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ABSTRACT

Serverless computing, also known as Functions-as-a-Service (FaaS),

triggers web applications in the form of function chains. It uses

a central orchestrator to route all requests from end-users and

internal functions. Such architecture simplifies application deploy-

ment for developers. However, the convenient centralized network

architecture compromises the efficiency of function chain communi-

cations. Specifically, (i) a centralized API gateway assists in routing

requests between functions. This indirect routing scheme raises

invocation latency. (ii) The control flow for invoking functions and

the data flow for passing function data packets are both forwarded

by the API gateway. This results in the API gateway consuming a

significant amount of resources. (iii) All data packets of internal
function communications go through the same API gateway. This

expands the additional attack surface in multi-tenant scenarios.

In this paper, we propose DirectFaaS, a clean-slate network

architecture to improve the function chain communication perfor-

mance. By separating coupled control flow and data flow, Direct-

FaaS releases the API gateway from heavy traffic forwarding, reduc-

ing its resource consumption. For this goal, DirectFaaS exploits

the network control capabilities of Software-Defined Networking

(SDN) to establish direct data forwarding channels to accelerate

function chain invocations. In addition, the data flow constrained

by fine-grained network policies consolidates multi-tenant traffic

security. We implement the DirectFaaS prototype on the popular

OpenFaaS platform. Evaluations under real-world serverless appli-

cations show that DirectFaaS achieves a reduction in application

execution time by up to 30.9% and CPU consumption by up to 30.1%

compared to the current architecture.

KEYWORDS

Serverless computing, Serverless function chain, Serverless net-

working, SDN

1 INTRODUCTION

Serverless computing has gained popularity for deploying web

applications [9, 11, 12]. Running web applications without the need

to configure the runtime environment is attractive for cloud tenants,

especially when their management and provisioning of computing

resources are complex. For instance, one in four CloudFront users

has embraced serverless computing for frontend development [16].

In serverless computing, web applications run as function chains.

Serverless computing platforms, such as AWS Lambda [5], Azure

Functions [37], and Google’s Cloud Functions [21] facilitate the

decomposition of web services [50], Internet of Things [14, 28],

machine learning [13, 52], and data analytics [26, 38] applications

into Function-as-a-Service (FaaS) and combine functions to form

the serverless function chain.

However, function chain communications in the current server-

less architecture are not efficient. Serverless function chains are

triggered by the API gateway through external events or HTTP re-

quests. Figure 1 shows an example that end-users invoke a function

chain with 3 functions. The centralized API gateway assists in for-

warding requests between functions, performing 5 internal requests.

Compared to direct function-to-function invocations which only

need 3 internal invocations, the current architecture introduces 2

additional network round trips. Meanwhile, as cloud applications

become more complex, long function chains are quite common.

In Azure Durable Functions, 50% of function chains have a length

exceeding 3, and even 5% exceeding 8 [35]. The resulting additional

network round trips add more execution time for cloud applications,

potentially compromising service level objectives (SLOs). The net-

work delays within each region of the serverless platform amplify

this function chain invocation latency. As Figure 2 shows, within

each region, at least 50% of the delays exceed 2ms, and the latency

between regions will be even greater. The function chain invoca-

tion latency overheads range from a few to tens of milliseconds

[33], making FaaS a poor choice for latency-sensitive interactive

applications. Therefore, reducing the latency in the function chain

is critical to the performance of serverless computing.

Prior researchers have attempted to reduce the invocation la-

tency in a few different ways. Xanadu [19] and Sequoia [51] proac-

tively warm functions that will execute to reduce function start

time. SPRIGHT [42] uses event-based shared memory communica-

tion within a serverless function chain to achieve high-speed packet

forwarding. QFaaS [22] emerges QUIC protocol to serverless plat-

forms to reduce extra round-trip in TCP. Furthermore, SAND [1]

and Nightcore [25] schedule all functions of an application to the

same node or the same sandbox to reduce interaction distance,

accomplishing low latency.

Nevertheless, all of the current studies still follow the existing

network architecture like Figure 3(a) in which the centralized API

gateway provides indirect function communications. The central-

ized network architecture has networking problems from three

aspects. First, extra network round-trips are required in function

chains, increasing invocation latency (P1). Second, all network flows

in function chains are forwarded by a centralized component, prone

to a performance bottleneck (P2). Third, multi-tenants share the

same centralized component for traffic forwarding, expanding the

attack surface of information leakage. (P3).

In this paper, we propose DirectFaaS, a clean-slate network

architecture that removes the API gateway from internal function

invocations to achieve efficient serverless function chain commu-

nications. Specifically, for extra network round-trips (P1), Direct-

FaaS build direct data forwarding channels between functions to

reduce the network round trips in function chain communications.

For the centralized component bottleneck (P2), DirectFaaS lever-

ages the SDN’s capability to precisely manage network flows. It
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Figure 1: The process of invoking a function chain with a

length of 3.When end-users invoke the function chain, the API

gateway needs to perform 5 request forwarding operations, rather

than 3 direct function-to-function invocations. This results in 2

additional network round trips.
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Figure 2: AWS Lambda intra-region round trip latency (ms)

in the 10th, 50th, and 90th percentiles in one year. Source data

is collected from [15] between June 2021 to June 2022.

releases the API gateway from the burden of forwarding inter-

nal data flows. For the multi-tenant internal function traffic going

through the same component, DirectFaaS deploys the network

policy [32] that only allows data flows to go through functions with

invocation relationships. Fine-grained network policies maintain

the isolation of data flows.

The contributions of this paper are as follows:

• We investigate the network architecture of serverless com-

puting and state its networking problems. (§2)

• We presentDirectFaaS, a clean-slate network architecture.

It improves the efficiency of function chain invocations and

addresses the challenges of removing the API gateway from

internal function invocations. (§3)

• We implement a prototype of DirectFaaS on the popu-

lar open-source serverless platform OpenFaaS. The entire

system code will be made publicly available. (§4)

• We conduct our evaluations of real-world serverless web

applications. Compared with OpenFaaS, DirectFaaS re-

duces the execution time of serverless web applications

by up to 30.9%. It also reduces the system’s CPU usage by

30.1% and memory usage by 13.8%. (§5)

2 BACKGROUND AND PROBLEM

STATEMENTS

This section introduces the existing network architecture in server-

less computing (§2.1) and states networking problems in it (§2.2),

which motivate the design of DirectFaaS.

2.1 Network Architecture in Serverless

In serverless computing, developers only need to upload their code

and provide trigger interfaces to form functions. End-users invoke

functions in an event-drivenway (e.g., HTTP request, timer). Server-

less platforms utilize anAPI gateway to handle function invocations,

providing end-users with a simple, flexible, pay-as-you-go way to

establish the connection to functions [6]. The API gateway is the

piece that ties together serverless functions [46]. It handles all as-

pects of creating and operating functions for the application. Since

functions are designed to be as lightweight as possible to minimize

cold start time, they do not have the service mesh to proxy their

traffic, all the traffic is routed through the API gateway.

Function chain invocation workflow. Figure 3(a) shows an ex-

ample that end-users invoke an application with two functions.

End-users trigger their application through the API gateway (①).

The API gateway forwards the request to function A (⑤), accepts in-

vocation requests from function A to function B (⑥), and forwards

the requests to function B (⑩). Different serverless platforms may

have different approaches to enforcing function chains, but they all

have one common feature: the HTTP requests between functions need
to be forwarded by a central orchestrator such as the API gateway.

The role of the API gateway. Since the API gateway handles

all aspects of invoking a function, it is not only the data packet

forwarding center but also the function control center. The API

gateway performs various roles during the function invocation pro-

cess [6]. It takes responsibility for extensive functionality, including

authorization (control flow), scaling functions (control flow), and

forwarding application traffic (data flow). As Figure 3(b) shows,

the API gateway will authenticate the user’s identity, and reject

invalid requests(①). Second, when the request is authenticated, the

function will be scaled based on the request volume. If a function

remains idle for a certain period of time, it will be scaled down to

zero. The scaling decision is determined by the invocation count

of the function in the API gateway (③). Third, the API gateway

forwards requests to the corresponding functions (④). If there are

multiple internal invocations, the API gateway scales timely to

authorize end-users, resilience functions, and forward traffic.

2.2 Networking Problems

The API gateway greatly facilitates function invocations for end-

users. However, the effectiveness of serverless networking is com-

promised for such convenience. Network invocations between func-

tion chains are not efficient in current serverless platforms.

P1: Multiple extra connections increase invocation latency.

A function chain needs to call the API gateway multiple times to

forward requests. As Figure 3(a) shows, when end-users invoke a

two-function application, 14 steps are involved. There are 4 connec-

tions (①, ⑤, ⑥, ⑩) in this function chain. However, it would be more

efficient if internal function invocations do not go through the API

gateway. If Function A invokes Function B directly, connections

(⑥, ⑩) can be avoided.

P2: The centralized architecture is prone to traffic bottlenecks.

The API gateway performs various roles during the function invo-

cation, including authorization, resiliency, and traffic forwarding.

2
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Figure 3: The process of invoking the function chain. (a) Network architecture. End-users invoke the function chain through the API

gateway. The API gateway not only forwards requests from end-users but also from Function A. (b) API gateway invocation processes.

When end-users invoke a function, the API gateway needs to perform 3 roles. Authorization for end-users, scaling functions, and routing

requests to functions.

Although the API gateway can scale timely when facing burst traf-

fic, the heavy tasks consume numerous resources in the platform,

making the API gateway become the traffic bottleneck.

P3: Lack of data flow isolation compromises security. The

data flows from multi-tenants coexist within the API gateway. Even

though serverless platforms like AWS employ role-based access

control policies to maintain tenant’s data isolation [7], the internal

attack surface is still expanded in the current serverless architec-

ture. For instance, Virtual Private Cloud (VPC) provides an isolated

networking environment in public clouds. In serverless computing,

customized VPCs are actually disabled in AWS Lambda by default

[4]. All Lambda functions from the different tenants actually share

the same public VPC. Multi-tenant functions can access the same

API gateway.

3 SYSTEM ARCHITECTURE DESIGN

In this section, §3.1 introduces challenges in designing ideal net-

work architecture. We propose DirectFaaS and discuss how it

addresses these challenges in §3.2. §3.3 and §3.4 provide detailed

designs of DirectFaaS control flow and data flow, respectively.

3.1 Challenges

We believe that direct communication between functions is the

key to addressing these networking problems (§2.2). To enable

direct communications, we need to remove the API gateway from

internal function invocations and decouple the data flow from the

control flow. However, due to the various roles that the API gateway

performs during the function invocation (Figure 3(b)), releasing

the API gateway from data forwarding is not easy. DirectFaaS’s

design should tackle three key challenges:

C1: Handing the authorization of the internal function in-

vocation. Serverless platforms [5, 21, 37] authorize both external

and internal function invocations through the API gateway. For

external invocations, the API gateway checks whether users’ bear-

ing tokens or request parameters are authorized [10]. For internal

invocations, it will also determine whether a function is qualified to

access another function. However, if internal invocations no longer

go through the API gateway, it is challenging to validate function

chain authorizations.

C2: Routing functions without knowing the IP address. In

current serverless platforms, the API gateway is responsible for

routing requests between functions. When a function invokes an-

other function, technically, it invokes the API gateway with the

function name as a parameter. Functions scales a different number

of instances based on the traffic volume. The API gateway is respon-

sible for finding the IP address of the invoked function instance and

forwarding the request. However, if internal function invocations

no longer go through the API gateway, function instance addressing

becomes a challenge.

C3: Scaling functions when functions are scaled to zero. Using

“scale to zero” to achieve "pay-as-you-go" is one of the advantages

of serverless computing. When a function is not invoked for a

period of time, the number of running function instances will be

scaled down to 0 by platforms. If a zero-scaled function is invoked,

Horizontal Pod Autoscaling (HPA) Scaler will scale up this function

based on invocation metrics in the API gateway [8]. However, if a

function directly invokes a zero-scaled function, invocation metrics

in the API gateway will not be updated. As a result, the function

will not be scaled in the current architecture, which becomes a

challenge.

3.2 System Architecture Overview

From the insights above, we design DirectFaaS, a serverless net-

work architecture that not only improves the function chain invo-

cation efficiency but also solves the challenges discussed in §3.1.

DirectFaaS architecture separates the control plane and the

data plane in serverless chain communications. Components of the

control plane are responsible for generating control flows. Follow-

ing these control flows, internal functions communicate directly in

the data plane. As shown in Figure 4, DirectFaaS controller in the

control plane manipulates control flows, while Virtual Switches for-

ward data flow in the data plane. The detailed design of DirectFaaS

controller and Virtual Switch are highlighted below.
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Figure 4: DirectFaaS serverless network architecture. The green arrows represent the control flows. The blue arrows represent the

data flows. We separate control flows and data flows, making direct communications between Function A and Function B possible.

DirectFaaS Controller. We introduce DirectFaaS controller

to the serverless network architecture. It has SDN [36] capabilities

that can deploy network policies and allocate static IPs. These

capabilities address C1 and C2 in §3.1. Although the DirectFaaS

controller is also a centralized component, different from traditional

API gateway, it only generates and watches control flows.

Solution to C1: authorizing internal functions through

the network policy. In our architecture, the API gateway still

handles authorization and authentication for the invocations from

end-users. However, for internal function invocations that do not go

through the API gateway, we use SDN capability to achieve network

policies to restrict internal invocations. The DirectFaaS Controller

consists of a Flow Table Generator and a Flow Table Translator. The
Flow Table Generator generates the network policy based on the

application workflow’s Directed Acyclic Graph (DAG). The Flow
Table Translator deploys them to the data plane. The network policy

restricts arbitrary invocations between internal functions, allowing

access to functions only if there is an invocation relationship in the

DAG. As Figure 5 Flow tables show, if functions have no invocation

relationship with Function B, its requests will be denied (Line 1).

Function A has an invocation relationship with Function B, so

requests from Function A are allowed to reach Function B (Line 2).

Even without authentication between internal functions through

the API gateway, fine-grained network policies still maintain the

security of internal function invocations.

Solution to C2: using the static virtual IP (vIP) to route

internal function communications. When the API gateway no

longer assists with internal addressing and routing, we design the

static virtual IP (vIP) for direct routing. Each function comprising

the application will be allocated a vIP address that does not change

until the function is removed from the platform. Functions can

directly invoke each other using the vIP address. When a new

function instance is created, the Flow Table Generator will add a

flow table rule that maps the vIP to the dynamic endpoint IP (eIP)

of this instance. As Figure 5 Flow tables show, when Function A

directly invokes the vIP of Function B, as the packet goes through

the Virtual Switch, its destination IP will be changed to the eIP of

Function B’s instance (Line 3). Therefore, requests from Function A

will be forwarded directly to Function B without the need for API

gateway addressing and routing.

Virtual Switch. Virtual Switches are widely used in current cloud

platforms [2]. In DirectFaaS design, Virtual Switches are responsi-

ble for networking connectivities of function instances. The number

of invocations of each function recorded by the Virtual Switch is

crucial for addressing the function scaling challenge (C3) in §3.1.

Solution to C3: monitoring internal function invocations

to scale function instances. When the API gateway no longer

updates the number of internal function invocations, we design the

HPA Scaler to get metrics of function invocations from the Virtual

Switch. Since all the function traffic goes through the Virtual Switch,

the Virtual Switch can accurately update the number of invocation

times of each function. When Function A invokes Function B which

is zero-scaled, the Virtual Switch will update the number of the

invocation times of Function B. Thus, the HPA Scaler can scale

Function B from 0 to 1, which solves the function scaling challenge.

3.3 Control Flow Design

Green arrows in Figure 4 represent the control flows that are sent by

control components. They are responsible for monitoring metrics,

scaling functions, and generating flow table rules. The control flows

c①, c③, c⑤, and c⑦ continuously monitor function metrics. The

HPA Scaler gets function invocation counts from the API gateway,

Virtual Switches, and gets the function resource utilization from

the apiserver (c①). Based on these metrics, the HPA Scaler scales

the functions. When a new function instance is created, the Direct-

FaaS Controller obtains the endpoint IP address of the function

instance from the apiserver [30] for generating flow table rules

(c③, c⑦). The API gateway obtains the eIP of the ingress function

for forwarding end-user requests (c⑤). However, it will no longer

address internal invocations, which means that when an end-user

invokes a function chain, the API gateway only needs to query the

IP address once. The control flows c② and c⑥ scale functions when

the HPA Scaler observes the function invocation count transmit-

ted from 0 to 1. The control flows c④ and c⑧ generate flow table

4
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Figure 6: The architecture of Bookinfo.

Application Functions

Invoked Functions

f1 f2 f3 f4

Product-page (f1) × 300/300 300/300 ×
Details (f2) × × × ×
Reviews (f3) × × × 300/300

Ratings (f4) × × × ×

Table 1: The functions in Bookinfo invoke each other. Func-

tions can only be invoked by other functions that have an invocation

relationship.

rules and deploy them to Virtual Switches when the DirectFaaS

Controller gets the new eIP from the apiserver. These control flows

have the following properties:

Programmability. Programmability is a fundamental feature for

the DirectFaaS Controller. The control flows generated by the Di-

rectFaaSController can be programmed by the serverless platform

providers.

Transparency. All the modifications in DirectFaaS are transpar-

ent to end-users and existing serverless applications. End-users still

interact with the API gateway to invoke function chains. Existing

serverless applications can directly deploy on DirectFaaS without

any modification.

3.4 Data Flow Design

The data flow is divided into two parts: the data flow interacts with

the API gateway and the data flow between the internal function

invocations. In Figure 4, the data flows d① and d⑥ are responsible

for the interaction between end-users and the API gateway. End-

users invoke functions with parameters (d①) and the API gateway

returns results to end-users (d⑥). The data flows d② and d⑤ are

responsible for transmitting data between the API gateway and

the ingress function, including invoked parameters to the function

chain (d②) and the returned computation result from the function

chain (d⑤). The data flows d③ and d④ are transmitted directly

between internal function chains. As Figure 5 describes, the Virtual

Switch forwards the data packets to the destination function, achiev-

ing a direct connection between internal functions. The direct data

flows between functions have the following properties:

Scalability. In traditional serverless architecture, data flows are

routed by the API gateway. While the API gateway can scale, it still

becomes a bottleneck for traffic. DirectFaaS enables functions to

communicate peer-to-peer, eliminating the bottleneck. Data flows

exhibit greater scalability.

Isolation. The internal data flow no longer goes through the API

gateway where multiple tenant traffic is aggregated. The network

policy strictly restricts the direction of the internal function data

flow to maintain their isolation and security.

4 IMPLEMENTATION

We implemented our architecture on OpenFaaS [40]. OpenFaaS is

one of the most popular open-source serverless platforms that gets

23.6k starts in GitHub [41]. It is a container-based serverless plat-

form [48] and orchestrated by the Kubernetes [31] infrastructure.

We provide detailed implementations of DirectFaaS five compo-

nents. We will open-source our code of the whole system and the

way we test the system.

API gateway.We use OpenFaaS’s API gateway as our API gateway

prototype. We maintain the API gateway’s role in handling end-

user requests. Since internal functions in DirectFaaS no longer

go through the API gateway, we exclude the API gateway from

internal functions forwarding. We deploy network policies for au-

thentication between functions and generate flow table rules for

routing internal functions.

Apiserver. Since we deployed OpenFaaS over Kubernetes, the

Kubernetes API server works as the apiserver. It provides HTTP

REST API interfaces to add, delete, update, and watch functions.

The API gateway and the HPA Scaler interact with the Kubernetes

API server to manipulate the function resource. DirectFaaS Con-

troller interacts with the apiserver periodically to watch function

instances.

HPA Scaler. We use KEDA [27], a Kubernetes-based event-driven

autoscaler to scale functions based on the number of function in-

vocations. When the function invokes other functions directly, the

Virtual Switch will update the number of invoked functions. Then

KEDA observes the change and uses an event-driven way to scale

functions.
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Figure 8: Internal functions are scaled when heavy traffic

bursts in Hello Retail! function chain 3. In function chain 3,

functions scale different numbers of instances. Each function suc-

cessfully responds to the sent 789 requests.

DirectFaaS Controller. The DirectFaaS Controller is imple-

mented based on the kube-OVN controller. Kube-OVN [29] is a

cloud-native computing foundation sandbox-level project that in-

tegrates the SND-based network virtualization with Kubernetes.

We bring the SDN capabilities into serverless platforms. Our mod-

ifications are aimed toward allocating the vIP for each function,

generating flow tables when there are new functions scaled.

Virtual Switch. We configure and operate the network bridge

using Open vSwitch (OVS) [39]. It exists on each worker node as a

part of the network stack, consisting of the network bridges. When

a function is scaled, a port corresponding to the function’s veth

interface will be created on the OVS. The flow table rules deployed

on the Virtual Switch route packets of functions to the correct

destination.

5 EVALUATION

In this section, we evaluate the functionality and performance

of DirectFaaS. We deploy DirectFaaS on a 3-node Kubernetes

cluster (v1.23.6). Each node is equipped with 8x 2.20-GHz Intel Xeon

CPUs (E5-2650) and 32GB memory running Ubuntu 20.04 TLS. Our

experiments use Docker version 20.10.17 as the container runtime

and OpenFaaS with gateway version 0.23.0.

Application workloads.We use three serverless applications to

evaluate the performance of DirectFaaS against OpenFaaS, includ-

ing (i) a web application that displays book information Bookinfo,
(ii) a commercial serverless application Hello, Retail!, and (iii) a syn-
thetic serverless application with variant function chain lengths.

Bookinfo [24] consists of four functions that are written in differ-

ent languages. The architecture is shown in Figure 6. The Product-

page is the ingress function (publicly accessible) that is invoked by

end-users through the API gateway. Other functions are internal

functions (can only be accessed by ingress functions).

Hello, Retail! [49] has been extensively used in recent serverless

studies [17, 18, 22, 45]. As shown in Figure 7, Hello Retail! consists
of 15 functions, 6 of which are ingress functions and 9 internal func-

tions. There are 3 function chains in Hello Retail!. These functions
also interact with other stateful back-end services and external

services, e.g., databases.
To evaluate the performance of DirectFaaS under different

function chain lengths, we developed a serverless application with

variant chain lengths. In our evaluation, we also use different inter-

nal delays between each node to simulate network conditions in

different data centers.

5.1 Functionality Evaluation

DirectFaaS solves the challenges of releasing the API gateway

from internal function invocations. Based on evaluations of real

applications, we present the functionality of DirectFaaS.

5.1.1 Authorization. We deployed the network policy based on the

invocation relationship of Bookinfo to restrict the internal function

invocations. In each function, we invoke the vIP address of other

functions at 10 requests per second (rps) for 30 seconds. The total

requests are 300. As Table 1 shows, requests only successfully be for-

warded to functions that have invocation relationships. Otherwise,

requests will be blocked.

5.1.2 Routing. Since we use a specific vIP for each function, func-

tions need to be able to respond when we invoke them with their

corresponding vIP. We use an HTTP load generator (hey [43]) to

simulate a burst of heavy traffic. We sent 10 concurrent requests to

chain 3 of Hello Retail! for 120 seconds. The total requests to each

function are 789. As Figure 8 shows, when we invoke the function

chain using vIP, each internal function successfully responded to

all requests, 789 in total.

5.1.3 Resiliency. As shown in Figure 8, when facing 789 requests,

each function is scaled. Functions are scaled to different quanti-

ties of instances based on the number of invocations and resource

consumption to handle requests. Requests are forwarded roughly

evenly to each function. The reason the first function instance

handles the most requests is that it lives the longest.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

DirectFaaS The Web Conference’24, May 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Chain 1 Chain 2 Chain 3
Ingress function

50

75

100

125

150

175

200

Ex
ec

ut
io

n 
tim

e 
(m

s)

OpenFaaS
DirectFaaS

(a) Chain Invocation Time (0ms delay)

Chain 1 Chain 2 Chain 3
Ingress function

50

75

100

125

150

175

200

Ex
ec

ut
io

n 
tim

e 
(m

s)

OpenFaaS
DirectFaaS

(b) Chain Invocation Time (0.5ms delay)

1 2 3 4 5 6
Function chain length

20

40

60

80

100

Ex
ec

ut
io

n 
tim

e 
(m

s)

OpenFaaS
DirectFaaS

(c) Variant Chain Length (0ms delay)

1 2 3 4 5 6
Function chain length

20

40

60

80

100

Ex
ec

ut
io

n 
tim

e 
(m

s)

OpenFaaS
DirectFaaS

(d) Variant Chain Length (0.5ms delay)

Figure 9: Function chain execution time. (a) The execution time of 3 function chains in Hello Retail! with 0ms delay. (b) The execution

time of 3 function chains in Hello Retail! with 0.5ms delay. (c) The execution time of function chains of different lengths with 0ms delay. (d)

The execution time of function chains of different lengths with 0.5ms delay.
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Figure 10: Node Resource Consumption. Heavy traffic bursts in

Hello Retail!’s chain 3. The API gateway andDirectFaaS Controller
are in the control node (Node1). The scaled function instances are

in the worker node (Node2). On both the control node and worker

node, DirectFaaS consumes fewer resources than OpenFaaS.

5.2 Runtime Performance

5.2.1 Execution Time Reduction. We use the time reduction of end-

user response latency to demonstrate the advantages of Direct-

FaaS. Specifically, we measure the time interval between an end-

user sending a request and receiving the response from the server-

less application. The latency reduction is also related to intra-cloud

delays between nodes. Therefore, we measure scenarios of 0ms

and 0.5ms internal delays. We compare DirectFaaS with baseline

OpenFaaS. There are several research efforts [1, 19, 22, 25, 42, 51]

dedicated to reducing serverless function invocation latency, but

our work fundamentally different from them. The serverless net-

work architecture has changed inDirectFaaS. We believe our work

is complementary to them.

Figure 9 shows the response time of each function chain and the

response time of variant function chain lengths over 100 repetitions.

Figure 9(a) and 9(b) show the response time of each function chain in

Hello Retail!.Wemeasure the 0ms delay and the 0.5ms delay scenario.

Averaging across 3 function chains in Hello Retail!, DirectFaaS
reduces 24.4% and 30.9% invocation time with 0ms delay and 0.5ms

delay, respectively. Figure 9(c) and 9(d) compare the invocation time

of function chains of different lengths. The length of a function

chain represents the number of functions in the chain. DirectFaaS

can save up to about 24ms in one end-user request when the chain

length is 6 with a 0.5ms delay.

5.2.2 Resource Consumption Reduction. We measure the resource

consumption of DirectFaaS under varying loads. To do so, we

make use of Hello Retail!’s chain 3 and use an HTTP load generator

(hey [43]) to issue increasingly high external request loads ranging

from 10 to 250 rps. Results for each load are reported over 120

seconds. The instances of functionswill scalewhen the rps increases.

The control components API gateway, and DirectFaaS Controller

are deployed on the control node (Node1). Chain 3 of Hello Retail!
is deployed on the worker node (Node2).

Figure 10(a) shows the per-node CPU. The control node CPU

consumption grows at a gradual constant rate in OpenFaaS but

grows slowly in DirectFaaS. It is because, with the external rps

increases, the OpenFaaS API gateway not only needs to forward

the external requests but also the internal requests. However, the

DirectFaaS API gateway only needs to forward external requests.

DirectFaaS consumes fewer CPU resources than OpenFaaS on

the control node. DirectFaaS achieved a 30.1% reduction in CPU

consumption on the control node. The worker node CPU consump-

tion grows sharply at the beginning because of function instances

auto-scaling. DirectFaaS consumes fewer CPU resources on the

worker node because it scales fewer functions when receiving the

same requests. DirectFaaS achieved a 15.4% reduction in CPU

consumption on the worker node.

Memory consumption is reported in Figure 10(b). In the control

node, OpenFaaS and DirectFaaS have similar memory consump-

tion. Like the CPU consumption, the memory consumption on the

worker node increases dramatically due to the increase in function

instances. OpenFaaS consumes more memory than DirectFaaS

because it scales more function instances. DirectFaaS reduces

memory consumption by 13.8%.

To better show the response time of the function instance, we

use the HTTP load generator to send 50 to 250 requests in 120

seconds. The function instance does not scale. As Figure 11 shows,

DirectFaaS has less response time than OpenFaaS, meaning it can

serve more rps. So under the same external rps, DirectFaaS only

need fewer function instances to meet the requests.

5.2.3 Overhead. Compared with OpenFaaS, we introduce the Di-

rectFaaS Controller to generate flow table rules when there are

functions scaled. The DirectFaaS Controller will consume re-

sources in the system. In Figure 12, we compare the control compo-

nent of DirectFaaS with OpenFaaS. The OpenFaaS API gateway
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Figure 11: The product-purchase function chain response time at different requests per second. DirectFaaS has a smaller response

time than OpenFaaS which can serve more requests per second.
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Figure 12: Component CPU Consumption. Heavy traffic bursts

in Hello Retail!’s chain 3. OpenFaaS API gateway consumes more

CPU resources than all of DirectFaaS control components.

consumes more CPU than the total control components of Direct-

FaaS, including the DirectFaaS API gateway, and the DirectFaaS

Controller. Although DirectFaaS Controller consumes additional

CPU, the sum of their consumption is still less than the OpenFaaS

gateway’s CPU consumption.

There is a delay involved in generating the flow tables when

functions are scaled. However, since flow tables are generated only

during function scaling, they are concurrent with the function cold

start time. The time to install a flow entry is in the millisecond range

[44] and the time for the DirectFaaS Controller to generate a flow

table is approximately 10 milliseconds, which is much smaller than

the several seconds required for cold start times [34]. The flow table

is deployed and ready by the time the function cold start completes,

so it does not introduce any additional latency.

6 RELATEDWORK

Serverless Function Chain Latency. Several research efforts fo-

cus on reducing latency for the serverless function chain. SPRIGHT

[42] utilized shared memory communication to reduce the packet

processing time on the worker node to lower latency. However,

it only applies to functions on the same node. It can work with

DirectFaaS to further reduce latency across worker nodes. QFaaS

[22] emerges QUIC protocol to serverless platforms to accelerate

function invocations while ensuring security. However, it still needs

to establish a connection with the API gateway, with DirectFaaS,

this connection can be reduced, further reducing latency. Boxer

[54] uses a TCP hole-punching service in every function instance

to allow functions to communicate with each other. However, un-

like DirectFaaS that makes no modification to function instances,

Boxer adds services to the VM and will cause the overhead to light-

weight containers which increases the start-up time. Xanadu [19]

and Freshen [23] aim to reduce the latency of function chains by

eliminating cascading cold starts, while DirectFaaS focus on re-

ducing the latency between function communication. SAND [1],

Nightcore [25], and Sequoia [51] focus on the function schedule

sequence and schedule placement to reduce latency. However, they

still follow the existing network architecture. DirectFaaS reduces

function chain latency from a different angle of existing efforts and

is complementary to them.

SDN in Cloud Environments. Software Defined Networks (SDNs)

have been foundational in enabling virtualized networks for cus-

tomer workloads in multi-tenant clouds. Antichi et al. [3] propose

a full-stack SDN framework to alleviate the network management

issues in the data center. Wang et al. [53] provide an SDN controller

to each Infrastructure-as-a-Service (IaaS) cloud tenant to manage

the network. But unlike DirectFaaS, this SDN controller is not

associated with FaaS. With large cloud access traffic, Shao et al.

[47] build a Disaggregated Software-defined Router (DSR) to keep

up with the fast growth of traffic volume. Google proposes Orion

[20], a distributed SDN platform to support system scalability. In-

spired by these works, the design of DirectFaaS introduces SDN

to serverless platforms, making it practical for removing the API

gateway from internal function invocations.

7 CONCLUSION

DirectFaaS improves serverless function chain communication

effectiveness. It reduces application execution time and resource

consumption by removing the API gateway from the internal func-

tion invocations. With the creative use of SDN-based network man-

agement capability, DirerctFaaS achieves direct communication for

serverless function chains. Compared to the current architecture

using the centralized orchestrator to forward internal function invo-

cations, DirectFaaS reduces 30.9% execution time when serving a

complex web application. Additionally, when functions scale under

high bursty concurrent requests, DirectFaaS reduces CPU con-

sumption by 30.1% and memory consumption by 13.8% compared

to OpenFaaS. DirectFaaS’s code will be publicly available.
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