TSENOR: Highly-Efficient Algorithm for Finding
Transposable N:M Sparse Masks

Xiang Meng Mehdi Makni
Operations Research Center Operations Research Center
Massachusetts Institute of Technology Massachusetts Institute of Technology
mengx@mit.edu mmakni@mit.edu
Rahul Mazumder

Operations Research Center
Massachusetts Institute of Technology
rahulmaz@mit.edu

Abstract

Network pruning reduces computational requirements of large neural networks,
with N:M sparsity—retaining only N out of every M consecutive weights—offering
a compelling balance between compressed model quality and hardware accelera-
tion. However, N:M sparsity only accelerates forward-pass computations, as N:M
patterns are not preserved during matrix transposition, limiting efficiency during
training where both passes are computationally intensive. While transposable N:M
sparsity has been proposed to address this limitation, existing methods for finding
transposable N:M sparse masks either fail to scale to large models or are restricted
to M=4 which results in suboptimal compression-accuracy trade-off. We introduce
an efficient solver for transposable N:M masks that scales to billion-parameter
models. We formulate mask generation as optimal transport problems and solve
through entropy regularization and Dykstra’s algorithm, followed by a rounding
procedure. Our tensor-based implementation exploits GPU parallelism, achieving
up to 100x speedup with only 1-10% error compared to existing methods. Our
approach can be integrated with layer-wise N:M pruning frameworks including
Wanda, SparseGPT and ALPS to produce transposable N:M sparse models with
arbitrary N:M values. Experiments show that LLaMA3.2-8B with transposable
16:32 sparsity maintains performance close to its standard N:M counterpart and
outperforms standard 2:4 sparse model, showing the practical value of our approach.
Our code is available at https://github.com/mazumder-1lab/TSENOR.

1 Introduction

Deep neural networks (DNNs) have become ubiquitous across multiple fields, notably in natural
language processing, speech recognition, and autonomous systems [Brown et al., 2020, Radford
et al., [2023 |Chen et al., [2024]]. While these models achieve remarkable performance, they come
with substantial computational and storage requirements. State-of-the-art models, such as GPT-4
Achiam et al.|[2023]] and LLaMA3 |Dubey et al.|[2024]], contain hundreds of billions of parameters,
necessitating multiple high-end GPUs for both training and inference. This massive scale poses
significant challenges for real-world deployment and increases energy consumption [Wu et al., 2022].

To address these challenges, various model compression techniques have been proposed, including
quantization [Lin et al., 2023b| [Dettmers et al., 2023]], knowledge distillation [Gou et al.| [2021]],
and network pruning [Han et al., [2015| |Cheng et al.,|2024]. Network pruning reduces model size
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by eliminating redundant or less important weights and can be categorized into unstructured and
structured approaches. Unstructured pruning [[Benbakai et al., [2023| |Frantar and Alistarh| 2023]] and
related variants Meng et al.|[2024b]] removes individual weights regardless of their position, achieving
high compression ratios with minimal accuracy degradation. However, it often fails to deliver practical
acceleration on commodity hardware due to irregular memory access patterns and the overhead of
encoding sparse structures [Zhu et al.| 2019} Tang et al., |2021]]. In contrast, structured pruning [Wen
et al.L [2016, He et al., 2017, Meng et al.] removes entire structural components (channels, filters,
heads) and is more hardware-friendly, but typically results in greater accuracy loss at high sparsity
levels.

N:M sparsity—where only N out of every M consecutive weights are retained—offers a compelling
middle ground. This fine-grained structured sparsity maintains unstructured pruning benefits while
enabling hardware acceleration [Nvidial, 2020\ [Lin et al.,2023a]]. Despite advances in N:M sparsity
methods [Mishra et al.| 2021} [Zhou et al., 2021} [Lu et al.| 2023], Sun et al., 2023, Meng et al., 2024a,
Bambhaniya et al.,[2024, [Lucas and Mazumderi, a critical limitation persists: they accelerate only
forward-pass operations (Y = W X) but not backward-pass operations (0L/0X = W1 - 9L/9Y),
as N:M sparsity patterns are not preserved during matrix transposition. Consequently, N:M sparsity
only provide partial acceleration during training, where both forward and backward passes are
computationally intensive.

Transposable N:M sparsity addresses this by designing patterns that maintain N:M structure in both a
matrix and its transpose. Despite its usefulness and promise, finding transposable N:M sparse masks
presents significant algorithmic challenges. Due to a lack of efficient algorithms, the full potential of
transposable N:M sparsity perhaps remains to be realized—a key motivation of our work. Interesting
prior works include: |Hubara et al.|[2021a] compute the transposable mask via minimum-cost flow,
which is computationally expensive and does not scale to LLMs with billions of parameters; [Hu
et al. [2024] solve the special case of transposable 2:4 masks for transformers efficiently through
exhaustive search, but their method cannot be generalized to larger M values (>8) as the size of
search space grows exponentially fast. Transposable 2:4 sparsity imposes strong structural constraints
that can adversely affect model accuracy compared to larger N:M values.

In this paper, we introduce TSENO a novel algorithmic framework for finding binary masks with
transposable N:M sparsity that scales to LLMs. We formulate optimal mask selection as an integer
program and observe a novel connection to optimal transport. Leveraging this connection, we solve
the relaxed problem using entropy regularization and Dykstra’s algorithm. This is followed by a new
rounding procedure to recover binary masks. Our approach efficiently handles arbitrary N:M patterns,
which is crucial as larger M values significantly reduce performance degradation—especially when
we compare non-transposable to transposable sparsity. Our method’s tensor-based implementation
enables seamless integration with existing layerwise pruning frameworks—this accelerates both
forward and backward passes while preserving model quality. Our contributions include:

1. We formulate transposable N:M sparse mask generation as multiple optimal transport problems
with capacity constraints, and solve them simultaneously by entropy regularization and Dykstra’s
algorithm. This approach is highly parallelizable and efficiently handles arbitrary N:M patterns.

2. The solutions obtained from Dykstra’s algorithm are fractional and cannot be directly used as
binary masks. To this end, we propose a GPU-optimized rounding procedure that converts
fractional solutions to high-quality binary masks through greedy selection and local search. Our
tensor-based implementation can process millions of blocks simultaneously, achieving up to 103
times speedup over vanilla approach.

3. We show the integration of TSENOR with existing layer-wise N:M pruning frameworks to generate
transposable N:M sparse networks. Specifically, we incorporate it as a plug-in procedure into
leading pruning approaches such as Wanda [Sun et al., [2023[], SparseGPT [Frantar and Alistarh,
2023|], and ALPS [Meng et al.,[2024a]]. For ALPS, we provide novel convergence guarantees for
the resulting framework.

4. Experimental results show that our method generates masks with 1-10% less relative error com-
pared to existing heuristics and runs up to 102 times faster. We demonstrate that transitioning
from non-transposable to transposable sparsity with larger M values (16:32) results in only 12%
of the performance loss compared to smaller M values (2:4). Moreover, models with transposable
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16:32 sparsity outperform those with non-transposable 2:4 sparsity, confirming the importance of
our efficient solver for arbitrary (especially large M) transposable patterns. Our code is publicly
available at: https://github.com/mazumder-1lab/TSENOR.

2 Preliminaries and related work

Network pruning with N:M sparsity Techniques for obtaining N:M sparse networks fall into
four categories: (i) Sparse training methods that mitigate performance degradation induced by N:M
sparsity through carefully designed training strategies [Mishra et al., 2021} |[Zhou et al., 2021}, [Lu
et al 2023| [Bambhaniya et al.| [2024]]; (ii) Pruning approaches that identify high-quality sparse
masks for given N:M patterns by minimizing layerwise reconstruction error on calibration samples
[Frantar and Alistarh, [2023| Meng et al.,2024al| or estimating weight importance [Sun et al., [2023];
(iii) Configuration search methods that determine layer-specific N:M sparsity patterns [Sun et al.,
2021} Huang et al.|2024]); and (iv) Methods performing channel permutation on the weight matrix to
improve pruned N:M sparse model performance [[Pool and Yul|2021} Mahajan et al., 2024].

Transposable N:M sparsity Transposable N:M sparsity remains relatively unexplored compared to
its non-transposable counterpart. Hubara et al.| [2021a]] first proposed transposable N:M masks to
accelerate both forward and backward passes during training, introducing the minimum-cost flow
method as well as a greedy heuristic for mask generation. |Hu et al.|[2024]] developed a highly efficient
vectorized approach specifically for transposable 2:4 mask generation. Alternatively, |[Zhang et al.
[2023]] proposed training non-transposable N:M sparse networks using gradients approximated by
applying transposable N:M sparse masks during the backward pass.

Hardware implementation of N:M sparse networks NVIDIA’s Sparse Tensor Cores in the Ampere
GPU architecture Nvidia [2020] support 2:4 sparsity acceleration. |Castro et al.|[2023]] introduces
Spatha sparse library, enabling arbitrary N:M patterns on Sparse Tensor Cores. Alternative approaches
like nmSPARSE [Lin et al., 2023a]] and NM-SPMM [Ma et al., [2025] design GPU kernels with
memory access optimization and blocking mechanism to support arbitrary N:M patterns without
requiring specialized hardware. |[Fang et al.|[2023]] designed computation-efficient training through
algorithm-architecture-dataflow co-design, while |Liu et al.| [2025]] proposed transposable block-wise
N:M sparsity with dedicated tensor cores.

GPU-accelerated optimization Our approach formulates transposable N:M mask generation as
solving millions of small-scale optimal transport problems, efficiently parallelized using GPU ac-
celeration. In contrast, most existing GPU-accelerated optimization methods focus on solving a
single large-scale problem. Examples include efficient GPU implementations of linear programming
solvers [Lu and Yang}, 2023 [Pacaud et al., 2024]] and parallelizable approaches for large-scale optimal
transport problems [Cuturi, 2013, [Mai et al., 202 1]

3 Computing high-quality transposable N:M mask efficiently

Given a weight matrix W, the core problem in transposable N:M sparsity is to determine a binary
mask that maximally preserves the magnitude of weights in W under the transposable N:M constraint.
This can be formulated as:

maxs Z S;j|W;;| s.t. Sis abinary mask with transposable N:M sparsity, 1)
0]

The primary challenge in solving (I) is computational efficiency. While optimal solutions can be
obtained through mixed-integer programming (e.g., |Gurobi| [2022]]) or network flow algorithms
[Hubara et al.| 202 1a], these approaches become computationally prohibitive for practical LLMs (e.g.,
LLaMA3 [Dubey et al., 2024]]) where weight matrices contain billions of elements. Furthermore,
as discussed in Section 4} problem (I]) appears as a subproblem in each iteration of some pruning
methods (e.g., [Meng et al., [2024a]), amplifying the computational demands.

We address this challenge by developing algorithms that can fully leverage GPU parallelization.
Our method begins by partitioning the weight matrix into M xM blocks and reformulating problem
(1) as a optimal transport problem with capacity constraints for each block. We then introduce
entropy regularization and derive a solution using Dykstra’s algorithm, followed by a vectorized
rounding procedure that converts fractional solutions to feasible binary masks. Figure[T]illustrates our
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Figure 1: Efficient GPU-accelerated pipeline for transposable N:M masks generation. The weight
matrix is partitioned into M x M blocks and simultaneously processed through our entropy-regularized
solver and rounding procedure, leveraging tensor operations for GPU parallelization.

complete methodology. Our key innovation lies in the careful design of all algorithmic components
to enable tensor-based operations, allowing simultaneous processing of millions of blocks on GPUs.
This parallel implementation achieves up to two orders of magnitude speedup compared to existing
methods, making our approach practical for billion-parameter language models.

3.1 An optimal transport reformulation

The transposable N:M sparsity constraint applies independently to each MxM submatrix of S.
Consequently, problem () is separable, and reduces to the following problem for each MxM block:

M M M
Se{én,l%)Z&XM Zi,j:l SZJ|WZJ| S.t. Zi:l Sij = NVJ S [M], Zj:l Sij =NVie [M] 2)
By leveraging bipartite matching polytope theory [Schrijver et al., 2003, Chapter 18], we can relax
the binary variables S;; to lie in the interval [0, 1] without altering the optimal value of problem (2)).
Notably, any basic feasible solution of the resulting relaxed linear program corresponds to an integral
optimal solution of the original problem. The relaxed problem can be expressed in matrix notation as:

maxsg (S, [W|) s.t. S1yr = N1y, ST1y = N1y, 0<S<1. 3)

We make the novel observation that problem @ can be viewed as a capacitated optimal transport
problem [Villani, 2008]], where S € [0, 1]**™ represents the transport plan between rows and
columns. Each row and column must send and receive exactly N units of mass, as enforced by the
constraints S1; = N1,; and ST1,; = N1,,. The objective is to maximize the total transported
value weighted by |W/|. This connection allows us to leverage tools from optimal transport to solve
the relaxed problem efficiently, as detailed in the next subsection.

3.2 Entropy Regularization

In practical neural network pruning scenarios, we need to efficiently solve millions of instances
of problem (3) simultaneously. To enhance computational tractability, we introduce an entropy
regularization term to the objective [Cuturi, 2013]], reformulating the problem as:

1
max (S,[W|) + —H(S) st. Sy = N, ST1y =N1y, 0<S<1. 4)
T

where H(S) = — Z%:l S;; log(S;;) denotes the Shannon entropy and 7 > 0 controls the regular-
ization strength.

This entropy term serves two critical functions: (i) it promotes exploration by distributing “mass”
more uniformly across feasible entries, preventing premature convergence to suboptimal solutions;
and most importantly, (ii) it enables efficient computation via matrix-scaling algorithms that are
highly parallelizable and have been GPU-accelerated in optimal transport literature [Cuturi, |2013]],
making them particularly suitable for our large-scale optimization requirements.

From an optimization perspective, the entropy-regularized problem can be interpreted as computing
the Bregman projection of matrix W, = exp(7|W/|) onto the intersection of three constraint sets:

Ci={S|Sly =Niy},Co={S|ST1y =Niy}, C3={S|0<S<1} 6))

with respect to the Kullback-Leibler divergence. To solve this projection problem efficiently, we
employ Dykstra’s algorithm [[Benamou et al.,[2015]], which iteratively projects onto each constraint



set, as detailed in Algorithm[T](see Appendix [A.T]for detailed derivation). Critically, here each update
involves only matrix-vector multiplications and element-wise operations, enabling full vectorization
across millions of weight blocks and leveraging GPU acceleration.

The selection of regularization parameter 7 impacts performance. A small value of 7 yields solutions
that poorly approximate the original problem (see Fig [I)), while excessively large values impede
convergence. In practice, we select 7 to balance solution quality and computational efficiency.
Furthermore, the entropy-regularized problem (@) only gives fractional solutions. We develop in
Section [3.3]a specialized rounding procedure that can convert the approximate fractional solution
into a high-quality feasible binary mask.

Algorithm 1 Dykstra’s algorithm for solving entropy-regularized optimal transport problem

Input: Weight matrix W, regularization parameter 7 > 0, and maximum iterations 7'
Output: Solution S to problem (@)

1: Initialize S(°) = exp(7|W), and dual variable Q©) = 1/, 5/

2: fort=0,1,..., 7 — 1do

3: S® <+ Diag (N/(S®1,,)) S® > Projection onto C;
4 S® « SWDiag (N/(s(t)T 1M)) > Projection onto Cs
5 StH1) « min (S® © QM, 1) > Projection onto Cs
6: QD) QW © (S @ stt+1) > Update dual variable
7: return S(7)

3.3 Sparse solution recovery via greedy selection and local search

The solution generated by Algorithm|[I]is generally not binary-valued due to the entropy regularization,
as illustrated in[Fig.2 (I)] making it unsuitable for direct use as a mask. While a simple element-wise
rounding approach could be considered, it would compromise both accuracy and constraint feasibility.
Therefore, we develop a novel rounding procedure that combines greedy selection with local search
to obtain a high-quality feasible binary mask.

Greedy selection: Our approach consists of two stages. In the first greedy selection phase, we
sort all elements of the approximate solution. We then iteratively assign each element to the binary
mask, proceeding from largest to smallest, provided that doing so preserves the row and column sum
constraints imposed by the transposable N:M sparsity. demonstrates a binary mask obtained
through this procedure under transposable 2:4 sparsity constraints.

While efficient, the greedy selection strategy can prematurely saturate certain rows or columns,
preventing the placement of subsequent high-value elements and yielding suboptimal binary masks.
For instance, in the fourth row and column contain only one active element, yet the
transposable N:M constraints prevent additional elements from being added.

Local search: To address this limitation, we introduce a novel local search procedure that refines
the greedy solution. For any unsaturated row ¢ and column j (i.e., containing fewer than N selected
elements), we explore swap-based local updates that preserve feasibility. Specifically, we explore
operations that simultaneously insert two elements—one in row ¢ and one in column j—while
removing a conflicting element to maintain the transposable N:M constraints. We enumerate all such
valid insert-remove triplets and select the one that maximally increases the objective. Formally, we
select candidate swap coordinates (i, j') that maximize:

Swap(i’, j') = (Wi | + Wi | = [Wip|) =00 (1= Sij) +Sij +8Si;),  (6)
where S denotes the current binary mask. The second term (with infinite penalty) ensures we neither
insert elements already in the mask nor remove non-existent elements. When Swap(¢’, ') > 0, we

insert elements (7, j') and (¢’, j) while removing (¢’ j'), thereby increasing the objective value while
maintaining feasibility. [Fig.2 (3-4)|illustrates this process, showing how adding (2,4) and (4, 2)
while removing (2, 2) improves the objective by 0.32.

The complete rounding procedure is presented in Algorithm [2] While [Hubara et al. [2021b]] also
proposed a greedy approach for binary mask generation, our method differs in three key aspects: (i)



(1) Approximation solution (2) Binary mask via selection (3) Swap score matrix (4) Binary mask via local search

0.27 -0.32|| -oo |-0.31

compute |-0.28(-0.03 [ -oo perform
score swap

0.26

greedy
selection

Objective: 5.73 Optimal (i', 5")=(2, 2) Objective: 6.05

Figure 2: Illustration of our proposed rounding procedure for generating a binary mask with transpos-
able 2:4 sparsity. Each cell displays the absolute value of |[W;;|. (1): The approximation solution
obtained from Algorithm [T} the shading intensity reflects the magnitude of the approximate solu-
tion;(2): The binary mask produced through greedy selection, with row ¢ = 4 and column j = 4
remaining unsaturated (each containing only one non-zero element); (3): Computed swap scores for
candidate operations, with optimal score achieved at (i, j') = (2, 2); (4): Refined binary mask after
local search operation—inserting elements at positions (4, 2) and (2, 4) while removing (2, 2).

we apply rounding to an entropy-regularized approximate solution rather than directly to the original
weight matrix; (ii) our novel local search strategy can further reduce rounding error by around 50%
(see Appendix [B.2)); and (iii) we leverage GPU to achieve significant speedup, as detailed below.

Computational efficiency: A key feature of our rounding approach is computational efficiency. We
have fully vectorized our algorithm so that both greedy selection and local search can be performed
simultaneously across all millions of blocks through tensor operations (refer to Appendix [A.2]for
implementation details), thereby enabling direct GPU implementation without custom CUDA kernels.
This vectorization achieves up to 103 times speedup compared to sequential CPU implementations
(refer to Appendix [B.2] for ablation studies), making our approach highly practical for large-scale
network pruning applications.

Algorithm 2 A binary mask generation approach based on greedy selection and local search

Input: Approximate solution S* from Algorithm [TJand number of local search step L.
Output: Feasible binary solution to problem (T)
1: Initialize S = 0,7 as, row counter R = 0,4, column counter C = 0y

20 {(i, jo) 143 argsort({—S¢; }_1) > Sort elements in descending order
3: fort=1,2,...,M? do > greedy selection
4: if Rit < N and Cjt < N then

5: Set Sit,jt +—1

6: Update (Ri“ Cjt) — (R“ + 1, Cjt =+ 1)

7: fort=1,2,...,Ldo > L local search steps
8§  ifRi=N,C; =N, Vie [M]then

9: break

10 Pick i, j € [M]suchthat R; < N, C; < N.

11: Select (', j') = argmax;, ;, Swap(i’, j') as defined in Eq.(6).

12: if Swap(i’,j') > 0 then

13: Set (Si/’j/, Si/’j, Si’j/) — (0, 1, 1), (Ru CJ) — (Rz + 1, Cj + 1)

14: return Feasible binary mask S

4 Layer-wise reconstruction with transposable N:M sparsity

We integrate TSENOR within leading LLM layer-wise pruning approaches to obtain transposable
N:M sparse networks. These masks enable efficient fine-tuning with acceleration in both forward and
backward passes. Note that layer-wise pruning minimizes the discrepancy in outputs between dense
and pruned layers, formulated as

minw (1/2)[|X(W = W)|[2 + (A/2)|[W - W% st. WeT, %)



where W is the pre-trained weights, X represents input activations, and 7~ denotes set of matrices with
transposable N:M sparsity. We demonstrate integration with Wanda [Sun et al., |[2023]], SparseGPT
[Frantar and Alistarhl [2023]], and ALPS [Meng et al., 2024al.

Integration with Wanda: Wanda evaluates weight importance using the product of weight magnitude
and corresponding input feature norm, performing magnitude pruning based on this importance score.
Our integration with Wanda involves solving problem (I) with W replaced by W' with entries
Wi, = W,;;[|X. ;]2 to get the pruning mask and setting all elements outside the mask to zero.

Integration with SparseGPT: SparseGPT traverses W left-to-right in groups of M columns, pruning
each group W& according to OBS scores [Hassibi and Stork,[1992], and updating W& and remaining
columns accordingly. To achieve transposable N:M sparsity, we substitute the pruning step with
TSENOR, solving problem (T]) with W replaced by the matrix with entries (fWg [H™'];;)—please

refer to the SparseGPT paper for algorithmic details and efficient updates of H~1.

Integration with ALPS: Integrating TSENOR with ALPS poses technical challenges as ALPS’ origi-
nal update rules and convergence guarantees do not directly apply to our setting. We derive modified
updates and establish new convergence guarantees as below. Following ALPS framework, we ad-
dresses layer-wise pruning problem through the ADMM approach [Boyd et al.,[2011]. We introduce
an auxiliary variable D that replicates W and consider the following augmented Lagrangian:

1 — A —~ p
L,(W.D, V) = 5 [X(W=W)|[}+ 5 |[W =W} +Ir(D)+(V,W-D)+ £ |[W-DI3., 8

where I-(D) is the indicator function that equals zero when D € T and infinity otherwise and p > 0
is the penalty parameter. ADMM minimizes this augmented Lagrangian by alternately updating W
and D, followed by a dual update for V.

Proposition 1. At iteration t, the ADMM update rules are given by:
WD = arg ming, L,(W,D®, V®) = (H 4 pI) ™ (HW — V) 4 pD®),
DY = argming, L,(WHY D, V®) = (WD 1 v /p) o S+ )
VD = v | pw ) plt)),

where H = XX + AL Above, SV is the solution to the following problem:
maxg Z S” t+1 V(t /p) s.t. S is a binary mask with transposable N:M sparsity (10)
with the same structure as (1)), and we can directly apply our binary mask solver from Section[3]

The key distinction between our modified ALPS framework and the original is in the D-update step.
While standard ALPS employs direct projection for unstructured or non-transposable N:M sparsity,
our approach solves the transposable N:M sparsity constraint using our proposed entropy-regularized
algorithm followed by a rounding procedure. Our approach may not find the globally optimal mask,
but we can still establish theoretical convergence guarantees as in Theorem[I] Complete statements
and proofs of Proposition[I]and Theorem [T]are provided in Appendix

Theorem 1. (Informal) Under mild assumptions on penalty parameter 6 and sufficient accuracy of
each D-update, there exists a matrix W such that DO 5 Wand W — Wast — co.

S Experiments

This section evaluates the efficiency and effectiveness of our proposed transposable binary mask
solver and demonstrates its performance when integrated into existing N:M pruning frameworks.
Detailed experimental setup and reproducibility information are provided in Appendix with
ablation studies and additional experimental results presented in Appendix [B.2}

5.1 Performance on a single matrix

We evaluate our proposed transposable binary mask solver against several approaches: (i) Network
Flow method [Hubara et al.,[2021b]], which guarantees optimal solutions through bipartite matching
algorithms; (i1) cuPDLP [Lu and Yang}|2023]], a general-purpose GPU-accelerated linear programming



solver; (iii) 2-Approximation [Hubara et al.}[2021b], a greedy-based heuristic; (iv) Bi-NM adopted
from [Zhang et al.} [2023]], which sequentially applies row-wise and then column-wise N:M sparsity;
and (v) Max1000, a randomized baseline that generates 1000 feasible masks and selects the best
one. Our experiments focus on transposable N:M sparsity with M>8, as smaller patterns (M=4) can

already be optimally and efficiently solved 2024].

We first examine solution quality of each approach through relative error against optimal solutions,
excluding Network Flow and cuPDLP which guarantee optimality. We evaluate two variants of our
method (1) Entropy: Algorithm [I] with simple row-then-column N:M sparsity rounding, and (2)
TSENOR: our full pipeline combining entropy regularization with specialized rounding (Algorithm
[2). As shown in Figure[3] TSENOR achieves remarkably low relative error (1-10%) compared to
2-Approximation, the best competing heuristic. The specialized rounding procedure alone also
contributes substantially, reducing error by up to 10x compared to simple rounding (i.e., Entropy),
validating the effectiveness of both components in our pipeline. In contrast, simpler approaches
like Bi-NM and Max 1000 exhibit substantially higher relative errors (up to 50%), highlighting the
inherent difficulty of the transposable N:M sparsity problem and the value of our advanced solver.

I TSENOR [ Entropy Il 2-approximation E Bi-NM B Max1000

Relative Error

Figure 3: Solution quality comparison for transposable N:M mask generation. For various N:M
sparsity patterns, we evaluate all methods on 100 M xM blocks sampled from LLaMA3
model weights. We report the average relative error, defined as (f(S*) — f(S))/f(S*), where
S* is the optimal support and f is the objective defined in (T).

Next, we benchmark computational efficiency on matrices of increasing size. We compare our
method with two CPU-implemented approaches (Network Flow and 2-Approximation) and one
GPU-accelerated method (cuPDLP) across various hardware platforms. Tablem shows our method
consistently achieves the fastest runtimes, delivering up to 300x speedup compared to methods
guaranteeing optimal solutions. While Bi-NM and Max1000 (not shown in the table) offer negligible
runtime overhead, their poor solution quality renders them impractical. This implies that our solver
provides the optimal balance between solution quality and efficiency for large-scale network pruning.

o o cuPDLP TSENOR
Matrix Size | Network Flow | 2-Approximation
V100 AI100 HI100 V100 A100 H100
512 x 512 ‘ 1.82 (40.12) ‘ 0.13 (£0.01) ‘ 14.6 (40.51) 12,1 (£0.66) 7.82 (40.56) ‘ 0.11 (£0.00)  0.16 (£0.00)  0.08 (-0.00)
2048 x 2048 | 233(£089) | 035001 | 2092082 180(EL0D 119 EL08) | 0272000) 020(:000) 012 (£0.00)
8192 x 8192 ‘ 350 (£5.22) ‘ 3.23 (£0.09) ‘ 252 (4£9.65) 28.1 (£1.04) 16.8 (£0.95) ‘ 3.26 (£0.00) 1.74 (£0.00) 1.06 (£0.00)

Table 1: Runtime (seconds) for transposable 8:16 sparsity. For GPU methods, we test on NVIDIA
V100-PCle-32GB, A100-PClIe-40GB, and H100-PCIe-80GB. CPU methods use 16-core parallel
processing. Results are averaged over 10 trials with standard deviations in parentheses.

5.2 LLaMA with transposable N:M sparsity

We evaluate our transposable N:M solver integrated into existing pruning approaches: Wanda

[2023]], SparseGPT [Frantar and Alistarh, 2023]] and ALPS [Meng et al.| 2024a]], using LLaMA-
3.2 [Dubey et al.,[2024]] models with 1 to 8 billion parameters. Performance is assessed via perplexity




and zero-shot benchmarks. Perplexity is computed following HuggingFace’s methodology [Per, 2022]

with full stride on raw-WikiText2 [Merity et al., 2017,

PTB [Marcus et al.,|1994], and C4 [Raffel

et al.,[2020] validation subset. Zero-shot evaluation uses LM Harness [Gao et al.] on PIQA [Bisk
et al.,[2020], ARC-E and ARC-C [Clark et al.| 2018]], Hellaswag [Zellers et al.,|2019], Winogrande
[Sakaguchi et al.,[2021]], RTE [Poliakl [2020]], OpenbookQA [Banerjee et al.,|2019]], and BoolQ [Clark

et al.l 2019]].

5.2.1 Trade-offs: benefits and costs of transposable N:M sparsity

Transposable N:M sparsity enables backward pass ac-
celeration beyond standard N:M sparsity, but imposes
stricter constraints that potentially impact model perfor-
mance. We quantify this trade-off through experiments.

compares perplexity of LLaMA3.2-
8B when pruned to different sparsity patterns, while

[Fig. 4 (Lower)]illustrates computational speedup versus
dense computation. Our results demonstrate that the
performance gap between transposable N:M and stan-
dard N:M diminishes dramatically as M increases from
4 to 32 (by approximately 90%), while transposable
N:M consistently delivers superior speedup (3.3x at
75% sparsity) regardless of M value. This indicates
that transposable N:M sparsity with larger M values
offers an excellent practical trade-off, highlighting the
importance of our efficient solver for arbitrary transpos-
able sparsity patterns.

5.2.2 Integration
with various pruning frameworks

We evaluate our solver’s effectiveness when integrated
into different pruning methods. Table[2]presents the per-
formance of LLaMA3.2-3B after one-shot pruning with
various frameworks. As expected, applying transpos-
able N:M sparsity directly with Wanda or SparseGPT
results in significant accuracy degradation. However,
integrating our solver with ALPS, which minimizes lay-
erwise reconstruction error, successfully recovers most
of the performance loss. Notably, our approach com-
bined with ALPS produces transposable N:M sparse
models that slightly outperform standard N:M sparse
models obtained through SparseGPT, while providing
additional computational benefits.
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Figure 4: Upper: perplexity of LLaMA3.2-
8B pruned by ALPS with TSENOR, com-
paring standard and transposable N:M spar-
sity across different N:M patterns. (2)
Lower: Computational speedup for for-
ward and backward matrix operations in
LLaMA3.2-8B, comparing (transposable)
N:M sparse matrices (via nmSPMM [Ma
et al.| [2025]]) against dense matrices (via
NVIDIA cuBLAS).

s lﬁ%‘y Algorithm T o Perplexity (]) Zero-shot (1)

C4 WT2 PTB PIQA HS ARC-E ARC-C WG RTE OQA BoolQ Avg

SparseGPT X 139.67 120.22 183.01 53.86 28.80 29.50 21.67 4846 54.15 2720 6223 40.74

ALPS X 80.12 82.28 110.73 56.64 3127 32.66 19.80 5138 5235 27.00 61.99 41.63

8:32 TSENOR+Wanda v 73379.13  100992.48 289678.69 50.98 26.06 24.83 27.99 5012 5271 2660 5526 39.32
TSENOR+SparseGPT v 239.08 302.73 378.69 5256 2733 28.62 23.04 4980 5271 2640 4135 3772
TSENOR+ALPS v 111.36 163.18 178.60 5490 2892 3043 2039 5099 53.07 26.60 61.22 40.81
SparseGPT X 18.11 13.02 20.37 73.12 6227  62.67 3481 6575 60.65 3520 71.53 58.25

ALPS X 16.74 12.06 18.78 73.56  64.10 64.48 36.52  66.54 57.40 39.00 72.81 59.30

16:32 TSENOR+Wanda v 436.13 262.78 36391 5729 30.54  37.79 21.25 5028 5271 2560 49.82 40.66
TSENOR+SparseGPT v 20.29 14.80 23.81 7236 58.69 59.64 33.02  63.06 53.79 3420 6599 55.10
TSENOR+ALPS v 18.03 13.08 2043 7296 6143 6322 38.05 6346 5740 3560 7232 58.06

Table 2: Performance analysis for (transposable) N:M pruning on LLaMA3.2-3B model. Lower
values are preferred for perplexity, and higher values are preferred for zero-shot tasks.



5.2.3 Fine-tuning transposable N:M sparse models

N)
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—m— TSENOR
18.9

N
N
N

We fine-tune transposable N:M sparse models pruned
with our approach (TSENOR+ALPS) on C4 and compare
their perplexity against Bi-NM [Zhang et al.| [2023]],
which trains a non-transposable N:M network using gra-
dients approximately calculated through a transposable
mask. As shown in Figure[5} Bi-NM performs slightly
better when M=4, but our approach achieves progres- Figure 5: Perplexity comparison of
sively lower perplexity as M increases. This is because LLaMA3.2-1B under two pruning ap-
transposable sparsity with larger M values has smaller proaches: (1) TSENOR+ALPS followed by
impact on model performance, and our method’s use fine-tuning, and (2) standard N:M pruning
of exact gradients during fine-tuning which leading to  followed by retraining via Bi-NM.

more effective parameter update. Refer to Appendix

[B.2.6|for a comprehensive comparison between TSENOR+ALPS and Bi-NM.
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6 Limitations and future work

While our work presents efficient algorithms for computing transposable N:M masks and transposable
N:M sparse models and demonstrates computational speedup on matrix operations, several directions
remain unexplored. Developing an end-to-end training pipeline that fully realizes the practical acceler-
ation from transposable N:M sparsity would strengthen the applicability of our method. Additionally,
comparing the computational cost and model quality trade-offs between transposable N:M sparsity
and parameter-efficient fine-tuning methods (e.g., LoRA [Hu et al., 2021]], SPP [Lu et al.,|2024])
would provide valuable guidance for practitioners. Another promising direction is incorporating
channel-wise permutations of weight matrices before computing transposable N:M masks. While
this approach has proven successful for standard N:M sparsity [Pool and Yul 2021], extending it to
the transposable setting remains unexplored. Despite introducing a complex combinatorial optimiza-
tion problem, such extension might substantially improve pruning quality. Similarly, it would be
interesting to explore loss functions that go beyond simple layerwise reconstruction error [Lucas and
Mazumder]. We believe these directions represent important future paths for advancing practical
sparse model deployment.

7 Conclusion

In this paper we present TSENOR—a novel efficient algorithm for generating high-quality trans-
posable N:M sparse masks. TSENOR solves an entropy-regularized optimal transport problem and
applies a new rounding procedure combining greedy selection with local search. By using tensor
operations throughout, our method achieves significant speedup through GPU acceleration and scales
to billion-parameter language models. We can incorporate TSENOR within several existing layerwise
pruning frameworks to create transposable N:M sparse LLMs with any N:M pattern. Our experiments
show that networks with larger M values (e.g., 16:32) provide the same computational benefits as
smaller M values but with much less impact on model accuracy, demonstrating our method’s practical
value.
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A Technique Details

A.1 Proofs of main results

A.1.1 Derivation of Dykstra’s algorithm

In Section[3.2] we focus on solving the capacity-constrained optimal transport problem with entropy
regularization:

1
mSaX<S,|VV‘>+*H(S) S.t. SlA[:Nljyj, STlM:NlM, 0§S§1 (11)
T

The objective of (TI) can be reformulated as follows:

(SIWI) L8 = 3 8,1W, - L8, s,

1,j=1

S; 12
_ Z SZJ log <eT|Wu|> (12)

2]1

1
=——DkL(S || W;)
-
where W, = exp(7|W|) and Dk, (S || W) denotes the Kullback-Leibler divergence of S from
‘W .. Therefore, the optimization problem can be reformulated as:

3
min Di1,(S || W-) st. S € ¢, (13)

=1
where
Ci={S|S1lyy=N1y}, Co={S|ST1y, =N1y},C3={S|0<S<1}. (14)

This formulation can be interpreted from the perspective of Bregman projections [Bregman, [1967].
The Kullback-Leibler divergence is a special case of the Bregman divergence generated by the
negative entropy function. For any Bregman divergence D, the Bregman projection of a point y
onto a convex set C is defined as:

Pg(y) = arg Hclin Dy(x,y). (15)
xE

In our context, problem (13]) represents the Bregman projection of W onto the intersection of the

constraint sets ﬂle C; with respect to the KL divergence. While computing this projection directly
is challenging, Dykstra’s algorithm [Dykstral |[1983]] provides an iterative approach by alternately
projecting onto each constraint set.

Dykstra’s algorithm for Bregman projections begins by initializing:
SO =wW_ and QEO) = (0) Q(O) =1pxm- (16)
At each iteration ¢, for each constraint set C; (i = 1, 2, 3), the algorithm performs:
S(t+i/3) _ Pé(iL(S(t+(i—1)/3) o QE:&))7 and Ql(t+1) _ Q7(:t) o (S(t+(i—1)/3) %) S(t+i/3)) (17)
where PEY(S) = argmin, .. KL(y || S) denotes the KL projection onto set C, © and @ denote

element-wise multiplication and division, respectively. For our specific constraint sets, the projection
operations can be derived analytically:

1. For the row sum constraint C1, the KL projection has the closed-form solution:

PEE(S) = Diag <SJ1VM> S (18)

This is a row-wise scaling operation that ensures each row sums to /V.
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2. Similarly, for the column sum constraint Cs, the projection is:

N
KL .
Pc, (S) = SDiag (ST1M> (19)
This performs column-wise scaling to satisfy the column sum constraint.
3. For the capacity constraint Cs, the projection is:
PEL(S) = min(S, 1) (20)

This element-wise thresholding operation ensures all entries remain bounded by 1.

Notably, for constraints C; and Co, the dual variables gt) and Qgt) can be eliminated from the
implementation. This simplification arises because the projection onto C; scales each row by a

constant factor to ensure the row sum equals N. When we subsequently update Qgt) according to
the ratio between the pre-projection and post-projection matrices, these scaling factors are precisely

encoded in Qgt). However, in the next iteration, when we project s® @ Qgt) onto C;, the row-
wise scaling operation will normalize each row to sum to N regardless of the initial scaling. Thus,

incorporating Qgt) has no effect on the final projection result. An identical argument applies to the

column constraint Cs and its corresponding dual variable Qg). As aresult, we only need to maintain a
single dual variable Q corresponding to the capacity constraint C3. The complete simplified algorithm
is presented in Algorithm [I]

A.1.2  Proof of Proposition I]

We derive the ADMM update rules by sequentially minimizing the augmented Lagrangian with
respect to each variable. First, we consider the W-update: W (1) = arg miny, L,(W,D® V(®),
Since L,(W, D®,V®) is a quadratic function of W, we can find the minimizer by setting the
gradient to zero:

VwL,(W, DO VO) = (XTX + AI)(W - W)+ VO £ W -D®)=0 (1)
Letting H = X T X + I, this yields the closed-form solution:
WD) = (H + pI) " (HW — V) 4 pD(®) (22)

Next, we consider the D-update: D**1) = argminp, L,(W#+1) D, V®). This is equivalent to
solving:

; ®) wt+l) _ Piwt+D) _ P2
glég(V W D) + 2HVV D|% (23)

Completing the square and removing constant terms with respect to D, we have:

2
Plp - (W(t“) v )H 24
gleerl 2 H * /p F @4

The constraint D € T requires D to have a specific sparsity pattern, which we can represent using
a binary mask S where S;; = 1 indicates that D;; can be non-zero. Given a fixed support defined
by S, the optimal values for non-zero elements are exactly those of the unconstrained solution
WD) £ V() /p Thus, we can express D as:

D-— (W(‘“) +VO /p) ©S 25)

Our objective now becomes determining the optimal binary mask S. Substituting this representation
of D into the objective:

p Z_p 2
w4 vO o8 - (WD L v )| = Z[WS-“ + Vi /01 -8y

_P (t+1) () \2
=3 Z(W” + Vi’ /p)"(1 = Syj)

(26)
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The last equality follows since S;; € {0,1} implies (1 — S;;)? = (1 — S;;). Minimizing this
expression is equivalent to maximizing:

2
max Z Si; (WSH) + VS) / p) s.t. S is a binary mask with transposable N:M sparsity
4,J

27
Once the optimal mask S is determined, we recover DD gs:
DD — (W(H-l) + V(t)/p) ®8 (28)
Finally, the dual update follows the standard ADMM methodology:
vt —v(® p(W(H'l) — D(t+1)) (29)

In practice, we employ an adaptive penalty parameter p; that varies across iterations, resulting in the
following update rules:

WD) = (H + p,I) ' (HW — V) 4+ p,D®),
DD — (W(t+1) + V(t)/Pt> o S(t+1)’ (30)
v+ — yv(©® L pt(w(tﬂ) . D(t+1))

This completes the proof of Proposition

A.1.3 Convergence of update (30)

We begin by formalizing our assumptions regarding the penalty parameter sequence and the quality
of each D+1) ypdate.

Assumption 1. The penalty parameters {p;};2, in (80) are chosen to be an increasing sequence
such that Ztoi 1 1/pi converges. Additionally, the binary mask S+ obrained Jfrom our solver does
not decrease the objective in (T0) compared to S, i.e.,

>os (WSH) + Vz(;)/pt) >3 sl (W(t“) +V /pt) : 31)

,J ,J

Assumptionis mild in practice. To ensure .-, 1/p; converges, we can simply select {p; }52,
as an increasing geometric sequence. The second condition is readily satisfied by comparing the
objective value of S(**1) obtained from our binary mask solver with that of S(*), and defaulting to
S+ — S(*) whenever the new solution would decrease the objective (though empirically, this
safeguard never triggers).

We now restate the convergence theorem in its complete form:

Theorem 1 Under Assumpnonl 1| let {D Yoo and {W®) }i2 g be the sequences generated accord-
ing to . Then there exists a matrix W such that DY) — W and W — W as t — oc.

Proof of Theorem[I] The majority of this proof follows from the convergence analysis in [Meng
et al.,|2024a| Theorem 1], as we employ identical W and V update rules. The critical distinction lies
in our D-update step, specifically in establishing the following inequality, which cannot be directly
borrowed from the original proof:

HD(t+l) o (W(t+1) 4 V(t)/pt)

2 2
’F < HD“) — (WD VO )| (32)
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To establish this inequality, we proceed as follows:
HD(t+1> _ <W<t+1> . V(t)/pt) H2 _ H (W<t+1> L V(t)/pt) 61— S<t+1>)H2

F
_ Z S(t+1 (W(t-H) LV t)/p )
< Z S(t) ( (t+1) + V(t)/p ) (33)

(W<t+1> L V(t)/pt) 61— S(t))Hi

<[ (e v
- F

Here the first equality follows from the representation D¢+1 = (WD + V) /p,) © S+ the
first inequality follows directly from Assumption[I} and the final inequality leverages the fact that

M _oirs® —
D" =0ifS{Y = 0.

Having established inequality (32), all remaining components of the convergence proof from [Meng
et al.| [2024a, Theorem 1] apply directly to our setting. Therefore, the sequences {D(t 12, and
{W(t) 120, converge to a common limit W, completing the proof.

A.2 Algorithmic implementation details

In this section, we present our tensor-based implementation of Algorithms[I]and[2] which enables
parallel processing of millions of weight blocks simultaneously on GPUs, yielding significant
computational speedup.

Our implementation is based on PyTorch. Given a weight matrix W and the desired transposable
N:M sparsity parameters, we first reshape the matrix into a tensor of shape (B, M, M), where B
represents the number of M x M blocks. All algorithmic operations are then applied simultaneously
to this batched tensor representation.

Implementation of Algorithm [I] The Dykstra algorithm naturally lends itself to tensor-based
operations as it primarily involves matrix-vector multiplications and element-wise operations. These
operations are directly parallelizable across all blocks through PyTorch’s built-in broadcasting
mechanisms. A critical implementation detail is performing all operations in log-space to ensure
numerical stability, particularly when using large entropy regularization parameters 7:

def log_softmax_normalize(x, dim, N):
# Stable log-domain normalization
lse = torch.logsumexp(x, dim=dim, keepdim=True)
return x - (lse - torch.log(torch.tensor(N)))

# Batched Dykstra projections in log-space

log_S = tau * torch.abs(batch_W)

for _ in range(max_iter):
# Projection 1: Row marginal (sum_i exp(log_S) = N)
log_S = log_softmax_normalize(log_S, dim=1, N=N)

# Projection 2: Column marginal (sum_j exp(log_S) = N)
log_S = log_softmax_normalize(log_S, dim=2, N=N)

# Projection 3: Capacity constraint (S <= 1)

log_tmp = log_S + log_Q

log_S = torch.minimum(log_tmp, torch.zeros_like(log_tmp))
log_Q = log_tmp - log_S # Dual variable update
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Implementation of Algorithm[2] Vectorizing the rounding procedure presents greater challenges
due to its conditional logic and iterative selection process. We overcome these challenges through
careful masking and parallel accumulation operations. The key insight is transforming conditional
logic into parallel tensor operations that work across all blocks simultaneously. For the greedy
selection phase, we pre-compute all sorted indices and then use Boolean masks and accumulation
counters to track row and column capacities across all blocks in parallel. For the local search phase,
we similarly transform the conditional swap operations into tensor-based score computation and
masked updates, enabling simultaneous identification of deficit rows/columns and optimal swap

positions across all blocks.

# Vectorized greedy selection

sorted_idx = abs_blocks.flatten(1l).argsort(dim=1, descending=True)

rows, cols = sorted_idx // M, sorted_idx % M

row_counts, col_counts = torch.zeros((B, M), torch.zeros((B, M))
mask = torch.zeros((B, M, M), dtype=torch.bool, device=device)
batch_idx = torch.arange (B, device=device)

for k in range (MxM):
r, ¢ = rows[:, k], cols[:, k]
can_select = (row_counts[batch_idx, r] < N) &
(col_counts[batch_idx, c] < N)

# Update mask and counters for all blocks simultaneously
mask [batch_idx, r, c] |= can_select

row_counts [batch_idx, r] += can_select
col_counts[batch_idx, c] += can_select

# Vectorized local search

for _ in range(num_iter):
# Find unsaturated rows and columns
row_deficit = mask.sum(dim=2) < N # Shape: (B, M)
col_deficit = mask.sum(dim=1) < N # Shape: (B, M)
needs_fix = row_deficit.any(dim=1) | col_deficit.any(dim=1)

# Select deficit rows/columns (according to some criteria)
row_idx = select_deficit(row_deficit)

col_idx = select_deficit(col_deficit)

# Compute and apply optimal swaps across all blocks

score = compute_swap_scores(w, mask, row_idx, col_idx)
max_score, flat_idx = score.flatten (1) .max(dim=1)
swap_valid = (max_score > 0) & needs_fix

# Apply swaps only to blocks needing improvement
update_blocks = torch.where(swap_valid) [0]
apply_swaps (mask, update_blocks, row_idx, col_idx, flat_idx)

B Experimental Details

B.1 Experimental setup

Computing environments All experiments were conducted on a computing cluster. Unless
otherwise specified, we utilized an Intel Xeon Gold 6248 machine with 20 CPU cores and a single
NVIDIA A100 GPU, featuring 192GB of system RAM and 40GB of GPU memory. All language
models and pruning methods were implemented using the PyTorch library |Paszke et al.|[2017].

Choice of parameters For Algorithm we set the regularization parameter 7 to 0.005 max;,; |W,;|
and limit the maximum iterations to 7' = 300. In Algorithm 2] we perform L = 10 local search steps
to refine the solution.
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Implementation Details We provide configuration and implementation specifications for both
baseline methods and integration frameworks utilized in our comparative analysis of transposable
N:M sparsity solvers. For baseline methods:

* Network Flow: We utilize the official implementation from Hubara et al.| [2021a]] (accessible via
GitHub) and adapt it for transposable N:M mask generation. To optimize computational efficiency,
we employ CPU multi-processing with 16 parallel threads.

» 2-Approximation: We utilize the official implementation from |[Hubara et al.|[2021a]] (accessible
via|GitHub)) and adapt it for transposable N:M mask generation. Similarly, we maximize throughput
via CPU multi-processing with 16 parallel threads.

* Bi-NM: We adapt the method from [Zhang et al., |2023|] with slight modifications. First, we
apply magnitude-based row-wise N:M sparsity to weight matrix W, generating mask S; such that
W © S; satisfies row-wise N:M sparsity. Subsequently, we impose column-wise N:M sparsity
on W ©® S; to obtain mask S. The composite mask S; ® Ss then satisfies the transposable N:M
sparsity requirement.

* cuPDLP: We employ the official Julia implementation from [Lu and Yang| [2023]] (accessible
via GitHub). For this method, we reformulate problem as a linear programming problem
by relaxing the binary constraint S;; € {0,1} to S;; € [0, 1]. This relaxed formulation is then
processed by cuPDLP. Notably, we apply cuPDLP directly to the entire weight matrix rather than
partitioning it into multiple M x M submatrices (i.e., solving (3) block by block), as the latter
approach would significantly inhibit GPU acceleration capabilities.

Below are the implementation specifications for the N:M pruning frameworks with which we
evaluated and integrated our proposed solver TSENOR:

» SparseGPT: We adopt the official implementation from [Frantar and Alistarh| [2023]] (accessible
via GitHub) and apply the default hyperparameters for one-shot N:M pruning of LLMs.

* Magnitude Pruning: We implement magnitude-based pruning by directly applying our proposed
solver TSENOR to the weight matrices at each network layer to generate transposable N:M masks.

* Wanda: We utilize the official implementation from |Sun et al.| [2023]] (accessible via |GitHub) with
default hyperparameters for one-shot transposable N:M pruning of LLMs. The detailed integration
procedure of our solver with Wanda is elaborated in Section 4]

* ALPS: We employ the official implementation from |Meng et al.| [2024a] (accessible via|GitHub)
with default hyperparameters for one-shot (transposable) N:M pruning of LLMs. The detailed
integration procedure of our solver with ALPS is elaborated in Section 4]

Finetuning and Retraining Details We adopt the official implementation of Bi-NM |Zhang et al.
[2023])(accessible via GitHub), and adapt it for retraining pruned LLMs. To ensure a fair comparison,
we avoid sparse training from scratch. Instead, we first apply magnitude-based N:M pruning to
pre-trained LLaMA3.2-1B, and then retrain the resulting model using Bi-NM.

For both finetuning and Bi-NM retraining, we use a learning rate of 2e-5 and a batch size of size 64
per step. The block size used is 1024 tokens per batch. The effective batch size is obtained by using
a physical batch size of 2 on GPU with 32 gradient accumulation steps before each weight update.
Training is conducted on the first shard of the C4 training dataset, which contains over 150 million
tokens. We employ the Adam optimizer with PyTorch’s default hyperparameters. A cosine learning
rate scheduler is used, with a warmup ratio of 0.03 and no weight decay applied.

B.2 Ablation studies and additional results

B.2.1 Effectiveness of entropy regularization and rounding procedures

We evaluate the individual contributions of each component in our proposed solver TSENOR for
generating high-quality transposable N:M masks. Our analysis compares three distinct rounding
strategies:

 Simple: Sequential application of row-wise N:M sparse rounding followed by column-wise N:M
sparse rounding to obtain the transposable N:M mask.

* Greedy: Implementation of only the greedy selection procedure for rounding (lines 1-8 in Algo-
rithm2)).

* Optround: Our complete proposed rounding approach detailed in Algorithm 2] incorporating both
greedy selection and local search optimization.
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For each strategy, we evaluate performance when rounding the approximate mask generated by
our entropy-regularized optimization (Algorithm|[I). As a baseline comparison, we also apply each
rounding procedure directly to the magnitude of matrix weights (i.e., |[W]). Figurelﬂpresents these
experimental results.

I Entropy + Optround 3 Entropy + Greedy [ Entropy + Simple [ Optround [ Greedy [ Simple

10—1 4

,_.
=)
b

Relative Error
=
S

10*4 4

4:16 8:16 8:32 16:32

Figure 6: Solution quality comparison for transposable N:M mask generation. For various N:M
sparsity patterns, we evaluate all methods on 100 M xM blocks sampled from LLaMA3
model weights. We report the average relative error, defined as (f(S*) — f(S))/f(S*), where
S* is the optimal support and f is the objective defined in (T). “Entropy+" indicates rounding applied
to masks generated by Algorithmm

Our findings demonstrate that each component of our proposed rounding procedure contributes
significantly to mask quality improvement. The greedy selection step reduces error by 50-90%, while
the subsequent local search optimization further reduces error by up to an additional 50%. Moreover,
applying our rounding techniques to the approximate mask generated through entropy regularization
yields solutions with less than 5% error compared to direct application to the magnitude of weight
matrix |W/|. These results conclusively validate the importance of each component in our proposed
methodology.

B.2.2 Acceleration from exploiting GPU parallelism

We assess the computational gains from GPU acceleration and algorithm vectorization in our transpos-
able N:M sparsity solver. Table[3|compares runtime performance of our Dykstra method (Algorithm([T])
and rounding procedure (Algorithm ) across CPU (direct and vectorized) and GPU implementations.

Dykstra method (Algorithm Rounding (AlgorithmE

Matrix Size
CPU V100 A100 H100 CPU CPU(V) V100 A100 H100

512 x 512 ‘ 1.29 (£0.02)  0.04 (£0.00)  0.04 (+0.00)  0.03 (£0.00) ‘ 1.01 (£0.01)  0.21 (£0.00)  0.07 (+0.00) ~ 0.10 (+0.00)  0.05 (+0.00)

2048 x 2048 ‘ 21.1(£0.24)  0.16 (£0.00) 0.10(£0.00)  0.07 (£0.00) ‘ 16.5(+0.17)  2.87(£0.02) 0.11(£0.00) 0.10 (+0.00)  0.05 (+0.00)

8192 x 8192 ‘ 344 (£2.32)  2.99(+0.00) 1.60(£0.00) 0.97 (+0.00) ‘ 270 (£1.30)  38.2(x0.15) 0.27 (£0.00) 0.14 (£0.00)  0.09 (0.00)

Table 3: Runtime (seconds) for transposable 8:16 sparsity tested on four different device: a single
Intel Xeon Gold 6248 CPU, NVIDIA V100-PCle-32GB, A100-PCle-40GB, and H100-PCle-80GB.
CPU(V) denotes vectorized implementation. Results are averaged over 10 trials with standard
deviations in parentheses.

Our hardware-aware design yields remarkable speedups: GPU acceleration provides up to 300x faster
execution for the Dykstra method compared to CPU. For the rounding procedure, our vectorized CPU
implementation achieves an 8x speedup, while GPU acceleration delivers up to 3000x acceleration
over the baseline CPU implementation. These results demonstrate how our tensor operations based
algorithms effectively leverage GPU architectures, particularly for large matrices (8192 x 8192),
enabling efficient processing of state-of-the-art models with minimal computational overhead.
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B.2.3 Layer-wise reconstruction error comparison

We investigate the impact of transposable N:M sparsity on model performance by analyzing layer-
wise reconstruction error in LLaMA3.2-8B after applying the ALPS one-shot pruning method. We

define reconstruction error as HXW - XW|2%/ ||X6\V||% Tablepresents results for various N:M
configurations.

Our analysis reveals that while transposable N:M sparsity increases reconstruction error compared to
standard N:M sparsity, this differential diminishes with larger M values—decreasing from approxi-
mately 30% additional error at small M values to only 7% at larger M values. Notably, at M=32, the
additional error introduced by transposable constraints over standard N:M sparsity is smaller than
the error increment from unstructured to standard N:M sparsity. Furthermore, transposable N:M
sparsity with M=32 produces substantially lower reconstruction error than standard N:M sparsity
with M=4. These findings validate that N:M patterns with larger M values offer superior performance
and underscore the importance of our proposed solver.

50% (uns: 0.021) 62.5% (uns: 0.045)
2:4 4:8 8:16 16:32 | 3:8 6:16  12:32

N:M 0.041 0.031 0.026 0.024 | 0.063 0.055 0.050
Tran N:M | 0.058 0.041 0.032 0.027 | 0.078 0.063 0.056

75% (uns: 0.093) 87.5% (uns: 0.199)
1:4 2:8 4:16  8:32 1:8 2:16  4:32

N:M 0.143  0.121 0.108 0.102 | 0.247 0.227 0.215
TranN:M | 0.184 0.146 0.122 0.109 | 0.291 0.253 0.229

Sparsity

Sparsity

Table 4: Layer-wise reconstruction error for the “self_attn.k_proj” layer in the first block of LLaMA3-
8B, comparing standard N:M and transposable N:M sparsity across different N:M patterns. The
reconstruction error values for unstructured pruning at each sparsity level are shown in parentheses.

B.2.4 Comparing standard and transposable N:M sparsity after fine-tuning

We have compared one-shot pruning performance between transposable and standard N:M sparsity
in Figure[d We now compare fine-tuning performance between these settings across different N:M
patterns on LLaMA3.2-1B in the following table. Similar to one-shot pruning, the performance gap
between transposable N:M and standard N:M diminishes dramatically as M increases from 4 to 32
(by approximately 80%).

Sparsity | 2:4  4:8 816 16:32

N:M 194 18.1 174 17.1
TranN:M | 22.1 19.7 184 17.7

Table 5: Perplexity comparison of LLaMA3.2-1B pruned using ALPS with TSENOR followed by
fine-tuning, evaluated on both standard and transposable N:M sparsity across various N:M patterns.

B.2.5 Comprehensive model performance across N:M sparsity patterns

We evaluate the performance of one-shot pruning methods by comparing SparseGPT, ALPS, and
TSENOR integrated with various techniques (MP, Wanda, and ALPS) on LLaMA models, as pre-
sented in Tables Our experiments examine both standard N:M and transposable N:M sparsity
patterns across multiple configurations (1:4, 2:8, 4:16, 8:32, 2:4, 4:8, 8:16, and 16:32). Performance
evaluation contains perplexity on WikiText2, PTB, and C4 datasets, as well as reasoning abilities
assessed through accuracy on PIQA, ARC-Easy (ARC-E), ARC-Challenge (ARC-C), Hellaswag
(HS), Winogrande (WG), RTE, OpenbookQA (OQA), and BoolQ.
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N:M . Perplexity (]) Zero-shot (1)
. Algorithm Transp

Sparsity c4 WT2 PTB PIQA HS ARC-E ARC-C WG RTE OQA BoolQ Avg
SparseGPT X 738.04 1103.67 977.13 50.82 2623 28.20 2338  51.22 50.54 2680 38.87 37.01
ALPS X 203.17 236.28 284.55 5430 27.77 29.63 21.59 50.83 54.15 2640 4281 3844
1:4 TSENOR+Wanda v 264880.44  379528.66  332039.06 50.05 26.67 25.29 26.19 4972 4729 30.60 3859 36.80
TSENOR+SparseGPT v 3812.92 8804.32 8825.35  51.03 2553 25.80 26.11  50.12 5235 2840 3826 37.20
TSENOR+ALPS v 788.83 1032.93 1570.19 5229 2583 27.36 25.09 4822 51.99 2640 3881 37.00
SparseGPT X 377.12 474.92 457.05 5294 27.84 30.60 21.84 4925 5235 2520 43.67 37.96
ALPS X 173.36 161.46 195.52 56.37 28.67 32.28 21.59 5178 5271 2580 46.82 39.50
2:8 TSENOR+Wanda v 1144164.00 1047911.25 593504.12 51.58 25.75 25.80 2662 4949 4874 2820 5275 38.62
TSENOR+SparseGPT v 1931.98 3395.00 4627.83 5250 26.07 27.74 2278 4893 50.90 28.00 4095 37.23
TSENOR+ALPS v 363.74 472.95 563.83 5299 2724 29.67 21.50 4878 53.79 2640 4101 37.67
SparseGPT X 25321 246.20 230.20 54.19 2797 3051 20.73 4893 5271 2640 49.88 3892
ALPS X 149.47 132.16 184.76 5577 28.65 31.94 2090 5249 51.99 2500 51.01 39.72
4:16 TSENOR+Wanda v 128702.87  118177.39  77005.69  51.25 26.71 24.75 25.60  49.96 4838 2840 4523 3753
TSENOR+SparseGPT v 906.56 1434.63 1882.64  52.88 2647 28.16 2295 4949 5199 24.60 3972 37.03
TSENOR+ALPS v 218.61 256.94 298.77 53.48 27.83 29.63 21.33 5091 5235 26.80 4257 38.11
SparseGPT X 228.11 227.82 292.42 5490 27.94 30.68 22.18  49.64 5271 2580 61.04 40.61
ALPS X 128.57 116.78 140.46 55.66 28.86 32.07 2133 51.85 5271 2580 60.67 41.12
8:32 TSENOR+Wanda v 142482.83  109316.03  76792.27  51.74 26.88 25.42 2671 5146 5271 2940 4673 38.88
TSENOR+SparseGPT v 605.25 889.53 1389.67 5479 26.89 30.60 23.04 5107 51.62 2720 38.17 37.92
TSENOR+ALPS v 169.09 176.82 217.66 53.10 2793 3098 22,10  50.83 53.07 28.00 4125 3841
SparseGPT X 44.96 32.69 50.79 62.57 39.18 41.92 23.63 5493 5451 2920 62.17 46.01
ALPS X 35.14 26.50 41.13 63.60 41.92 44.11 2568 5541 5271 30.60 6232 47.04
2:4 TSENOR+Wanda v 12718.35  32041.32 30749.90 52,67 27.19 27.78 23.63 5036 5271 2420 4199 37.56
TSENOR+SparseGPT v 93.09 87.79 106.94 56.58 31.33 3481 21.50 5201 5379 2620 60.70 42.12
TSENOR+ALPS v 56.11 SL11 75.79 59.09 3489 3691 2329 5091 53.07 27.00 62.14 4341
SparseGPT X 33.33 24.77 38.71 65.56 4337 44.87 2585 5430 5379 3140 62.17 47.66
ALPS X 27.56 20.56 32.89 68.01 4691 4886 28.50 5675 52.71 3280 62.17 49.59
4:8 TSENOR+Wanda v 1226.75 129331 1546.12 5413 2850 31.23 21.76 4933 5271 2340 4073 37.72
TSENOR+SparseGPT v 52.08 42.09 60.47 60.99 37.59 39.06 25.17  53.04 53779 28.00 6101 44.83
TSENOR+ALPS v 37.94 29.76 47.25 6436 41.08 40.82 2577 5541 5235 28.60 62.14 46.32
SparseGPT X 28.02 20.27 33.15 67.03 4726 4815 27.82 5541 5271 3180 6232 49.06
ALPS X 24.22 17.77 28.78 67.57 49.87 49.96 28.16  57.06 52.71 3180 63.52 50.08
8:16 TSENOR+Wanda v 610.70 483.12 446.68 56.64 30.01 33.33 21.76  50.75 54.87 2220 3994 38.69
TSENOR+SparseGPT v 39.72 31.93 51.89 63.44 4057 43.86 2432 5430 54.87 2820 61.87 4643
TSENOR+ALPS v 30.38 22.82 36.23 66.10 4475 47.01 2747 5651 53.07 3020 62.14 4841
SparseGPT X 26.91 19.13 32.14 66.97 4845 48.19 2747  55.88 5343 33.00 6226 49.46
ALPS X 22.97 16.75 27.61 68.88 51.30 50.34 30.03 5643 5271 3280 6294 50.68
16:32  TSENOR+Wanda v 144.48 115.23 173.61 6121 36.12 38.72 23.89 51.54 5126 2520 47.19 41.89
TSENOR+SparseGPT v 31.96 24.16 40.13 64.53 4438 46.63 26.11  56.04 52.71 29.60 62.11 47.76
TSENOR+ALPS v 25.92 19.12 31.08 6621 47.88 50.55 2995 5580 5451 3020 6239  49.69

Table 6: Performance analysis for (transposable) N:M pruning on LLaMA3.2-1B model. Lower
values are preferred for perplexity, and higher values are preferred for zero-shot tasks.

N:M . Perplexity (]) Zero-shot (1)
N Algorithm Tr

Sparsity c4 WT2 PTB  PIQA HS ARC-E ARC-C WG RTE OQA BoolQ Avg
SparseGPT X 287.89 303.27 389.16 52.77 2817 2832 2321 4878 5271 2720 37.83 3737
ALPS X 142.86 227.03 246.41 54.08 2779 28.62 21.59 50.28 51.99 26.60 5722 39.77
1:4 TSENOR+Wanda v 217413.53 216446.80 23447444 51.14 26.17 2555 27.47 52.80 53.07 2740 4694 38.82
TSENOR+SparseGPT 4 838.06 2068.74 3004.19  52.01 2635 27.10 2568 4925 51.62 28.00 3783 37.23
TSENOR+ALPS v 295.36 526.59 599.66 53.10 27.15 28.07 22.78 50.20 5235 27.60 37.89 37.39
SparseGPT X 196.82 238.63 295.95 5321 2828 2938 21.84  49.01 5126 2680 51.65 3893
ALPS X 103.22 119.57 163.66 5473 29.15 30.18 20.82 4846 5271 26.00 61.87 4049
2:8 TSENOR+Wanda v 163461.16 170679.30  192995.58 51.14 26.14 25.00 27.99 50.04 5379 27.60 4523 3837
TSENOR+SparseGPT 4 452.98 789.27 991.03 52.07 2685 28.16 2355 4972 51.99 3040 37.83 3757
TSENOR+ALPS v 189.88 238.85 288.52 53.10 27.53 28.83 2176 4949 5271 2720 41.74 37.80
SparseGPT X 151.83 151.59 206.49 5332 2849 29.76 21.67 4870 56.68 28.60 61.19 41.05
ALPS X 84.13 95.39 121.15 55.82 3036 31.94 2005 5067 5271 2680 62.14 4131
4:16 TSENOR+Wanda v 60623.27  94040.87  120817.32 50.60 25.84 24.75 27.05 49.64 50.54 2780 5425 3881
TSENOR+SparseGPT v 327.64 395.35 571.11 5239 27.56  29.21 23.81 4799 5271 2540 46.67 3822
TSENOR+ALPS v 137.25 186.89 226.89 5397 28.11 30.39 21.59 50.99 5271 2720 5541  40.05
SparseGPT X 139.67 120.22 183.01 53.86 28.80 29.50 21.67 4846 54.15 2720 6223 40.74
ALPS X 80.12 82.28 110.73 56.64 3127 32.66 19.80  51.38 5235 27.00 61.99 41.63
8:32 TSENOR+Wanda v 73379.13  100992.48 289678.69 50.98 26.06 24.83 27.99 50.12 5271 26.60 5526 39.32
TSENOR+SparseGPT v 239.08 302.73 378.69 5256 27.33 28.62 23.04 4980 5271 2640 4135 37.72
TSENOR+ALPS v 111.36 163.18 178.60 5490 2892 3043 2039 5099 53.07 2660 6122 4081
SparseGPT X 28.30 21.61 34.47 69.10 5045 51.64 28.92 60.54 5235 30.80 68.62 51.55
ALPS X 23.92 18.76 27.28 70.62 5443 56.19 2935  60.54 5235 33.00 6850 53.12
2:4 TSENOR+Wanda v 5433.63 5336.60 4977.34 51.47 2689 27.74 2321 51.07 5271 26.60 37.80 37.18
TSENOR+SparseGPT v 56.12 45.49 87.28 61.81 36.78 40.99 24.23 51.78 5271 2740 6220 4474
TSENOR+ALPS v 41.19 35.02 54.76 63.93 4247 4449 2696 5430 5271 2840 62.87 47.02
SparseGPT X 21.71 16.06 24.90 7046 5757 5741 32.51 63.61 53.07 33.80 7046 54.86
ALPS X 19.43 14.54 2229 7138 5937  60.40 36.01 6535 5921 3540 69.30 57.05
4:8 TSENOR+Wanda v 1142.41 1184.56 974.31 54.03 27775 30.64 22.95 50.59 5271 26.00 4150 3827
TSENOR+SparseGPT v 31.15 24.33 36.81 67.79 4937 50.84 28.24 58.33 57.04 31.00 6538 51.00
TSENOR+ALPS 4 25.65 20.11 29.75 69.37 5249 55.09 2927  59.19 5776 33.00 67.16 5292
SparseGPT X 19.21 13.99 22.00 73.07 60.56 61.83 34.30 63.06 58.12 34.60 7135 57.11
ALPS X 17.60 12.92 20.02 73.12 6238 64.14 37.88 66.30 55.60 36.40 72.84 5858
8:16 TSENOR+Wanda v 966.21 686.54 729.43 5598 2928 34.72 2244 4933 5271 2600 4810 39.82
TSENOR+SparseGPT v 23.92 17.75 27.56 7024 55.56 56.23 31.48 59.75 55.60 32.80 65.69 53.42
TSENOR+ALPS 4 20.28 15.11 2297 7220 5854 60.23 3532 61.64 51.99 3540 70.03 55.67
SparseGPT X 18.11 13.02 20.37 73.12 6227 62.67 34.81 65.75 60.65 3520 71.53 5825
ALPS X 16.74 12.06 18.78 73.56  64.10 64.48 36.52 66.54 57.40 39.00 72.81 59.30
16:32  TSENOR+Wanda 4 436.13 262.78 363.91 57.29 30.54  37.79 2125 5028 5271 25.60 49.82  40.66
TSENOR+SparseGPT v 20.29 14.80 23.81 7236 58.69 59.64 33.02 63.06 53.79 3420 6599 55.10
TSENOR+ALPS v 18.03 13.08 20.43 7296 6143 63.22 38.05 6346 5740 3560 7232 58.06

Table 7: Performance analysis for (transposable) N:M pruning on LLaMA3.2-3B model. Lower
values are preferred for perplexity, and higher values are preferred for zero-shot tasks.
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N:M Perplexity (|) Zero-shot (1)

oot Algorithm Transp
Sparsity Cc4 WT2 PTB PIQA HS ARC-E ARC-C WG RTE OQA BoolQ Avg
SparseGPT X 188.81 221.53 317.36 5245 28.07 29.17 2133 4791 5415 2680 37.98 37.23
ALPS X 139.22 143.71 162.76 54.57 28.88 31.23 2022 49.01 5235 2640 4593 3857
1:4 TSENOR+Wanda v 1828046.38 2090725.00 2004626.25 50.16 2621 25.21 25.17 4949 5343 2780 4560 37.88
TSENOR+SparseGPT v 563.23 1116.69 1077.45 50.82 2626 28.66 23.89 4949 5235 2780 37.83 37.14
TSENOR+ALPS v 21325 339.98 354.03 5277 2727 2942 20.82  49.17 5235 2720 3783 37.10
SparseGPT X 130.02 158.07 182.28 53.54 28.65 29.92 23.04 49.80 53.07 27.60 4052 3827
ALPS X 79.71 97.96 119.74 5598 3145 31.19 2176 5193 5271 2640 6131 41.59
2:8 TSENOR+Wanda v 33737247 406156.78  230973.56  50.38 2648 26.14 2671 4878 5199 2820 53.09 3897
TSENOR+SparseGPT v 272.81 406.95 414.92 5234 27.18 28.62 2193 4870 5271 2640 37.83 36.96
TSENOR+ALPS v 146.05 173.42 202.56 53.54 2827 29.55 20.65 49.72 5271 2640 38.62 3743
SparseGPT X 98.23 107.82 132.00 55.11  29.79 31.82 2005 5122 5271 2620 6055 4093
ALPS X 65.58 64.25 92.76 57.83 3326 33.25 2099 5414 5379 2720 62.14 4283
4:16 TSENOR+Wanda v 98070.10  103645.22  106283.87  51.52 2625 25.67 2637 5036 51.99 3040 37.89 37.56
TSENOR+SparseGPT v 208.27 293.87 348.83 5321 27.65 2849 2244 5051 5235 2620 37.83 37.34
TSENOR+ALPS v 111.71 140.05 166.55 54.13 2921 30.18 21.16  50.67 5271 26.60 43.58 3853
SparseGPT X 90.09 89.71 115.57 56.09 30.60 31.44 2090  51.62 5271 2860 60.15 41.51
ALPS X 58.47 53.14 74.37 5892 3478 3531 21.76 5225 5271 2880 62.75 43.41
8:32 TSENOR+Wanda v 79085.44  53720.92 37028.44 5092 2592 26.05 2594  50.67 5162 29.80 3835 3741
TSENOR+SparseGPT v 170.92 214.02 317.44 53.05 2732 2875 2270 4933 5271 2880 39.02 37.71
TSENOR+ALPS v 99.95 152.66 155.01 5511 29.59 30.81 2142 5028 5271 2680 5028 39.62
SparseGPT X 22.54 16.19 25.46 7220 57.89 59.18 3447 6472 5415 3440 7333 5629
ALPS X 19.67 14.61 22.18 73.83  61.67 6l.11 3592 67.17 5632 3480 7352 58.04
2:4 TSENOR+Wanda v 4010.53 4784.25 4851.96 5272 2751 29.59 2321 5028 5271 2620 3844 37.58
TSENOR+SparseGPT v 37.51 28.31 46.15 63.87 4372 39.56 2346 5580 53.07 28.60 6624 46.79
TSENOR+ALPS v 32.65 24.74 39.00 67.85 4820 4832 28.75  58.09 5271 2920 66.18 4991
SparseGPT X 17.50 1231 18.55 7437 6540 6242 38.14  69.30 5523 3720 75.08 59.64
ALPS X 16.06 11.31 16.63 7590 6738 65.99 40.10  69.38 61.37 38.00 7847 62.07
4:8 TSENOR+Wanda v 1024.43 952.47 1390.95 5495 2970 34.09 2235 5099 53.07 2720 3933 3896
TSENOR+SparseGPT v 24.13 17.33 27.61 7040 5630 55.35 31.57 6354 5451 3300 7413 54.85
TSENOR+ALPS v 21.79 15.77 23.34 73.01 5998 61.45 3439 6638 57.76 3440 69.94 57.16
SparseGPT X 15.48 10.66 16.04 7563 6841 6574 4070 69.69 59.93 39.00 77.55 62.08
ALPS X 14.70 10.08 15.14 76.55 70.35 68.06 4172 7072 5848 38.60 77.92  62.80
8:16 TSENOR+Wanda v 383.74 291.99 413.10 57.78 3244 3742 22.35 5241 5235 2740 44.04 40.77
TSENOR+SparseGPT v 18.55 13.10 19.79 73.56 6291 61.15 37.03 6551 5740 37.60 74.13 58.66
TSENOR+ALPS v 17.03 11.96 17.98 7590 6624 66.62 3831 6796 56.68 36.60 77.37 60.71
SparseGPT X 14.72 9.92 15.41 76.71  69.66  68.69 4215 7127 59.93 39.60 76.82 63.10
ALPS X 14.02 9.47 14.60 7175 7159 68.98 4352 70.88 6245 4020 78.47 64.23
16:32  TSENOR+Wanda v 338.95 219.25 379.07 61.04 3411 44.82 2500 5296 5271 28.80 55.17 44.33
TSENOR+SparseGPT v 16.76 11.40 17.56 73.18 6580 64.06 38.57 6732 60.65 3680 7434 60.09
TSENOR+ALPS v 15.11 10.28 15.74 76.50 68.64 68.81 41.13 6780 61.37 39.00 79.11 62.80

Table 8: Performance analysis for (transposable) N:M pruning on LLaMA3.2-8B model. Lower
values are preferred for perplexity, and higher values are preferred for zero-shot tasks.

B.2.6 Additional results on fine-tuning transposable N:M sparse models

We show the results of fine-tuning transposable N:M sparse models pruned with our approach
(TSENOR+ALPS) and compare against Bi-NM [Zhang et al.l 2023]] across multiple sparsity configura-
tions (1:4, 2:8, 4:16, 8:32, 2:4, 4:8, 8:16, and 16:32). Performance evaluation includes perplexity
measurements on WikiText2, PTB, and C4 datasets, as well as reasoning abilities assessed through
accuracy scores on PIQA, ARC-Easy (ARC-E), ARC-Challenge (ARC-C), Hellaswag (HS), Wino-
grande (WG), RTE, OpenbookQA (OQA), and BoolQ.

Method | Config | C4, WT2, PTB||PIQAT HST ARC-ET ARC-Ct WG?T RTET OQAT BoolQt Avgt
Bi-NM 14 | 7274 10457 12019 | 57.18 2773 33.63 2176 5138 5343 2540 6190 4155
TSENOR+ALPS | 1:4 | 4884 57.66 7504 | 5816 2828 3451 261 5241 5343 2440  62.08  41.99
Bi-NM 28 | 5359 69.83 9271 | 5936 29.06  34.68 2253 5012 5271 2540  60.64 4181
TSENOR+ALPS | 2:8 | 4027 4421 5742 | 59.85 2994 3502 21.16 4996 5307 2580 6141  42.03
Bi-NM 416 | 4581 5677 7702 | 6083 2997 3641 2159 50.83 5379 2440  61.62 4243
TSENOR+ALPS | 4:16 | 35.66 3749 5127 | 6121 3274 3624 2210 5414 5271 2820 6211  43.68
Bi-NM 832 | 4225 4639 6322 | 6115 3084  37.58 2363 5154 5271 2580 5437 4220
TSENOR+ALPS | 8:32 | 3342 3325 4726 | 6213 3390 3775 2278 5154 5343 27.00  62.17  43.84

Table 9: Performance analysis for (transposable) N:M pruning on LLaMA3.2-1B model. Lower
values are preferred for perplexity, and higher values are preferred for zero-shot tasks.
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Method | Config | C4) WT2, PTB||PIQAT HST ARCET ARC-CT WGT RTET OQAT BoolQ7 Avg?

Bi-NM 2:4 36.02  42.64 63.22 6240  32.07 36.78 23.29 51.14 5343 26.40 59.57 43.14
TSENOR+ALPS 2:4 30.69 36.88 52.06 61.97  32.02 37.42 23.63 51.46 5379 27.00 53.76 42.63
Bi-NM 4:8 30.65 35.67 51.87 63.11 33.19 37.46 23.81 51.78  49.82 28.00 54.56 42.71
TSENOR+ALPS 4:8 27.76 31.95 44.43 63.76  33.09 37.25 22.78 51.54  53.79 28.00 59.91 43.77
Bi-NM 8:16 28.70 33.48 46.47 6333 33.85 37.79 23.55 51.54 5235 27.60 56.24 43.28
TSENOR+ALPS 8:16 26.28 30.33 40.71 63.60  34.08 39.27 24.40 4933 5343 28.60 57.40 43.76
Bi-NM 16:32 | 27.84 3210 44.68 63.55  33.90 39.02 23.12 49.88 5271 27.00 58.69 43.48
TSENOR+ALPS | 16:32 | 25.57 28.38 39.30 63.28 3441 39.31 23.21 52.01  54.87 28.20 60.12 44.43
Bi-NM 1:4 126.51 272,02 228.17 | 5745 27.10 31.57 20.99 53.67 5235 24.00 53.33 40.06
TSENOR+ALPS 1:4 7235 12232 137.06 | 5696  26.99 31.61 21.33 49.64 5126 23.80 55.41 39.63
Bi-NM 2:8 108.17 193.02 179.63 | 58.27  27.46 33.12 21.42 50.99  53.07 22.60 59.45 40.80
TSENOR+ALPS 2:8 56.41 85.11 99.08 58.49  27.38 33.59 20.99 51.62  53.07 25.00 60.00 41.27
Bi-NM 4:16 97.56  162.79 15425 | 59.58 27091 32.87 21.25 5091 5451 23.80 62.17 41.62
TSENOR+ALPS | 4:16 48.74  67.69 87.67 58.76 2841 33.84 21.42 5241  53.07 24.80 62.23 41.87
Bi-NM 8:32 88.68  144.25 148.01 59.47  28.23 33.38 22.27 50.12 5271 24.80 61.77 41.59
TSENOR+ALPS 8:32 44.41 63.34 82.29 59.09  28.82 33.84 22.70 50.67  51.26 25.40 61.83 41.70

Table 10: Performance analysis for (transposable) N:-M pruning on OPT-350M model. Lower values
are preferred for perplexity, and higher values are preferred for zero-shot tasks.
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: At the beginning of Section[5.2} we cite all the datasets and models used in our
experiments. In Appendix we provide the sources of the code used in our experiments.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Although our work can be applied to LLMs pruning, the core algorithm
developed in our paper does not involve LLMs as important, original, or non-standard
components of the algorithm itself.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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