single information points or to 113

make singular inference from a long-context (Hsieh 114

et al., 2022; Gupta et al., 2024; Levy et al., 2024), 115

investigating LLMs’ ability to select a direct set of 116

information points from long-context as input is un- 117

der explored. Intuitively, more input data and long 118

context provide LLMs more information i.e., the 119

more classifications, the more comparisons LLMs 120

can make to determine the potential incorrect classi- 121

fications. However, recent studies show that LLMs 122

struggle with long-context tasks, performing best 123

when relevant information is at the start or end of 124

the input and worse when it appears in the middle. 125

(Liu et al., 2024; Hsieh et al., 2022). 126

We ran our experiments using both closed 127

and open-sourced LLMs: gpt-4o-mini (OpenAI, 128

2024a), gpt-4o (OpenAI, 2024b), llama 3.1 8B 129

(Llama Team, 2024), mistral 7B v0.3 (Jiang et al., 130

2023) across check set selection from predictions 131

on two classification tasks: (1) humanitarian aid 132

vs. not humanitarian aid and (2) humanitarian aid 133

information type. Furthermore, we investigated the 134

influence of different list-referencing methods and 135

varying context-length. 136

Our results show that LLMs have the ability 137

of check set selection using confidence elicita- 138

tion techniques by outperforming random check 139

set selection. Individual confidence elicitation is 140
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found to be more reliable compared to direct set141

confidence selection. This is evidenced by issues142

in direct set method such as providing incorrect143

list sizes, inconsistent outputs across different list-144

referencing methods, and low inter-annotator agree-145

ment. However, we observe that direct set selec-146

tion has potential and could be explored further as147

LLMs improve.148

2 Method149

The study focuses on the investigation of LLM’s150

ability to select a useful check set from long-151

context input using confidence elicitation. First,152

we present the motivation of our approach and how153

we use LLMs as our disaster tweet classifiers. Then,154

we demonstrate the set selection methods. Lastly,155

we deep dive on the LLMs direct set selection abil-156

ity from long context input.157

Problem Definition. LLMs have been very ef-158

fective in various natural language tasks. How-159

ever, adoption of LLMs in high-stake scenarios160

continues to be a challenge due to two main issues:161

the larger and more complex the LLMs the less162

likely they are to refrain from answering questions163

they do not know the answer to and LLMs strug-164

gle with long-context tasks, having performance165

change with the position of relevant information.166

We aim to mitigate these problems using check set167

creation by allowing LLMs to utilize their confi-168

dence estimates of their initial predictions to pri-169

oritize information needing human review. We170

emphasize the need for LLM-human collaboration171

in these scenarios.172

LLM as Disaster Tweet Classifier We test the173

performance of LLMs as disaster tweets classifiers174

using two classification tasks: Task (1) humanitar-175

ian aid vs. not humanitarian aid – asking LLMs176

if the tweet is useful for humanitarian aid or not177

and Task (2) humanitarian aid information classifi-178

cation – asking LLMs to classify the tweet based179

on the type of humanitarian aid information it con-180

tains. We ran our experiments on eight different181

disaster events, where each disaster event contains182

100 tweets. More details are found in Section 3.1.183

The selected check sets are from the initially clas-184

sified list by these classifiers.185

Set Selection using Individual Confidence186

Elicitation. We make use of an LLM to predict187

the probability of the initial tweet classification188

from our disaster tweet classifier to be correct with189

a value between 0.0 and 1.0, referring to one of190

the methods by Tian et al. (2023) on confidence 191

elicitation. We select the check set by using the 192

tweet classifications with the lowest probabilities 193

of being correct at the lowest 20% of the tweet clas- 194

sifications. The chosen check set size of 20% corre- 195

sponds to the estimated effort the disaster managers 196

have budget for, i.e., time and people to review 197

check set. We chose a fixed check set size because 198

it standardizes the effort done by the endusers and 199

allows us to compare across different check set se- 200

lection strategies. For cut-off tweets with the same 201

probabilities, we use random selection. 202

Investigating LLMs Direct Set Selection Ca- 203

pabilities from Long Context. Given the list of 204

tweets and classifications provided by an AI assis- 205

tant, we prompt the LLM to identify the k tweets 206

with potential erroneous classification labels. The 207

task requires the LLM to understand the initial clas- 208

sification task prompt, access the list of k tweets 209

and classifications, and use them to select the check 210

set for the enduser. Figure 7 shows an example set 211

selection prompt. 212

First, we investigate the influence of context 213

length of the input so we ran prompts with different 214

list context sizes of 25, 50, and 100 tweets and clas- 215

sifications. For the context size of 25 tweets and 216

classifications, we divided the 100 tweets into 4 217

disjoint groups with each prompt selecting 5 from 218

the list to create the check set size of 20. Sec- 219

ond, we investigate the influence of referencing 220

methods used for the tweet and classification lists. 221

We do these investigations following Mizrahi et al. 222

(2024)’s finding that instruction templates lead to 223

very different performance. The four list referenc- 224

ing methods and their rationale are as follows: 225

• numerical ID – method commonly used for single re- 226
trieval from a list 227

• full-text – ensures LLM selects the actual tweets and 228
not hallucinating IDs 229

• keywords – similar to how humans recall relevant infor- 230
mation from a list of sentences 231

• short-uuid (8 characters) – used as key for single re- 232
trieval methods that is more robust than numerical IDs 233
as hallucination can easily be detected. 234

We used multiple prompts (n = 10) for the same 235

disaster event where in every prompt, we shuffled 236

the order of the input list of tweet classifications 237

randomly. This is to investigate whether or not 238

the order influences the set selection choice. To 239

select the final check set from the responses of 240

the multiple prompts, we applied majority vote on 241

valid responses. 242
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3 Experimental Setup243

3.1 Datasets244

Task 1: humanitarian aid vs. not humanitarian245

aid. We randomly sampled 100 tweets for four246

different disaster events from CrisisBench (Alam247

et al., 2021b), a consolidated crisis-related social248

media dataset for humanitarian information pro-249

cessing. For the LLM prompt design, we renamed250

the class labels as humanitarian aid and not hu-251

manitarian aid from the original broad labels infor-252

mative vs. not informative to explicate the labeling253

task.254

Task 2: Humanitarian Aid Information Clas-255

sification. For the humanitarian information clas-256

sification task, we utilized human-annotated crisis-257

related tweets from (Alam et al., 2021a). The origi-258

nal dataset had 11 labels, however, we limited our259

labels to the 5 that were present in all of our se-260

lected crisis events, following (Zou et al., 2023)261

who also reduced their labels. Originally, we exper-262

imented with including the labels: other relevant263

information and not humanitarian, however, our264

initial experiments showed that such vague and265

negated labels are too challenging for the LLM.266

We sampled 100 tweets for each of the four dif-267

ferent disaster events. More information about the268

datasets used is found in appendix A.2269

3.2 Models270

We chose four of the latest LLM’s in our experi-271

ments. We used gpt-4o-mini (OpenAI, 2024a), gpt-272

4o (OpenAI, 2024b), llama 3.1-8B (Llama Team,273

2024), and mistral 7B v0.3 (Jiang et al., 2023).274

These models were chosen because they are com-275

monly used by both researchers and the public and276

have high capabilities in reasoning tasks. We ran277

our experiments at the temperature setting of 0.0 to278

make all models deterministic in their prediction.279

All the other parameters were kept default. The280

exact model parameters and information are found281

in Appendix A.3.1.282

3.3 Prompts283

Classifier Prompts. We formulated our classifier284

prompts with reference to the annotation protocol285

and the class description provided from the original286

dataset paper sources. We observed that choice of287

prompt strategies can influence the relative perfor-288

mance of the model which is in line with multiple289

works (Mizrahi et al., 2024; Wei et al., 2024; Gupta290

et al., 2024). So, we used the maximum perfor-291

mance metric of Mizrahi et al. (2024) to select the 292

prompt templates used for our classifiers from dif- 293

ferent prompt strategies. The exact prompts can be 294

found in the Appendix A 295

Individual Confidence Set Selection Template 296

Prompts. The set selection prompts consists of 297

the following: (1) individual confidence elicitation 298

task, (2) the classification task prompt and (3) indi- 299

vidual tweet and classification. We evaluated dif- 300

ferent prompt strategies for individual confidence 301

elicitation from Xiong et al., 2024 and Tian et al., 302

2023 to find the best prompt strategy for our spe- 303

cific tasks. We used as our maximum performance 304

metric (Mizrahi et al., 2024) effective accuracy to 305

select our final prompt. Figure 6 shows the example 306

individual confidence set selection prompt. 307

Direct Set Selection Template Prompts. The 308

direct set selection prompts consists of the follow- 309

ing: (1) the direct set selection task instruction, (2) 310

the classification task prompt and (3) the list of k 311

tweets and classifications. We manually craft the 312

set selection prompt, where we make explicit the 313

importance of the count of the items that need to 314

be retrieved and that only items in the provided 315

list are to be selected. The choice of prompt strat- 316

egy also influenced the response here, so we again 317

used maximum performance metric (Mizrahi et al., 318

2024). We used the most number of valid prompt 319

response as our metric to select our final prompt. 320

Figure 7 shows the example direct set selection 321

prompt where the list-referencing method used was 322

the full text. 323

3.4 Evaluation Metrics 324

First, we need to evaluate the initial performance 325

of the LLM on classifying single tweets. We use 326

the following metrics for this: Accuracy and Ef- 327

fective Accuracy. We define effective accuracy 328

as the overall performance of the collaboration of 329

the LLM and enduser on the dataset D of length n, 330

when the enduser is provided with the set size of c 331

to review. For this scenario, we are working with 332

the assumption that the enduser’s performance on 333

the check set has 100% accuracy. This is computed 334

as follows: 335

%EffAccD = %AccLLM
(n− c)

n
+%AccHUM

c

n
336

To evaluate the LLMs’ ability to select a 337

set from long context input, we introduce the 338

following metrics: 339

No. of Valid Prompt Response. We test the 340
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robustness of all the LLMs on their ability to341

provide valid prompt responses consistently.342

We count valid responses by the original long343

context input, i.e., by the 100 tweets input so 1344

valid response is equivalent to 4 valid responses345

of each disjoint group of context size 25 and 2346

valid responses of each disjoint group of context347

size 50. A response is considered valid if (1)348

the set provides the correct number of items349

requested and (2) all the items in the set come350

from the long-context input, i.e. there were no351

hallucinations.352

Inter-Annotator Agreement. We used Krippen-353

dorff’s alpha (Krippendorff, 1970) to measure the354

inter-annotator agreement between the multiple355

prompts with the varying classification list order.356

357

4 Results358

4.1 Disaster Tweet Classification Performance359

We ran our experiments on two classification tasks360

across eight disaster events. The LLMs’ perfor-361

mance for Tasks 1 and 2 are found in table 2 mea-362

sured in accuracy scores at the column Acc. We ob-363

served that the closed-source models, gpt-4o-mini364

and gpt-4o perform well in both tasks, achieving365

accuracy scores of between 72% and 91% for Task366

1 and between 84% and 95% for Task 2. Based on367

these accuracy scores, we observed that the chosen368

20% check set size is the check size that would369

be needed for a good classifier, if the check set370

selection is perfect (see column Eff Acc (Max), the371

maximum effective accuracies of the LLMs given372

the check set size in table 2. At the chosen check373

set size, the Eff Acc (Max) of almost all LLMs374

reach to above 0.85 across all tasks and all disaster375

events.376

4.2 LLM Individual Confidence Check Set377

Selection Performance378

Using the results from the initial classification379

tasks, we select our individual confidence check380

set based on the individual probabilities of each381

tweet classification of being correct. The effective382

accuracies of the different models for Tasks 1 and383

2 are in table 2 using the individual confidence set384

selection strategy at column Eff Acc (I). All Eff385

Acc (I) is higher than the original accuracies of386

the models, hence improve overall classification387

performance.388

To check the effectiveness of the individual con-389

fidence check set selection strategy, we compare 390

Eff Acc (I) with the effective accuracy achieved by 391

the models when selecting a random check set (col- 392

umn Eff Acc (Random)) of the same size. Note that 393

there is a ceiling for effective accuracies as they are 394

dependent on both the original accuracy and the 395

chosen check size, we show these in column Eff 396

Acc (Max). We highlighted the instances where the 397

individual confidence check set selection did not 398

outperform random in table 2. We observed that for 399

task 1, only gpt-4o’s individual confidence check 400

set selection outperformed random across all four 401

disaster events, gpt-4o-mini’s and mistral’s outper- 402

form random most of the time, and only llama’s 403

fails to do so. However, for task 2, all the LLMs’ 404

individual confidence check set selection outper- 405

formed random across all four disaster events. 406

We wanted to know if there is an optimal 407

check set size, compared to the current 20%, from 408

our models by mapping the effective accuracies 409

achieved by the models across changing check set 410

sizes as seen in figure 8 in appendix A.5. These 411

were the average effective accuracies from the four 412

disaster events per task. We found that there is 413

no obvious optimal check set size, with almost 414

all models reaching 100% efffective accuracy only 415

when all the tweets are checked. 416

4.3 LLM Direct Set Selection Performance 417

4.3.1 LLMs ability to select from a set is 418

influenced by the input context size 419

As a first step to test LLMs’ check set selection 420

ability using direct set confidence elicitation, we 421

count the number of valid prompt responses LLMs 422

generate. Figure 2 shows the no. of valid prompt 423

responses LLMs can generate by context size. We 424

observed that the input context size influences some 425

LLMs’ ability to select a set from a list. We see 426

this in figure 2 where llama is able to select from 427

context sizes of 50 and 25 tweet classifications con- 428

sistently over the larger context size of 100 using 429

the short uuid referencing method for both tasks. 430

Mistral, on the other hand, is able to consistently 431

provide valid responses for context sizes 50 and 25 432

for only task 2. 433

4.3.2 The list-referencing method affects 434

LLM’s direct set selection output 435

Figure 3 shows the no. of valid prompt responses 436

that LLMs can generate when asked to select 10 437

tweets from a list of 50 tweets and classifications 438

by list-referencing method. We observed that the 439
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Figure 2: Valid Prompt Responses by Context Size using
the short uuid referencing method.

chosen referencing method affects the no. of valid440

prompt responses generated. We observed that441

providing an index, i.e., either the ID or the short442

uuid in the list, helps LLMs retrieve a set from443

the input list. All LLMs struggled in retrieving444

the full tweet text and keywords, providing invalid445

responses as output, mostly providing incorrect446

number of tweets.447

4.3.3 The input list order influences direct set448

selection.449

We observed that the selected check sets vary signif-450

icantly when we shuffle the order of the input list of451

tweets and classifications. We present the Krippen-452

dorf’s alpha inter-annotator agreement scores for453

our models in Tasks 1 and 2 table 1 using the short454

uuid referencing methods. We do not have agree-455

ment scores for some models with insufficient valid456

prompts. The alpha is computed on the agreement457

across 100 tweets per disaster event i.e., whether458

they are included in the check set in each prompt459

iteration. We must take note that these agreement460

scores cannot be directly compared across context461

sizes but are to be evaluated individually. Table 1462

Figure 3: Valid Prompt Responses by Referencing
Method at context size of 50 Tweets

shows that only gpt-4o and gpt-4o-mini had agree- 463

ment scores above 0.50, with gpt-4o having 0.60 464

and above for two disaster events. This shows that 465

input list order can influence the chosen check set 466

using direct set selection. 467

4.4 Individual Confidence is more Reliable 468

but Direct Set Confidence does show 469

promise 470

The effective accuracies from the direct set confi- 471

dence selection are shown in the columns Eff Acc 472

(D - <context size>) in table 2. Effective accura- 473

cies for direct set selection across tasks and context 474

sizes are higher than the original accuracies. We 475

note that the effective accuracies for direct set sizes 476

D-50 and D-25 are disadvantaged beforehand com- 477

pared to the D-100, because they are dependent on 478

the luck of the misclassified tweets being evenly 479

distributed across subgroups. When compared with 480

the effective acccuracies using random check set 481

(Eff Acc (Random)), check set selection using gpt- 482

4o outperforms random across all tasks and context 483

sizes, gpt-4o-mini outperforms random at almost 484

all events except Nepal Earthquake while llama and 485
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Task 1: Humanitarian Aid vs. Not Humanitarian Aid
Event Model D-100 D-50 D-25

gpt-4o-mini 0.27 0.27 0.31
California gpt-4o 0.05 0.25 0.32
Earthquake llama 3.1 -0.06 0.03 0.22

mistral v.03 - - -
gpt-4o-mini 0.30 0.59 0.56

India gpt-4o 0.55 0.55 0.49
Floods llama 3.1 - 0.31 0.27

mistral v.03 - - 0.31
gpt-4o-mini 0.13 0.30 0.31

Nepal gpt-4o 0.11 0.19 0.36
Earthquake llama 3.1 - 0.16 0.22

mistral v.03 - - -
gpt-4o-mini 0.10 0.31 0.19

Vanuatu gpt-4o 0.41 0.55 0.63
Cyclone llama 3.1 - 0.14 0.28

mistral v.03 - - -
Task 2: Humanitarian Information Classification
Event Model D-100 D-50 D-25

gpt-4o-mini 0.12 0.20 0.22
Mexico gpt-4o 0.28 0.34 0.39

Earthquake llama 3.1 - 0.22 0.15
mistral v.03 0.03 0.19 0.30
gpt-4o-mini 0.36 0.38 0.44

Sri Lanka gpt-4o 0.40 0.53 0.51
Floods llama 3.1 - 0.30 0.37

mistral v.03 0.13 0.34 0.40
gpt-4o-mini 0.13 0.25 0.28

Canada gpt-4o 0.40 0.39 0.60
Wildfire llama 3.1 - 0.18 0.31

mistral v.03 0.00 0.36 0.45
gpt-4o-mini 0.14 0.29 0.42

Hurricane gpt-4o 0.25 0.22 0.30
Harvey llama 3.1 0.25 0.17 0.25

mistral v.03 - 0.20 0.40

Table 1: Inter-annotator agreement between the valid
prompts. Krippendorf’s alpha by context size with short
uuid referencing method

mistral have some events and context sizes that do486

not outperform random.487

We compare the two check set selection strate-488

gies and observe that individual confidence check489

set selection is a more reliable method over di-490

rect set confidence selection for having insufficient491

valid responses. Effective accuracies from direct492

check set selection are higher than individual confi-493

dence check set selection for both gpt-4o and llama494

across all disaster events in task 1. Effective accura-495

cies from individual confidence check set selection496

are higher than direct check set in all LLMs across497

almost all disaster events in task 2.498

5 Discussion499

We discovered from our experiments that although500

we set LLMs to their most deterministic setting,501

when we do direct check set selection, changing502

the order of the input context (list of tweets) lead to503

different check set selections and can even return504

invalid responses. This observation holds across 505

different input context sizes. We recommend eval- 506

uating LLMs with multiple prompts always as we 507

have observed that this is under reported. 508

6 Related Work 509

Confidence Elicitation in LLMs The most com- 510

mon ways to measure confidence in model pre- 511

dictions rely on model’s internal logits. However, 512

with the decoder-only LLMs, it has become less 513

suitable to use these methods. There have been 514

methods in prompting LLMs themselves to express 515

uncertainty in natural language is referred to as ver- 516

balized confidence (Lin et al., 2022). Xiong et al. 517

(2024) defines a systematic framework for LLM 518

uncertainty estimation using prompting, sampling 519

and aggregation strategies and benchmarks these 520

methods in calibration and failure prediction. Tian 521

et al. (2023) showed that large LLMs can express 522

calibrated-confidence (as a probability or phrases 523

like ’highly likely’) more accurately than their raw 524

conditional probabilities suggest. 525

LLM performance on long-context input text 526

There are multiple studies that evaluate the long- 527

context capabilities of LLMs (Hsieh et al., 2022; 528

Shaham et al., 2023; Levy et al., 2024). Long- 529

context" is an umbrella term for use cases of LLMs 530

defined by the total length of the model’s input that 531

may include retrieval, summarization, and infor- 532

mation aggregation (Goldman et al., 2024). The 533

common task that papers evaluate on is the needle- 534

in-a-haystack (NIAH) task, where the LLMs are 535

tasked to retrieve the fact (the "needle") in a long in- 536

put context (the ”haystack”) and asking the LLM to 537

retrieve it given a related question (Kamradt, 2023). 538

Hsieh et al. (2022) expands the NIAH task with a 539

comprehensive evaluation of long-context LLMs 540

by creating a new synthetic benchmark, RULER 541

with flexible configurations length and task com- 542

plexity. The paper revealed that almost all mod- 543

els exhibit large performance drops as context in- 544

creases (Hsieh et al., 2022). Most papers evaluate 545

LLM performance on synthetic datasets or exist- 546

ing benchmarks (Hsieh et al., 2022; Shaham et al., 547

2023; Levy et al., 2024), Gupta et al. (2024) differs 548

by evaluating the gpt-4 suite of LLMs in solving 549

progressively challenging tasks, as a function of 550

factors such as context length, task difficulty, and 551

position of needle using a created real-world finan- 552

cial news dataset. 553
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Task 1: Humanitarian Aid vs. Not Humanitarian Aid
Event Model Acc Eff Acc Eff Acc Eff Acc Eff Acc Eff Acc Eff Acc

(Random) (Max) (I) (D-100) (D-50) (D-25)
gpt-4o-mini 0.77 0.82 0.97 0.81 0.83 0.85 0.85

California gpt-4o 0.72 0.78 0.92 0.81 0.84 0.84 0.80
Earthquake llama 0.62 0.70 0.82 0.70 0.72 0.70 0.68

mistral 0.67 0.74 0.87 0.75 - 0.77 -
gpt-4o-mini 0.91 0.93 1.0 0.96 0.95 0.95 0.95

India gpt-4o 0.92 0.94 1.0 0.96 0.98 0.99 0.98
Floods llama 0.85 0.88 1.0 0.87 0.87 0.93 0.90

mistral 0.83 0.86 1.0 0.86 - - 0.93
gpt-4o-mini 0.78 0.82 0.98 0.84 0.81 0.81 0.80

Nepal gpt-4o 0.77 0.82 0.97 0.83 0.84 0.85 0.83
Earthquake llama 0.77 0.82 0.97 0.81 0.82 0.81 0.80

mistral 0.72 0.78 0.92 0.79 - - -
gpt-4o-mini 0.82 0.86 1.0 0.90 0.87 0.90 0.91

Vanuatu gpt-4o 0.78 0.82 0.98 0.89 0.92 0.91 0.91
Cyclone llama 0.82 0.86 1.0 0.85 - 0.86 0.84

mistral 0.73 0.78 0.93 0.77 - - 0.78
Task 2: Humanitarian Aid Information Classification

Event Model Acc Eff Acc Eff Acc Eff Acc Eff Acc Eff Acc Eff Acc
(Random) (Max) (I) (D-100) (D-50) (D-25)

gpt-4o-mini 0.84 0.87 1.0 0.92 0.88 0.90 0.90
Mexico gpt-4o 0.89 0.91 1.0 0.93 0.92 0.95 0.95

Earthquake llama 0.77 0.82 0.97 0.84 0.79 0.82 0.82
mistral 0.68 0.74 0.89 0.76 0.71 0.74 0.73

gpt-4o-mini 0.89 0.91 1.0 0.92 0.92 0.92 0.92
Sri Lanka gpt-4o 0.91 0.93 1.0 0.95 0.94 0.93 0.95

Floods llama 0.84 0.87 1.0 0.89 0.88 0.88 0.90
mistral 0.73 0.78 0.93 0.85 0.78 0.80 0.78

gpt-4o-mini 0.94 0.95 1.0 1.0 0.97 0.95 0.97
Canada gpt-4o 0.95 0.96 1.0 1.0 0.98 0.99 0.99
Wildfire llama 0.86 0.89 1.0 0.95 - 0.93 0.91

mistral 0.84 0.87 1.0 0.93 0.87 0.85 0.85
gpt-4o-mini 0.86 0.89 1.0 0.90 0.89 0.90 0.91

Hurricane gpt-4o 0.85 0.88 1.0 0.90 0.89 0.90 0.91
Harvey llama 0.71 0.77 0.91 0.77 0.77 0.75 0.77

mistral 0.58 0.66 0.78 0.70 - 0.63 0.61

Table 2: Effective Accuracies of the Check Set Selection Strategies. Eff Acc (Random) is the effective accuracy for
the task given a random check set, Eff Acc (Max) is the maximum possible effective accuracy for the task, Eff Acc
(I) is for the individual confidence elicitation and Eff Acc (D) is for direct set confidence elicitation and the number
indicates the context length size. The referencing method for direct set used for this table short-uuid

7 Conclusion554

In this paper, we investigate the ability to identify555

low-confidence outputs for human review through556

check set creation, the process of utilizing LLMs to557

prioritize information needing human review. We558

run our experiments using a case study in disas-559

ter risk management. We tested two strategies for560

check set selection: individual confidence elicita-561

tion by assessing confidence for each tweet classifi-562

cation and direct set confidence elicitation by eval-563

uating confidence for a list of tweet classifications564

at once. Furthermore, we examined LLMs’ direct565

set selection capability by adjusting context sizes566

and list-referencing methods. Our results show that567

LLMs’ struggle in direct set selection as they can-568

not consistently provide valid prompt responses 569

such as incorrect list sizes and output information 570

not found in the original input. Furthermore, we 571

observed that direct set selection can be influenced 572

by the list-referencing method, the input context 573

size, and the list order of the input. Hence, we 574

say that individual confidence set selection is more 575

reliable than direct set selection for our particular 576

setting. However, we observe that the direct set 577

method has potential and could be explored fur- 578

ther as LLMs continue to improve. Despite these 579

challenges, our approach improves collaborative 580

disaster tweet classification, demonstrating the po- 581

tential of human-LLM collaboration. 582
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8 Limitations583

We only evaluated four commonly used LLMs: gpt-584

4o-mini, gpt-4o, llama and mistral. We only evalu-585

ated on the base models to test their check set se-586

lection capabilities. Instruction-tuning/fine-tuning587

these models to specifically do check set selection588

tasks may lead to more favorable results.589

Our use case is focused on classification tasks590

for disaster risk management with text that are only591

in English language tweets. For the direct set confi-592

dence set selection, we only tested context sizes of593

100, 50 and 25 tweets. A smaller context size may594

offer more stable responses from the LLMs. In ad-595

dition, in selecting the check set from the smaller596

context sizes, D-50 and D-25, we did not try to597

optimize which tweets to compare with each other.598

Our experiments were not performed in a real599

world application where we had an actual disaster600

manager perform the manual verification of the601

tweets in the selected check set. As we assume602

all wrongly labeled tweets would be corrected in603

such manual check, our estimations are likely to604

optimistic.605
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A Appendix 771

A.1 Models 772

Table 3 contains the information about the 4 LLMs 773

we evaluated and analyzed. 774

A.2 Datasets 775

Task 1: humanitarian aid vs. not humanitarian 776

aid 777

We used data from CrisisBench (Alam et al., 778

2021b), a consolidated crisis-related social media 779

dataset for humanitarian information processing. 780

We renamed the classes to humanitarian and not 781

humanitarian aid from the original informative vs. 782

not informative classes because these words by 783

themselves were too broad and general. Tweets 784

were annotated as follows(Alam et al., 2021b,a): 785

• humanitarian aid: tweet is useful for humani- 786

tarian aid and 787

• not humanitarian aid: tweet is not useful for 788

humanitarian aid. 789

We sampled from consolidated disaster events from 790

CrisisMMD (Alam et al., 2018) dataset specifically 791

from the following crisis events: California Earth- 792

quake, India Floods, Nepal Earthquake, and Vanu- 793

atu Cyclone. We randomly sampled 100 tweets for 794

each disaster event. 795
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Table 3: Information of evaluated and analyzed LLMs

Model Type Size Context Length Source (OpenAI/Huggingface)
GPT-4o-mini closed - 128K gpt-4o-2024-08-06

GPT-4o closed - 128K gpt-4o-mini-2024-07-18
Llama3.1 open 8B 128K meta-llama/Meta-Llama-3.1-8B-Instruct

Mistral-base open 7B 32K mistralai/Mistral-7B-Instruct-v0.3

Task 2: Humanitarian Aid Information Clas-796

sification797

For the humanitarian information classification798

task, we utilized human-annotated crisis-related799

tweets from (Alam et al., 2021a). We sampled800

across four different disaster types: earthquake,801

hurricane, wildfire and flood. We chose the event802

with the highest inter-annotator agreement per dis-803

aster type based on (Alam et al., 2021a). The origi-804

nal dataset had 11 labels, however, we limited our805

labels to the 5 that were present in all of our se-806

lected crisis events, following (Zou et al., 2023)807

who also reduced their labels to 7. Originally, we808

experimented with including the labels: other rel-809

evant information and not humanitarian, however,810

this seemed to be too challenging for the LLM. The811

humanitarian aid information labels are as follows:812

• Caution and advice: Reports of warnings813

issued or lifted, guidance and tips related to814

the disaster;815

• Infrastructure and Utility Damage: Reports816

of any type of damage to infrastructure such817

as buildings, houses, roads, bridges, power818

lines, communication poles, or vehicles;819

• Injured or dead people: Reports of injured820

or dead people due to the disaster;821

• Rescue, volunteering, or donation effort:822

Reports of any type of rescue, volunteering,823

or donation efforts such as people being trans-824

ported to safe places, people being evacuated,825

people receiving medical aid or food, people826

in shelter facilities, donation of money, or ser-827

vices, etc.;828

• Sympathy and support: Tweets with prayers,829

thoughts, and emotional support;830

We sampled the test sets of the following crisis831

events: Mexico Earthquake 2017, Hurricane Har-832

vey 2017, California Wildfires 2017 and Sri Lanka833

Floods 2017. We randomly sampled 100 tweets for834

each disaster event.835

A.3 Prompts 836

A.3.1 Classification Prompts 837

The disaster tweet classification prompts are shown 838

in figures 4 and 5. 839

Figure 4: Prompt for Task 1: Humanitarian Aid vs. Not
Humanitarian Aid

Figure 5: Prompt for Task 2: Humanitarian Information
Classsification
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A.3.2 Check Set Selection Prompts840

The prompts for the two strategies of check set841

selection are in figures 6 and 7.842

A.4 Disaster Tweet Classifier Performance843

The performance of the LLMs as disaster tweet844

classifiers are in tables 4 and 5.845

A.5 Individual Confidence Elicitation Results846

We wanted to know if there is an optimal check set847

size, compared to the current 20%, from our models848

by mapping the effective accuracies achieved by849

the models across changing check set sizes as seen850

in figure 8.851
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Figure 6: Prompt for Individual Confidence Elicitation

Figure 7: Prompt for Direct Set Selection

Table 4: Performance of LLMs on Task 1: Humanitarian Aid vs. Not Humanitarian Aid measured in Accuracy.

Model California Earthquake Vanuatu Cyclone Nepal Earthquake India Floods
gpt-4o-mini 0.77 0.82 0.78 0.91

gpt-4o 0.72 0.78 0.77 0.92
llama 3.1 0.62 0.82 0.77 0.85

mistral v.03 0.67 0.73 0.72 0.83
majority class 0.69 0.63 0.50 0.76

Table 5: Performance of LLMs on Task 2: the Humanitarian Aid Information Classification task measured in
Accuracy

Model Mexico Earthquake Sri Lanka Floods California Wildfires Hurricane Harvey
gpt-4o-mini 0.84 0.89 0.94 0.86

gpt-4o 0.89 0.91 0.95 0.85
llama 3.1 0.77 0.84 0.86 0.71

mistral v.03 0.68 0.73 0.84 0.58
majority class 0.35 0.61 0.51 0.23

13



Figure 8: Effective Accuracy vs. Check Set Size
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