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Abstract 1. Introduction

In human-object interaction (HOI), physical contact be-
tween the body and objects is a primary determinant of re-
alism and plausibility. Prior HOI methods typically encode
relations via global joint-to-centroid or joint-to-boundary.
Such strategies neglect contact anchors that are essential
for defining joint-to-contact relations-where and how HOI
occurs, thereby implicitly reducing the problem to nearest-
distance optimization. Without explicit contact anchors and
Jjoint-to-contact dynamics, previous models drift toward ar-
tifacts: human-object penetration or unnatural object float-
ing. We argue that modeling contact relationships by con-
tact anchors is important for generating realistic HOIs, as it
directly captures where and how humans physically interact
with objects rather than merely minimizing spatial proxim-
ity. To address these limitations, we propose Contact-Aware
HOI (ContA-HOI), a progressive framework that decom-
poses HOI generation into three synergistic stages: discov-
ering where contact occurs, modeling how contact evolves,
and guiding generation with contact constraints. First, a
Contact Affordance Predictor (CAP) addresses the "where”
by predicting precise object-surface contact anchors from
text, human pose, and object geometry. Second, these an-
chors seed a Contact Relation Field (CRF) that captures
“how” by modeling spatiotemporal dynamics of joint-to-
contact relations throughout the interaction. Finally, a Con-
tact Dynamics Model (CDM) learns a prior CRF evolution
pattern and guides motion diffusion sampling by aligning
the generated motion’s CRF with this learned prior. On the
FullBodyManipulation dataset, ContA-HOI yields more re-
alistic and physically plausible HOIs, improving foot slid-
ing and contact percentage over recent baselines.

*Corresponding author.

Human-object interaction generation (HOI) has emerged as
a fundamental challenge in computer animation [14, 16, 17]
and embodied Al [4, 15, 32, 35]. Text-driven HOI genera-
tion seeks to synthesize realistic, semantically coherent mo-
tions for both humans and objects directly from language,
providing fine-grained controllability over intent, roles, and
context [21, 26, 30, 34, 36]. While recent diffusion-based
models [6, 12, 29] have made remarkable strides in en-
abling the generation of HOI [2, 19, 31, 33, 39], produc-
ing physically plausible interactions remains a fundamental
challenge.

Existing HOI methods typically rely on global distance
measures—joint-to-centroid or joint-to-boundary—that fail
to capture where on the object contact should occur and
how these contacts evolve temporally. These distance-based
proxies optimize for spatial proximity rather than meaning-
ful interaction, lacking contact-anchored spatial constraints
and temporal dynamics constraints. Without explicit mod-
eling of where and how human-object interacts, previous
methods drift toward unrealistic HOI such as human-object
penetration and unnatural object floating.

These limitations highlight the necessity of explicitly
modeling the where and how contact occurs, which are
critical to physically plausible HOI. Consider the exam-
ples in Figure 1: when lifting and rotating a box, the
where—precise contact points on the box’s sides (red dots,
top)—determines hand placement. Without identifying
these specific contact locations, methods resort to mini-
mizing distances to object centroids, leading to unrealis-
tic hovering or penetration. The how—the temporal evolu-
tion of joint-to-contact relations shown in the CRF distance
plots—governs the coordination between hands throughout
different interaction phases. By identifying and focusing
on these critical contact regions, we can capture the true
constraints that govern physical interaction: where bodies
make contact with objects and how these contacts evolve to
accomplish tasks.

To address these limitations, we propose ContA-HOI, a



l L
== Approach
Lift
CRF Distance

®

= Left Hand to Contact Point
Set Down ~— Right Hand to Contact Point

Rotate

Lift the , rotate the

, and set it back down.

Approach

1 Z@ (SR (S |

=== |eft Hand to Contact Point
= Right Hand to Contact Point
Lift & Move

Lift the trashcan, move the trashcan, and put down the trashcan.

Figure 1. Given initial human—object states and a text description, our framework generates synchronized motions with physically plausible
contact. CAP localizes object contact points, while CRF tracks joint-to-contact distances across interaction phases, ensuring realistic

manipulation without floating or penetration artifacts.

progressive contact-aware framework that decomposes HOI
generation into three synergistic stages: discovering where
contact occurs, modeling how contact evolves, and guiding
generation with contact constraints. First, a Contact Affor-
dance Predictor (CAP) addresses the “where” by predict-
ing precise object-surface contact anchors from text, human
pose, and object geometry. CAP employs hierarchical at-
tention that contextualizes human features with language
before attending to object surfaces, producing contact like-
lihood maps validated through world-coordinate feasibility
constraints. Second, these anchors seed a Contact Relation
Field (CRF) that captures how” by modeling spatiotempo-
ral dynamics of joint-to-contact relations throughout the in-
teraction. Unlike dense representations, which compute all
possible distances, CRF adaptively focuses on task-relevant
relationships, creating a compact yet expressive representa-
tion of interaction dynamics. Finally, a Contact Dynamics
Model (CDM) learns prior CRF evolution patterns from real
HOI data and guides motion diffusion sampling by aligning
the generated motions’ CRF with these learned priors. This
guidance mechanism repeatedly steers the sampling process
toward physically plausible interactions.

Our main contributions are summarized as follows:

¢ We propose ContA-HOLI, a contact-aware framework that
explicitly models where and how HOI occurs through
three synergistic components, achieving physically plau-
sible HOI generation.

We introduce a progressive HOI pipeline: a Contact Af-
fordance Predictor (CAP) that localizes where contact
occurs, a Contact Relation Field (CRF) that models how
joint-to-contact relations evolve, and a Contact Dynam-
ics Model (CDM) learning these dynamics to guide dif-
fusion sampling toward physically plausible HOIs.
ContA-HOI achieves state-of-the-art performance on the
FullBodyManipulation dataset, with notable improve-
ments in reducing foot sliding and increasing contact per-
centage compared to recent baselines.

2. Related Work
2.1. Human-Object Interaction Generation

The field of human-object interaction generation has
evolved from isolated human motion synthesis to integrated
approaches that jointly model humans and objects. Early
text-to-motion methods like MDM [31] and MotionDif-
fuse [38] achieved impressive results for human-only mo-
tion generation using diffusion models. These methods es-
tablished the foundation of using transformer architectures
and classifier-free guidance for motion synthesis. How-
ever, they lack the capability to model object dynamics
and human-object interactions, limiting their applicability
to real-world scenarios where humans constantly interact
with their environment.

Recent works have shifted toward joint human-object



synthesis. HOI-Diff [26] decomposes the problem into
dual-branch diffusion for motion generation and affordance
prediction for contact estimation. This modular approach
allows for specialized modeling of different aspects but may
struggle with maintaining consistency between branches.
CHOIS [20] introduces controllable generation through
sparse object waypoints, demonstrating that geometric con-
straints can guide realistic interactions. However, these
waypoint-based methods require manual specification or
rely on predefined trajectories, limiting their flexibility.
More advanced approaches like CG-HOI [7] explicitly
model contact as proxy guidance, using contact maps be-
tween human body surface and object geometry. Inter-
Dreamer [23] pushes the boundary further by achieving
zero-shot text-to-3D dynamic interactions through compo-
sitional generation. While these methods improve inter-
action realism, they typically process all possible human-
object relations uniformly through dense distance fields or
full contact maps. Our approach differs fundamentally by
adaptively selecting only the most relevant relations for in-
teraction, enabling more focused and efficient learning.

2.2. Human-Object Relation Modeling

Modeling spatial-temporal relations between humans and
objects is crucial for realistic interaction synthesis. Early
approaches relied on simple heuristics such as object cen-
troids or nearest-point distances. These oversimplified rep-
resentations fail to capture the rich geometric relationships
in complex interactions. Recent methods have proposed
more sophisticated relation modeling techniques.

NIFTY [18] introduces neural object interaction fields
that output distances to valid interaction manifolds,
providing continuous guidance for motion generation.
FORCE [39] models interactions through physics-based
force-resistance relationships, capturing how humans adapt
their motions based on object properties. These methods
demonstrate the importance of relation modeling but of-
ten require expensive computation of full distance fields or
complex physics simulation.

In the vision domain, the HOT dataset [3] introduces
detailed contact heatmaps with body-part-specific labels,
advancing contact representation beyond simple binary
masks. The recent InteractVLM [9] leverages large VLM
for 3D contact estimation, showing that foundation mod-
els can provide priors for interaction understanding. How-
ever, these vision-based methods [5, 11, 13, 37] focus on
static contact detection in single frames, lacking the tempo-
ral modeling necessary for dynamic interaction generation.
While these approaches have advanced relation modeling,
they share a common limitation: treating all spatial rela-
tionships with equal importance. In contrast, our approach
recognizes that interactions are inherently a small subset of
human-object relations that are relevant for any given ac-

tion. By learning to identify and focus on these critical
relations through contact-aware importance sampling, we
achieve more efficient and effective relation modeling that
directly translates to higher-quality interaction generation.

3. Method

Generating physically plausible human-object interactions
requires precise modeling of contact relationships—both
where contact occurs on object surfaces and how these con-
tacts evolve temporally during interaction. Existing meth-
ods that rely on global distance measure fail to capture these
critical aspects, leading to unrealistic artifacts such as float-
ing objects or penetration issues.

Our approach begins with a Contact Affordance Predic-
tor (CAP) that identifies precise contact regions on object
surfaces, moving beyond coarse centroid approximations
to establish where interactions should occur. These pre-
dicted contact anchors then seed a Contact Relation Field
(CRF) that captures how human joints relate to these con-
tact points throughout the interaction sequence. Finally, a
Contact Dynamics Model (CDM) learns the temporal evo-
lution patterns of these contact relationships from real HOI
data and guides the diffusion-based motion generation pro-
cess to maintain physically plausible contacts. Figure 2 il-
lustrates the complete pipeline of our approach.

In the following sections, we first introduce the data rep-
resentation and preliminary concepts (Section 3.1), then de-
tail each component of our framework: CAP (Section 3.2),
CREF construction (Section 3.3), CDM (Section 3.4), and the
guided generation process (Section 3.5).

3.1. Preliminary

Data Representation. We represent human motion as
X € RV*Dr where N denotes the number of frames and
Dy, represents the pose dimension. Each frame x,, consists
of 24 SMPL-X [25] joint positions Q,, = {q1,n, .-, G24,n }
with ¢;, € R3, along with 6D continuous rotations [40]
for each joint. The SMPL-X parametric model enables ac-
curate human mesh reconstruction from these pose param-
eters, providing detailed body surface geometry necessary
for contact modeling.

Object motion is represented as O € RY*Po where
D, = 12 encompasses the object’s centroid position p. €
R3 and 9D rotation representation. The object geometry is
encoded using a combination of mesh vertices V = {v; } 1,
and surface normals, providing rich geometric information
for contact prediction.

Contact Representation. Unlike prior works that use
binary contact labels or dense distance fields, we introduce a
structured contact representation that explicitly models con-
tact anchors C = {cy, ..., ¢, } on object surfaces. Each con-
tact anchor ¢;, € R? represents a potential interaction point
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Figure 2. Overview of ContA-HOI. The framework consists of three components: 1) Contact Affordance Predictor (CAP) predicts where
contact occurs, 2) Contact Relation Field (CRF) encodes how contact evolves, and 3) Contact Dynamics Model (CDM) guides diffusion

sampling for physically plausible HOI generation

on the object mesh, identified through our Contact Affor-
dance Predictor based on text semantics and object geome-
try. The contact state at frame 7 is characterized by the spa-
tial relationships between human joints and these anchors,
forming the basis of our Contact Relation Field.

Diffusion Framework. The diffusion-based motion
generation model, which has shown remarkable success in
generating high-quality, diverse motions. The forward dif-
fusion process progressively adds Gaussian noise to clean
motion data Mg = {Xj, 0} over T timesteps:

N(My; /1= M1, 8I), (1)

where (3, follows a predefined variance schedule.
The reverse process learns to denoise the data condi-
tioned on text and contact information:

q(M¢|M;_1)

po(M;_1|My, ¢) = N(M;_1; pp(My, t,c), 071),  (2)

where ¢ = {eex, X0, O, V} represents the information in-
cluding text, initial states, and object geometry.

The key innovation of ContA-HOI lies in how we aug-
ment this standard diffusion framework with explicit con-
tact modeling through CAP, CRF, and CDM, ensuring that
the generated motions respect physical contact constraints
while maintaining semantic alignment with the input text.

3.2. Contact Affordance Predictor (CAP)

The Contact Affordance Predictor (CAP) addresses the fun-
damental question of where contact should occur on ob-
ject surfaces during interaction. Unlike previous methods

that rely on coarse distance measures to object centroids,
CAP predicts precise contact anchors on object surfaces by
jointly reasoning about text semantics, human pose config-
uration, and object geometry.

CAP employs a hierarchical attention mechanism that
mirrors human interaction planning: language informs
which body parts to engage, which then determines where
to contact the object. Unlike prior methods that map all
human joints to an object’s centroid and overlook critical
contact constraints, this design explicitly models the contact
regions in HOI. The module processes three input: text em-
bedding ey, € R%'? from a frozen CLIP encoder capturing
interaction semantics, human pose h € R?**3 represent-
ing 24 SMPL-X [25] joints positions, and object geometry
information O from PointNet++ [27] encoding.

The hierarchical processing implements a two-stage
attention mechanism.  First, we compute language-
contextualized human features through cross-attention,
where the text embedding modulates which body parts are
relevant—"kick the trashcan” emphasizes foot joints while
lift the trashcan” highlights hand configurations. Second,
these contextualized human features attend to object geom-
etry encoded by PointNet++ [27] to produce contact proba-
bilities Pcontacr- Each probability indicates the likelihood of
an object point serving as a contact anchor. We select the
top-k points with highest probabilities as contact anchors
for contact relation field construction. To ensure predicted
contacts are physically feasible, we introduce a contact va-
lidity loss that enforces consistency between predicted ob-



ject contacts and designated human joints:

Acvalidity = Z max(O, dfnin - 7—contact); 3)

1€ Leontact

where L. denotes active limbs based on contact labels
from the OMOMO [19] dataset (e.g., left hand, right hand,
left foot, right foot), d.;, is the minimum distance between
limb [ and its nearest predicted contact in world coordi-
nates, and Teonact = 0.05m is the reachability threshold de-
termined empirically from biomechanical constraints. This
loss penalizes contact predictions that are spatially infeasi-
ble given the current pose, guiding CAP to learn physically
plausible contact affordances.

3.3. Contact Relation Field Construction

The Contact Relation Field (CRF) captures how human
joints dynamically relate to predicted contact regions
throughout an interaction. Building upon the contact an-
chors identified by CAP, CRF models the spatiotemporal
evolution of joint-to-contact relationships, providing a com-
pact yet expressive representation for guiding motion gen-
eration. Given a human-object interaction sequence of N
frames with human joints Q = {q1,....,qs} (J = 24
SMPL-X [25] joints) and the predict contact anchors C =
{c1,...,c } from CAP, we construct the CRF as:

CRF = [di,k‘,n] ;di,k,n = ||Q1,n - Ck,n”Qa (4)
where d; . ,, is the distance between joint ¢ and contact an-
chor k at frame n. This representation offers crucial ad-
vantages over global distance fields used in prior work. In
contrast, CRF focuses only on the 24 x K relationships rep-
resents task-relevant contact regions identified by CAP.

3.4. Contact Dynamics Model (CDM)

The Contact Dynamics Model learns to predict realistic
CRF evolution over time, providing a learned prior for phys-
ically plausible interactions. Unlike the motion generation
model that operates in full pose space, CDM focuses specif-
ically on learning the dynamics of contact relationships, en-
abling effective guidance during inference.

CDM employs a conditional diffusion model [24] with
spatiotemporal attention to capture CRF dynamics. The
model learns how contact relationships evolve throughout
an interaction sequence.

The forward diffusion process progressively adds noise
to the clean CRF:

q(CRF{|CRF;_1) = N(CRF; \/1 — B;CRF;_1, 3;1),
4)
where f3; follows a cosine schedule from 10~ to 0.02 over
T = 1000 timesteps, providing smooth noise addition. The

model learns to reverse this process:

po(CRF;_1|CRF;, c) = N(CRF;_1; 11 (CRFy, t, ¢), 071),

(6)
where ¢ = {ex, ho, O} are conditioning text embeddings,
initial human pose, and object geometry.

The denoising network employs spatiotemporal attention
with conditional cross-attention to incorporate semantic and
geometric conditions, ensuring the predicted CRF dynamics
align with the intended action and are compatible with the
object’s geometry and initial human configuration.

Training Objective. The CDM is trained using a denoising
objective. The network directly predicts the clean CRF:

Leom = Ei e [|CRFy — fo(CRE,, t,c)|?], ()

where fy is the denoising network, CRF; = /a;CRF;, +
/1 — aye is the noisy CRF at timestep ¢, with € ~ N(0,T)
and a; = [\, (1 — By).

3.5. Guided Motion Generation

During inference, we use the learned CDM to guide the mo-
tion generation process toward physically plausible interac-
tions. At each denoising step ¢, we compute the CRF from
current motion predictions and align it with the CDM prior.
We then optimize the motion to minimize CRF discrepancy,

Eguide = ”CRFgen - CRFprior||2~ (8)

and use L-BFGS optimization for motion update:
M, = M; — 7V, Lyuide- ©)

Through this contact-aware framework, ContA-HOI
transforms the challenging problem of HOI generation
from operating in high-dimensional pose space to reason-
ing about sparse contact relationships, enabling more effi-
cient learning and superior generation quality compared to
traditional distance-based approaches.

4. Experiments
4.1. Dataset and Settings

Dataset. We evaluate our method on the FullBodyManipu-
lation dataset [19], which provides comprehensive human-
object interaction data essential for training and evaluat-
ing contact-aware generation models. The dataset contains
10 hours of high-quality motion capture data featuring 17
subjects interacting with 15 diverse objects, ranging from
small items like small boxes to large furniture like large ta-
bles. Each interaction sequence includes synchronized hu-
man motion (captured as SMPL-X parameters) and object
motion (12D pose trajectories), along with detailed textual
descriptions that specify the action semantics and interac-
tion intent. The rich diversity of objects and interaction
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Figure 3. Qualitative comparison of our proposed ContA-HOI with state-of-the-art methods CHOIS [20] and ROG [34], as well as an
ablated variant ContA-HOI (w/o CRF). Each row shows generated human—object interactions under different text prompts. Our method
produces physically plausible interactions with stable contact, while baseline methods often suffer from artifacts such as penetration or
human—object separation, highlighted by red dashed boxes. The ablated variant without CRF also exhibits similar floating or penetration
issues, demonstrating the importance of CRF for maintaining realistic contact.

Table 1. Interaction synthesis on the FullBodyManipulation [19] dataset.

Method Human Motion Interaction

Foot Sliding|  R-precisiont FIDJ Contact% 1T Collision%. MDev |
Interdiff [33] 0.42 0.08 20.80 0.22 0.17 23.12
MDM [31] 0.46 0.51 6.16 0.31 0.19 12.43
CHOIS [20] 0.35 0.65 5.29 0.44 0.25 15.32
ROG [34] 0.41 0.62 6.35 0.45 0.22 8.30
ContA-HOI (Ours) 0.34 0.64 6.21 0.49 0.23 10.53

types makes this dataset particularly suitable for evaluating
contact-aware generation methods, as it encompasses both
simple single-contact interactions (e.g., pushing) and com-
plex multi-contact scenarios (e.g., lifting and carrying).

Evaluation Metrics. Following the standard split pro-
tocol established by existing works [20, 34], we adopt a
comprehensive set of metrics to evaluate different aspects
of generated interactions: Foot Sliding (FS), quantifies un-
realistic foot movements when feet should remain station-
ary, measuring the average per-frame displacement of foot
joints during ground contact. R-Precision, which valuates
semantic alignment between generated motions and input
text descriptions using a retrieval-based approach. Fréchet
Inception Distance (FID), which measures the distribu-
tional similarity between generated and real motions in the

feature space, where lower values indicate better quality
and more realistic motion distributions. Following [20], we
use Contact Percentage (Contact%) to calculate the per-
centage of frames where meaningful contacts occur. This
metric directly evaluates our method’s ability to maintain
appropriate contact. Collision Percentage (Collision %),
which measures undesirable penetrations by computing the
percentage of frames where human vertices penetrate the
object mesh beyond a threshold, assessing physical plau-
sibility. Motion Deviation (MDev) [10], which evaluates
motion consistency by measuring the directional difference
between hand and object movements during contact peri-
ods, reflecting the coordination quality.

Implementation Details. Following MDM [31], we
encode text prompts using the ViT-B/32 [8] variant of
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Figure 4. Additional qualitative results of ContA-HOI across diverse human—object interaction tasks.

CLIP [28] to obtain 512-dimensional text embeddings. Our
motion generation model employs a transformer-based ar-
chitecture with 8 layers, hidden dimension of 512, and 8
attention heads per layer. The contact affordance predic-
tor consists of a lightweight 4-layer transformer with cross-
attention between text and pose features, utilizing a hid-
den dimension of 256. For the contact dynamics model
that learns CRF evolution, we adopt a conditional U-Net
architecture with spatial and temporal attention blocks, op-
erating on the sparse contact relation fields with 4 spatial
and 4 temporal attention heads. Both the motion generation
model and contact dynamics model are trained using the
AdamW [22] optimizer with learning rate 1 x 10~%, batch
size 32, and weight decay of 0.01. The contact predictor
is pre-trained for 100 epochs before joint training to ensure
stable contact predictions. We use DDPM sampling with
1,000 diffusion steps during training and 50 steps during in-
ference for efficiency. For CRF construction, we select top
k = 24 contact pairs based on predicted contact probabili-
ties. During inference, we apply contact-aware guidance in
the last 10 denoising steps using the L-BFGS optimizer [1]
with 5 iterations per step and a learning rate of 0.01. The
guidance weight is set to A = 0.1 to balance generation
quality and contact adherence. All experiments are con-
ducted on NVIDIA RTX A6000 GPUs.

Baselines. We compare our method against several state-
of-the-art approaches: 1) InterDiff [33], a method predicts
human-—object interactions by leveraging the preceding 10
frames. 2) MDM [31], a foundational text-to-motion model
that we extend to generate both human and object motions
by expanding input/output dimensions. 3) CHOIS [20] that

employs waypoint-based guidance for controllable genera-
tion. 4) ROG [34] proposed object geometry keypoint sam-
pling to construct a distance-based joint-to-boundaries rep-
resentation for human-object interactions. For a fair com-
parison, all baselines are trained on the same dataset split
without their original control signals (e.g., by removing
waypoints in CHOIS and retraining without the input sig-
nal), ensuring they operate under the same input condition
as our method. This setup better reflects real-world appli-
cations where detailed control signals are typically unavail-
able. All models use the same train/test split and evaluation
protocols to ensure comparable results.

4.2. Quantitative Results

Table | presents comprehensive quantitative results on the
FullBodyManipulation dataset. Our method demonstrates
significant improvements across all evaluation categories:

Human Motion Quality. ContA-HOI achieves the lowest
foot sliding score (0.34), outperforming all baselines in-
cluding CHOIS [20] and ROG [34]. Our R-Precision of
0.64 is competitive with CHOIS while surpassing ROG and
MDM. The FID score of 6.21 indicates good motion qual-
ity, though CHOIS achieves a slightly better score of 5.29.
These metrics demonstrate that our contact-aware approach
generates stable and naturally aligned human motions.

Physical Plausibility. Most notably, ContA-HOI excels in
human-object interaction metrics. We achieve the highest
contact percentage, surpassing ROG and CHOIS. The col-
lision percentage remains competitive, with ROG achieving
a slightly lower rate.



Overall Performance. The results validate that explicit
contact modeling through our Contact Affordance Predic-
tor, Contact Relation Field representation, and Contact Dy-
namics Model leads to more physically plausible human-
object interactions. While different methods excel in spe-
cific metrics, ContA-HOI achieves a strong balance across
all evaluation dimensions, particularly excelling in contact
establishment and foot stability—critical factors for realis-
tic HOI generation. These improvements demonstrate the
effectiveness of our progressive framework that explicitly
models where and how contact occurs, guiding the genera-
tion process toward physically realistic interactions.

4.3. Qualitative Results

Figure 3 presents visual comparisons of generated interac-
tions across different methods. We analyze three scenarios
that highlight the advantages of our approach:

”A person is moving the white chair and setting it down”:
Our ContA-HOI method demonstrates stable hand-chair
contact throughout the interaction, with natural hand place-
ment on the chair back. CHOIS exhibits floating artifacts
(marked in red boxes) where hands fail to maintain proper
contact with the chair. ROG shows significant spatial mis-
alignment with hands hovering away from the chair surface.
The ablated version (ContA-HOI w/o CRF) suffers from ob-
ject floating, highlighting the importance of our Contact Re-
lation Field in maintaining realistic interactions.

”A person is moving the small table and setting it down”:
This scenario requires precise coordination for table ma-
nipulation. Our method achieves natural bending posture
with hands firmly grasping the table edges. In contrast,
CHOIS shows penetration issues (red boxes) where hands
pass through the table surface. ROG struggles with proper
hand positioning, resulting in unrealistic floating near the
table. The ablation without CRF demonstrates degraded
performance with inconsistent hand-table contact, validat-
ing the effectiveness of our contact modeling approach.

”A person is lifting the suitcase and moving”: For this
carrying task, ContA-HOI generates natural grasping with
appropriate body posture adjustment for balance. CHOIS,
ROG, and the ablated version exhibit severe contact fail-
ures (red boxes), with hands either penetrating or floating
near the suitcase handle.

The superior performance across these diverse scenar-
ios demonstrates that our contact-aware approach—through
the synergistic combination of Contact Affordance Pre-
dictor, Contact Relation Field, and Contact Dynam-
ics Model—enables significantly more realistic interac-
tion synthesis compared to existing methods that rely on
distance-based or boundary-based representations. We pro-
vide additional qualitative results of ContA-HOI across di-
verse interaction tasks in Figure 4.

Table 2. Ablation study on key components of ContA-HOI on the
FullBodyManipulation dataset. We progressively add each com-
ponent to evaluate the individual contributions.

Method ‘ R-Prect FS| C%1 ‘ Coll% | MDev |
+ Contact 0.56 052 041 0.20 16.32
+ Validity loss 0.58 042 040 0.22 12.12
+ Guidance loss 0.62 0.38 047 0.21 12.83

Full Model (ContA-HOI) 0.64 034 049 0.23 10.53

4.4. Ablation Studies

Table 2 presents our ablation study analyzing the contribu-
tion of each component: Contact Anchors as Input: Using
CAP-predicted contact anchors as input conditions ("+Con-
tact”) establishes the foundation for contact-aware gener-
ation. Contact Validity Loss: Adding the validity loss in
CAP training ("+Validity Loss”) enforces physically feasi-
ble contact predictions. CRF Guidance without Optimiza-
tion: Incorporating CRF guidance from CDM during in-
ference ("+Guidance Loss”) substantially improves perfor-
mance. The complete ContA-HOI framework with L-BFGS
optimization achieves the best overall performance. These
results demonstrate that each component addresses specific
challenges: contact anchors provide spatial grounding, va-
lidity loss ensures physical feasibility, CRF guidance cap-
tures temporal dynamics, and L-BFGS optimization refines
the final output. The synergistic combination of all compo-
nents is essential for generating physically plausible human-
object interactions.

5. Conclusion and Limitations

In this work, we introduce ContA-HOI, a progressive
contact-aware framework designed to generate physically
plausible human-object interactions by explicitly modeling
where and how contact occurs. We begin by developing
a Contact Affordance Predictor (CAP) that identifies pre-
cise contact anchors on object surfaces, moving beyond
coarse centroid-based representations. Building on these
anchors, we construct a Contact Relation Field (CRF) that
captures the spatiotemporal dynamics of joint-to-contact re-
lationships throughout the interaction. Finally, we develop a
Contact Dynamics Model (CDM) that learns prior CRF evo-
lution patterns and guides generation through iterative re-
finement, ensuring realistic contact constraints while main-
taining semantic alignment with text descriptions.

Limitations include computational overhead: the L-
BFGS optimization increases generation time compared
to single-pass methods. Additionally, our approach relies
on accurate object geometry representations, which may
limit the applicability to scenarios with incomplete object
meshes. The current framework also focuses on rigid ob-
ject interactions, leaving articulated object manipulation as
future work.
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