
Missing Data Infill with Automunge

Anonymous Author(s)
Affiliation
Address
email

Abstract

Missing data is a fundamental obstacle in the practice of data science. This paper1

surveys a few conventions for imputation as available in the Automunge open2

source python library platform for tabular data preprocessing, including “ML infill”3

in which auto ML models are trained for target features from partitioned extracts4

of a training set. A series of validation experiments were performed to benchmark5

imputation scenarios towards downstream model performance, in which it was6

found for the given benchmark sets that in many cases ML infill outperformed for7

both numeric and categoric target features, and was otherwise at minimum within8

noise distributions of the other imputation scenarios. Evidence also suggested9

supplementing ML infill with the addition of support columns with boolean integer10

markers signaling presence of infill was usually beneficial to downstream model11

performance. We consider these results sufficient to recommend defaulting to12

ML infill for tabular learning, and further recommend supplementing imputations13

with support columns signaling presence of infill, each as can be prepared with14

push-button operation in the Automunge library. Our contributions include an15

auto ML derived missing data imputation library for tabular learning in the python16

ecosystem, fully integrated into a preprocessing platform with an extensive library17

of feature transformations, with a novel production friendly implementation that18

bases imputation models on a designated train set for consistent basis towards19

additional data.20

1 Introduction21

Missing data is a fundamental obstacle for data science practitioners. Missing data refers to feature22

sets in which a portion of entries do not have samples recorded, which may interfere with model23

training and/or inference. In some cases, the missing entries may be randomly distributed within the24

samples of a feature set, a scenario known as missing at random. In other cases, certain segments of a25

feature set’s distribution may have a higher prevalence of missing data than other portions, a scenario26

known as missing not at random. In some cases, the presence of missing data may even correlate27

with label set properties, resulting in a kind of data leakage for a supervised training operation.28

In a tabular data set (that is a data set aggregated as a 2D matrix of feature set columns and collected29

sample rows), missing data may be represented by a few conventions. A common one is for missing30

entries to be received as a NaN value, which is a special numeric data type representing “not a31

number”. Some dataframe libraries may have other special data types for this purpose. In another32

configuration, missing data may be represented by some particular value (like a string configuration)33

associated with a feature set.34

When a tabular data set with missing values present is intended to serve as a target for supervised35

training, machine learning (ML) libraries may require as a prerequisite some kind of imputation36

to ensure the set has all valid entries, which for most libraries means all numeric entries (although37

there are some libraries that accept designated categoric feature sets in their string representations).38

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Conventions for imputation may follow a variety of options to target numeric or categoric feature sets39

[Table 1], many of which apply a uniform infill value, which may either be arbitrary or derived as a40

function of other entries in the feature set.41

Table 1: Imputation Conventions

Imputation Value Numeric Categoric

mean 3
median 3
mode 3 3
adjacent cell 3 3
arbitrary (e.g. 0 or 1) 3 3
distinct activation 3
ML infill 3 3

Other, more sophisticated conventions for infill may derive an imputation value as a function of42

corresponding samples of the other features. For example, one of many learning algorithms (like43

random forest, gradient boosting, neural networks, etc.) may be trained for a target feature where44

the populated entries in that feature are treated as labels and surrounding features sub-aggregated45

as features for the imputation model, and where the model may serve as either a classification or46

regression operation based on properties of the target feature.47

This paper is to document a series of validation experiments that were performed to compare48

downstream model performance as a result of a few of these different infill conventions. We crafted a49

contrived set of scenarios representing paradigms like missing at random or missing not at random50

as injected in either a numeric or categoric target feature selected for influence toward downstream51

model performance. Along the way we will offer a brief introduction to the Automunge library for52

tabular data preprocessing, particularly those aspects of the library associated with missing data infill.53

The results of these experiments summarized below may serve as a validation of defaulting to ML54

infill for tabular learning even when faced with different types of missing data, and further defaulting55

to supplementing imputations with support columns signaling presence of infill.56

Our contributions include an auto ML derived missing data imputation library for tabular learning57

in the python ecosystem, fully integrated into a preprocessing platform with an extensive library of58

feature transformations, extending the ML imputation capabilities of R libraries like MissForest [1]59

to a more production friendly implementation that bases imputation models on a designated train set60

for consistent basis towards additional data.61

2 Automunge62

Automunge [2], put simply, is a python library platform for preparing tabular data for machine63

learning, built on top of the Pandas dataframe library [3] and open sourced under a GNU GPL64

v3.0 license. The interface is channeled through two master functions: automunge(.) for the initial65

preparation of training data, and postmunge(.) for subsequent efficient preparation of additional “test”66

data on the train set basis. In addition to returning transformed data, the automunge(.) function also67

populates and returns a compact dictionary recording all of the steps and parameters of transformations68

and imputations, which dictionary may then serve as a key for consistently preparing additional data69

in the postmunge(.) function on the train set basis.70

Under automation the automunge(.) function performs an evaluation of feature set properties to71

derive appropriate simple feature engineering transformations that may serve to normalize numeric72

sets and binarize (or hash) categoric sets. A user may also apply custom transformations, or even73

custom sets of transformations, assigned to distinct columns. Such transformations may be sourced74

from an extensive internal library, or even may be custom defined. The resulting transformed data log75

the applied stages of derivations by way of suffix appenders on the returned column headers.76

Missing data imputation is handled automatically in the library, where each transformation applied77

includes a default imputation convention to serve as a precursor to imputation model training, one78

that may also be overridden for use of other conventions by assignment.79

2



Included in the library of infill options is an auto ML solution we refer to as ML infill, in which a80

distinct model is trained for each target feature and saved in the returned dictionary for a consistent81

imputation basis of subsequent data in the postmunge(.) function. The model architecture defaults to82

random forest [4] by Scikit-Learn [5], and other auto ML library options are also supported.83

The ML infill implementation works by first collecting a ‘NArw’ support column for each received84

feature set containing boolean integer markers (1’s and 0’s) with activations corresponding to entries85

with missing or improperly formatted data. The types of data to be considered improperly formatted86

are tailored to the root transformation category to be applied to the column, where for example87

for a numeric transform non-numeric entries may be subject to infill, or for a categoric transform88

invalid entries may just be special data types like NaN or None. Other transforms may have other89

configurations, for example a power law transform may only accept positive numeric entries, or an90

integer transform may only accept integer entries.91

This NArw support column can then be used to perform a target feature specific partitioning of the92

training data for use to train a ML infill model [Fig 1]. The partitioning segregates rows between those93

corresponding to missing data in the target feature verses those rows with valid entries, with the target94

feature valid entries to serve as labels for a supervised training and the other corresponding features’95

samples to serve as training data. Feature samples corresponding to the target feature missing data96

are grouped for an inference operation. Note that for cases where a transformation set has prepared97

a target input feature in multiple configurations, those derivations other than the target feature are98

omitted from the partitions to avoid data leakage. A similar partitioning is performed for test data99

sets for ML infill imputation, although in this case only the rows corresponding to entries of missing100

data in the target feature are utilized for inference. As a further variation available for any of the101

imputation methods, the NArw support columns may themselves be appended to the returned data102

sets as a signal to training of entries that were subject to infill.103

Figure 1: ML Infill partitioning

There is a categorization associated with each preprocessing transformation category to determine104

the type of ML infill training operation, for example a target feature set derived from a transform that105

returns a numeric form may be a target for a regression operation or a target feature set derived from106

a transform that returns an ordinal encoding may be a target for a classification operation. In some107

cases a target feature may be composed of a set of more than one column, like in the case of a set108

returned from a one-hot encoding. For cases where a learner library does not accept some particular109

form of encoding as valid labels there is a conversion of the target feature set for training and an110

inverse conversion after any inference, for example it may be necessary to convert a binarized target111

feature set to one-hot encoding or ordinal encoding for use as labels in different auto ML frameworks.112

As may be particularly beneficial in cases with high prevalence of missing data across features, the113

sequential training of feature imputation models may be iterated through repeated rounds of imputa-114

tions. For instance in the first round of model trainings and imputations the models’ performance115

3



may be slightly degraded by high prevalence of missing data populated with the initial transformation116

function imputation conventions in surrounding features, but after that first round of imputations a117

second iteration of model trainings may have slight improvement of performance due to the presence118

of ML infill imputations, and similarly ML infill may benefit from any additional iterations of model119

trainings and imputations. In each iteration the sequence of imputations between columns are applied120

in an order from features with highest prevalence of missing data to least. The library defaults to a121

single round of imputations, with the option to specify an additional iteration quantity.122

The final trained models for each target feature, as derived from properties of a designated train set123

passed to the automunge(.) function, are collectively saved and returned to the user in a dictionary124

that may serve as a key for consistent imputation basis to additional data in the postmunge(.) function,125

with such dictionary also serving as a key for any applied preprocessing transformations.126

3 Preprocessing127

The utility of the library extends well beyond missing data infill. Automunge is intended as a platform128

for all of the tabular learning steps following receipt of tidy data [6] (meaning one column per129

feature and one row per sample) and immediately preceding the application of machine learning. We130

found that by integrating the imputations directly into a preprocessing library, benefits included that131

imputations can be applied to returned multi-column categoric representations like one-hot encodings132

or binarized encodings, can account for potential data leakage between redundantly encoded feature133

sets, and can accept raw data as input as may include string encoded and date-time entries with only134

the minimal requirement of data received in a tidy form.135

Under automation, Automunge normalizes numeric sets by z-score normalization and binarizes136

categoric sets (where binarize refers to a multi-column boolean integer representation where each137

categoric unique entry is represented by a distinct set of zero, one, or more simultaneous activations).138

We have a separate kind of binarization for categoric sets with two unique entries, which returns a139

single boolean integer encoded column (available as a single column by not having a distinct encoding140

set for missing data which is instead grouped with the most common entry). High cardinality categoric141

sets with unique entry count above a configurable heuristic threshold are instead applied with a hashing142

trick transform [7, 8], and for highest cardinality approaching all unique entries features are given a143

parsed hashing [9] which accesses distinct words found within entries. Further automated encodings144

are available for date-time sets in which entries are segregated by time scale and subject to separate145

sets of sine and cosine transforms at periodicity of time scale and additionally supplemented by146

binned activations for business hours, weekdays, and holidays. Designated label sets are treated a147

little differently, where numeric sets are left un-normalized and categoric sets are ordinal encoded (a148

single column of integer activations). All of the defaults under automation are custom configurable.149

A user need not defer to automation. There is a built in extensive library of feature transformations to150

choose from. Numeric features may be assigned to any range of transformations, normalizations, and151

bin aggregations [10]. Sequential numeric features may be supplemented by proxies for derivatives152

[10]. Categoric features may be subject to encodings like ordinal, one-hot, binarization, hashing, or153

even parsed categoric encoding [11] with an increased information retention in comparison to one-hot154

encoding by a vectorization as a function of grammatical structure shared between entries. Categoric155

sets may be collectively aggregated into a single common binarization. Categoric labels may have156

label smoothing applied [12], or fitted smoothing where null values are fit to class distributions. Data157

augmentation transformations [10] may be applied which make use of noise injection, including158

several variants for both numeric and categoric features. Sets of transformations to be directed at a159

target feature can be assembled which include generations and branches of derivations by making use160

of our “family tree primitives” [13], as can be used to redundantly encode a feature set in multiple161

configurations of varying information content. Such transformation sets may be accessed from those162

predefined in an internal library for simple assignment or alternatively may be custom configured.163

Even the transformation functions themselves may be custom defined with only minimal requirements164

of simple data structures. Through application statistics of the features are recorded to facilitate165

detection of distribution drift. Inversion is available to recover the original form of data found166

preceding transformations, as may be useful to recover the original form of labels after inference.167

Or of course if the data is received already numerically encoded the library can simply be applied as168

a tool for missing data infill.169

4



4 Code Demonstration170

Jupyter notebook install and imports are as follows:171

!pip install Automunge172

173

from Automunge import *174

am = AutoMunge()175

The automunge(.) function accepts as input a Pandas dataframe or tabular Numpy array of training176

data and optionally also corresponding test data. If any of the sets include a label column that header177

should be designated, similarly with any index header or list of headers to exclude from the ML infill178

basis. For Numpy, headers are the index integer and labels should be positioned as final column.179

import pandas as pd180

df_train = pd.read_csv('train.csv')181

df_test = pd.read_csv('test.csv')182

labels_column = '<labels_column_header>'183

trainID_column = '<ID_column_header>'184

These data sets can be passed to automunge(.) to automatically encode and impute. The function185

returns 10 sets (9 dataframes and 1 dictionary) which in some cases may be empty based on parameter186

settings, we suggest the following optional naming convention. The final set, the “postprocess_dict”,187

is the key for consistently preparing additional data in postmunge(.). Note that if a validation set188

is desired it can be partitioned from df_train with valpercent and prepared on the train set basis.189

Shuffling is on by default for train data and off by default for test data, the associated parameter190

is shown for reference. Here we demonstrate with the assigncat parameter assigning the root191

category of a transformation set to some target column which will override the default transform192

under automation. We also demonstrate with the assigninfill parameter assigning an alternate193

infill convention to a column. The ML infill and NArw column aggregation are on by default, their194

associated activation parameters are shown for reference. Note that if the data is already numerically195

encoded and user just desires infill, they can pass parameter powertransform = 'infill'.196

train, train_ID, labels, \197

val, val_ID, val_labels, \198

test, test_ID, test_labels, \199

postprocess_dict = \200

am.automunge(df_train,201

df_test = df_test,202

labels_column = labels_column,203

trainID_column = trainID_column,204

valpercent = 0.2,205

shuffletrain = True,206

assigncat = {'or23' : ['<parsed_categoric_target_column>'] },207

assigninfill = {'modeinfill' : ['<infill_target_column>'] },208

MLinfill = True,209

NArw_marker = True)210

A list of columns returned from some particular input feature can be accessed with211

postprocess_dict['column_map']['<input_feature_header>']. A report classifying the212

returned column types (such as continuous, boolean, ordinal, onehot, binary, etc.) and their groupings213

can be accessed with postprocess_dict['columntype_report'].214

If the returned train set is to be used for training a model that may go into production, the postpro-215

cess_dict should be saved externally, such as with the pickle library.216

We can then prepare additional data on the train set basis with postmunge(.).217

test, test_ID, test_labels, \218

postreports_dict = \219

am.postmunge(postprocess_dict,220

df_test)221

5



5 Related Work222

The R ecosystem has long enjoyed access to missing data imputation libraries that apply learned223

models to predict infill based on other features in a set, such as MissForest [1] and mice [14], where224

MissForest differs from mice as a deterministic imputation built on top of random forest and mice225

applies chained equations with pooled linear models and sampling from a conditional distribution.226

One of the limitations of these libraries are that the algorithms must be run through both training227

and inference for each separate data set, as may be required if test data is not available at time of228

training, which practice may not be amenable to production environments. Automunge on the other229

hand bases imputations on a designated train set, returning from application a collected dictionary of230

feature set specific models that can then be applied as a key for consistently preparing additional data231

on the train set basis.232

Automunge’s ML infill also differs from these R libraries by providing multiple auto ML options233

for imputation models. We are continuing to build out a range that currently includes Catboost [15],234

AutoGluon [16], and FLAML [17] libraries. Our default configuration is built on top of Scikit-Learn235

[5] random forest [4] models and may be individually tuned to each target feature with grid or random236

search by passing fit parameters to ML infill as lists or distributions.237

There are of course several other variants of machine learning derived imputations that have been238

demonstrated elsewhere. Imputations from generative adversarial networks [18] may improve239

performance compared to ML infill (at a cost of complexity). Gaussian copula imputation [19] has240

a benefit of being able to estimate uncertainty of imputations. There are even imputation solutions241

built around causal graphical models [20]. Towards the other end of complexity spectrum, k-Nearest242

Neighbor imputation [21] for continuous data is available in common frameworks like Scikit-Learn.243

Being built on top of the Pandas library, there is an inherent limitation that Automunge operations are244

capped at in-memory scale data sets. Other dataframe libraries like Spark [22] have the ability to245

operate on distributed datasets. We believe this is not a major limitation because the in memory scale246

is only associated with datasets passed to automunge(.) to serve as the basis for transformations and247

imputations. Once the basis has been established, transformations to any scale of data can be applied248

by passing partitions to the postmunge(.) function. We expect there may be potential to parallelize249

such an operation with a library like Dask [23] or Ray [24], such an implementation is currently250

intended as a future direction of research.251

Another limitation associated with Pandas dataframes is that operations take place on the CPU. There252

are emerging dataframe platforms like Rapids [25] which are capable of GPU accelerated operations,253

which may particularly be of benefit when you take account for the elimination of a handoff step254

between main and GPU memory to implement training. Although the Pandas aspects of Automunge255

are CPU bound, the range of auto ML libraries incorporated are in some cases capable of GPU256

training for ML infill.257

There will always be a simplicity advantage to deep learning libraries like Tensorflow [26] or PyTorch258

[27] which can integrate preprocessing as a layer directly into a model’s architecture, eliminating the259

need to consider preprocessing in inference. We believe the single added inference step of passing260

data to the postmunge(.) function is an acceptable tradeoff because by keeping the preprocessing261

operations separate it facilitates a ML framework agnostic tabular preprocessing platform.262

6 Experiments263

Some experiments were performed to evaluate efficacy of a few different imputation methods in264

different scenarios of missing data. To amplify the impact of imputations, each of two data sets265

were pared down to a reduced set of the top 15 features based on an Automunge feature importance266

evaluation [11] by shuffle permutation [28]. (This step had the side benefit of reducing the training267

durations of experiments.) The top ranked importance categoric and numeric features were selected268

to separately serve as targets for injections of missing data, with such injections simulating scenarios269

of both missing at random and missing not at random.270

To simulate cases of missing not at random, and also again to amplify the impact of imputation, the271

target features were evaluated to determine the most influential segments of the features’ distributions272

6



[29], which for the target categoric features was one of the activations and for the target numeric273

features turned out to be the far right tail for both benchmark data sets.274

Further variations were aggregated associated with either the ratio of full feature or ratio of distribution275

segments injected with missing data, ranging from no injections to full replacement.276

Finally, for each of these scenarios, variations were assembled associated with the type of infill277

applied by Automunge, including scenarios for defaults (mean imputation for numeric or distinct278

activations for categoric), imputation with mode, adjacent cell, and ML infill. The ML infill scenario279

was applied making use of the CatBoost library to take advantage of GPU acceleration.280

Having prepared the data in each of these scenarios with an automunge(.) call, the final step was to281

train a downstream model to evaluate impact, again here with the CatBoost library. The performance282

metric applied was root mean squared error for the regression applications. Each scenario was283

repeated 68 or more times with the metrics averaged to de-noise the results.284

Finally, the ML infill scenarios were repeated again with the addition of the NArw support columns285

to supplement the target features.286

7 Results287

The results of the various scenarios are presented [Fig 2, 3, 4, 5]. Here the y axis are the performance288

metrics and the x axis the ratio of entries with missing data injections, which were given as {0, 0.1,289

0.33, 0.67, 1.0}, where in the 0.0 case no missing data was injected and with 1.0 the entire feature or290

feature segment was injected. Because the 0.0 cases had equivalent entries between infill types, their291

spread across the four infill scenarios are a good approximation for the noise inherent in the learning292

algorithm. An additional source of noise for the other ratios was from the stochasticity of injections,293

with a distinct set for each trial. Consistent with common sense, as the injection ratio was ramped up294

the trend across infill scenarios was a degradation of the performance metric.295

We did find that with increased repetitions incorporated the spread of the averaged performance296

metrics were tightened, leading us to repeat the experiments at increased scale for some improved297

statistical significance.298

For the missing at random injections [Fig 2, 3], ML infill was at or near top performance across both299

data sets, although the spread between imputations was not extremely pronounced. In most of the300

setups, mode imputation and adjacent cell trended as reduced performance in comparison to ML infill301

or the default imputations (mean for numeric sets and distinct activation set for categoric).302

Figure 2: Missing at Random - Numeric Target Feature

Figure 3: Missing at Random - Categoric Target Feature

For not at random injections to the right tail of numeric sets [Fig 4], it appears that ML infill had a303

pronounced benefit to the Ames Housing data set [30], especially as the injection ratio increased,304

and more of an intermediate performance to the Allstate Claims data set [31]. We speculate that ML305

infill had some degree of variability across these demonstrations due to correlations (or lack thereof)306

7



between the target feature and the other features, without which ML infill may struggle to establish a307

basis for inference. In the final scenario of not at random injections to categoric [Fig 5] we believe308

default performed well because it served as a direct replacement for the single missing activation.309

Figure 4: Not at Random - Numeric Target Feature

Figure 5: Not at Random - Categoric Target Feature

An additional comparable series of injections were conducted with ML infill and the added difference310

of appending the NArw support columns corresponding to the target columns for injections. Again311

these NArw support columns are the boolean integer markers for presence of infill in the corresponding312

entries which support the partitioning of sets for ML infill. The expectation was that by using these313

markers to signal to the training operation which of the entries were subjected to infill, there would314

be some benefit to downstream model performance. For many of the scenarios the visible impact was315

that supplementing with the NArw support column improved the ML infill performance, demonstrated316

here for missing at random [Fig 6, 7] and missing not at random [Fig 8, 9] with the other imputation317

scenarios shown again for context.318

8 Discussion319

One of the primary goals of this experiment was to validate the efficacy of ML infill as evidenced320

by improvements to downstream model performance. For the Ames Housing benchmark data set,321

there was a notable demonstration of ML infill benefiting model performance in the scenario of322

the numeric target column with not at random injections at increased injection ratios, and also to323

a lesser extent with missing at random injections. We speculate an explanation for this advantage324

towards the numeric target columns may partly be attributed to the fact that the downstream model325

was also a regression application, so that the other features selected for label correlation may by326

proxy have correlations with the target numeric feature. The corollary is that the more mundane327

performance of ML infill toward the categoric target columns may be a result of these having less328

correspondence with the surrounding features. The fact that even in these cases the ML infill still fell329

within noise distribution of the other imputation scenarios we believe presents a reasonable argument330

for defaulting to ML infill for tabular learning.331

Note that as another argument for defaulting to ML infill as opposed to static imputations is that the332

imputation model may serve as a hedge against imperfections in subsequent data streams, particularly333

if one of the features experiences downtime in a streaming application for instance.334

The other key finding of the experiment was the pronounced benefit to downstream model performance335

when including the NArw support column in the returned data set as a supplement to ML infill. This336

finding was consistent with our intuition, which was that increased information retention about infill337

points should help model performance. Note there is some small tradeoff, as the added training set338

dimensionality may increase training time. Another benefit to including NArw support columns may339

8



be for interpretability in inspection of imputations. We recommend including the NArw support340

columns for model training based on these findings, with the one caveat that care should be taken to341

avoid inclusion in the data leakage scenario where there is some kind of correlation between presence342

of missing data and label set properties that won’t be present in production.343

Figure 6: NArw comparison - Missing at Random - Numeric Target Feature

Figure 7: NArw comparison - Missing at Random - Categoric Target Feature

Figure 8: NArw comparison - Not at Random - Numeric Target Feature

Figure 9: NArw comparison - Not at Random - Categoric Target Feature

9 Conclusion344

Automunge offers a push-button solution to preparing tabular data for ML, with automated data345

cleaning operations like normalizations, binarizations, and auto ML derived missing data imputation346

aka ML infill. Transformations and imputations are fit to properties of a designated train set, and with347

application of automunge(.) a compact dictionary is returned recording transformation parameters348

and trained imputation models, which dictionary may then serve as a key for consistently preparing349

additional data on the train set basis with postmunge(.).350

We hope that these experiments may serve as a kind of validation of defaulting to ML infill with351

supplemented NArw support columns in tabular learning for users of the Automunge library, as352

even if in our experiments the material benefits towards downstream model performance were not353

demonstrated for all target feature scenarios, in other cases there did not appear to be any material354

penalty. Note that ML infill can be activated for push-button operation by the automunge(.) parameter355

MLinfill=True and the NArw support columns included by parameter NArw_marker=True. Based356

on these findings these two parameter settings are now cast as defaults for the Automunge platform.357

9



Acknowledgments358

A thank you owed to those facilitators behind Stack Overflow, Python, Numpy, Scipy Stats, PyPI,359

GitHub, Colaboratory, Anaconda, VSCode, and Jupyter. Special thanks to Scikit-Learn and Pandas.360

References361

[1] Daniel J. Stekhoven, Peter Bühlmann. MissForest - nonparametric missing value imputation for mixed-type362

data (2011) arXiv:1105.0828363

[2] Author(s) (2021) Automunge, GitHub repository (Please see supplemental material)364

[3] W. McKinney. Data structures for statistical computing in python. Proceedings of the 9th Python in Science365

Conference, pages 51–56, 2010.366

[4] L. Breiman. Random Forests. Machine Learning, 45(1), 2001.367

[5] Pedregosa et al., Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.368

[6] H. Wickham. Tidy data. Journal of Statistical Software, 59(10), 2014.369

[7] John Moody. Fast Learning in Multi-Resolution Hierarchies. NIPS Proceedings, 1989370

[8] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, Josh Attenberg. Feature Hashing for371

Large Scale Multitask Learning. ICML Proceedings, 2009372

[9] Author(s) Hashed Categoric Encodings with Automunge (2020) (Please see preprint in supplemental material)373

[10] Author(s) Numeric Encoding Options with Automunge (2020) (Please see preprint in supplemental material)374

[11] Author(s) Parsed Categoric Encodings with Automunge (2020) (Please see preprint in supplemental375

material)376

[12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna. Rethinking the Inception377

Architecture for Computer Vision. IEEE conference on computer vision and pattern recognition, 2016378

[13] Author(s) Specification of Derivations with Automunge (2020) (Please see preprint in supplemental379

material)380

[14] Stef van Buuren, Karin Groothuis-Oudshoorn. mice: Multivariate Imputation by Chained Equations in R381

(2011) https://www.jstatsoft.org/article/view/v045i03382

[15] Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin. CatBoost: gradient boosting with categorical383

features support (2018) arXiv:1810.11363384

[16] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola.385

AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data (2020) arxiv:2003.06505386

[17] Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. FLAML: A Fast and Lightweight AutoML Library387

(2019) arXiv:1911.04706388

[18] Jinsung Yoon, James Jordon, Mihaela van der Schaar. GAIN: Missing Data Imputation using Generative389

Adversarial Nets (2018 International Conference of Machine Learning), arXiv:1806.02920390

[19] Yuxuan Zhao, Madeleine Udell. Missing Value Imputation for Mixed Data via Gaussian Copula (KDD391

2020), arXiv:1910.12845392

[20] K. Mohan, J. Pearl. Graphical Models for Processing Missing Data (2019), arXiv:1801.03583393

[21] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David394

Botstein and Russ B. Altman. Missing value estimation methods for DNA microarrays, BIOINFORMATICS395

Vol. 17 no. 6, 2001 Pages 520-525.396

[22] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui397

Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,398

Ion Stoica. Apache Spark: a unified engine for big data processing. Communications of the ACM, 59(11), 2016399

[23] Dask Development Team. Dask: Library for dynamic task scheduling (2016) https://dask.org400

[24] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih401

Elibol, Zongheng Yang, William Paul, Michael I. Jordan, Ion Stoica. Ray: A Distributed Framework for402

Emerging AI Applications. 13th USENIX Symposium on Operating Systems Design and Implementation403

(2018), arXiv:1712.05889404

10



[25] Rapids Development Team. Open GPU Data Science | RAPIDS https://rapids.ai405

[26] Abadi, Martín, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: A system for large-scale406

machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (2016) p.407

265–83.408

[27] Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan,409

Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison,410

Alban and Kopf, Andreas and Yang, Edward and DeVito, Zachary and Raison, Martin and Tejani, Alykhan and411

Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith. PyTorch: An412

Imperative Style, High-Performance Deep Learning Library. NeurIPS Proceedings, 2019413

[28] Terrence Parr, Kerem Turgutlu, Christopher Csiszar, and Jeremy Howard. Beware default random forest414

importances. Explained.ai (blog), 2018. https://explained.ai/rf-importance/.415

[29] Author(s) Automunge Influence (2020) (Please see preprint in supplemental material)416

[30] Dean De Cock. Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester Regression417

Project, Journal of Statistics Education, Volume 19, Number 3 (2011)418

[31] Kaggle: Allstate Claims Severity, https://www.kaggle.com/c/allstate-claims-severity419

Checklist420

1. For all authors...421

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-422

tions and scope? [Yes]423

(b) Did you describe the limitations of your work? [Yes] Please see discussions in section 5 Related424

Work425

(c) Did you discuss any potential negative societal impacts of your work? [Yes] A Broader Impacts426

discussion is provided as Appendix C427

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]428

2. If you are including theoretical results...429

(a) Did you state the full set of assumptions of all theoretical results? [N/A]430

(b) Did you include complete proofs of all theoretical results? [N/A]431

3. If you ran experiments...432

(a) Did you include the code, data, and instructions needed to reproduce the main experimental433

results (either in the supplemental material or as a URL)? [Yes] Please see jupyter notebooks434

provided with supplemental material435

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were436

chosen)? [Yes] We noted that missing data injections were random for each trial. Performance437

was evaluated on a 25% validation split. We used hyperparameter defaults for learning.438

(c) Did you report error bars (e.g., with respect to the random seed after running experiments439

multiple times)? [Yes] We noted that since scenarios for 0% injection are comparable between440

imputation methods, their spread may serve as a proxy for noise inherent in the operation.441

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,442

internal cluster, or cloud provider)? [No] Our experiments did not require significant compute.443

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...444

(a) If your work uses existing assets, did you cite the creators? [Yes]445

(b) Did you mention the license of the assets? [Yes] We note licenses of supporting packages in the446

read me document included in the github repository folder within the supplemental material.447

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]448

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-449

ing/curating? [N/A]450

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-451

tion or offensive content? [N/A]452

5. If you used crowdsourcing or conducted research with human subjects...453

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?454

[N/A]455

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)456

approvals, if applicable? [N/A]457

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on458

participant compensation? [N/A]459

11


