
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Practical Random Tree Generation using Spanning Trees: Entropy and
Compression

Anonymous Authors1

Abstract
Tree structures make an appearance in many
learning-related problems, most importantly in
Graph Neural Networks. Modeling and simulat-
ing the appearance of these data structures can
be done using random tree generators. However,
there has been very little study on random models
that are able to capture the dynamics of networks.
We introduce the random spanning tree model,
which is a random tree generator that is based on
generating a tree from an already existing network
topology. The Shannon entropy of this model is
then analysed, and upper bounds to it are found.
As compression can be beneficial because of the
complexity of large trees, we then introduce a uni-
versal approach to compressing trees generated
using the spanning tree model. It will be shown
that the proposed method of compression intro-
duces a redundancy that tends to zero for larger
trees.

1. Introduction
Despite their vast applications, there are very few models
for the random generation of trees. A good random tree
generation model can be used to model and simulate many
real-world phenomena, especially in learning applications.
The existing models for trees are very limited, and most
of them rely solely on a uniform distribution among the
possible trees. For example, random generation of a Prüfer
sequence (Prüfer, 1918) can result in a random tree. Other
models focus only on specific type of tree, such as binary
trees (Mäkinen, 1999). One of the most detailed studies
on random trees can be found in (Drmota, 2009), where
several random tree models are introduced and analysed.
The models that are analysed in (Drmota, 2009) include
Polya trees (Mauldin et al., 1992), Galton-Watson trees

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Neural Compression Work-
shop @ ICML 2023. Do not distribute.

(Watson & Galton, 1875), and the simply generated tree
model (Drmota, 2009). However, these models come with
their own drawbacks. For instance, the number of nodes in
the generated trees can grow indefinitely, and the size of the
trees that we need can not be set using a parameter in the
model.

Because of these reasons, we introduce a novel random tree
generator in this paper. The introduced model, which we
call the spanning tree model, is built based on what usually
happens in practice. Random trees are often generated from
an underlying network topology, as one of its spanning trees.
Spanning trees of an underlying network topology have
huge applications in areas such as decision trees in machine
learning and random forest classifiers (Ho, 1995). The
introduced model is not only based on practical scenarios,
but it is also very flexible for simulating different situations
as its different parameters can be adjusted to fit many real-
world scenarios.

After having introduced the random tree source, we move on
to study its information-theoretic parameters. This analysis
is performed because of the fact that trees, and graphical
data structures in general, become overly complex as the
number of nodes grows. Therefore, we aim to quantify the
complexity of the introduced source. Additionally, these
trees need to be stored and/or communicated through a
communication channel in practice. For this reason, we will
also study methods for optimal compression of said trees.
The compression will be studied for single trees rather than a
sequence of trees, specifically as the number of nodes grows
large. This is because in practical scenarios we face single
trees more often than a sequence of trees, and compression
is mainly needed when complexity grows with the number
of nodes.

The rest of the paper is organised as follows. Section 2 in-
troduces the spanning tree model. In section 3, we study the
bounds on the entropy of the spanning tree model. Section
4 proposes a compression method for optimal compression
of trees generated from a specific class of the spanning
tree model. Ultimately, the paper is concluded and future
directions of research are proposed.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Practical Random Tree Generation using Spanning Trees: Entropy and Compression

Random Graph
Generator

Random
Spanning Tree

Selector

HT

HG

Figure 1. Steps of the spanning tree model

2. The Spanning Tree Model
In this section, we will introduce a novel random tree gen-
eration model called the spanning tree model. In practical
applications, the trees we work with are often a spanning
tree of a network. An example of this can be seen in net-
work routing. Routing tables are usually used to store the
shortest paths from any node in a network to any other one.
It can be shown that the routing table for a node in a net-
work is essentially representing a rooted tree, with the root
being the origin node. It can also be seen that if the network
forms a connected graph, this rooted tree is a spanning tree
of the underlying network. Therefore, selecting a random
spanning tree of the underlying network can be a practical
model for generating random trees. In this section, we will
introduce our proposed random tree generator, called the
spanning tree model. We will use the following definitions
for this purpose.

Definition 2.1 (Random Graph Source). A random graph
source consists of a set G, which includes all the possible
graphs that can be generated by the source, alongside a
probability distribution pG(g) defined on the set G, which
shows the probability of individual graphs being generated
by the source.

Definition 2.2 (Random Tree Source). A random tree
source consists of a set T , which includes all the possi-
ble trees that can be generated by the source, alongside a
probability distribution pT (t) defined on the set T , which
shows the probability of individual graphs being generated
by the source.

Assume that we have a random graph source G. The first
step is to create a graph g, according to the distribution of
G. g will then have a number of spanning trees (which can
also be zero). We then randomly choose one of the spanning
trees of g as the generated tree. This random choice can be
done according to any arbitrary distribution, which can also
be dependent on g. This is the basis of a general spanning
tree model. Fig. 1 shows the steps of the spanning tree
model.

It is clear that the spanning tree model is a very general
model, as the random graph generator and the way a span-

ning tree is selected are both distributions that can be cho-
sen according to the network that we want to simulate. To
provide a good example of how these parameters can be
chosen, we introduce ER random spanning trees. For the
random graph generator of this model, we use The ER model
(Gilbert, 1959). The ER model is known as one of the most
simple, yet effective, random graph generators. It has been
shown to be effective in simulating real-world phenomena
such as epidemics and evolutionary conflicts (Cannings &
Penman, 2003). Additionally, for choosing a random span-
ning tree from the created graph, we simply choose one of
its spanning trees in a uniform manner. We will study this
model more in the following sections.

3. Entropy of the spanning tree model
In this section, we will attempt to quantify the entropy of the
spanning tree model. We use Shannon’s entropy (Shannon,
1948) for this purpose. All the logarithms are calculated in
base two, and therefore the resulting entropy is in terms of
bits. We will use the following notations in our calculations.

• HG: Entropy of the random graph source

• HT : Entropy of the spanning tree model source

The goal in this section is to find HT , assuming that HG

is known or can be easily calculated. We can write the
following equation to find HT .

HT = HG +H(T |G)−H(G|T) (1)

If we assume that the output trees are chosen uniformly
from the spanning trees of the graph, then we can write the
following equation for calculating H(T |G).

H(T |G) =
∑
g∈G

pG(g)H(T |G = g) (2a)

=
∑
g∈G

pG(g) log2 s(g), (2b)

where the sum is taken among all the connected graphs
that can be generated using the random graph generator, pG
shows the probability distribution of the graph source, and
s(g) shows the number of spanning trees of graph g. The
need for connectivity of the graphs arises from the fact that
they need to have at least one spanning tree for log2 s(g) to
be defined.

Eq. (1) and (2b) show that to calculate the entropy of the
spanning tree model, we need knowledge about the under-
lying distribution for the network topology, as well as the

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Practical Random Tree Generation using Spanning Trees: Entropy and Compression

number of spanning trees that exists for each graph. Un-
fortunately, the number of spanning trees of a graph, often
called its tree-number, is not easy to find. The entropy also
depends on the model that is used to generate the underly-
ing graph topology, which is not always known. Because
of these limitations, we will focus on ER Spanning Trees,
which were introduced in the previous section.

In ER Spanning Trees, the underlying network topology is
created using the ER model. In an ER graph, each edge
will be present with a probability of p, independent of other
edges. As the ER model does not guarantee connectivity,
there will be some graphs that do not even have a spanning
tree. Additionally, it is known that there is no closed-form
formula to calculate the number of spanning trees of a graph
given its number of nodes and edges. Because of these
reasons, we will find an upper bound to the entropy of the
spanning trees of ER graphs rather than its actual value.

We consider ER graphs with n nodes, with parameter p.
It can easily be shown that the entropy of the graphs cre-
ated using this model can be calculated using the following
equation.

HG =

(
n

2

)
H(p), (3)

where

H(p) = −p log2 p− (1− p) log2(1− p).

Additionally, we assume that once an ER graph is created,
one of its spanning trees is chosen uniformly. If the graph
does not have any spanning trees, then simply no tree is cho-
sen. To find an upper bound to the entropy of the spanning
trees created this way, we use the Grimmett upper bound
formula (Bozkurt, 2012). Grimmett’s formula gives us the
following upper bound to the number of the spanning trees
of graph g.

s(g) ≤ 1

n

(
2e(g)

n− 1

)n−1

, (4)

Using this upper bound, we can prove the following propo-
sition. The proof can be found in appendix A.

Proposition 3.1. The entropy of ER spanning trees is upper
bounded based on the following inequality.

HT ≤ (n− 1) (H(p) + log2(np)) (5)

Proposition 3.1 gives us an upper bound on the entropy of
trees created using the ER Spanning Tree model. Fig. 2
illustrates this entropy, and compares it with the entropy
of the graph, and the maximum entropy for trees. The
maximum entropy is calculated using the fact that a uniform
distribution maximises the entropy, and there exist nn−2

possible labelled trees on n nodes. The simulation is run for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

E
nt

ro
py

 (
bi

ts
)

Graph
Spanning Tree Model
Maximum Tree Entropy

Figure 2. Entropy upper bound for ER spanning trees for graphs
with 100 nodes as a function of the ER parameter p

ER graphs with 100 nodes, and the entropy is plotted as a
function of the ER parameter p. It can be seen that for larger
values of p, the estimated upper bound for the entropy is
larger than the maximum entropy. However, (5) is providing
us with a tighter upper bound when used for lower values
of p.

4. Compression of ER Spanning Trees
In this section, we will introduce a universal and optimal
compression algorithm for the ER spanning tree model.
Before doing so, we need to define what we mean by uni-
versality and optimality in the context of these methods.

Optimality: It was shown by Shannon (Shannon, 1948) that
the entropy of a random variable provides a lower bound on
the average code length that we can use to compress that ran-
dom variable. Therefore, we are looking for a compression
algorithm whose average codeword length is close enough
to the entropy of the random tree source at hand.

Universality: Models for generating random trees have
specific parameters that need to be set. For instance, the
random graph generator and its parameters need to be set
when using the introduced spanning tree model. By looking
for universal compression algorithms for specific families
of random trees, we are essentially looking for compression
algorithms that perform optimally regardless of the model
parameters. For example, if we develop a universal com-
pression algorithm for ER random spanning trees, we want
it to perform optimally regardless of the ER parameter p.

The idea of all existing universal compression algorithms
is that as the parameter of the distribution is unknown, the
distribution needs to be somehow learned from the data.
For instance, the renowned family of Lempel-Ziv (Ziv &
Lempel, 1977) compression algorithms, uses dictionaries to
store and learn the most common patterns that can happen

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Practical Random Tree Generation using Spanning Trees: Entropy and Compression

for the random variable at hand. However, this demands
having a sequence of the random variable, so that the most
common patterns can be learned. Whereas, in this paper,
we are interested in compressing single large trees, rather
than a sequence of them. In this case, optimality translated
into the average codeword length for all possible trees to be
close enough to the entropy of the source. If we use EL,n to
show the expected codeword length for trees with n nodes
and Hn to show the entropy of the tree source for trees with
n nodes, our goal is for the compressor to satisfy

lim
n→∞

EL,n = Hn, (6)

to ensure that our compression algorithm is asymptotically
optimal on single trees when n and consequently the need
for compression grow. In order to achieve the condition in
(6) and still have a universal compression algorithm, our
main approach will be to decompose each single tree into a
sequence of other random variables, and then apply existing
universal compression algorithms to those sequences.

We propose the following approach for coding ER spanning
trees. We divide our coding process into two steps: extract-
ing certain bits from the adjacency matrix of the tree, and
then compressing the extracted sequence of bits. We first
start by describing the bit extraction process.

Bit extraction: We start by looking at the adjacency ma-
trix of the tree, starting with the row corresponding to the
connections of node 1. This row consists of n − 1 bits
(a1,2, a1,3 . . . , a1,n), where each bit represents the existence
of a connection between node 1 and the other nodes in the
tree. We take all these bits during the extraction process.
After this, we know all the connections of node 1 in the
tree. Let us show the number of these connections with
random variables C1. Each pair among these C1 edges re-
moves the possibility of having one other edge in the tree.
For instance, if node 1 is connected to both nodes i and j,
there can not be a connection between i and j in the tree.
Therefore, having the connections of node 1 removes the
need for including

(
C1

2

)
bits in the adjacency matrix of the

tree, and we will know exactly which ones. After having
described the connections of node 1, we go to the nodes
to which node 1 is connected in the order of their labels.
We continue by writing down the rows of the adjacency
matrix corresponding to these rows, without the connections
that have been covered before or whose state is known due
to the described edge elimination process. This way, the
second node requires less than impossibility of this node
being connected to other neighbours of node 1. We can
carry on this way and explain the remaining connections of
each node, until all the nodes in the tree are covered. Note
that bit extraction can be applied to any simple graph, and
not just ER graphs. We show the process of bit extraction
from a tree t with f(t).

t
Input Tree

Bit
extraction

LZ
compression 0100…

Output

Figure 3. Proposed algorithm for compressing ER Spanning Trees

After having extracted certain bits of the adjacency matrix
using f , we simply feed them into a universal compression
algorithm, such as the Lempel-Ziv-Welch algorithm (Welch,
1984). Fig. 3 summarizes our proposed compression tech-
nique.

Proposition 4.1. The redundancy of the proposed compres-
sion algorithm tends to zero as n goes to infinity.

Proposition 4.1 is proven in appendix B. It is also shown that
it tends towards zero regardless of the value of p and the way
that the random spanning trees were chosen. Therefore, it
can be said that the proposed method is universal in the sense
that it does not depend on the ER parameter or the random
tree selection process. Note that the proposed compression
algorithm can be further generalized by generalizing the
bit extraction process. For instance, the process does not
necessarily need to start from node 1, and a DFS traversal
would have worked too. We aim to work on a generalization
of the traversal methods that can be used for this purpose in
the future.

5. Conclusion
In this paper, we discussed the need for having novel random
tree generators to be used in practical scenarios that involve
tree data structures. The random spanning tree model was
introduced as a simple, yet practical, method for generating
random trees. It was shown how this model can be adapted
to different scenarios by choosing the appropriate random
graph generation model, and the probability distribution
for selecting a random spanning tree. We then introduced
ER spanning trees, as it is known that the ER model has
many practical applications in network science. We contin-
ued by analysing the entropy of the proposed models, and
measuring their complexity. Having calculated the entropy
of the ER spanning tree model as a lower bound for its
compression, we moved on to introduce a universal com-
pression algorithm for this family of trees. It was shown
that our proposed compression algorithm will achieve a re-
dundancy of zero for large trees, which are the reason we
need compression for these structures in the first place. To
continue this work, we firstly aim to consider other tree
traversal algorithms for the bit extraction process, such that
a query-preserving compression algorithm can be designed.
Additionally, we aim to study the application of the pro-
posed compression method on network routing protocols.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Practical Random Tree Generation using Spanning Trees: Entropy and Compression

References
Bozkurt, Ş. B. Upper bounds for the number of spanning

trees of graphs. Journal of Inequalities and Applications,
2012(1):1–7, 2012.

Cannings, C. and Penman, D. Ch. 2. models of ran-
dom graphs and their applications. In Stochastic
Processes: Modelling and Simulation, volume 21 of
Handbook of Statistics, pp. 51–91. Elsevier, 2003.
doi: https://doi.org/10.1016/S0169-7161(03)21004-X.
URL https://www.sciencedirect.com/
science/article/pii/S016971610321004X.

Drmota, M. Random trees: an interplay between combi-
natorics and probability. Springer Science & Business
Media, 2009.

Gilbert, E. N. Random graphs. The Annals of Mathematical
Statistics, 30(4):1141–1144, 1959.

Ho, T. K. Random decision forests. In Proceedings of
3rd international conference on document analysis and
recognition, volume 1, pp. 278–282. IEEE, 1995.

Jensen, J. L. W. V. Sur les fonctions convexes et les
inégalités entre les valeurs moyennes. Acta mathematica,
30(1):175–193, 1906.

Mäkinen, E. Generating random binary trees—a survey.
Information Sciences, 115(1-4):123–136, 1999.

Mauldin, R. D., Sudderth, W. D., and Williams, S. C. Polya
trees and random distributions. The Annals of Statistics,
pp. 1203–1221, 1992.

Plotnik, E., Weinberger, M. J., and Ziv, J. Upper bounds
on the probability of sequences emitted by finite-state
sources and on the redundancy of the lempel-ziv algo-
rithm. IEEE transactions on information theory, 38(1):
66–72, 1992.

Prüfer, H. Neuer beweis eines satzes über permutationen.
Arch. Math. Phys, 27(1918):742–744, 1918.

Shannon, C. E. A mathematical theory of communication.
The Bell system technical journal, 27(3):379–423, 1948.

Watson, H. W. and Galton, F. On the probability of the
extinction of families. The Journal of the Anthropological
Institute of Great Britain and Ireland, 4:138–144, 1875.

Welch, T. A. A technique for high-performance data com-
pression. Computer, 17(06):8–19, 1984.

Ziv, J. and Lempel, A. A universal algorithm for sequential
data compression. IEEE Transactions on information
theory, 23(3):337–343, 1977.

https://www.sciencedirect.com/science/article/pii/S016971610321004X
https://www.sciencedirect.com/science/article/pii/S016971610321004X

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Practical Random Tree Generation using Spanning Trees: Entropy and Compression

A. Proof of Proposition 3.1
We first start by finding an upper bound to H(T |G) for the ER model. Notice that in the calculations below, we might be
faced with graphs that do not even have a spanning tree to choose from. Note that Grimett’s formula has already accounted
for those instances by providing us with an upper bound. For the exceptional case that e(g) = 0, we will be faced with
log2 0 in our calculations. To avoid this, as we are interested in an upper bound, we assume that these graphs also have at
least one spanning tree. Therefore, log2 0 is automatically replaced with log2 1 = 0 whenever it is observed. We will get the
following inequality by plugging (4) into (2b).

H(T |G) ≤
∑
g

pG(g) log2

(
1

n

(
2e(g)

n− 1

)n−1
)

= − log2 n
∑
g

pG(g)

− (n− 1)
∑
g

pG(g) log2(n− 1)

+ (n− 1)
∑
g

pG(g)(log2 e(g) + 1)

= − log2 n− (n− 1) log2(n− 1)

+ (n− 1)
∑
g

pG(g) log2 e(g) + (n− 1).

(7)

To calculate the term
∑

g∈G p(g) log2 e(g) in (7), we can take the sum over the number of possible edges in the graph and
write ∑

g∈G

p(g) log2 e(g) =

(n2)∑
i=0

((n
2

)
i

)
pi(1− p)(

n
2)−i log2 i. (8)

Using Jensen’s inequality (Jensen, 1906), we can find an upper bound to (8).

(n2)∑
i=0

((n
2

)
i

)
pi(1− p)(

n
2)−i log2 i

≤ log2

(n2)∑
i=0

((n
2

)
i

)
pi(1− p)(

n
2)−ii

= log2

((
n

2

)
p

)
(9)

By plugging in the results of (8) and (9) into (7), we will get the following upper bound for H(T |G).

H(T |G) ≤ (n− 1) log2

((
n

2

)
p

)
− log2 n− (n− 1) log2(n− 1) + n− 1

≤ (n− 1)

(
log2

((
n

2

)
p

)
− log2

(n− 1)

2

)
= (n− 1) log2(np)

(10)

We now move on to calculate the term H(G|T) in (1). Notice that given a spanning tree of an ER graph with n nodes, we
will know the status of n− 1 edges out of the possible

(
n
2

)
edges of the graph. Therefore, given a spanning tree of the graph,

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Practical Random Tree Generation using Spanning Trees: Entropy and Compression

the remaining entropy is simply the entropy of the remaining
(
n
2

)
− (n− 1) edges of an ER graph. Consequently, we can

write the following equation.

H(G|T) =
∑
t

pT (t)H(G|T = t)

=
∑
t

pT (t)

((
n

2

)
− (n− 1)

)
H(p)

=

((
n

2

)
− (n− 1)

)
H(p)

∑
t

pT (t)

=

((
n

2

)
− (n− 1)

)
H(p),

(11)

where the sum is taken over all possible spanning trees on the n nodes of the graph, and pT shows the probability distribution
of the trees.

Ultimately, we insert the results from (3), (10), and (11) into (1) to get the total upper bound on the entropy of the spanning
trees of the ER model. This will provide us with the following inequality after simplification.

HT ≤ (n− 1) (H(p) + log2(np)) (12)

B. Proof of Proposition 4.1
In this section, we quantify the redundancy of the proposed compression algorithm. We will perform the calculations for the
case where LZ78 is used as the universal compression. However, the result is similar for other compression algorithms in
the LZ family. It is shown in (Plotnik et al., 1992) that for a binary sequence of length l, the redundancy of LZ78, which we
show with R, satisfies the following inequality.

R ≤ ln ln l

ln l
+O

(
1

ln l

)
(13)

Therefore, if we use L(t) to show the length of f(t), we can use the following inequality to find the average redundancy of
the proposed compression algorithm.

E [R] ≤ E
[
ln lnL(t)

lnL(t)

]
+ E

[
O
(

1

lnL(t)

)]
(14)

As it can be easily shown that ln lnx/lnx is a concave function, we can use Jensen’s inequality (Jensen, 1906) for the first
term in (14) and write

E
[
ln lnL(t)

lnL(t)

]
≤ ln lnE[L(t)]

lnE[L(t)]
. (15)

Based on (15), we need to calculate E[L(t)]. Note that the bit extraction process induces an order on the nodes of tree based
on the traversal order. Looking closely, this is simply a Breadth-First Search traversal of the tree, by choosing node 1 as the
root. Let us show the number of connections left to be described for the ith node in this sequence using Ai. Firstly, we
know that A1 = n− 1. Going to each new node, the need for describing the connections to all the nodes that came before it
and all their neighbours is removed. As in each step, we do not have any prior information about the connections to the
remaining nodes, each bit can be considered an independent Bernoulli process just like in the original graph. Therefore, for
i > 1 the expected value of unknown connections is n− 1, minus the i− 1 node that have come before and their expected
number of edges, which is simply p times their number of expected connections. However, we must take into account that
this way we are double counting all the prior nodes except for node 1, and this needs a correction term. Based on these
reasons, we can write the following recursive equations for the expected values of Ais.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Practical Random Tree Generation using Spanning Trees: Entropy and Compression

{
E[A1] = n− 1

E[Ai] = n− i− p
∑i−1

j=1 E[Aj] + (i− 2)p, i > 1
(16)

Eq. (16) will result in the following recursive equation for E[Ai] for i > 1.

{
E[A1] = n− 1

E[Ai] = (1− p)E[Ai−1]− 1 + p, i > 1
(17)

Solving (17) gives us the following solution.

E [Ai] =
(p− 1)2 − ((n− 2)p+ 1) (1− p)i

p(p− 1)
(18)

Eq. (18) gives us the following result for the expected number of bits to code.

(19)
n∑

i =1

E[Ai] =

(
np2 − (1− p)n − p (n(1− p)n − 2(1− p)n + 2) + 1

)
p2

If we use h(n) to show the term calculated in (19), we will only need to code a maximum of h(n) bits from the adjacency
matrix of the tree on average. We can write the following equation by inserting (19) into (15).

E[
ln lnL(t)

lnL(t)
] ≤ ln lnh(n)

lnh(n)
(20)

For the E
[
O
(

1
lnL(t)

)]
term in (14), we can simply replace it with a coefficient of E[ln lnL(t)

lnL(t)] and the inequality will still
hold. Therefore, we will have the following upper bound on the average redundancy of the compression algorithm.

E[R] ≤ K
ln lnh(n)

lnh(n)
, (21)

where K is a constant. It can easily be seen that
lim
n→∞

h(n) = n. (22)

Therefore, we can write

lim
n→∞

E[R] = lim
n→∞

K
ln lnh(n)

lnh(n)
= 0. (23)

