
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OVERCOMING CATASTROPHIC FORGETTING IN
FEDERATED CLASS-INCREMENTAL LEARNING VIA
FEDERATED GLOBAL TWIN GENERATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Class-Incremental Learning (FCIL) increasingly becomes essential in
the decentralized setting, where it enables multiple participants to collaboratively
train a global model to perform well on a sequence of tasks without sharing their
private data. In FCIL, conventional Federated Learning algorithms such as FedAvg
often suffer from catastrophic forgetting, resulting in significant performance
declines on earlier tasks. Recent works based on generative models produce
synthetic images to help mitigate this issue across all classes. However, these
approaches’ testing accuracy in previous classes is still much lower than recent
classes, i.e., having better plasticity than stability. To overcome these issues, this
paper presents Federated Global Twin Generator (FedGTG), an FCIL framework
that exploits generative-model training on the global side without accessing client
data. Specifically, the server trains a data generator and a feature generator to create
two types of information from all seen classes. Then, it sends the synthetic data
to the client. The clients then use feature-direction-controlling losses to make the
local models retain knowledge and learn new tasks well. We extensively analyze
the robustness of FedGTG on natural images and its ability to converge to flat local
minima and achieve better predicting confidence (calibration). Experimental results
on CIFAR-10, CIFAR-100, and tiny-ImageNet demonstrate the improvements in
accuracy and forgetting measures of FedGTG as well as the robustness of domain
shifts compared to previous frameworks.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2016; Bonawitz et al., 2019) is a Machine Learning setting
that facilitates collaborative learning while maintaining privacy. Despite its significant achievements
on various domains (Doshi & Yilmaz, 2022; Lin et al., 2021; Liu & Yang, 2021; Nguyen et al.,
2019), FL observes several critical challenges, including resource limitation and data heterogeneity.
Moreover, the client’s local data distribution is assumed to remain unchanged, but the real-world
scenarios (Aljundi, 2019) can be different, where the client’s task, data, and domain can be changed.
To overcome such challenges, Federated Class-Incremental Learning (FCIL) (Dong et al., 2022;
2023) is an innovative approach that combines the principles of FL and Class-Incremental Learning
(CIL) (Rebuffi et al., 2017) to enable models to learn continuously from decentralized data sources
while adapting to new information over time without forgetting previous knowledge (French, 1999).
This approach addresses data privacy challenges and ensures the model can evolve as new data
types or tasks emerge without accessing historical data. In CIL, exemplar-based approaches (Rebuffi
et al., 2017; Chaudhry et al., 2019; Buzzega et al., 2020) preserve a limited number of samples from
previous tasks to prevent forgetting, whereas exemplar-free approaches (He et al., 2018; Liu et al.,
2020; Magistri et al., 2024) do not retain any samples from prior tasks.

In the FL setting, where privacy issues pose significant challenges, the exemplar-free category is
particularly interesting since users cannot store historical data. Recent works in this field, such
as TARGET (Zhang et al., 2023), FedCIL (Qi et al., 2023) and MFCL (Babakniya et al., 2024)
tend to generate synthetic data and combine with distilling regularizers (Hinton et al., 2015; Liu
et al., 2020) to balance the trade-off between retaining knowledge and learning new tasks. However,
experimental results have shown that these works still witness catastrophic forgetting, i.e., bias

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) TARGET (b) MFCL (c) GD +GF (d) FedGTG (Our)

Figure 1: Confusion matrix among FCIL algorithms: (a) TARGET, (b) MFCL, (c) only the application
of two generators to FL, and (d) FedGTG, testing on CIFAR-10 after training is completed. While
TARGET and MFCL have bad predicting performance on initial classes and two generators struggle
to learn new tasks, FedGTG achieves a better stability-plasticity trade-off.

towards recent classes, as shown Figure 1a and 1b. This is because the model trained by MFCL and
TARGET is closely linked to its data generator. When the model begins to lose previous knowledge,
it impacts the data generator, leading to the production of poor-quality synthetic images of earlier
classes. Consequently, the model’s performance on these classes in later tasks will significantly
drop (Babakniya et al., 2024).

To address this problem, we propose Federated Global Twin Generator (FedGTG), an FCIL
framework that does not store client data. Specifically, after completing one task, the server trains
two generative models and shares them with clients on subsequent tasks to create synthetic examples
and features of previous classes. On the client side, we propose a synthetic logit distillation using
generated features for retaining knowledge and a fine-tuning loss using both real and generated data to
be able to predict all classes. However, using only these two objectives still hinders the model’s ability
to obtain new knowledge, as shown in Figure 1c. We argue that this issue happened as the feature
directions were not constrained. Therefore, we add a feature-direction-controlling loss, which helps
the model have more plasticity in learning new tasks. As a result, FedGTG outperforms previous
methos in accuracy and forgetting measures as shown in Figure 1d and Section 4.2.

We summarize our contributions below:

• We propose an FCIL framework that trains a data generator and a feature generator on the server
side. These generators are distributed to the clients to mitigate forgetting.

• To help the model have a better stability-plasticity trade-off, we propose direction-controlling
objectives on the client side.

• We conducted extensive experiments to demonstrate the effectiveness of our method in popular
benchmarks and handling domain shifts.

• Moreover, we analyze the robustness of FedGTG compared with recent FCIL algorithms on
natural images, its abilities to converge to flat minima, achieve better predicting confidence, and
maintaining the effectiveness across different client sizes.

2 RELATED WORK

2.1 CONTINUAL LEARNING

Catastrophic forgetting (French, 1999) is a significant issue in machine learning where training a
model on new data makes it forget previously learned knowledge. This issue is central to the field of
CL, whose primary objective is to build models to acquire new knowledge while retaining information
from older tasks. Numerous strategies have been explored to mitigate this problem, including the
implementation of regularization terms (Li & Hoiem, 2017; Kirkpatrick et al., 2017; Zenke et al.,
2017), the isolation of architectural parameters (Mallya & Lazebnik, 2018; Yoon et al., 2017; Mallya
et al., 2018), the use of storing prior data (Rebuffi et al., 2017; Chaudhry et al., 2019; Buzzega et al.,
2020), and studies of data generation (He et al., 2018; Zhuang et al., 2022; 2023; 2024; Magistri

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2024). In CL, replay-based methods observe significant performance in accuracy and forgetting
measures. However, privacy concerns in FL prevent data storage (Dong et al., 2022), making these
methods inapplicable. An extensive alternative to address this issue is generative-based approaches.

These mitigation strategies become more crucial depending on the type of learning in CL. Specifically,
there are three main types: Task-Incremental Learning (Task-IL), Domain-Incremental Learning
(Domain-IL), and Class-Incremental Learning (Class-IL) (Van de Ven & Tolias, 2019). Each task
is distinct in Task-IL and comes with its distribution during training and testing. In Domain-IL,
the learning task does not change, while different domains or data distributions sequentially arrive
during training. In Class-IL, each new task adds classes to what the model has to learn, continually
expanding the amount of information the model needs to handle.

2.2 FEDERATED CLASS-INCREMENTAL LEARNING

FCIL aims to train a model to learn new classes over time without forgetting previously learned
classes while ensuring that data privacy is maintained across multiple decentralized devices. Several
approaches exploit Knowledge Distillation (Hinton et al., 2015) to mitigate forgetting by appointing
the global model’s weight of the most recent task as a teacher. Continual Federated Learning with
Distillation (CFeD) (Ma et al., 2022) constructs server and client-side knowledge distillation using a
surrogate dataset, but this costs time and financial resources to collect enough data for this surrogate
dataset. Global-Local Forgetting Compensation (GLFC) (Dong et al., 2022) relaxes this problem
by training a proxy server globally to ease the imbalance issue between classes.

The above approaches yield extensive performance in past knowledge retention but cannot learn
well on new tasks. To alleviate this issue, Federated Class-Incremental Learning (FedCIL) (Qi
et al., 2023) trains generators at both client-side and server-side, as well as utilizing knowledge
distillation to balance the stability-plasticity trade-off. However, this approach raised a privacy
risk since information about client-side generative models is shared with the server. Federated
Class-Continual Learning via Exemplar-Free Distillation (TARGET) (Zhang et al., 2023) and
Mimicking Federated Continual Learning (MFCL) (Babakniya et al., 2024) relax this issue by
training a data generator on the global-side and adding distilling regularizers to the client-side training
to enhance overall performance. However, as shown in Figure 1, these methods still perform badly
on old classes, leaving catastrophic forgetting mitigation a desirable goal.

3 METHODOLOGY

3.1 PRELIMINARIES

There are c clients and a central server, denoted as {C1, C2, . . . , Cc} and S, respectively. We consider
the Synchronous Federated Continual Learning setting (Yang et al., 2024) where all clients share
the same task sequence T = {T1, T2, . . . , Tn}. At task Tt, each client Ci has a private dataset
Dt

i = {X t
i ,Yt}. During the first task, the global model θ1G is obtained after aggregating local models{

θ11, θ
1
2, . . . , θ

1
s1

}
using conventional Deep Learning methods, where s1 is a number of selected

clients among all. From the task Tt, t ≥ 2, the global model θt−1
G can distinguish the samples

belonged to the classes set
⋃t−1

i=1 Yi. The server then distributes its parameters back to the clients.
Client Ci uses θt−1

G as an initial model to train on task Tt using its private dataset Dt
i . The local

model θti should perform well in classifying classes from the set
⋃t

i=1 Yi. Finally, the server collects
the local models from clients who participate in the process after each rt communication round and
obtains a new global model θtG, which can identify classes from the set

⋃t
i=1 Yi.

3.2 OVERVIEW

Several replay-based approaches (Rebuffi et al., 2017; Chaudhry et al., 2019; Buzzega et al., 2020) in
the conventional CL achieve significant performance across all classes by storing a subset of samples
from previous tasks. However, these methods are not viable in the FL setting due to privacy concerns
(e.g., local hospitals cannot share data with the central server). One initial solution is using generative
models, which can generate synthetic data for subsequent training, as demonstrated in earlier studies
(Zhang et al., 2023; Babakniya et al., 2024). However, only generating synthetic examples causes

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Client: Task T1

Central server

Global Model Feature Generator Data GeneratorLocal ModelReal Data

Real Data Local Model

Client: From
Task T2 to Task Tn

Synthetic DataSynthetic Feature

Aggregate Transmit Cross Entropy Loss Fine-Tuning Loss Distillation Loss EFM Loss

Train

Train

Figure 2: Illustration of the proposed framework. After completing one task, the server employs a
data-free approach to train two generators. The clients then use two types of synthetic information
from these generators to train their local models for retaining knowledge and learning new tasks well.

forgetting in previously learned classes, as shown in Figure 1. This is because synthetic images cannot
fully reflect the knowledge from prior works (Liu et al., 2020). The authors also show that synthetic
features can alleviate this problem by capturing the information held within the model’s weights.
Therefore, we also train a feature generator in addition to the data generator. Specifically, we propose
a Federated Global Twin Generator (FedGTG), which can balance the stability-plasticity trade-off.
This method has two main stages: (1) At the end of each task, the server trains a data generator and a
feature generator to capture the information of all seen classes; (2) Clients receive generators from
the server to create synthetic information, and obtaining global weights as initialization, which helps
retain knowledge from previous tasks and learn the new task efficiently.

3.3 SERVER-SIDE DATA GENERATOR

Since the server only has access to the global model’s weights, we can only train the data generator
using data-free methods, such as DeepInversion (Yin et al., 2020). Specifically, we have a generative
model that takes a noise z ∼ N (0, 1) as input and produces a synthetic example x̃ mirroring the
dimensions of the original training input. This synthetic data should observe the following objectives.

After training task Tt, the synthetic data should be classified correctly by the global model θtG and
not be biased to any classes. With this aim, we employ a modified cross entropy classification loss
between its assigned label z and the prediction of θtG on Gt

D (z), as follows:

LCE = CElast
(
argmax (z [:, q]) , θtG (x̃)

)
+ λcurrentCEcurrent

(
argmax (z [:, q]) , θtG (x̃)

)
, (1)

where x̃ is the output of Gt
D (z); q is the total number of classes seen in the previous tasks, we just

take q dimension for the noise; CElast and CEcurrent respectively are the Cross-Entropy Loss using the
truncated outputs of θtG (x̃) corresponding with last classes from task Ti, i < t, and current learned
classes on task Tt, and λcurrent is the temperature hyper-parameter.

Generating synthetic examples can easily be biased to a subset of classes. To maintain the diversity
between classes, we utilize the Information Entropy (IE) Loss (Chen et al., 2019) as follows:

LIE = −Hinfo

(
1

bs

bs∑
i=1

θtG (x̃i)

)
, bs: batch size, (2)

This loss measures the IE for samples of a batch. Maximizing this value can promote a more uniform
and balanced output distribution from the generator across all classes.

To further improve the stability of generator training, we use Batch Normalization Loss (Smith et al.,
2021) to make all Batch Normalization layers have the same statistics on synthetic images, as follows:

Lbatch =
1

L

L∑
j=1

KL
(
N
(
µj , σ

2
j

)
∥ N

(
µ̃j , σ̃

2
j

))
, (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where L is the total number of Batch Normalization layers in the architecture of the global model. µj

and σ2
j are the mean and variance stored in Batch Normalization layer j of the global model, µ̃j and

σ̃j are measured statistics of Batch Normalization layer j for the synthetic data.

Adjacent pixels in real images typically have values near one another. One typical method to promote
similar patterns in the synthetic images is to add Image Prior Loss (Haroush et al., 2020). We can
create the smoothed (blurred) version of an image by applying a Gaussian kernel and minimizing the
distance of the original and Smooth (x̃) as

Lsmooth = ∥x̃− Smooth (x̃)∥22 . (4)

In summary, we can write the training objective of GD as follows:

min
GD

LCE + λIELIE + λbatchLbatch + λsmoothLsmooth, (5)

where λIE, λbatch, and λsmooth are hyper-parameters of specific loss functions.

3.4 SERVER-SIDE FEATURE GENERATOR

As mentioned in Section 3.2, only synthetic images can exacerbate the catastrophic forgetting problem.
(Liu et al., 2020) has shown that features can store better knowledge of previous tasks than data.
Therefore, we train a feature generator that synthesizes features, capturing the knowledge within the
feature space. Like the data generator, this generative model is trained only on the server side. The
feature generator takes noise input z ∼ N (0, 1) and produces synthetic features f̃ that match the
dimensions of the original features. These synthetic features must meet the following objectives:

After training task Tt, the generative feature should be classified correctly by the classifier Ht
G of

the global model. Additionally, the synthetic features should not be biased to any classes. With this
aim, we employ a temperature cross entropy classification loss between its assigned label z and the
prediction of Ht

G on Gt
D (z) as

LFCE = CElast

(
argmax (z [:, q]) , Ht

G

(
f̃
))

+ λcurrentCEcurrent

(
argmax (z [:, q]) , Ht

G

(
f̃
))

, (6)

where f̃ is the output of Gt
F (z); q is the total number of classes seen in the previous tasks, we take

q dimension for the noise; CElast and CEcurrent respectively are the Cross-Entropy Loss using the
truncated outputs of Ht

G

(
f̃
)

corresponding with last classes from task Ti, i < t, and current learned
classes on task Tt, and λcurrent is the temperature hyper-parameter.

The generated features should not be biased to any subset of classes. Therefore, we propose the
Feature Information Entropy Loss to make the synthetic feature have this quality, which is

LFIE = −Hinfo

(
1

bs

bs∑
i=1

Ht
G

(
f̃i

))
, bs: batch size, (7)

In summary, we can write the training objective of GF as follows:

min
GF

LFCE + λFIELFIE, (8)

where λFIE is the hyper-parameter of Feature Information Entropy Loss.

3.5 CLIENT-SIDE

For the first task, clients will carry out the traditional FL process after receiving the global model
weights from the server. For each subsequent task, clients will use the data and feature generators
provided by the server to produce synthetic information throughout the task. Note that the transmission
of these generators from the server occurs only once per task. Specifically, from the second task
onward, the local models need to learn the current task quickly, as well as retaining knowledge from
previous tasks efficiently. Therefore, we divide the learning objectives into two parts, as follows:

To learn new tasks well, the model needs to learn the new information separately from the old classes.
We compute the Cross-Entropy Loss using only the new classes’ linear heads. Formally, we minimize:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

LCE = CE
(
θt (x | Tt) , y

)
, (9)

where θt (x | Tt) is model’s output and masking old classes before task Tt’s linear heads.

To mitigate forgetting, previous approaches leverage knowledge distillation (Usmanova et al., 2021;
Zhang et al., 2023). However, this can cause information loss in probability space due to squashing
functions (Liu et al., 2018). Therefore, motivated by (Buzzega et al., 2020), we propose Synthetic
Logits Distillation Loss, which matches the logits of the old and current linear heads. These
classifiers take synthetic features as input instead of synthetic data since the feature stores more
previous information. Formally, we optimize:

Llogits =
∥∥∥θt−1

G

(
f̃
)
− θt

(
f̃
)∥∥∥ , (10)

where θt−1
G is the global model trained up to task Tt−1.

As shown in (Babakniya et al., 2024), when there is a sudden shift in the distribution of the input of
the task sequence, biased features on previous tasks can output biased logits, hindering the ability to
obtain new knowledge. To mitigate this shortcoming, we utilize only the extracted features of the
data, i.e., clients freeze the feature extraction layers and update only the linear head (represented by
Ht) for both real (x) and synthetic (x̃) images. This Fine-tuning loss is formulated as

LFT = CE
(
Ht
([

f, f̃
])

, [y, ỹ]
)
, (11)

where f and f̃ respectively are the extracted features of x and x̃ after passing through the freezed
feature extractor F t of the local model, y and ỹ is the hard label of x and x̃.

Figure 1c shows that combining the above objectives reduces the model’s performance across all
classes. We contend that this happens because the feature directions are unconstrained, resulting
in the total loss failing to converge. We then add additional loss to balance this problem, named
Empirical Feature Matrix Loss (Magistri et al., 2024), which constrains directions in feature space
most important for previous tasks. At the same time, it allows more plasticity in other directions
when learning new tasks. In this work, we re-utilize the synthetic features to calculate the Empirical
Feature Matrix Et−1 from the previous task Tt−1. We have,

LEFM =
(
F t (x)− F t−1

G (x)
)⊤

(λEEt−1 + ηI)
(
F t (x)− F t−1

G (x)
)
, (12)

where F t and F t−1
G respectively are the feature extractor of the current model and the previous global

model, η is the damping term to constrain features to stay in a specific region.

In summary, the final objective on the client side as

min
θt

LCE + λlogitsLlogits + λFTLFT + λEFMLEFM. (13)

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets We perform our experiments on three widely-used benchmark datasets in FCIL (Dong
et al., 2022; Zhang et al., 2023; Babakniya et al., 2024), which are the protocol versions of CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), tiny-ImageNet (Yao & Miller,
2015), and we name it respectively are Sequential F-CIFAR-10, Sequential F-CIFAR-100 and
Sequential F-tiny-ImageNet. Moreover, FCIL is usually applied in the finance and healthcare
industries (Wang et al., 2024), where the data distribution shifts significantly. We want to inves-
tigate the effectiveness of our work on this application. We introduce the protocol dataset named
HealthMNIST to assess the domain shift scenario, which involved two distinct classification tasks:
Task 1 is the Colon Pathology Classification from PathMNIST (Yang et al., 2023) and Task 2
is the Blood Cell Classification from BloodMNIST (Yang et al., 2023). The data preparation is
explained later in Appendix B. We use Latent Dirichlet Allocation (LDA) (Reddi et al., 2020) with
α = 1 and α = 0.5 to distribute the data of each task among clients. Additional experiments on
SuperImageNet (Babakniya et al., 2024) are then provided in the Appendix D.3.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Sequential F-CIFAR-10 (b) Sequential F-CIFAR-100

(c) Sequential F-tiny-ImageNet (d) HealthMNIST

Figure 3: AA per task of various algorithms on several benchmarks under the IID scenario.

FCIL Baselines We compare FedGTG with two conventional aggregating methods FedAvg (McMa-
han et al., 2017) and FedProx (Li et al., 2020), as well as three regularization-based FCIL methods,
FLwF-2T (Usmanova et al., 2021) and the FCIL version of FedWeIT (Yoon et al., 2021) and
FedEWC (Zhang et al., 2023), and two generative-based methods, TARGET (Zhang et al., 2023)
and MFCL (Babakniya et al., 2024). The detailed description can be seen in Appendix B.

Models and Implementation Details In all experiments, we train a ResNet-18 (He et al., 2016)
backbone using the SGD optimizer (Bottou, 1998). We train the model for 100 epochs per task on
every dataset. We use FedAvg (McMahan et al., 2017) for aggregation. Additional implementation
detailsare then provided in the Appendix B. We also conducted experiments on different architectures,
including ResNet-34 and ResNet-50, which can be found in the Appendix D.2.

Evaluation Metrics We report the performance of the methods using two metrics: Average
Incremental Accuracy and Average Forgetting. Average Incremental Accuracy (AIA) measures the
average accuracy of the global model on all tasks after the training finishes. Forgetting (ft) of task Tt

is the difference between the model’s best performance on task Tt and its accuracy after completed
training. Consequently, Average Forgetting (AF) is the average of all f t, from task T1 to task Tn−1,
at the end of task Tn. We report the averaged result over three different random initializations.

4.2 PERFORMANCE RESULTS

We present the performance of FedGTG and the baselines. Figure 3 shows the Average Accuracy of
the model at each task in the training process. It can be seen that FedGTG achieves state-of-the-art
performance in all settings. Specifically, our method observes better Average Accuracy on all later
tasks. Table 1 reports both AIA results (higher is better) and AF results (lower is better) under the
IID and Non-IID data distribution, respectively.

As expected, FedAvg and FedProx suffer the highest forgetting since they are not designed for FCIL.
Compared to FedEWC, FedWeIT and FLwF-2T, the performance gap between it and our FedGTG
is significant, indicating that regularization towards previous parameter sets is insufficient to avoid
forgetting. Compared to the generative-replay methods TARGET and MFCL, our FedGTG achieves
the least AF and the best AIA, showing that FedGTG can effectively retain knowledge and learn
new tasks. Moreover, FedGTG performs extensively in the context of domain shift, which can retain
knowledge from the first task of HealthMNIST, where MFCL and TARGET fail to do so.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of the different baselines in terms of AIA and AF for four datasets. α = 1 is
the IID scenario, and α = 0.5 is the Non-IID scenario. [↑] higher is better, [↓] lower is better.

Method CIFAR-10 CIFAR-100 tiny-ImageNet HealthMNIST
AIA (↑) AF (↓) AIA (↑) AF (↓) AIA (↑) AF (↓) AIA (↑) AF (↓)

α = 1

FedAVG 42.82± 0.23 55.55± 0.58 21.39± 0.22 78.67± 0.83 13.80± 0.19 74.12± 0.81 62.31± 0.14 43.27± 0.75

FedProx 42.43± 0.32 56.15± 0.71 21.54± 0.32 78.12± 0.71 13.69± 0.21 75.16± 0.79 61.56± 0.24 43.27± 0.70

FedEWC 45.27± 0.17 49.46± 0.76 26.63± 0.29 62.17± 0.49 14.58± 0.15 58.00± 0.51 62.92± 0.16 40.42± 0.62

FedWeIT 50.46± 0.21 45.99± 0.59 30.19± 0.19 55.57± 0.48 16.02± 0.22 46.23± 0.77 64.91± 0.12 39.59± 0.52

FLwF-2T 52.74± 0.23 39.51± 0.59 32.19± 0.18 50.78± 0.63 17.18± 0.17 44.51± 0.67 65.22± 0.12 36.92± 0.69

TARGET 59.19± 0.16 17.23± 0.45 42.15± 0.13 26.45± 0.61 19.46± 0.25 20.17± 0.57 66.23± 0.22 36.41± 0.57

MFCL 61.34± 0.21 22.32± 0.52 45.07± 0.12 28.30± 0.78 21.47± 0.15 23.90± 0.58 67.18± 0.15 36.23± 0.52

FedGTG (ours) 64.50± 0.22 13.14± 0.67 46.42± 0.18 18.66± 0.76 24.04± 0.23 16.18± 0.62 73.91± 0.19 19.15± 0.60

α = 0.5

FedAVG 40.92± 0.26 55.59± 0.58 20.66± 0.25 61.34± 0.72 11.82± 0.22 74.16± 0.68 59.93± 0.14 43.21± 0.85

FedProx 40.43± 0.32 55.15± 0.67 20.43± 0.22 62.73± 0.81 11.49± 0.21 75.01± 0.72 60.15± 0.24 43.21± 0.12

FedEWC 43.22± 0.17 50.70± 0.66 25.53± 0.18 59.17± 0.56 12.90± 0.15 60.93± 0.55 60.88± 0.22 42.45± 0.32

FedWeIT 48.11± 0.21 47.34± 0.46 28.89± 0.20 56.11± 0.63 14.55± 0.11 49.76± 0.49 61.05± 0.17 42.09± 0.55

FLwF-2T 50.23± 0.23 40.21± 0.51 30.25± 0.14 53.72± 0.66 16.14± 0.18 44.59± 0.67 63.11± 0.12 39.72± 0.59

TARGET 56.19± 0.19 19.45± 0.45 41.03± 0.13 28.23± 0.68 18.46± 0.25 22.23± 0.57 64.03± 0.23 37.41± 0.60

MFCL 56.65± 0.25 18.34± 0.59 42.07± 0.25 30.30± 0.59 21.42± 0.19 21.02± 0.58 65.11± 0.19 36.13± 0.52

FedGTG (ours) 61.11± 0.18 13.12± 0.37 44.58± 0.21 20.89± 0.76 23.23± 0.27 15.18± 0.69 68.66± 0.23 25.15± 0.71

4.3 MODEL ANALYSIS

The majority of FCIL research concentrates on testing experiments on ideal benchmarks (Dong
et al., 2022; Zhang et al., 2023; Babakniya et al., 2024), such as CIFAR (Krizhevsky et al., 2009)
and ImageNet (Deng et al., 2009). This lacks analysis concerning real-world scenarios, such as
the decision-making required in hospitals or the model’s generalization to diverse environments.
Therefore, in this section, we conducted experiments to analyze the robustness of FedGTG and three
FCIL algorithms on corrupted environments, and the qualities of generalization (Chaudhari et al.,
2019; Keskar et al., 2016) and achieve calibrated networks (Guo et al., 2017; Kull et al., 2019).

Robustness to natural corruptions. We evaluate our method and the recent FCIL methods on the
CIFAR-100-C dataset. This dataset includes 18 augmentations of the original CIFAR-100, inspired
by CIFAR-10-C (Hendrycks & Dietterich, 2019). Models are trained using standard CIFAR-100 with
the same setting in Section 4.1 and tested on CIFAR-100-C. Figure 4 shows robustness to 09 different
corruptions averaged over three different runs, the results of the rest augmentations are shown in
Appendix D.4. Specifically, our approach achieves higher test accuracy on various corruptions, with
an average improvement of 5% over MFCL and 8% over TARGET. Evidently, our method offers
noticeable advantages in robustness against natural corruption.

Converging to flatter minima. Extensive CL algorithms (Bhat et al., 2022; Wang et al., 2023; Park
et al., 2024) explore how well their methods generalize by examining their ability to converge to flat
minima. In this part, we compare the flatness of the training minima of FLwF-2T, TARGET, and
MFCL with FedGTG. As done in (Zhang et al., 2019), we consider the model at the end of training and
add independent Gaussian noise with growing variance to each parameter. This allows us to evaluate
its effect on the average loss

∑n
t=1 L

(Tt)
CE across all training examples. As shown in Figures 5a and 5b,

MFCL, especially FLwF-2T, and TARGET, reveal higher sensitivity to perturbations than FedGTG.
This concludes that FedGTG can achieve better generalization than previous methods.

Converging to a more calibrated network. Calibration measures how well a learner’s prediction
confidence matches its accuracy, with ideal outcomes reflecting true probabilities of correctness.
In real-world applications, including weather forecasting (Bröcker, 2009) and econometric analy-
sis (Gneiting et al., 2007), the calibrating ability of a model should be investigated. Figures 5c and 5d
show the value of the Expected Calibration Error (ECE) (Naeini et al., 2015) across various FCIL
methods after completing each task. It can be seen that FedGTG achieves a lower ECE than the
others, proving that models trained with FedGTG are less over-confident and easier to interpret.

Robustness to different client sizes. We validate the effectiveness of FedGTG across different
client sizes on the tiny-ImageNet dataset. We run experiments by varying the number of total clients

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Robustness to natural corruptions.

(a) Perturbation [↓] (b) Perturbation [↓] (c) Calibration Error [↓]

(d) Calibration Error [↓] (e) Average Accuracy [↑] (f) Average Forgetting [↓]

Figure 5: Results for the model analysis. [↑] higher is better, [↓] lower is better (best seen in color).

(maintaining a consistent participation rate of 0.1 per round), ranging from 50 to 200, and compare the
results. Figures 5e and 5f demonstrate that our method still outperforms other approaches, achieving
an accuracy 4% higher and a forgetting rate 6% lower compared to the next best method, MFCL.

5 ABLATION STUDY

We highlight the significance of each loss within our framework and analyze both server and client
contributions by sequentially removing components to observe their effects. Table 2 shows our results,
where each row corresponds to the removal of a specific loss component, and the columns display
the corresponding Average Accuracy (At), for 1 ≤ t ≤ 10, Average Incremental Accuracy (A),
and Average Forgetting (F). Specifically, the performance of the model is influenced by generative
models, as poorly trained ones result in low AIA and high AF compared to others. Nevertheless, the
Fine-tuning Loss has the lowest AF because it did not learn tasks well (lowest AIA). The final two
rows illustrate how the feature-constraining losses (Llogits and LEFM) impact the performance of the
global model, where the decrease in accuracy demonstrates the importance of these two losses.

6 DISCUSSION

Since two generative models are trained using the global model solely, the clients do not have to send
their data to the server. Moreover, as shown in Appendix E, the visualization of synthetic images does

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Ablation study for FedGTG on Sequential F-CIFAR-100.

w/o Loss A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A F
LIE 72.40 56.60 46.96 38.22 33.18 30.73 28.50 25.05 23.98 22.37 33.95 37.31

Lbatch 72.40 55.62 48.67 41.25 33.48 30.08 27.10 22.98 22.48 21.41 33.67 41.42

Lsmooth 72.40 57.15 49.10 41.85 39.44 37.58 34.67 31.15 30.50 29.20 38.96 29.36

LFIE 72.40 56.35 47.96 37.22 34.18 32.61 29.82 26.17 24.98 23.03 34.70 33.42

LFT 72.40 41.80 34.67 29.25 22.68 17.60 15.17 13.06 12.59 12.09 22.10 11.66

Llogits 72.40 57.15 49.77 43.05 39.36 37.72 35.67 33.19 32.73 31.62 40.03 25.35

LEFM 72.40 56.30 48.77 42.53 39.56 37.28 35.37 31.91 31.66 29.92 39.26 27.38

FedGTG (ours) 72.40 57.95 54.85 50.20 47.45 44.95 41.00 39.01 37.92 36.46 46.42 18.66

not replicate any real data, and therefore, it will preserve privacy. In addition, our framework does
not affect the aggregation stage, allowing the integration of Secure Aggregation techniques (Kim
et al., 2023; Kanchan et al., 2024). This ensures that when local updates are sent to the server for
aggregation, they remain encrypted, which prevents the server from accessing the client’s information.

Table 3: Total parameters sent from the server to the clients across FCIL algorithms.

Dataset/Method FedGTG (ours) MFCL TARGET FLwF-2T FedWeIT FedEWC FedAvg FedProx
CIFAR-10 20, 996, 877 19, 696, 397 19, 696, 397 11, 272, 458 11, 272, 458 11, 272, 458 11, 272, 458 11, 272, 458

CIFAR-100 20, 949, 681 19, 649, 201 19, 649, 201 11, 225, 262 11, 225, 262 11, 225, 262 11, 225, 262 11, 225, 262

tiny-ImageNet 21, 416, 607 19, 853, 471 19, 853, 471 11, 281, 692 11, 281, 692 11, 281, 692 11, 281, 692 11, 281, 692

HealthMNIST 20, 949, 681 19, 649, 201 19, 649, 201 11, 225, 262 11, 225, 262 11, 225, 262 11, 225, 262 11, 225, 262

Table 4: Training time in seconds of different algorithms trained on the CIFAR-100 dataset.

Training Time/Method FedGTG (ours) MFCL TARGET FLwF-2T FedWeIT FedEWC FedProx FedAvg
t = 1 1.2 1.2 1.2 1.2 1.2 1.2 1.8 1.2

t > 1 4.1 3.7 3.5 3.4 2.2 1.2 1.8 1.2

In our work, the clients need to accommodate two generative models and the global model’s weights
from the most recent task, which introduces higher storage requirements than previous methods.
However, this transmission of generators takes place only once per task, representing a necessary
cost to prevent catastrophic forgetting. Table 3 reports the total parameters transmitted from the
server to the clients, serving as a measure of the communication overheads. We also calculate the
amount of time in seconds that the clients need to complete one round, as shown in Table 4. The
implementational details of training time are provided in Appendix D.1. While FedGTG requires
more parameters and time for training than others, it delivers significant benefits. As shown in Table 1
and Figure 3, FedGTG outperforms others in AIA and AF. Moreover, the framework proves effective
in handling complex scenarios such as domain shifts, making the added computational cost justifiable,
particularly in applications like healthcare and finance, where data privacy and performance are
crucial. We can see that although FedGTG introduces additional computational components, these
are essential to achieving a balance between retaining knowledge and learning new tasks in FCIL,
which other methods struggle with.

7 CONCLUSION

In this work, we alleviate the lack of stability of previous works in the FCIL setting by introducing a
framework named FedGTG, both utilizing data and feature generative models trained by the server,
eliminating the requirement for costly on-device memory for clients. Our experiments show that
FedGTG is successful in reducing catastrophic forgetting and surpasses the current state-of-the-art
methods. Moreover, By analyzing the robustness on natural images, testing the qualities of converging
to flat minima and calibrated networks, and the performance, as well as the performance on the
context of domain shifts between FCIL algorihms, we observe that our framework outperforms
previous approaches, making FedGTG more applicable in real-world scenarios.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi. Continual learning in neural networks. arXiv preprint arXiv:1910.02718, 2019.

Sara Babakniya, Zalan Fabian, Chaoyang He, Mahdi Soltanolkotabi, and Salman Avestimehr. A
data-free approach to mitigate catastrophic forgetting in federated class incremental learning for
vision tasks. Advances in Neural Information Processing Systems, 36, 2024.

Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Task agnostic representation consolida-
tion: a self-supervised based continual learning approach. In Conference on Lifelong Learning
Agents, pp. 390–405. PMLR, 2022.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of machine learning and systems, 1:
374–388, 2019.

Léon Bottou. Online algorithms and stochastic approximations. Online learning in neural networks,
1998.

Jochen Bröcker. Reliability, sufficiency, and the decomposition of proper scores. Quarterly Journal
of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology
and physical oceanography, 135(643):1512–1519, 2009.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018,
2019.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu,
Chao Xu, and Qi Tian. Data-free learning of student networks. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 3514–3522, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009. doi: 10.1109/CVPR.2009.5206848.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10164–10173, 2022.

Jiahua Dong, Hongliu Li, Yang Cong, Gan Sun, Yulun Zhang, and Luc Van Gool. No one left behind:
Real-world federated class-incremental learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

Keval Doshi and Yasin Yilmaz. Federated learning-based driver activity recognition for edge devices.
In Proceedings of the IEEE/CVF Conference on computer Vision and Pattern Recognition, pp.
3338–3346, 2022.

Ronald A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical Transac-
tions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, 222:309–368, 1922.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Probabilistic forecasts, calibration
and sharpness. Journal of the Royal Statistical Society Series B: Statistical Methodology, 69(2):
243–268, 2007.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry. The knowledge within: Methods for
data-free model compression. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8494–8502, 2020.

Chen He, Ruiping Wang, Shiguang Shan, and Xilin Chen. Exemplar-supported generative reproduc-
tion for class incremental learning. In BMVC, volume 1, pp. 2, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. URL https://arxiv.org/abs/1503.02531.

Sneha Kanchan, Jae Won Jang, Jun Yong Yoon, and Bong Jun Choi. Gsfedsec: Group signature-based
secure aggregation for privacy preservation in federated learning. Applied Sciences, 14(17):7993,
2024.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Jien Kim, Gunryeong Park, Miseung Kim, and Soyoung Park. Cluster-based secure aggregation for
federated learning. Electronics, 12(4):870, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. 114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto, 2009.

Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter Flach.
Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with dirichlet
calibration. Advances in neural information processing systems, 32, 2019.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Fedprox: A scalable approach to
federated learning with heterogeneous data. In Proceedings of the 2nd MLSys Conference, 2020.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang, Mahdi Soltanolkotabi,
Xiang Ren, and Salman Avestimehr. Fednlp: A research platform for federated learning in natural
language processing. arXiv preprint arXiv:2104.08815, 2021.

Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D Bagdanov,
Shangling Jui, and Joost van de Weijer. Generative feature replay for class-incremental learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pp. 226–227, 2020.

Xuan Liu, Xiaoguang Wang, and Stan Matwin. Improving the interpretability of deep neural networks
with knowledge distillation. In 2018 IEEE International Conference on Data Mining Workshops
(ICDMW), pp. 905–912. IEEE, 2018.

12

https://arxiv.org/abs/1503.02531


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yunyi Liu and Ruining Yang. Federated learning application on depression treatment robots (dtbot).
In 2021 IEEE 13th International Conference on Computer Research and Development (ICCRD),
pp. 121–124. IEEE, 2021.

Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning based
on knowledge distillation. In IJCAI, pp. 2182–2188, 2022.

Simone Magistri, Tomaso Trinci, Albin Soutif-Cormerais, Joost van de Weijer, and Andrew D
Bagdanov. Elastic feature consolidation for cold start exemplar-free incremental learning. arXiv
preprint arXiv:2402.03917, 2024.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. pp. 7765–7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. pp. 67–82, 2018.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2:2, 2016.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pp. 1273–1282. PMLR, 2017.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
bilities using bayesian binning. In Proceedings of the AAAI conference on artificial intelligence,
volume 29, 2015.

Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni, N Asokan, and Ahmad-
Reza Sadeghi. Dı̈ot: A federated self-learning anomaly detection system for iot. In 2019 IEEE
39th International conference on distributed computing systems (ICDCS), pp. 756–767. IEEE,
2019.

Junyoung Park, Jin Kim, Hyeongjun Kwon, Ilhoon Yoon, and Kwanghoon Sohn. Layer-wise
auto-weighting for non-stationary test-time adaptation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 1414–1423, 2024.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning.
arXiv preprint arXiv:2302.13001, 2023.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, and Zsolt Kira. Always
be dreaming: A new approach for data-free class-incremental learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 9374–9384, 2021.

Anastasiia Usmanova, François Portet, Philippe Lalanda, and German Vega. A distillation-based
approach integrating continual learning and federated learning for pervasive services. arXiv
preprint arXiv:2109.04197, 2021.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Lixu Wang, Yang Zhao, Jiahua Dong, Ating Yin, Qinbin Li, Xiao Wang, Dusit Niyato, and Qi Zhu.
Federated learning with new knowledge: Fundamentals, advances, and futures. arXiv preprint
arXiv:2402.02268, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhenyi Wang, Li Shen, Donglin Zhan, Qiuling Suo, Yanjun Zhu, Tiehang Duan, and Mingchen
Gao. Metamix: Towards corruption-robust continual learning with temporally self-adaptive data
transformation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24521–24531, 2023.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
classification. Scientific Data, 10(1):41, 2023.

Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and Tianrui Li. Federated continual learning
via knowledge fusion: A survey. IEEE Transactions on Knowledge and Data Engineering, 2024.

Leon Yao and John Miller. Tiny imagenet classification with convolutional neural networks. CS
231N, 2(5):8, 2015.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K
Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8715–8724, 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual
learning with weighted inter-client transfer. In International Conference on Machine Learning, pp.
12073–12086. PMLR, 2021.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, pp. 3987–3995. PMLR, 2017.

Jie Zhang, Chen Chen, Weiming Zhuang, and Lingjuan Lyu. Target: Federated class-continual
learning via exemplar-free distillation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4782–4793, 2023.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 3713–3722, 2019.

Huiping Zhuang, Zhenyu Weng, Hongxin Wei, Renchunzi Xie, Kar-Ann Toh, and Zhiping Lin. Acil:
Analytic class-incremental learning with absolute memorization and privacy protection. Advances
in Neural Information Processing Systems, 35:11602–11614, 2022.

Huiping Zhuang, Zhenyu Weng, Run He, Zhiping Lin, and Ziqian Zeng. Gkeal: Gaussian kernel
embedded analytic learning for few-shot class incremental task. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7746–7755, 2023.

Huiping Zhuang, Run He, Kai Tong, Ziqian Zeng, Cen Chen, and Zhiping Lin. Ds-al: A dual-
stream analytic learning for exemplar-free class-incremental learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17237–17244, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A FEDGTG ALGORITHM

Recall that there are n tasks T1, T2, . . ., Tn. At task T1, the system is trained using the conventional
FedAvg algorithm for aggregating the weight from the clients in R communication rounds. At the end
of every task, the server trains a data generator and a feature generator without using any information
from the clients. From task T2, these two generators are sent to the clients, which combine with
modified objectives to both retain knowledge and learn new tasks well. We formalize our approach in
Algorithm 1 in detail.

Algorithm 1 Federated Global Twin Generator

1: Input:
2: n tasks with n datasets {D1,D2, . . . ,Dn}.
3: c clients with c local models θ, R communication rounds.
4: A global model θG, a data generator GD and a feature generator GF .
5: Procedure:
6: for t = 1 to T do
7: for r = 1 to R do ▷ Each task is learned on several communication rounds
8: Select k clients for training.
9: if r > 1 or t > 1 then

10: The server sends the global model’s weight to selected clients.
11: if t > 1 then
12: The server sends the two generators, the global model’s weight from the previous

task and the Empirical Feature Matrix to selected clients.
13: end if
14: end if
15: if t = 1 then
16: Train local models θ(t,r)j conventionally. ▷ 1 ≤ j ≤ k
17: else
18:
19: Train local models θ(t,r)j using Algorithm 2.
20: end if
21: Aggregate local model updates to the server.
22: end for
23: Train the data generator and the feature generator.
24: Calculate Empirical Feature Matrix Et using synthetic features.
25: end for

Algorithm 2 Client-side: Continual Learning

1: Input:
2: Task Tt, t ≥ 2 with the dataset Dt in round r has B batches.
3: The global model θ(t,r)G , a data generator Gt−1

D , a feature generator Gt−1
F .

4: The freezed global weight θ(t−1)
G and the Empirical Feature Matrix Et−1.

5: Procedure:
6: Calculate the Current Cross-Entropy Loss LCE using Dt and Equation 9.
7: Generate synthetic data DS and synthetic features FS having B batches each.
8: Calculate the Fine-tunig Loss LFT using Dt, DS and Equation 11.
9: Calculate the Synthetic Logits Distillation Loss Llogits using FS and Equation 10.

10: Calculate the EFM Loss LEFM using FS and Equation 12.
11: Optimize Equation 13.

B EXPERIMENTAL SETUP

In this section, we detail the settings used in our experiments, including datasets, FCIL algorithms,
and experimental setups.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Datasets We perform our experiments on theree widely-used benchmark datasets, including the
FCIL version of CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009) and
tiny-ImageNet (Yao & Miller, 2015):

• Sequential F-CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000
32× 32 color images in 10 classes, with 6,000 images per class. There are 50,000 training images
and 10,000 test images. We split the training set into five disjoint subsets corresponding to 5 tasks.

• Sequential F-CIFAR-100. Sequential F-CIFAR-100 is constructed by dividing the original CIFAR-
100 dataset (Krizhevsky et al., 2009), which contains 50,000 images belonging to 100 classes, into
ten disjoint subsets corresponding to 10 tasks. In this way, each task has 5,000 images from 10
distinct categories, and each class has 500 images.

• Sequential F-tiny-ImageNet. Tiny-ImageNet (Yao & Miller, 2015) is a subset of ImageNet,
containing 100,000 images of 200 real objects. We follow settings in (Babakniya et al., 2024)
to form the Sequential F-tiny-ImageNet. In particular, we split the original dataset into ten non-
overlapping subsets. We consider each subset as a task whose images are labeled by 20 different
classes, and each class has 500 samples.

We also investigate the effectiveness of FedGTG in the context of domain shift. We introduce a
protocol dataset named HealthMNIST:

• HealthMNIST. This dataset includes two distinct classification tasks: Task 1 is the Colon Pathol-
ogy Classifcation having data from PathMNIST (Yang et al., 2023). Task 2 is the Blood Cell
Classifcation from BloodMNIST (Yang et al., 2023). PathMNIST contains 107,180 samples of 9
classes, and BloodMNIST has 17,092 samples from 8 blood types. For both tasks, we select the
first five classes from each dataset, with 500 samples per class for each task for training. Finally,
the test set includes all test samples from these two datasets.

FCIL Baselines In addition to our FedGTG, we also include three regularization-based FCIL
methods, FLwF-2T (Usmanova et al., 2021) and the FCIL version of FedWeIT (Yoon et al., 2021)
and FedEWC (Zhang et al., 2023), and two generative-based methods, TARGET (Zhang et al., 2023)
and MFCL (Babakniya et al., 2024). FLwF-2T utilize knowledge distillation both on the server
side and client side to ease the catastrophic forgetting issue. FedWeIT maximizes the knowledge
transfer between clients by storing previous tasks-adaptive parameters of clients. FedEWC is the
FCIL version of EWC (Kirkpatrick et al., 2017), which uses Fisher Information Matrix (Fisher, 1922)
as a regularizer to prevent forgetting. TARGET utilizes a global model to transfer knowledge from
past tasks to the current task while also training a generator to generate synthetic data, mimicking the
overall data distribution across clients. MFCL employs a generative model to create samples from
previous distributions, which are then combined with training data to prevent catastrophic forgetting.
Both of these data generation-based algorithms ensure privacy by training the generative model on
the server after each task without client data retrieval.

Implementation Details Table 5 shows settings and the hyper-parameter tuning for each dataset.

C GENERATIVE MODEL SETUP

Data Generative Model Architecture Figure 6 presents the architecture of the data generative
models used for the Sequential F-CIFAR-10, Sequential F-CIFAR-100, Sequential F-tiny-ImageNet,
and HealthMNIST dataset. In all experiments, the global model is based on the ResNet-18 backbone.

Feature Generative Model Architecture The architecure of the feature generative models is
illustrated in Figure 7, which employed for the Sequential F-CIFAR-10, Sequential F-CIFAR-100,
Sequential F-tiny-ImageNet, and HealthMNIST dataset. As the outputs are feature vectors, only fully
connected layers are needed.

Information generation To create synthetic data, clients sample i.i.d. noise, which is used to
determine the classes through the application of the argmax function to the first q elements, where q
represents the total number of classes observed. Since the noise is sampled i.i.d., each class has an
equal probability of 1

q for sample generation.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Sequential F-CIFAR-10, Sequential F-CIFAR-100, and HealthMNIST.

(b) Sequential F-tiny-ImageNet.

Figure 6: Architecture of the data generative model across three datasets.

(a) Sequential F-CIFAR-10, Sequential F-CIFAR-100, and HealthMNIST. (b) Sequential F-tiny-ImageNet.

Figure 7: Architecture of the feature generative model across three datasets.

D ADDITIONAL RESULTS

D.1 TRAINING TIME COMPARISON

We use the amount of time in seconds that the clients need to complete one FL round to compare
the training time between FCIL algorithms. The time is measured in rounds on our local GPU
NVIDIA-A5000 and averaged between different clients. Table 4 summarizes the training time per
round for all methods across various benchmarks. We can see that the increase in training time for
FedGTG is comparable to MFCL and TARGET, with a moderate overhead. However, this cost is
justified by the significant performance gains achieved, as demonstrated in Table 1 and Figures 3, 4,
and 5 of the main paper. These results validate the efficiency and effectiveness of our approach despite
the additional parameters required. We believe this balance of cost and performance underscores the
practical value of FedGTG.

D.2 ROBUSTNESS ON VARIOUS ARCHITECTURES

We conducted additional experiments using ResNet34 and ResNet50 backbones to further validate the
generality and robustness of our approach. Table 6 shows the results for all methods across various
datasets under the Non-IID scenario. Specifically, FedGTG consistently outperforms other FCIL
algorithms across different architectures, reinforcing its adaptability and effectiveness.

D.3 ROBUSTNESS ON CHALLENGING DATASET

Following the same setting from the work of Babakniya et al. (2024), we conducted experiments on
the protocol version of ImageNet (Deng et al., 2009), named SuperImageNet which was created by
superclassing the ImageNet dataset, thus greatly increasing the number of available samples for each
class. Specifically, we conducted experiments on the SuperImageNet-L version, which consists of
7500 samples per class and 50 classes overall. The dataset was divided into 10 tasks, each of which
contained 5 classes. The training process involves 300 clients, with 30 clients participating in each

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Setting Dataset CIFAR-10 CIFAR-100 tiny-ImageNet HealthMNIST

Experimental Setup

Image size 32× 32 32× 32 64× 64 28× 28

Task number 5 10 10 2
Classes per task 2 10 20 5
Samples per task 5000 500 500 500

Learning rate 0.1 0.1 0.1 0.1
Weight decay 0.1 0.1 0.1 0.1

Batch size 32 32 32 32
Synthetic batch size 32 32 128 32

Communication round 100 100 100 100
Local epoch 10 10 10 10

Hyper-parameter tuning

λIE 1.0 1.0 1.0 1.0
λbatch 1.0 1.0 1.0 1.0
λsmooth 1.0 1.0 1.0 1.0
λFIE 1.0 1.0 1.0 1.0
λcurrent 1.5 1.5 2.0 1.5
λFT 1.0 1.0 1.0 1.0
λlogits 0.1 0.1 0.1 0.1
λEFM 0.005 0.005 0.005 0.005
λE 10.0 10.0 10.0 10.0
η 0.1 0.1 0.1 0.1

Table 5: Detail settings across three datasets.

Table 6: Performance of the different algorithms in terms of AIA and AF for four datasets with
different architectures. [↑] higher is better, [↓] lower is better.

Method CIFAR-10 CIFAR-100 tiny-ImageNet HealthMNIST
AIA (↑) AF (↓) AIA (↑) AF (↓) AIA (↑) AF (↓) AIA (↑) AF (↓)

ResNet-34
FedAvg 42.20 45.68 21.31 50.41 12.19 60.94 61.81 35.51

FedProx 41.70 45.32 21.07 51.55 11.85 61.64 62.03 35.51

FLwF-2T 51.80 33.04 31.20 44.15 16.65 36.64 65.09 32.64

TARGET 57.95 15.98 42.32 23.20 19.04 18.27 66.04 30.74

MFCL 58.42 15.07 43.39 24.9 22.09 17.27 67.15 29.69

FedGTG (ours) 63.02 10.78 45.98 17.17 23.96 12.47 70.81 20.67
ResNet-50

FedAvg 36.79 41.21 18.57 45.47 10.63 54.98 53.88 32.03

FedProx 36.35 40.88 18.37 46.50 10.33 55.61 54.08 32.03

FLwF-2T 45.16 29.81 27.20 39.82 14.51 33.06 56.74 29.45

TARGET 50.52 14.42 36.89 20.93 16.60 16.48 57.56 27.73

MFCL 50.93 13.60 37.82 22.46 19.26 15.58 58.54 26.78

FedGTG (ours) 54.94 9.73 40.08 15.49 20.88 11.25 61.73 18.64

round. Table 7 shows the results of various FCIL algorithms on SuperImageNet. We can see that
FedGTG still outperforms other FCIL methods in this dataset, showing its ability in the field.

D.4 ROBUSTNESS TO NATURAL CORRUPTIONS

In this section, we show additional results about the robustness of testing on natural images across
our method and other FCIL methods. Figure 4 shows the last 09 augmentations of the CIFAR-100
dataset averaged over three different runs. Our approach still outperforms MFCL and TARGET in
terms of test accuracy.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Performance of the different algorithms training on the SuperImageNet dataset.

Metrics/Method FedGTG (ours) MFCL TARGET FLwF-2T FedWeIT FedEWC FedProx FedAvg
AIA (↑) 36.19 31.52 30.11 25.13 24.01 22.66 21.57 21.41

AF (↓) 26.08 32.33 31.56 41.23 44.36 49.67 57.99 59.23

Figure 8: Robustness to natural corruptions.

E DATA VISUALIZATION

Figure 9 illustrates synthetic images of the CIFAR-100 dataset produced by the data generator; while
these images retain specific characteristics of the original datasets, their altered shapes ensure privacy
is maintained.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Real data

MFCL

FedGTG

Figure 9: Synthetic images of CIFAR-100, generated by data generator from MFCL and FedGTG.

To visualize synthetic features, we employ Principal Component Analysis (Pearson, 1901) to reduce
the dimensionality of the both real and synthetic features to the 2D space. As shown in Figure 10,
synthetic features generated by FedGTG’s feature generator align with real features, which shares the
same decision boundary.

F COMPARISON BETWEEN FEDGTG AND MFCL

In this section, we provide a detail comparison between our framework (FedGTG) and MFCL, which
both use the data generation approach to alleviate the stability-plasticity trade-off, as follows:

• In FedGTG, we additionally train the feature generator to overcome the catastrophic forgetting that
MFCL still suffers from.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: Synthetic features of CIFAR-100, generated by feature generator from FedGTG. × points
and ◦ denote the real and synthetic features, respectively.

• FedGTG is effectiveness in thedomain shift scenario, where MFCL witnesses a bad stability.
• FedGTG is more robust to natural images, which is easier to interpret in the real-world scenarios.
• Although there are more computational resources needed to complete the training process on

FedGTG, the increasement is comparable with MFCL, and the performance gained is better, as
shown in Table 1 and Figure 3.

G HYPER-PARAMETER SELECTION

Hyper-parameters can have a significant impact on how well algorithms work. While it is true that
each loss term in FedGTG has an associated hyper-parameter, these parameters are carefully designed
to allow fine-tuning for optimal balance between knowledge retention and adaptation to new classes.
We offer basic hyper-parameter settings based on extensive experimental results to help users First,
note that GANs are sensitive to hyper-parameters, we set the generative model’s hyper-parameters to
the same values as MFCL (Babakniya et al., 2024) for a fair comparison. Second, we modify on of
the local side hyper-parameters to see a difference in accuracy. Our FedGTG results from testing
several hyper-parameter settings on the CIFAR-100 dataset are shown in Table 8:

Table 8: Performance of different hyper-parameters for the CIFAR-100 dataset.

λFT AIA (↑) AF (↓) λlogits AIA (↑) AF (↓) λEFM AIA (↑) AF (↓)
1.0 46.42 18.66 0.1 46.42 18.66 0.005 46.42 18.66

0.5 44.44 22.15 0.15 45.34 20.33 0.1 45.11 21.22

0.005 45.23 20.88 0.05 45.78 19.55 1 45.23 20.99

20


	Introduction
	Related work
	Continual Learning
	Federated Class-Incremental Learning

	Methodology
	Preliminaries
	Overview
	Server-side Data Generator
	Server-side Feature Generator
	Client-side

	Experimental results
	Experimental Setup
	Performance Results
	Model Analysis

	Ablation Study
	Discussion
	Conclusion
	FedGTG algorithm
	Experimental Setup
	Generative model setup
	Additional results
	Training time comparison
	Robustness on various architectures
	Robustness on challenging dataset
	Robustness to natural corruptions

	Data visualization
	Comparison between FedGTG and MFCL
	Hyper-parameter selection

