
Evolutionary Reward Design and Optimization with Multimodal Large
Language Models

Ali Emre Narin
Kabatas Erkek High School
aliemre2024@gmail.com

Abstract

Designing effective reward functions is a pivotal yet
challenging task for Reinforcement Learning (RL) prac-
tices, often demanding domain expertise and substantial ef-
fort. Recent studies have explored the utilization of Large
Language Models (LLMs) to generate reward functions via
evolutionary search techniques [7]. However, these ap-
proaches overlook the potential of multimodal information,
such as images and videos. In particular, prior methods
predominantly rely on numerical feedback from the RL en-
vironment for doing evolution, neglecting the incorpora-
tion of visual data that could be obtained during training.
This study introduces a novel approach by employing Mul-
timodal Large Language Models (MLLMs) to craft reward
functions tailored for various RL tasks. The methodology
involves providing MLLM with the RL environment’s code
alongside its image as context and task information to gen-
erate reward candidates. Then, the chosen agent undergoes
training, and the numerical feedback from the environment,
along with the recorded video of the top-performing policy,
is provided as feedback to the MLLM. By employing an it-
erative feedback mechanism through evolutionary search,
MLLM consistently refines the reward function to maximize
accuracy. Testing on two different agents across two distinct
tasks points to the preeminence of our approach over previ-
ous methodology, which themselves outperformed 83% [7]
of reward functions designed by human experts.

1. Introduction

Large Language Models (LLMs) have shown remarkable
success in distinct tasks. State-of-the-art models such as
Gemini [2], Palm [4], and GPT-4 [10] have achieved results
comparable to human experts on different benchmarks. In
this paper, we are specifically interested in their capabilities
in designing Reward functions for Reinforcement Learning
practices. Recent studies have shown that GPT-4 can au-
tonomously generate reward functions for multiple agents

in IsaacGYM by taking the environment code as context
and employing evolutionary search [7]. Impressively, it
achieved results similar to and sometimes even better than
those of human experts.

This result is very important for two reasons: firstly,
the task of designing effective reward functions is notori-
ously challenging and time-consuming, and this approach
streamlines the process by creating an end-to-end pipeline;
secondly, by requiring no additional task-specific modifica-
tions, it showcases the generalization capabilities of evolu-
tionary search on reward design.

However, a significant shortcoming of this approach, and
LLMs in general, is that they can only operate on textual
and numerical data. In contrast, when designing reinforce-
ment learning strategies, human experts often leverage vi-
sual data to gain a deeper understanding of the problems
that can be solved and improvements that can be made. It
is our hypothesis that incorporating visual data could pro-
vide the model with enhanced comprehension, thus leading
to improved accuracy.

We introduce EROM: ”Evolutionary Reward Design and
Optimization with Multimodal Large Language Models
(MLLMs)” method as a novel way to generate reward func-
tions. In the EROM method, we utilize MLLMs’ zero-shot
coding abilities to generate reward functions. First, we pro-
vide the MLLM with the environment as context by pro-
viding the source code; then, we give it the description of
the task, guidelines for reward function generation, and an
image of the idle agent. After it generates the first iteration
of the reward function, we provide feedback from the en-
vironment both numerically and visually by providing the
video of the agent . Using evolutionary search, it generates
a better set of reward functions, and this process iteratively
continues.

Our contributions with the EROM method are as follows:
1. To the best of our knowledge, this is the first work that

tests the MLLMs’ abilities on reward function genera-
tion using evolutionary search.

2. We show that capturing the video (or image of an idle
agent) of the top-performing policy and providing it to

the MLLMs as feedback helps the performance, com-
pared to just providing textual reflection.

3. By enhancing the qualities of an autonomous method
that outperformed 83% human experts, we contribute
to the advancement of autonomous reward design tech-
niques without introducing significant computational
cost or expenses.
Due to budget limitations, we mostly aimed to show a

proof-of-concept of our approach. All the contributions
listed above held true for our tests, but without more ex-
periments, the (2) and (3)’ rd contributions above should be
approached tentatively.

2. Background

2.1. Evolutionary Search with LLMs

Evolutionary search algorithms, drawing inspiration from
biological evolution, involve the generation of outputs by a
generator, such as a LLM [5]. The generated outputs un-
dergo evaluation, leading to feedback that informs subse-
quent iterations of output generation. This iterative process
includes the generation of outliers, thereby mitigating the
risk of the algorithm converging to a local optimum.

A recent study demonstrated notable success in leverag-
ing Evolution with LLMs for the design of reward func-
tions, incorporating textual feedback and information from
the environment [7]. In the present research, we extend
this approach by introducing an additional modality of feed-
back—visual feedback—into the evolutionary process.

2.2. Multimodal Large Language Models (MLLMs)

While language is undoubtedly a crucial facet of human
intelligence, our perception of the world extends beyond
words. Humans perceive the world through various modali-
ties, and each contributes to a comprehensive understanding
of our surroundings. As LLMs have demonstrated excep-
tional proficiency in processing textual data, achieving no-
table successes on common benchmarks [10, 12], recent re-
search have sought to expand the capabilities of these mod-
els by integrating other modalities, such as images, videos,
and audios into LLMs. Many MLLMs have been proposed,
including Llava [6], Flamingo [1], and GPT-4 [10].

Recent work has utilized Vision Language Models,
which, in the context of our research, serve the same func-
tion as MLLMs, as direct reward model by using the co-
sine similarity between a state’s image representation and
the natural language task description [11]. This approach is
similar to what we are trying to accomplish in this research,
but differs mainly because of the fact that we are making
MLLM generate code as a reward function, instead of it be-
ing a reward model itself.

3. Methods
We incorporate several methodologies to enhance the ef-
ficacy of reward design and optimization in reinforcement
learning, building upon the foundation laid by [7]. We have
used the environment as context, evolutionary search, and
reward reflection as our primary methods. We call the uni-
fication of these approaches EROM: Evolutionary Reward
Design and Optimization with Multimodal Large Language
Models. Our primary innovations are in the environment
as a context part, where we provide the MLLM with the
idle image of an agent, and in the reward reflection process,
where we introduce video feedback into the loop.

3.1. Environment as Context

The model needs to have an understanding of the environ-
ment to generate a task-specific reward design for that envi-
ronment. To achieve this, we give the environment source
code as context to the model [7]. This helps because provid-
ing the environment code gives the MLLM essential infor-
mation about the variables used in the environment code and
in what format we expect an output. Additionally, we aug-
ment the contextual information by presenting the MLLM
with visual representations of the environment and agent.
We believe this helps MLLM understand the environment’s
visual cues and agent characteristics.

3.2. Evolutionary Search

We employ Evolutionary search for the iterative refine-
ment of reward design. Initially, the model generates ran-
dom samples of reward candidates, which are then evalu-
ated on the task, and the top performer is selected. Sub-
sequently, both reward feedback and the top performers
are collected and fed back into the model for further en-
hancement. This iterative process is crucial, as evidenced
by studies on LLMs demonstrating their capacity for self-
improvement over time [8]. Moreover, this approach aligns
with human intuition, as trial-and-error is a common strat-
egy employed in the design of reward functions [3].

3.3. Reward Reflection

Previous studies utilizing LLMs to generate reward samples
have primarily relied on textual feedback provided by the
environment for evolutionary search [7]. However, captur-
ing the visual behavior of an agent can also yield valuable
insights into necessary adaptations. For instance, visual
feedback can aid in identifying instances of reward hack-
ing or pinpointing areas where the agent is not performing
as intended. To address this, following the initial iteration
of reward sampling, each reward function is individually
tested, and both textual feedback from the environment and
video recordings of the agent’s performance are collected.
Subsequently, for the subsequent iteration of evolution, the

MLLM is provided with the code of the best-performing
reward function, along with its numerical and video feed-
back gathered during training. The MLLM then reasons
over this information to iteratively design improved reward
functions. Through this process of reward reflection, the ac-
curacy of designed rewards consistently improves, leading
to notable outcomes in our experiments.

4. Experiments
4.1. Baselines

In this subsection, we provide an overview of the critical
components: simulation environment and the MLLM cho-
sen for our research. We also describe a method that we will
compare our method against.

4.1.1 Environment

IsaacGYM [9] is a GPU-Accelerated Physics Simulation for
robotics tasks. It enables hundreds of trainings to run at the
same time, thus making it faster to conduct experiments.
Also, we can capture videos during training, which is a pre-
requisite for our experiment. We picked humanoid and ant
agents on two different tasks for our experiments on this
simulator. The reason for selecting these agents was the
GPU memory limit of our hardware.

4.1.2 Multimodal Large Language Model

GPT-4V(Vision) [10] is a MLLM that can take both visual
and textual input. Its multimodal capabilities will allow it to
reason over videos and images, and its natural language and
programming capabilities will allow it to understand tasks
and generate reward functions as Python codes, making it
suitable to use in our experiments.

4.1.3 Eureka Method

Evolution-driven Universal Reward Kit for Agents (Eureka)
[7] is a method that inspired us and the method that we built
upon. The Eureka method involves providing the environ-
ment source code as context, evolutionary search to improve
rewards, and using reward reflection. The only difference
we made in our method is that we added visuals to the feed-
back loop and the environment as context part. We used
very similar prompts to those of Eureka, with only minor
changes indicating to the MLMM that we have added vi-
suals. Also, Eureka has been shown to outperform 83% of
human-expert-designed reward functions, which makes be-
ing able to outperform it a remarkable achievement.

4.2. Experimental Setup

We conducted three different tests to evaluate the effective-
ness of our approach. Following the experiments originally

described in the Eureka paper, we ran both EROM and Eu-
reka for five iterations, generating 8 samples in each itera-
tion. Due to the stochastic nature of MLLMs, when none
of the codes worked in the first iteration, we reran it until
at least one worked, resulting in guaranteed four rounds of
feedback. We refer to this as ”general testing” in the results
subsection of our research.

We separately assessed the importance of providing an
image of an agent in the first generation. We ran both
EROM and Eureka for one iteration, generating 32 samples.
We have increased the sample size to have more examples
to lower the chance factors that could effect the results. We
refer to this as ”Image Testing” in the results subsection of
our research.

We also separately assessed the importance of providing
video during the feedback loop by providing the MLLM
with the same reward codes generated in another iteration:
one with only numerical feedback and the other with video
feedback alongside numerical feedback. We generated 32
samples for both methods and compared them. We refer
to this as ”Video Testing” in the results subsection of our
research.

Unless otherwise specified, when making experiments
with EROM method, we provided the MLLM with a one-
minute video of the agents training on the best policy gen-
erated during the training process (divided into 200 frames
due to the context length of GPT-4V). In the reward sam-
pling process, we trained the ant agent for 1500 epochs and
the humanoid agent for 1000 epochs. In each training, the
environment size was set to default for both agents. Each re-
ward that achieved the best success rate in the initial training
process was chosen to seed the next generation. We refer to
the success rate obtained by reward functions in the initial
iteration as ”training-success” in the rest of the research. We
evaluated the final best reward by retraining it over 5 differ-
ent seeds and taking the average. We refer to this average
as ”average success.”

4.3. Results

All the ”average-success” results can be found in Tab. 1.
Firstly, we observed that our method performed better on
general testing, where we ran both codes for 5 iterations
with 8 samples generated in each iteration. On ant and hu-
manoid agents, EROM achieved an average-success rate of
7.27 and 5.26, while Eureka achieved an average-success
rate of 3.68 and 4.21, respectively. We have also plotted the
difference between EROM and Eureka over the ”training-
success” of each iteration on Fig. 1, Fig. 2. These graphs
effectively demonstrate the effectiveness of evolutionary
search for both methods, as well as the value of video feed-
back and providing the image of the agent.

Secondly, to test the importance of providing the image
of an agent in the first generation, we generated 32 samples

Table 1. Average Success Rates

Test Type Ant-EROM Ant-Eureka Humanoid-
EROM

Humanoid-
Eureka

General Testing 7.27|0.36σ 3.68|0.71σ 5.26|0.29σ 4.21|0.53σ
Video Testing 6.13|0.95σ 3.38|0.39σ 5.42|0.27σ 4.81|0.70σ
Image Testing 6.38|1.89σ 1.76|0.87σ 3.17|0.30σ 5.33|0.39σ

1 2 3 4 5
0

2

4

6

8

10

Iteration

Su
cc

es
s

R
at

e

Eureka
EROM

Figure 1. Comparison of success rates in General Testing on Ant
agent.

1 2 3 4 5
0

2

4

6

8

10

Iteration

Su
cc

es
s

R
at

e

Eureka
EROM

Figure 2. Comparison of success rates in General Testing on Hu-
manoid agent.

using each method to increase the sample size and obtain a
better average. As shown in Tab. 1, providing an image has
shown to increase the average success rate for the ant agent,
but not for the humanoid agent.

Lastly, by seeding the MLLM with the same reward
functions and reward reflection, one with video and the
other with only numerical feedback, we generated 32 sam-
ples with each method. We observed that providing the
video also improved the average success for both of the
agents.

4.4. Discussion

Our developed method, EROM, which aims to introduce
multimodality into the reward design process, has shown
success over previous applications that only utilize text. By

observing average success rates on agents in our experi-
ments specifically designed to assess the importance of pro-
viding an image of the agent, it can be concluded that pro-
viding the image of the agent can indeed be helpful, but
not always. Secondly, we can see that introducing video
in the feedback loop is beneficial, as our experiments have
shown that, with the same seeds, but one with video feed-
back alongside numerical feedback, versus one with only
numerical feedback, our approach performed better. Lastly,
looking at the general experiments, we can see that perform-
ing evolutionary search with the EROM method is more ef-
fective than with the Eureka method in our experiments.

That said, our work has some limitations. Firstly, since
we utilized GPT-4V [10] in our experiments, results largely
depend on its capabilities. Additionally, the real-world ap-
plicability of our method may not match its success in on-
line simulation environments, given the inherent complexity
of real-world scenarios compared to simulations. Moreover,
due to limitations in GPU memory, our experimentation was
confined to only two agents in IsaacGYM. Expanding our
tests to encompass a broader range of agents and environ-
ments would provide a more comprehensive assessment of
our approach’s generalization and efficacy.

5. Conclusion

Designing effective reward functions is a task that requires
expertise and time. Recent researchers have sought to ad-
dress this problem by utilizing LLMs to generate reward
functions by taking the environment as context, employ-
ing evolutionary search, and utilizing reward reflection [7].
However, they have only used numerical feedback and tex-
tual information for reward sampling and the reward reflec-
tion process. In this work, we address this limitation by
incorporating videos of agents in training and their idle im-
ages into the evolutionary process with the help of MLLMs.
Our aim is to enhance the success rate of previous method-
ology, which have already outperformed 83% [7] of hu-
man experts in their focused tasks. Experiments conducted
with two agents across two tasks have indicated that our
approach is more effective than solely utilizing textual in-
formation.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,

Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,
Marianne Monteiro, Jacob L Menick, Sebastian
Borgeaud, and Karén ... Simonyan. Flamingo: a vi-
sual language model for few-shot learning. In Ad-
vances in Neural Information Processing Systems,
pages 23716–23736. Curran Associates, Inc., 2022. 2

[2] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Milli-
can, David Silver, Slav Petrov, Melvin Johnson, Ioan-
nis Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, and ... Oriol Vinyals. Gemini:
A family of highly capable multimodal models, 2023.
1

[3] Serena Booth, W. Bradley Knox, Julie Shah, Scott
Niekum, Peter Stone, and Alessandro Allievi. The
perils of trial-and-error reward design: Misdesign
through overfitting and invalid task specifications.
Proceedings of the AAAI Conference on Artificial In-
telligence, 37(5):5920–5929, 2023. 2

[4] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodku-
mar Prabhakaran ..., and Noah Fiedel. Palm: Scaling
language modeling with pathways. Journal of Ma-
chine Learning Research, 24(240):1–113, 2023. 1

[5] Joel Lehman, Jonathan Gordon, Shawn Jain, Cathy
Yeh, Kenneth Stanley, and Kamal Ndousse. Evolution
Through Large Models, pages 331–366. 2024. 2

[6] Haotian Liu, Chunyuan Li, Qingyang Wu, and
Yong Jae Lee. Visual instruction tuning. In Ad-
vances in Neural Information Processing Systems,
pages 34892–34916. Curran Associates, Inc., 2023. 2

[7] Yecheng Jason Ma, William Liang, Guanzhi Wang,
De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eu-
reka: Human-level reward design via coding large lan-
guage models, 2023. 1, 2, 3, 4

[8] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. Self-refine: Iterative refine-

ment with self-feedback. In Advances in Neural Infor-
mation Processing Systems, pages 46534–46594. Cur-
ran Associates, Inc., 2023. 2

[9] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong
Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa,
and Gavriel State. Isaac gym: High performance gpu-
based physics simulation for robot learning, 2021. 3

[10] OpenAI, :, Josh Achiam, Steven Adler, Sand-
hini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Al-
tenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Bal-
com, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff
Belgum, Irwan Bello, and ... Barret Zoph. Gpt-4 tech-
nical report, 2023. 1, 2, 3, 4

[11] Juan Rocamonde, Victoriano Montesinos, Elvis Nava,
Ethan Perez, and David Lindner. Vision-language
models are zero-shot reward models for reinforcement
learning, 2023. 2

[12] Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-
ton Ferrer, Moya Chen, Guillem Cucurull, David Es-
iobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, and
... Thomas Scialom. Llama 2: Open foundation and
fine-tuned chat models, 2023. 2

	. Introduction
	. Background
	. Evolutionary Search with LLMs
	. Multimodal Large Language Models (MLLMs)

	. Methods
	. Environment as Context
	. Evolutionary Search
	. Reward Reflection

	. Experiments
	. Baselines
	Environment
	Multimodal Large Language Model
	Eureka Method

	. Experimental Setup
	. Results
	. Discussion

	. Conclusion

