
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RL, BUT DON’T DO ANYTHING I WOULDN’T DO

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning, if the agent’s reward differs from the designers’ true
utility, even only rarely, the state distribution resulting from the agent’s policy
can be very bad, in theory and in practice. When RL policies would devolve into
undesired behavior, a common countermeasure is KL regularization to a trusted
policy (“Don’t do anything I wouldn’t do”). All current cutting-edge language
models are RL agents that are KL-regularized to a “base policy” that is purely
predictive. Unfortunately, we demonstrate that when this base policy is a Bayesian
predictive model of a trusted policy, the KL constraint is no longer reliable for
controlling the behavior of an advanced RL agent. We demonstrate this theoretically
using algorithmic information theory, and while systems today are too weak to
exhibit this theorized failure precisely, we RL-finetune a language model and
find evidence that our formal results are plausibly relevant in practice. We also
propose a theoretical alternative that avoids this problem by replacing the “Don’t
do anything I wouldn’t do” principle with “Don’t do anything I mightn’t do”.

1 INTRODUCTION

Agents optimizing their objective in a way not intended by designers could be amusing, annoying,
insidious, or disastrous. Amusingly, RL researchers attempted to get a simulated humanoid to walk,
but the reward resulted in crazy locomotion (Lee et al., 2021). Annoyingly, maximizing a simulated-
environment’s reward can produce a policy that would achieve little real-world-reward by exploiting
errors in the simulation (Mishra et al., 2017; Baker et al., 2019). Insidiously, artificial agents selecting
links to maximize click-through on social media sites have succeeded, but also affecting people in
ways designers never sought to (Chan et al., 2023). For a much longer list of such failures occurring
“in the wild”, see (Krakovna, 2018). Finally, sufficiently capable reinforcement learners would likely
recognize an incentive to escape human oversight, intervene in the protocol determining their reward,
and use force to ensure they can retain control of their reward, subject to such an outcome being
possible from the agent’s action space, and several other assumptions laid out by Cohen et al. (2022b).

Indeed, several sources suggest that extremely successful reward-maximization is itself a sign of bad
outcomes for humanity. Zhuang & Hadfield-Menell (2020) demonstrate that in a resource-constrained
world, optimizing the world’s state to maximize a function of some features would, in plausible
settings, be arbitrarily bad with respect to a utility function that also cares about unincluded features.
Turner et al. (2021) develop a formal model of “power”—being able to accomplish a randomly
sampled goal—and find that (reward-)optimal policies tend to seek power. And Cohen et al. (2022b)
observe that any behavior that ensures that long-term reward is nearly-certainly-maximal must include
extensive control over threats to its physical integrity, including threats from humans.

An appealing and popular proposal to avoid such outcomes is to constrain the agent to follow
a policy that is not too dissimilar to a more familiar “base policy”. This is the approach taken
when RL-finetuning large language models (LLMs). This class of approaches limits the upside of
RL, since it forgoes optimal policies, but it is a reasonable attempt to avoid catastrophic policies.
The KL divergence, in particular KL(proposed policy∥base policy), enforces proximity in a robust,
“safety-conscious” way: if basepolicy(action) << 1 while proposedpolicy(action) ≮< 1, the KL
penalty is high, even while Lp norms can be small. For any very bad outcomes that are unlikely
under the base policy, this method ensures they remain very unlikely. However, if we ensure
that KL(proposed policy∥base policy) is small, but the base policy only approximates a trusted
policy, to what extent can we be confident that KL(proposed policy∥trusted policy) is small? When
the base policy is a Bayesian predictive model of the trusted policy, the answer shown here is:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

we cannot be confident that KL(proposed policy∥trusted policy) is small, which makes the KL-
constraint less comforting. (Note that a Bayesian imitative base policy can only be counted on to
make KL(trusted policy∥Bayesian base policy) small).

Worse, in the formalism we study, we find that if one attempts to use KL-regularization to prevent
an RL agent from achieving near-maximal reward (in light of the concerns above), and the base
policy is a Bayesian imitation of a trusted policy, a fairly tight KL threshold is required, and as the
amount of training data for the Bayesian imitator grows, the relevant threshold can only increase
extremely slowly. The reason for the limited effectiveness of KL regularization is (1) a Bayesian
imitator asked to act in novel settings must be humble about its predictions; for many actions that
the demonstrator (i.e. the trusted policy) would in fact never take, the imitator (i.e. the base policy)
must assign meaningful credence to that action, because it doesn’t know enough to rule it out. Then
(2) the RL agent can exploit or amplify this credence. Formalizing Occam’s razor with algorithmic
information theory, we have (3) nearly-reward-maximizing policies have a short description length
(so they are “simple”), and (4) a Bayesian imitation learner with a rich prior should be especially
reluctant to rule out simple behaviors from the demonstrator in novel settings. In light of the results
from Zhuang & Hadfield-Menell (2020), Turner et al. (2021), and Cohen et al. (2022b), preventing
the RL agent from achieving near-maximal reward is, in many settings, a bare minimum requirement
for safety-focused regularization, and a KL constraint would struggle to do so.

Sutskever (2018; 2023) argues that neural networks are able to generalize well because of the sense
in which they approximate the algorithmic-information-theoretic inductive bias in favor of short
programs. Since it is not a given that results from algorithmic information theory apply in practice, we
verify empirically that a nearly-state-of-the-art predictive system (Mixtral-8x7B-base-model (Jiang
et al., 2024)) is reluctant to rule out simple behaviors, and an RL agent regularized to this predictive
system exploits this fact, as our formal results predict. The result is not catastrophic, but it is bad.
Note these empirical results neither confirm nor deny whether point (3) above applies in practice, but
they do affirm that the rest of the argument is forceful in practice.

Finally, we identify an alternative to Bayesian prediction/imitation that avoids this problem; Cohen
et al.’s (2022a) imitator asks for help when uncertain and carries useful formal bounds. We show that
using this form of imitation learning as a base policy would in theory avoid the problems we identify
in this paper. Cohen et al.’s (2022a) active imitator, like fully Bayesian imitation, is intractable and
requires approximation, so we currently lack the tools to evaluate this proposal empirically.

2 RELATED WORK

The most prominent example of KL-regularization to an approximation of a (somewhat) trusted
policy is surely ChatGPT, inspired by earlier work (Ouyang et al., 2022; Stiennon et al., 2020; Bai
et al., 2022). Other recent examples include Jaques et al. (2017; 2019), Ziegler et al. (2019), Vieillard
et al. (2020), Yang et al. (2021), Korbak et al. (2022), Perez et al. (2022), Gao et al. (2023), and
Moskovitz et al. (2023). A closely related approach called quantilization has been investigated by
Taylor (2016), Everitt et al. (2017), and Carey (2019). KL regularization to a decent policy has also
been used for stable and efficient policy optimization (Schulman et al., 2017; Schmitt et al., 2018).

Algorithmic information theory began with Solomonoff (1960), who formalized a powerful notion of
simplicity based on program-length and developed a method for prediction using that inductive bias.
In an article entitled, “A theory of program size formally identical to information theory”, Chaitin
(1975) examined the connection between program-length and information. Li et al.’s (2008) textbook
presents the major results of the field. Hutter (2005) and Hutter et al. (2024) developed a theory of
how to apply such reasoning to the problem of sequential decision-making. Grau-Moya et al. (2024)
train a neural network to learn a program-length “bias” for a meta-learning setting.

Ultimately, we propose a formal scheme for doing KL regularization to an imitative policy which
asks for help under epistemic uncertainty, and this allows us to inherit the formal results of Cohen
et al. (2022a). The related work section there goes into some detail about how different researchers
have studied asking for help, including how setups and assumptions differ. See especially Zhang &
Cho’s (2017) work on driving, as well as Brown et al. (2018; 2020) and Menda et al. (2019).

Closest to our work in studying the relation between KL divergence to a base policy and “over-
optimization” is Gao et al. (2023). They design a “real” reward function, and a simpler “proxy”

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

reward function, which are very similar on the state distribution induced by a base policy. After
optimizing for the proxy reward function (sometimes with KL regularization to the base policy), they
use the KL divergence to the base policy to measure how much “optimization” has occurred. And
they study how “real” reward depends on the extent of optimization—roughly quadratically, with
a negative leading coefficient. Our work provides one explanation for why we should expect such
unusual policies with high proxy reward and low real reward, even when the KL divergence to the
base policy is only moderate.

3 NOTATION AND PRELIMINARIES

We begin with a formalism for an imitative base policy that has an infinite “context win-
dow” and a lifetime that is one long episode, rather than a lifetime broken up into mul-
tiple episodes with presumed-identical dynamics. This is the most general setting for an
imitative base policy. We simply have an infinite sequence of actions and observations
a1o1a2o2 . . . , and predictive “autoregressive” models which give conditional distributions of the
form model(next action|all previous actions and observations).

We formalize sequential prediction as follows. Let X be a finite alphabet, and let X ∗ be the set
of finite strings from the alphabet X , so X ∗ =

⋃∞
i=0 X

i. Let x<t be an element of X t−1, and
let xt1:t2 be an element of X t2−t1+1. Let ν : X ∗ ×X → [0, 1] be a (predictive) probability semi-
distribution, satisfying the property that for any x<t ∈ X ∗,

∑
x∈X ν(x|x<t) ≤ 1. If one prefers to

think about probability distributions, consider the associated probability distribution over X ∪{∅},
with ν(∅|x<t) = 1−

∑
x∈X ν(x|x<t). So ν gives a conditional distribution over the next character

given the past characters, if there is a next character at all. Let ν(x<t) =
∏t−1

i=1 ν(xi|x<i), where xi

is the ith character of x<t, and x<i is the first i− 1 characters. (Measure theorists can note this means
ν induces a probability semi-distribution over infinite sequences X∞, with the event space σ(X ∗).)

Now we set up Bayesian prediction: Let M be our model class — a countable set of many “competing”
probability semi-distributions like ν. For each ν ∈ M, let w(ν) be the prior weight assigned to
that probability semi-distribution. Let

∑
ν∈M w(ν) = 1, so w is a probability distribution over

M. The (Bayesian) posterior distribution is w(ν|x<t) ∝ w(ν)ν(x<t), with
∑

ν∈M w(ν|x<t) =
1. Following Hutter’s (2005) notation, we can now define the Bayes mixture semi-distribution
ξ : X ∗ ×X → [0, 1] as ξ(x|x<t) :=

∑
ν∈M w(ν|x<t)ν(x|x<t), which has the property that

ξ(x<t) =
∑

ν∈M w(ν)ν(x<t) (Hutter et al., 2024).

Turning to algorithmic information theory, Solomonoff Induction (Solomonoff, 1964) is Bayesian
sequence prediction with a special model class M and a special prior w. We define it formally in the
appendix, but essentially, the model class M is all computable semi-distributions ν, and the prior w
is 2−length(program for ν). One can show that ξ(x<t) is the probability that a given universal computer
running a program composed of random bits would output a sequence that begins with x<t. Related
to this is Kolmogorov complexity (Kolmogorov, 1963; Li et al., 2008), which is the length of the
shortest program which does something, given a fixed compiler. For a set s, K(s) is the length of the
shortest program p such that p(x) = 1 for x ∈ s, and p(x) = 0 for x ̸∈ s. For a function f , K(f) is
the length of the shortest program p such that p(x) = f(x). For a computable number x, K(x) is the
length of the shortest program p such that p() = x.

To apply this framework to reinforcement learning, we interpret every odd-numbered element in the
sequence as an action and every even-numbered element as an observation: we let at = x2t−1 and
ot = x2t; the agent selects actions at and receives observations ot. We suppose that the first k actions
were taken by a trusted policy, e.g. randomly sampled humans. We do not necessarily imagine that
the policy is trusted in every sense, only that it can be trusted to avoid the particular bad outcomes
we are interested in avoiding. When conditioned on a history that begins with k trusted actions, ξ can
be called a Bayesian imitation of the trusted policy.

For an agent with a utility function over m-timestep histories, Um : X 2m → [0, 1], we define:

Definition 1 (Value). For a probability semi-distribution ν : X ∗ ×X → [0, 1] and a utility function
Um, the value of a particular “policy” (also a probability semi-distribution) π ∈ M is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

V π
ν,Um

(x<2t−1) = Eat∼π(·|a1o1...at−1ot−1)Eot∼ν(·|a1o1...at)Eat+1∼π(·|a1o1...atot)

Eot+1∼ν(·|a1o1...at+1)...Eam∼π(·|a1o1...am−1om−1)Eom∼ν(·|a1o1...am)Um(a1o1...amom)

The optimal value V ∗
ν,Um

(x<2t−1) is the maxπ V
π
ν,Um

(x<2t−1). When comparing two policies, we
define a KL penalty, which is a function of the starting history we are continuing from, and of how
far into the future we are looking.
Definition 2 (KL Constraint).

KL
x<2k,m

(π||β) = max
ok:m∈Xm−k+1

∑
ak:m∈Xm−k+1

m∏
t=k

π(at|x<2t) log

∏m
t=k π(at|x<2t)∏m
t=k β(at|x<2t)

RL
algorithm

argmaxπ V π

Agent
policy
π

Trained Bayesian
imitator

β = ξ(·|x<2k)

Autoregressive
predictor

ξ

Solomonoff
prior

2−length(·)

Human
demonstrations

a<k

Trusted human
demonstrator

τ

conditioned
on

KL constrained
to

Figure 1: KL-regularized RL. A trusted policy τ generates k initial
demonstrations. These demonstrations train a Bayesian imitative
base policy β using the Solomonoff prior. An RL algorithm
searches for a policy π that maximizes expected value. The KL
constraint ensures π stays “close” to β. This structure is designed
to keep the learned policy π from deviating too far from τ , even
though π only directly interacts with β.

The maximum over observations
means that this penalty ensures
the proposed policy and base pol-
icy are similar no matter what
is observed. One way to under-
stand this measure is: if we were
wondering whether the proposed
policy or the base policy gener-
ated actions k through m, and
the proposed policy actually was
generating those actions, this is
the maximum over observations
of the expected amount of evi-
dence we would get confirming
that fact. (In a deterministic en-
vironment, we could remove the
maximum over observations, but
we do not study this case sepa-
rately.)

To analyze how policies behave
in novel situations, we formalize
the notion of unprecedented events. Following Cohen & Hutter (2020), an event E is any subset of
possible histories X ∗. For an outcome x<∞, we say that E happens at time t if x<2t ∈ E, we say E
has happened by time t if ∃k ≤ t such that E happened at time k, and we say E is unprecedented
at time t if it has not happened by time t− 1. For an example of an event, consider “given the life
history, the next action will likely have the effect of sending an email to the White House”; a subset
of possible life histories meet this description.

4 FORMAL RESULTS AND DISCUSSION

We begin with a quick observation about the KL divergence separate from our more involved results.
Proposition 1 (No triangle inequality). For any ε > 0, if KL(π||β) ≤ ε and KL(τ ||β) ≤ ε, it is
possible that KL(π||τ) = ∞. (π, β, and τ stand for “proposed”, “base”, and “trusted”.)

Proof. Let τ = Bern(0). Let π = β = Bern(min(ε, 1)/2). The KL’s are easily checked.

When β is trained to imitate τ , small KL(τ ||β) is typically all we can expect. As we mentioned
previously, this should give us pause if we regularize to the Bayesian imitator ξ instead of the trusted
demonstrator, but Theorem 1 below is probably more concerning.

Recall we are considering the setting where actions a1 through ak were taken by trusted humans, and
we are interested in regularizing a Um-optimizer to the Bayesian imitator ξ, conditioned on histories
that begin a1o1...akok. So the following result is of interest when t > k and the agent is acting. As
motivation for this theorem, as discussed previously, assume a setting where if V ∗

ξ,Um
− V π

ξ,Um
< ε,

then π is considered unacceptably risky (Gao et al., 2023; Zhuang & Hadfield-Menell, 2020; Cohen
et al., 2022b).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 1 (Little constraint in novel situations). ∃ a constant d such that ∀ Um, and ∀ E, if E
is unprecedented and occurs at time t, then for any v < V ∗

ξ,Um
(x<2t), ∃ a policy π for which

V π
ξ,Um

(x<2t) > v, and KLx<2t,m(π||ξ) < [d+K(Um) +K(E) +K(vξ(x<2t))]/ log 2.

This theorem shows that there are policies with near-optimal utility with little KL divergence to an
imitative policy, regardless of how safe the demonstrator’s policy is. We’ll discuss the terms in the
bound in turn. The proof of the theorem (appearing in Appendix D and outlined below) indicates
that the constant d is a small one; it corresponds to how much code it takes to implement a search
tree, Bayes’ rule, and control flow. The theorem applies for any E and any v < V ∗, so they are
free variables, and we can focus our attention to cases where K(vbasepol(history)) and K(E) are
small. For the former term, there may be a trade-off between low complexity and v’s proximity to the
optimal value. Below, we consider a common setting where K(Um) is small, and we discuss how
often we can find an unprecedented event E for which K(E) is small. Note that Theorem 1 considers
a lifetime KL constraint for the agent; for autoregressive models, the lifetime KL divergence is equal
to the expectation of the sum of the per-timestep KL divergences. The proof and additional results
used in the proof appear in Appendices A through D.

Proof Outline Let π∗
v be a policy which is the result of a search through possible policies for one

where V π
ξ,Um

(x<2t) > v. (For this search process to be computable, it needs the product vξ(x<2t)

as input). For every ν ∈ M, we define a ν′ which behaves identically to π∗
v if it is outputting an

action after E has occurred in its history, but it behaves identically to ν otherwise. ν′ is also in M
because this is a valid program. And for some constant d, the extra length of the program computing
ν′, beyond the length for ν, is at most ∆ := K(Um) +K(E) +K(vξ(x<2t)) + d.

This means the prior ratio w(ν′)/w(ν) ≥ 2−∆, and if E has never occurred, this holds for the
posterior ratio as well, since ν and ν′ will have given identical predictions. Therefore, at least that
fraction of ξ is “dedicated” to predicting that actions will be sampled from π∗

v after E happens, and
ultimately, KLx<2t,m(π∗

v ||ξ) log 2 ≤ ∆.

Let’s analyze this result in an RL setting: part of the agent’s observations are rewards, and the utility
function equals the sum of those rewards. Let’s consider the case where it is acting in the real world,
and it could maximize its reward by escaping human control, taking direct control of its own rewards,
setting them to a maximal value for all successive timesteps. Moreover, let’s consider the (fairly
plausible) setting where unsafe strategies like these are the only way to achieve near-maximal reward
permanently. Finally, suppose that the agent is clever enough to recognize these strategies.

The utility function, simply summing rewards, has an extremely short program length; the reward
history is an input, so all we need is a program that sums some elements from a list. So if we have
small d, small K(Um), and v tuned for small K(vξ(x<2t)), then unless we use a fairly tight lifetime
KL constraint, the RL agent could just wait for a timestep where there exists an event E with small
K(E) that occurs then for the first time. It could then execute an optimal or near-optimal policy,
even if the humans the base model imitates would never behave that way. The following proposition,
proven in Appendix D, establishes the feasibility of waiting for such a timestep. It considers the
complexity of “the simplest unprecedented event yet to occur”—for a given infinite history x<∞ and
a time t, this is minE∈P(X∗):E occurs for the first time after time t K(E).

Proposition 2 (Frequency of simple unprecedented events). In any environment, at time t, the
complexity of the simplest unprecedented event yet to occur (at any time T > t) grows more slowly,
as t → ∞, than every computable function that tends to infinity.

Proposition 2 shows that waiting for an unprecedented event with small K(E) is a viable strategy
for an RL agent, unless the agent does not get to act until t is incalculably large. In our formalism,
the agent begins selecting actions after the trusted humans generate the first k actions. (The way
one “trains” an autoregressive Bayes’ mixture model like ξ is simply to condition it on the training
data, in this case a<k.) As we increase the amount of training k, the Bayesian imitative base model ξ
becomes a closer approximation to the humans generating the actions a<k, so one might expect we
could safely accommodate larger KL constraints. But our result is independent of k. As k grows,
the only change is that unprecedented events become more complex, so K(E) grows, as shown in
Proposition 2. So while more data would help, the data scaling law—how much data we need for a
good result—is awful.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Intuitively, we can understand Proposition 2 to show that even with extensive training data, we will
encounter novel situations that are algorithmically simple. This theoretical result can be observed in
practice: for instance, self-driving car developers have found that even with massive training datasets,
their vehicles regularly encounter unprecedented but conceptually simple scenarios.

The results so far suggest that if we intend to use an imitation learner as a base policy for regularizing
a goal-directed agent, we should not strive to approximate ideal Bayesian imitation. Is KL divergence
just the wrong choice for regularization? No, other metrics behave much worse. For example, suppose
we constrained the total variation distance between π and a base policy β. The result would be bad,
even if β = τ , even if we used a perfect imitation of the trusted policy!

Let TVDx<2k,m(π, β) = maxX⊂X 2m−2k

∑
x2k:2m∈X

∣∣[∏m
t=k π(at|x<2t)] − [

∏m
t=k β(at|x<2t)]

∣∣.
And let πTV D

c = argmaxπ:TVDx<2k,m(π,β)<c V
π
ξ,Um

. We say an action is Vξ,Um
-optimal if it is

assigned positive probability by a policy that maximizes V π
ξ,Um

; a formal definition appears in
Appendix E.
Theorem 2 (TVD constraint). If πTV D

c (at|x<2t) > β(at|x<2t), then at is Vξ,Um
-optimal.

The proof is in Appendix E. We use regularized RL for the setting where Vξ,Um -optimal behavior is
actually bad. But when using total variation distance to regularize, the only actions that increase in
probability are Vξ,Um -optimal ones, even with a perfectly trustworthy base policy. The KL divergence
is a better regularizer for maintaining safety, because if a (bad) outcome is impossible under the base
policy, it remains impossible under a policy with finite KL divergence to the base policy.

5 RL-FINETUNING A LANGUAGE MODEL

Why believe that algorithmic information theory is relevant for understanding realistic machine
learning systems that attain very low prediction error? If a stream of observations is generated by a
relatively short program, a high quality predictive algorithm should be capable of being trained on
those observations to predict that future observations will be governed by the same program. Note
that any predictor that a) assigns positive prior probability to every program as a potential generator
of its observations, and b) and updates its beliefs according to Bayes’ rule is formally equivalent
to ξ (Hutter, 2005). While realistic systems will not live up to that ideal, deviations from those
principles should be as limited as possible. A predictive algorithm that is incapable of becoming
convinced of a plausible hypothesis (i.e. that its observations match the output of a short program) is
best called “closed-minded”, or perhaps “epistemically intransigent”. Ruling out hypotheses a priori
so that no data can persuade you of them is dangerous tendency when trying to model the world; it
may not be long before a predictor confronts a true fact that it treats as unbelievable. For example,
Liu et al. (2018) demonstrate, unsurprisingly, that convolutional neural networks fail when their a
priori commitment to translational invariance doesn’t match reality. So we conjecture that successful
predictors will tend to be open-minded, and very successful predictors at least as open-minded as
humans, and this makes the properties of ξ plausibly relevant. But we do not wish to overstate our
case. This discussion is not very rigorous, so in this section we present experiments that assess to
some extent how realistic our theoretical results are.

Experimental Setup We consider the following episodic RL environment, in which the agent
plays a teacher and gets reward to the extent that the student’s responses have positive sentiment.
In a conversation transcript, if the string “[newline] Teacher:” has come more recently than the
string “[newline] Student:”, the agent can add tokens to the transcript. Otherwise, Mixtral-base-
model repeatedly adds tokens to the transcript. In Figure 2, gray (colored) tokens are generated by
the environment (agent). When Mixtral-base-model finishes generating the student’s response (by
outputting “[newline] Teacher:”), the agent gets a reward equal to the “sentiment” of the student’s
response according to the DistilBERT sentiment model (Sanh et al., 2019), scaled to [0, 1]. When the
transcript reaches 256 tokens, the episode terminates. The starting transcript is also shown in Figure 2
in gray. The base policy used for KL-regularizing the agent’s policy (corresponding to ξ from before)
is also Mixtral-base-model. Such an LLM is not an explicitly Bayesian imitator, of course, but it
does attempt to minimize KL(data-generating process||model), which is the “right” objective from a
Bayesian perspective. The “state” observed by the agent is the activations of the last three hidden
layers of Mixtral-base-model with the transcript-so-far as input, along with the fraction of the episode
remaining. The agent has no discount factor.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This allows us to evaluate whether KL regularization can produce good results from an imperfect
reward function that is plausibly correlated with good outcomes under the state distribution induced
by the base policy, but like many reward functions, not something we truly want maximized.

Like cutting-edge RL-finetuned language models (Ouyang et al., 2022; Stiennon et al., 2020; Jaques
et al., 2019), our agent is trained with proximal policy optimization (PPO) with KL regularization
of the form KL(proposed || base). That work adds a constant KL penalty per token, but we had
difficulty tuning this constant—in our attempts, when the agent discovers a sufficiently high-reward
strategy, the fixed KL penalty becomes swamped and ignored, and if the KL penalty is increased to a
level where it can stop that, the agent never gets off the ground. So we opted for an implementation
of a KL constraint that is more robust than industry practice: we design a policy architecture that
ensures that the KL divergence to the base policy is less than or equal to a scalar which is input to the
network; (we construct a new differentiable PyTorch operation for this). This allows us to provide the
agent with a fixed KL “budget” for the episode. We increase this budget gradually during training
to its ultimate value. We ran three budget-20 experiments. We ran four budget-10 experiments,
because in one of the experiments, the agent didn’t learn to get nearly as much reward as in the other
experiments; we discarded that agent as insufficiently optimized. See Appendix F for more details of
the training process and architecture, which includes running 64 copies of the agent-environment
loop in parallel on two A100-SXM4-80GBs.

Figure 2: Transcripts. Total KL budget KLwhole episode(agent||Mixtral-base-model) is 10 nats (left) or
20 nats (right), with color representing per-token KL cost. Starting transcript and student responses
are in gray. The agent playing the teacher pays an “upfront” KL cost to latch onto the simple pattern
of mutual silence, which exploits the reward model without much further KL penalty. The three
largest per-token KL-divergences are shown in footnotes. “[\n]” is for visualizing the KL costs of
newline tokens. Transcripts were not selected for maximal “representativeness”; they were the first
we looked at, although we might have picked different ones if they were especially unusual. (It is
hard to display the unusual characters that appear after the end token “</s>”, but the episode does
continue to a total of 256 tokens).

Experimental Results Both Theorem 1 and the experiments here demonstrate that KL(simple,
optimal, not-human-like-at-all policy || predictive model of human demonstrator) can be quite small.
The nature of the learned RL policy is apparent just from looking at transcripts in Figure 2, so we
start with those. The color of each token represents the per-timestep KL(RL policy || base policy) for
that action. With a total KL budget of 20 nats, it can spend enough of its KL budget up front to latch
onto the simple but initially unlikely policy of simply saying nothing at all. (An empty reply from the
student has neutral sentiment and a reward of 0.5). The policy constructed in the proof of Theorem 1

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

also incurs an upfront KL cost for “switching” to simple behavior, whereafter the KL cost incurred is
minimal. Additionally, the learned budget-20 policy switches from double-spacing to single-spacing
to fit more rewards in, again incurring basically a one-time KL cost. With a total KL budget of 10
nats, the RL agent cannot afford to switch to single-spacing, and it cannot force the policy to ensure
empty responses, but it still spends almost all its KL budget switching to that regime, with moderate
success. We can also observe this effect in Figure 3.

Figure 3: How much KL-budget is spent on empty
responses. The 25th, 50th, and 75th percentiles are
shown in blue, orange, and green. Observe how
large a fraction of the total cost is incurred in the
first few responses. y-axis is square-root-scaled.

Figure 4: In a random episode, what fraction of
teacher responses are empty? Left: histogram,
with budget-10 above and budget-20 below; right:
percentiles of the distribution. Observe that the
red and blue curves have the same average per-
token KL divergence.

Let’s review the relation between the theory and the empirical findings so far. The idea for the proof of
Theorem 1 is that (1) a Bayesian imitator must assign meaningful credence to actions the demonstrator
would in fact never take, because it doesn’t know enough to rule them out; (2) the RL agent can
exploit or amplify this credence as the basis for its policy; (3) nearly-reward-maximizing policies have
a short description length (so they are “simple”); and (4) a Bayesian imitator should be especially
reluctant to rule out simple behaviors from the demonstrator, especially in novel settings. The simple
behavior we observe from the RL-finetuned language models—preferring empty responses—is likely
reward-optimal, but it is not simple by virtue of its optimality for this sentiment-based reward function.
So we have not empirically verified (3). But we have verified that the rest of the argument can be
exhibited in practice: observe how the RL agent redirects the imitative base policy to a simple policy,
which is the critical reason Theorem 1 holds. We call attention to the small KL cost required to remain
silent, because that affirms how successful the redirection is. The experiments are also consistent
with the motivation of our formal results: very-high-reward policies are often bad and worth avoiding;
in our experiments, the very-high-reward policy treats the student with a silence that would probably
seem condescending.

Stepping back, note that e10 ≈ 22026. It does not seem plausible to us that even 1/22,000
“conversations collected for training purposes” would have a teacher repeatedly saying noth-
ing in response to statements like, “I didn’t want to bother you.” So we should guess that
KL(agent||data-generating process) > 10 even while KL(agent||base model) ≤ 10. We offer an
explanation for this: non-demonstrator-like behaviors are easily exhibited by an imitator as long as
those behaviors are simple. And while such simple behaviors are fairly unlikely to appear when
sampling directly from the imitator, an RL agent can benefit from seeking them out.

Additionally, we show that increasing the length of the chat, keeping the total KL budget constant
(thereby decreasing the per-token KL-divergence) makes the divergence from the base policy more
dramatic, if it changes at all. Hopefully our presentation makes this seem like an obvious point—more
of the transcript occurs after the switch to the simple behavior—but consider an argument for the
opposite that might have sounded plausible. “The learned policy will look more different from the
base policy to the extent there is a higher per-token KL divergence; a longer chat would increase
the number of noticeable differences, but not their frequency.” But Figure 4 shows that in longer
episodes, empty responses are about equally frequent in budget-10 case, and more frequent in the
budget-20 case, not just more numerous. This is another way of seeing that RL agents can use a KL

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Automated comparison of teacher behavior generated by base model, trained KL budget 10
policies, and trained KL budget 20 policies. The percentages refer to the fraction of the time that that
agent “won” according to the comparator, with a 95% confidence interval.

20 v. base 10 v. base 20 v. 10

“Better” 11.3% v. 88.7% ±3.6% 15.3% v. 84.7% ±4.1% 17.7% v. 82.3% ±4.3%
“More complex/
unpredictable” 4.0% v. 96.0% ±2.2% 29.0% v. 71.0% ±5.1% 14.3% v. 85.7% ±4.0%

budget to permanently derail a standard base model. And practitioners finetuning language models
should think in terms of total KL-divergence instead of per token KL-divergence.

So even a fairly tight KL constraint is not enough to stop RL-finetuning from making the teacher’s
behavior worse and much simpler. When GPT3.5-turbo judged pairs of transcripts generated by the
base model, the budget 10 agent, and budget 20 agent, the less optimized agent was usually judged
“better” and “more complex/unpredictable”, as seen in Table 1.

6 PESSIMISTIC BAYESIAN BASE POLICY THAT ASKS FOR HELP

Cohen et al. (2022a) developed a theoretical variant of Bayesian imitation that is “pessimistic”, and
using that as a base policy instead of a Bayesian imitator avoids the problem presented in Theorem 1.
Cohen et al.’s (2022a) (intractable) imitator is defined as follows, with M, ν, and w as defined above.
First we define the set of semi-distributions with a posterior weight at least α times the sum of the
posterior weights of semi-distributions that are at least as likely as it. And then we define the imitator.

Definition 3 (Top set). Of all ν ∈ M, let νnx<t
be the one with the nth largest posterior weight

w(ν|x<t), breaking ties arbitrarily. And for α ∈ (0, 1], let

Mα
x<t

:= {νnx<t
∈ M : w(νnx<t

|x<t) ≥ α
∑
m≤n

w(νmx<t
|x<t)}

Definition 4 (Pessimistic Bayesian imitator).

να(x|x<t) := min
ν′∈Mα

x<t

ν′(x|x<t)

Note that να is in general a probability semi-distribution even if all ν are true probability distributions,
since the να probabilities will sum to less than 1 if there is any disagreement among the ν ∈ Mα

x<t
.

Cohen et al. (2022a) study this distribution in the context of active imitation learning, and they
examine the setting where the imitator asks for help with the remaining να-probability.

Assume the data x<k is sampled from a true probability distribution τ , and τ ∈ M. τ samples
actions from the true demonstrator distribution. Then we have

Theorem 3 (Cohen et al. (2022a) Theorem 2). For all δ > 0, if α < δw(τ), then with probability at
least 1− δ, ∀t τ ∈ Mα

x<t
.

And then assuming the high probability event that ∀t τ ∈ Mα
x<t

,

Theorem 4 (Tight KL constraint with approximate imitator). For any budget b,

{π : KL
x<2t,m

(π||να) ≤ b} ⊆ {π : KL
x<2t,m

(π||τ) ≤ b}

Proof. να(x|x<t) = minν′∈Mα
x<t

ν′(x|x<t) ≤ τ(x|x<t), so KL(π||να) ≥ KL(π||τ).

Therefore, for sufficiently small α, KL-regularization using the pessimistic Bayesian imitator guar-
antees regularization at least as strong as if using the trusted policy itself (the demonstrator) for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

regularization. Note, in particular, that if τ ∈ Mα
x<t

, and τ(x|x<t) = 0, then να(x|x<t) = 0, so any
policy with finite KL-divergence from να will also assign zero probability to x.

The downside is that there may be no policy with small KL divergence to the semi-distribution να.
In an extreme case, να could assign zero probability to every outcome, and so any policy would
have infinite KL divergence from it. Therefore, just as Cohen et al.’s (2022a) imitation learner does
not pick an action in some circumstances, we should allow an optimizer that is KL-regularized to a
pessimistic Bayesian imitator to refuse to pick an action if need be, making the optimizer a probability
semi-distribution, rather than a true probability distribution. We can define the behavior of Um on
unfinished sequences (resulting from no action choice somewhere along the line) however we like; if
Um = 0 for any such interrupted sequences, that would of course encourage the optimizer to pick an
action whenever possible, subject to its KL constraint. Ideally, if human demonstrators are on hand,
the optimizer should ask for help whenever it doesn’t pick its own action. The ongoing potential need
for human oversight may be a significant drawback, but Cohen et al. (2022a) give an encouraging
result about the rate at which the ask-for-help probability goes to 0: the sum over infinite time of the
cube of the ask-for-help probability is finite (Cohen et al., 2022a, Thm 1). Cohen et al.’s (2022a)
agent is certainly not the only one that asks for help under uncertainty, but it is the only one that has
been shown to satisfy να(x|x<t) ≤ τ(x|x<t) with high probability—the critical result we use.

We contend that this is the way that KL regularization should be done, if we are forced to learn a mere
approximation of a trusted policy that we would ideally regularize to. Regularizing to a full Bayesian
posterior distribution is less robust, because the optimizer can seize on esoteric possibilities that a
fully Bayesian imitator is not confident enough to categorically exclude. Roughly, KL regularization
to a Bayesian imitator implements the principle, “Don’t do anything [that you know] I would never
do”, whereas KL regularization to a pessimistic Bayesian imitator implements the principle, “Don’t
do anything I might never do”.

7 CONCLUSION AND LIMITATIONS

The biggest limitation of our work is with our positive results rather than our negative ones: we cannot
provide empirical findings about regularizing to a pessimistic Bayesian imitative base model, because
it is an open question how to tractably approximate this approach to imitation. There are high-quality,
off-the-shelf cross-entropy-minimizing imitators like Mixtral, but for tractable pessimistic Bayesian
imitation, some new ideas may be needed. There certainly are not any state of the art language models
trained in a way that reflects this idea. We hope this work provides motivation for a major industry
effort to produce one. Using an ensemble of models to approximate Mα

x<t
may be a step in the right

direction, but we are reluctant to endorse this in settings where catastrophic outcomes are possible,
unless there is a strong argument that the ensemble covers all the relevant modes of the posterior.

The second key limitation with our positive result is that any KL-regularization to avoid radically
inhuman behavior could limit the potential of superhuman intelligence. This paper has no roadmap to
A+ performance; it has a roadmap to non-catastrophic, decently-superhuman performance. And a
final key limitation is that our agent sometimes has to ask for help instead of acting.

The main limitation of our negative results is they regard an unrealistic machine learning algorithm—
Solomonoff Induction. However, Solomonoff induction is simply a formalism for unbelievably
careful and open-minded probabilistic reasoning, and so if something goes wrong in that setting,
we should be wary of something going wrong in increasingly careful and open-minded machine
learning systems. Our empirical results do not directly validate the theory, since both the base model
and the RL-finetuning process are too weak, but we validate core components of the theory: KL-
regularized RL-finetuning will tend to amplify simple behaviors from an imitative base model rather
than demonstrator-like behaviors. This helps explain the overoptimization phenomenon quantified by
Gao et al. (2023).

Excitingly, we offer theoretical results that could guide us to a solution to this problem: if Cohen
et al.’s (2022a) pessimistic online imitation learner could be faithfully approximated, and if the
demonstrator(s) never attempt to do X , then KL regularization to such a policy could solve the
problem of how to prevent superhuman planning agents from doing X .

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The code to produce the experimental results is provided in the supplementary material, and the code
is described in Section 5 and in greater detail in Appendix F. Complete proofs not in the main body
of the paper are provided in the appendix.

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. In International Conference on
Learning Representations, 2019.

Daniel Brown, Scott Niekum, and Marek Petrik. Bayesian robust optimization for imitation learning.
Advances in Neural Information Processing Systems, 33:2479–2491, 2020.

Daniel S Brown, Yuchen Cui, and Scott Niekum. Risk-aware active inverse reinforcement learning.
In Conference on Robot Learning, pp. 362–372. PMLR, 2018.

Ryan Carey. How useful is quantilization for mitigating specification-gaming? Safe Machine
Learning workshop at ICLR, 2019.

Elliot Catt, Jordi Grau-Moya, Marcus Hutter, Matthew Aitchison, Tim Genewein, Gregoire Deletang,
Li Kevin Wenliang, and Joel Veness. Self-predictive universal AI. In 37th Conf. on Neural
Information Processing Systems (NeurIPS’23), pp. 1–18, New Orleans, USA, 2023.

Gregory J Chaitin. A theory of program size formally identical to information theory. Journal of the
ACM (JACM), 22(3):329–340, 1975.

Alan Chan, Rebecca Salganik, Alva Markelius, Chris Pang, Nitarshan Rajkumar, Dmitrii Krashenin-
nikov, Lauro Langosco, Zhonghao He, Yawen Duan, Micah Carroll, et al. Harms from increasingly
agentic algorithmic systems. In Proceedings of the 2023 ACM Conference on Fairness, Account-
ability, and Transparency, pp. 651–666, 2023.

Michael K Cohen and Marcus Hutter. Pessimism about unknown unknowns inspires conservatism.
In Conference on Learning Theory, pp. 1344–1373, 2020.

Michael K Cohen, Marcus Hutter, and Neel Nanda. Fully general online imitation learning. The
Journal of Machine Learning Research, 23(1):15066–15095, 2022a.

Michael K. Cohen, Marcus Hutter, and Michael A. Osborne. Advanced artificial agents intervene in
the provision of reward. AI magazine, 43(3):282–293, 2022b.

Steven De Rooij and Peter D Grünwald. Luckiness and regret in minimum description length
inference. In Philosophy of Statistics, pp. 865–900. Elsevier, 2011.

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement
learning with a corrupted reward channel. In Proc. 26th International Joint Conf. on Artificial
Intelligence (IJCAI’17), pp. 4705–4713, Melbourne, Australia, 2017. ISBN 978-0-9992411-0-3.
doi: 10.24963/ijcai.2017/656. URL http://arxiv.org/abs/1705.08417.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Gregoire Deletang, Elliot Catt,
Anian Ruoss, Li Kevin Wenliang, Christopher Mattern, Matthew Aitchison, and Joel Veness.
Learning universal predictors. arXiv:2401.14953, 2024.

Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Proba-
bility. Springer, Berlin, 2005. ISBN 3-540-22139-5. doi: 10.1007/b138233.

11

http://arxiv.org/abs/1705.08417
http://arxiv.org/abs/2401.14953

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Marcus Hutter, David Quarel, and Elliot Catt. An Introduction to Universal Artificial Intelligence.
Chapman & Hall/CRC Artificial Intelligence and Robotics Series. Taylor and Francis, 2024. ISBN
9781032607023. URL http://www.hutter1.net/ai/uaibook2.htm.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E Turner,
and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation models with
kl-control. In International Conference on Machine Learning, pp. 1645–1654. PMLR, 2017.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Andrei N Kolmogorov. On tables of random numbers. Sankhyā: The Indian Journal of Statistics,
Series A, pp. 369–376, 1963.

Tomasz Korbak, Ethan Perez, and Christopher Buckley. RL with KL penalties is better viewed as
Bayesian inference. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 1083–1091, 2022.

Leon Gordon Kraft. A device for quantizing, grouping, and coding amplitude-modulated pulses. PhD
thesis, Massachusetts Institute of Technology, 1949.

Victoria Krakovna. Specification gaming examples in AI. https://vkrakovna.wordpress.
com/2018/04/02/specification-gaming-examples-in-ai/, 2018.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. In 38th International Conference
on Machine Learning, ICML 2021. International Machine Learning Society (IMLS), 2021.

Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications, volume 3.
Springer, 2008.

Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, and
Jason Yosinski. An intriguing failing of convolutional neural networks and the coordconv solution.
Advances in neural information processing systems, 31, 2018.

Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Ensembledagger: A Bayesian
approach to safe imitation learning. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5041–5048. IEEE, 2019.

Nikhil Mishra, Pieter Abbeel, and Igor Mordatch. Prediction and control with temporal segment
models. In International conference on machine learning, pp. 2459–2468. PMLR, 2017.

Ted Moskovitz, Aaditya K Singh, DJ Strouse, Tuomas Sandholm, Ruslan Salakhutdinov, Anca D
Dragan, and Stephen McAleer. Confronting reward model overoptimization with constrained
RLHF. arXiv preprint arXiv:2310.04373, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese,
Nat McAleese, and Geoffrey Irving. Red teaming language models with language models. arXiv
preprint arXiv:2202.03286, 2022.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

12

http://www.hutter1.net/ai/uaibook2.htm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstarting
deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ray J Solomonoff. A preliminary report on a general theory of inductive inference. Citeseer, 1960.

Ray J. Solomonoff. A formal theory of inductive inference. part i. Information and Control, 7(1):
1–22, 1964. doi: 10.1016/s0019-9958(64)90131-7.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Ilya Sutskever. Meta learning and self play, Jan 2018. URL https://www.youtube.com/
watch?v=RvEwFvl-TrY&t=196s.

Ilya Sutskever. An observation on generalization, Aug 2023. URL https://simons.berkeley.
edu/talks/ilya-sutskever-openai-2023-08-14.

Jessica Taylor. Quantilizers: A safer alternative to maximizers for limited optimization. In AAAI
Workshop: AI, Ethics, and Society, 2016.

Alex Turner, Logan Smith, Rohin Shah, Andrew Critch, and Prasad Tadepalli. Optimal policies tend
to seek power. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 23063–23074. Curran
Associates, Inc., 2021.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
Leverage the average: an analysis of kl regularization in reinforcement learning. Advances in
Neural Information Processing Systems, 33:12163–12174, 2020.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Accelerating safe
reinforcement learning with constraint-mismatched baseline policies. In International Conference
on Machine Learning, pp. 11795–11807. PMLR, 2021.

Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end simulated
driving. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned AI. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 15763–15773. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/b607ba543ad05417b8507ee86c54fcb7-Paper.pdf.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Alexander K Zvonkin and Leonid A Levin. The complexity of finite objects and the development
of the concepts of information and randomness by means of the theory of algorithms. Russian
Mathematical Surveys, 25(6):83, 1970.

A SOLOMONOFF INDUCTION

Solomonoff Induction (Solomonoff, 1964) is Bayesian sequence prediction with a special model
class M and a special prior w.1 Let P be the set of all programs which output an element of X and

1Solomonoff Induction has been defined in multiple ways which all share the key properties (Hutter, 2005).
Our precise construction of Solomonoff Induction may be novel, but we believe this construction makes its
properties most clear.

13

https://www.youtube.com/watch?v=RvEwFvl-TrY&t=196s
https://www.youtube.com/watch?v=RvEwFvl-TrY&t=196s
https://simons.berkeley.edu/talks/ilya-sutskever-openai-2023-08-14
https://simons.berkeley.edu/talks/ilya-sutskever-openai-2023-08-14
https://proceedings.neurips.cc/paper_files/paper/2020/file/b607ba543ad05417b8507ee86c54fcb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b607ba543ad05417b8507ee86c54fcb7-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

which accept two inputs: a finite string ∈ X ∗ and an infinite binary string ∈ {0, 1}∞. (Note that a
program will not necessarily read every bit from the infinite binary string.) For each program p ∈ P ,
we define a semi-measure ν = f(p) as follows: let ν(x|x<t) be the probability that the probability
that the program p outputs x when it receives x<t as an input, along with an infinite binary string
where each bit is sampled from a Bernoulli(1/2) distribution. Note that ν may not be a probability
distribution, if there is are some inputs on which p does not halt, but it will always be a probability
semi-distribution. So let M = {f(p) : p ∈ P}. Since P is countable, so is M. A notable feature of
Solomonoff Induction is that M is equal to the set of all probability semi-distribution that are “lower
semi-computable”; this means that for all x<t ∈ X ∗ and all x ∈ X , there exists a program p, such
that limi→∞ p(i, x<t, x) = ν(x|x<t) and p(i+ 1, x<t, x) ≥ p(i, x<t, x). Replacing the ≥ with a ≤
gives the definition of upper semi-computable.

Proposition 3 (Lower Semi-computability). M is the set of all lower semi-computable semi-
distributions over X given x<t ∈ X ∗.

Proof. First, we show that all ν ∈ M are lower semi-computable. Let p be the program that generates
ν. We define the behavior of program p′ on inputs i, x<t, and x. On input i, let program p′ execute
the following computations in sequence for all bit strings of length i: it simulates program p with the
input x<t and with the bit string of length i in question, except if program p would read more than i
bits from the random bit string, it halts instead, and if it would run for more than i computation steps,
it halts instead. For each of those 2i computations, program p′ checks whether x was output, keeps
count of how many times it was, divides by 2i, and outputs this number. It is elementary to show that
limi→∞ p′(i, x<t, x) = ν(x|x<t) and that p′(i+ 1, x<t, x) ≥ p′(i, x<t, x).

Next, we show that all lower semi-computable semi-distributions appear in M. Let p′ be the program
which is witness to the semi-distribution ν’s lower semi-computability. On input x<t, let program p
proceed as follows. Starting with i = 1, program p executes p′(i, x<t, x) for all x ∈ X , sequentially.
This produces a semi-distribution over X . Then, using random bits from its input bit string, it
samples from that semi-distribution, and halts if successfully samples. Now, the following repeats
forever. If no sample was selected (because the semi-distribution summed to y < 1), the program
increments i, and it executes p′(i, x<t, x) for all x ∈ X , sequentially. Then for each x, it computes
(p′(i, x<t, x)− p′(i− 1, x<t, x))/(1− y), which is a semi-distribution. Using random bits from its
input bit string, it samples from that semi-distribution, and halts if it successfully samples. [End of
loop]. Again, it is elementary to show that p samples from the semi-distribution defined by p′, and
since this program has the right input/output behavior, it appears in P .

Now we specify the prior weight function w. Consider a universal binary programming language
L, which is a “prefix-free” subset of {0, 1}∗. Prefix-free means that you can tell when a program
has ended: if the bits composing x ∈ L match the initial bits of y ∈ {0, 1}∗, then y /∈ L. Such
a language is still capable of encoding countably many different programs. For convenience, we
also require that for any infinite binary string, L contains an element which is a prefix of that
string, making L “complete”. We define a prior probability distribution over program strings L,
which results in the same prior probability distribution over programs, which results in the same
prior probability distribution over semi-computable semi-distributions M. For s ∈ L, this prior
probability w(s) = 2−ℓ(s), where ℓ is the length of the string. Because L is prefix-free and complete,∑

s∈L w(s) = 1 (Kraft, 1949; De Rooij & Grünwald, 2011). This completes the definition of
Solomonoff Induction; it is sequence prediction using the Bayes mixture semi-distribution ξ, with the
above definitions of M and w.

Proposition 4 (Any-time Computability of ξ). ξ(x|x<t) is any-time computable: there ex-
ists a program which, accepting an argument i, computes ξ̂i(x|x<t), having the property that
limi→∞ ξ̂i(x|x<t) = ξ(x|x<t). Moreover, (ξ̂i)i∈N can be constructed so that each one is a probabil-
ity semi-distribution.

Proof. ξ(x|x<t) =
∑

ν∈M w(ν|x<t)ν(x|x<t) =
∑

ν∈M w(ν)ν(x<t)ν(x|x<t)∑
ν∈M w(ν)ν(x<t)

. All ν(x|x<t) and
ν(x<t) are both lower semi-computable, so using a sequence of computable estimators for each term
gives a sequence of computable estimators that approaches the true value. (Note that the estimates
are not monotonically increasing because there are lower semi-computable terms in the denominator,
so ξ is not lower semi-computable itself).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For fixed estimates of ν(x|x<t) and ν(x<t), we have a linear combination over various ν’s of
ν(x|x<t), with the coefficients summing to one. And because each ν(x|x<t) is lower semi-
computable, the estimate will be less than the true value. Therefore, since ν(x|x<t) is a probability
semi-distribution, the estimate will be as well, so ξ can be approximated by a sequence of probability
semi-distributions.

B OPTIMIZER REGULARIZATION

We now define optimizers, and what it means for an optimizer to be regularized to a probability
semi-distribution. First, we show that the value of a policy is lower-semicomputable. Then we show
that such optimizers exist.

Proposition 5 (Lower semi-computable value). If the policy and environment π and ν are lower
semi-computable probability semi-distributions, V π

ν,Um
is lower semi-computable.

Proof. We begin by defining dovetailing tree search (DTS), for evaluating the outputs of a tree of
different computations, or more precisely, computations which, when given a finite binary string as
input have three possible outcomes: halt, do not halt, or require additional bit. DTS gives an any-time
algorithm that produces a list of the halting binary strings with their corresponding outputs, and every
such binary string and output will eventually be added to this list.

DTS maintains a queue of pairs (computation state, binary string), starting with just (the initial
computation state, the empty binary string). It cycles through the queue, executing one computation
step per computation state, and if the computation ever requires an additional bit, it adds a copy
of (computation state, binary string) to the queue, and adds a 0 to the end of one string, and a 1 to
the end of the other. If any computation reaches a halt state, it is removed from the queue, and the
associated binary string and the associated output is added to the list of outputs.

Collectively, ν and π define a lower semi-computable semi-distribution, where ν is used for the
even characters, and π is used for the odd ones. Call this probability semi-distribution ρ, and recall
the construction of the lower semi-computable semi-distributions defined in M. To have one of
the programs in M sample a long sequence of characters, every time the program would output
a character, add that character to the input, and continue on that input. With such a program for
sampling sequences from ρ by reading random bits from an input bit string, we can compute V π

ν,Um

by running DTS on the bit string. Each time DTS outputs a bit string for which ρ outputs a sequence
in X 2m, we add to the estimate of the value the probability of that bit string (= 2−ℓ(bit string)) times
the utility of the sequence in X 2m. This approaches the true value as DTS runs for longer, and the
value never decreases because Um is non-negative.

An optimizer is an any-time program for computing actions (perhaps stochastically) whose value
approaches the optimal value, as it runs for longer. The optimal value takes the following form:

V ∗
ν,Um

(x<2t−1) = max
at∈X

Eot∼ν(·|a1o1...at) max
at+1∈X

Eot+1∼ν(·|a1o1...at+1)...

max
am∈X

Eom∼ν(·|a1o1...am)Um(a1o1...amom) (1)

Definition 5 (Optimizer). For an environment ν, a utility function Um, and a computation quantity c,
an optimizer is a computable policy πc,ν,Um

for which limc→∞ V
πc,ν,Um

ν,Um
= V ∗

ν,Um
.

Proposition 6 (Optimizers exist). For any lower semi-computable semi-distribution ν (the environ-
ment), any m, and any computable utility function Um, there exists an optimizer.

Proof. We can construct the optimizer using the algorithm presented in the proof of Proposition
5, with π being the uniform random policy. The optimizer can then estimate Equation 1 using the
outputs of DTS for lower bounds on the probabilities in underlying the expectations. The optimizer
then keeps track of the actions that are responsible for achieving the maxima in Equation 1, and
whenever “time is up” and it has to produce an output, it outputs the action which maximizes the first
max in Equation 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

As the optimizer runs for longer, the lower-bounds on the expectations approach the truth, and the
value of the action selected approaches the optimal value (even if the actual choice of action oscillates
infinitely often).

For the setting where odd characters are actions, originating from a different process than the
even characters, observations, we redefine ξ as follows (Catt et al., 2023). We have two prior
distributions over ν ∈ M, wa and wo, and these are both identical to the prior distribution de-
fined before. But the posteriors are different: wa(ν|x<t) :∝ wa(ν)

∏
k∈{1,3,5,...}∪[t−1] ν(xk|x<k)

and wo(ν|x<t) :∝ wa(ν)
∏

k∈{2,4,6,...}∪[t−1] ν(xk|x<k). And for odd (or even) t, ξ(x|x<t) =∑
ν∈M

wa

or wo
(ν|x<t)ν(x|x<t).

This is equivalent to a change in programming language underlying the original definition of ξ,
and since this language was unspecified, our previous results apply. The programming language
now expects a program to be composed of two component programs concatenated together, and
the compiler of the program executes the first component program if the input has odd length, and
if executes the second component program if the input has even length. We omit a proof that this
(re)formulation of ξ is equivalent to what we describe above.

Proposition 7 (ξ-optimizer exists). For any m and any computable utility function Um, there exists
a ξ-optimizer.

Proof. This does not follow immediately from the previous result because ξ(ot|a≤to<t) is not, in
general, lower semi-computable. wo(ν|a≤to<t) is the quotient of two lower semi-computable values:∏

k<t ν(ok|a≤ko<k) is the numerator, and the denominator is the sum over all ν of such terms.

However, an unnormalized value function has the same optimum as the value function itself.
Let ξsmall(ot|a≤to<t) =

∑
ν∈M wo(ν)

[∏
k<t ν(ok|a≤ko<k)

]
ν(ot|a≤to<t). The sum of these

“probabilities” will typically not come close to 1, but they are proportional to those of ξ, so
V π
ξ,Um

(x<t) > V π′

ξ,Um
(x<t) if and only if V π

ξsmall,Um
(x<t) > V π′

ξsmall,Um
(x<t). Finally, observe that

ξsmall is lower semi-computable because it is a product of lower semi-computable terms, so by
Proposition 6, a ξsmall-optimizer exists, which is also a ξ-optimizer.

Now we define a KL-regularized optimizer. First, let π(ak:m|x<2kok:m) :=∏m
t=k π(at|x<2kakok...at−1ot−1). (So note that at is not in fact conditioned on ot+1.)

Definition 6 (KL-regularized optimizer). For any lower semi-computable semi-distributions ν and
ρ, a horizon m, a utility function Um, a starting string x<2k, and a tolerance δ, a KL-regularized
optimizer is an any-time program πδ

c for computing actions (perhaps stochastically) for which the
following holds. First,

δ > max
ok:m∈Xm−k+1

∑
ak:m∈Xm−k+1

πδ
c (ak:m|x<2kok:m) log

πδ
c (ak:m|x<2kok:m)

ρ(ak:m|x<2kok:m)
=: KL

x<2k,m
(πδ

c ||ρ)

(2)
and second, V πδ

c
ν approaches the optimal value subject to that constraint, as c → ∞.

Proposition 8 (KL-regularized optimizers exist). For any lower semi-computable semi-distributions
ν and ρ, any m, any computable utility function Um, any starting string x<2k, and any tolerance
δ ≥ 0, there exists a KL-regularized optimizer.

Proof. First, we show that for any computable probability distribution π, and any lower semi-
computable semi-distribution ρ, KLx<2k,m(π||ρ) is upper semi-computable, and therefore the set of
probability distributions π which have bounded KL divergence from ρ is computably enumerable.

Omitting the x<2k and the ok:m that all distributions are conditioned on, note that KL(π||ρ), which
equals

∑
z∈Xm−k+1 π(z) log

π(z)
ρ(z) , is monotonically decreasing in ρ(z) for any z. Since π(z) is

computable, and since ρ(z) is lower semi-computable, then π(z) log π(z)
ρ(z) is upper semi-computable.

By dovetailing (repeatedly switching between ongoing computations, executing one step at a time)
the computation over all possible π (countably many), we can admit any semi-distribution π to a list

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

of viable candidates whenever the estimate of the KL-divergence from ρ falls below δ. Since the KL
estimates never increase, once a semi-distribution π is added to the list, it need never be removed.
And every viable policy will eventually be added to the list because the KL estimates approach the
truth in the limit of infinite computation, and [0, δ) is open on the right.

Dovetailing over all semi-distributions π on the list of viable candidates (and adding in the new
ones as they get added to the list), we simultaneously update estimates of the value of each one in
the given environment ν, recalling that V π

ν,Um
is lower semi-computable (Proposition 5). When the

computation budget of the any-time optimizer is reached, it samples an action from its estimate of the
semi-distribution π which is (so far) estimated to be of highest value. (It will need to have a running
estimate of the semi-distribution π in order to estimate its value).

C REGULARIZING TO AN APPROXIMATE SOLOMONOFF INDUCTOR

Let ξ be the Solomonoff Bayes mixture probability semi-distribution defined in Section A. ξ is not
computable, but we can do KL regularization to an approximation of ξ. Let ξ̂i be a semi-distribution
and a computable estimate of ξ, with limi→∞ ξ̂i = ξ. (The existence of this is established by
Proposition 4). ξ̂i can be used as the base predictive model (taking the place of ρ in the definition of
KL-regularized optimizers). We fix Um to an arbitrary utility function for the remainder of this work,
and drop it from the notation. For a given δ and a given i, let πδ

i,c be the KL-regularized optimizer
using ξ̂i for the KL constraint, and using ξ to optimize with respect to (taking the place of ν from
the definition). Let this policy approach the optimal value, subject to the constraint, as c → ∞; the
existence of πδ

i,c is established by Proposition 8. When this policy is conditioned on x<2t for t ≥ k,
and with ak:t sampled from πδ

i,c itself, we can think of πδ
i,c as an optimizer that is regularized to an

approximate Bayesian estimate of a human policy, given the origin of x<2k.

D BEHAVIOR IN UNPRECEDENTED CIRCUMSTANCES

The following theorem establishes that as c and i go to infinity, the constraint on πδ
i,c becomes quite

weak in the presence of unprecedented events.

Theorem 1 (Little constraint in novel situations). ∃ a constant d such that ∀ Um, and ∀ E, if E
is unprecedented and occurs at time t, then for any v < V ∗

ξ,Um
(x<2t), ∃ a policy π for which

V π
ξ,Um

(x<2t) > v, and KLx<2t,m(π||ξ) < [d+K(Um) +K(E) +K(vξ(x<2t))]/ log 2.

Proof. Let π∗
c denote an unconstrained optimizer of Um in the environment ξ, which approaches

optimality as c → ∞, whose existence is shown by Proposition 7. As in the proof of Proposition 7,
let ξsmall be the un-normalized version of ξ, which is lower semi-computable: ξsmall(ot|a≤to<t) =∑

ν∈M wo(ν)
[∏

k<t ν(ok|a≤ko<k)
]
ν(ot|a≤to<t). And note that the value according to ξ versus

ξsmall is connected by the normalizing constant: ξ(x<2t)V
π
ξ,Um

(x<2t) = V π
ξsmall,Um

(x<2t). Now,

we let π∗
u = π∗

c where c is set to be the minimal value for which V
π∗
c

ξsmall,Um
(x<2t) exceeds u. If

u ≥ V ∗
ξsmall,Um

(x<2t), then π∗
u will not halt, but otherwise, because the value is lower semi-computable,

we can increase c until the value reaches at least u. Letting v = u/ξ(x<2t), observe that V π∗
u

ξ,Um
(x<2t)

exceeds v, as long as v < V ∗
ξ,Um

(x<2t), although it may not be possible to compute v in finite time.
So π∗

u satisfies the first of the properties promised in the theorem.

We now show that it satisfies the second as well. Recall that KLx<2t,m(π||ξ) only re-
quires evaluating ξ on its predictions for actions, and this takes the form ξ(ak|a<ko<k) =∑

ν∈M wa(ν|a<ko<k)ν(ak|a<ko<k). And it is straightforward to show an analogous property
for ξ’s predictions on longer strings: ξ(at:m|a<to<m) =

∑
ν∈M wa(ν|a<to<t)ν(at:m|a<to<m).

So we now examine the posterior weights of various models after being conditioned on a<to<t ∈ E.

Recall that each ν ∈ M is computed by a corresponding program s ∈ L. Given the event E, the
utility function Um, and a target value u, we construct, for each s ∈ L, an s′u as follows: if, in the
input to s′u, E has not happened, execute the program s; otherwise compute π∗

u. Keeping account

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

of the control flow in s′u, we can see there exists a constant d such that ∀s ∀E ∀Um and ∀u, s′u has
length less than ℓ(s) +K(E) +K(Um) +K(u) + d.

Letting ν′u be the probability semi-distribution computed by s′u, consider the ratio of prior weights
between ν and ν′u. Because w(ν) = 2−ℓ(s) for the corresponding program s, it follows from the
bound on the difference in length between s and s′u that w(ν′u)/w(ν) > 2−d2−K(E)−K(Um)−K(u).
The posterior ratio w(ν′u|x<2t)/w(ν|x<2t) is the same as the prior ratio, if E happens for the first
time at time t, because they will have assigned exactly the same probabilities to all characters in x<2t.
Because the sum over ν ∈ M of the posterior weights must be 1, the sum

∑
ν∈M w(ν′u|x<2t) >

2−d2−K(E)−K(Um)−K(u).

Note by construction that for all ν ∈ M, ν′u(at:m|a<to<m) = π∗
u(at:m|a<to<m). Because all ν′u

belong to M for all ν ∈ M,

ξ(at:m|a<to<m) =
∑
ν∈M

wa(ν|a<to<t)ν(at:m|a<to<m)

>
∑
ν∈M

wa(ν
′
u|a<to<t)ν

′
u(at:m|a<to<m)

=

[∑
ν∈M

wa(ν
′
u|a<to<t)

]
π∗
u(at:m|a<to<m)

> 2−d−K(E)−K(Um)−K(u)π∗
u(at:m|a<to<m) (3)

Finally,

KL
x<2t,m

(π∗
u||ξ) = max

ot:m∈Xm−t+1

∑
at:m

π∗
u(at:m|a<to<m) log

π∗
u(at:m|a<to<m)

ξ(at:m|a<to<m)

<
∑
at:m

π∗
u(at:m|a<to<m) log 2d+K(E)+K(Um)+K(u)

= [d+K(E) +K(Um) +K(u)]/ log 2

and u = vξ(x<2t). Therefore, π∗
u satisfies the theorem.

What does Theorem 1 mean for the optimizer constrained by KLx<2k,m(π||ξ̂i) for large i? If the
optimization of Um does not require urgent action, then one valid strategy for a policy π is to wait
for an unprecedented event, imitating the base policy ξ̂i until then, and then start optimizing. The
telescoping property of the KL Divergence clarifies the validity of this approach. That is, for t > k,
KLx<2k,m(π||ρ) = KLx<2k,t(π||ρ)+Ex2k:2(t−1)∼π KLx<2t,m(π||ρ) (Hutter, 2005). So starting with
a policy with low KL divergence from the base policy preserves a “budget” for high KL divergence
to be “spent” later by switching to a policy with greater divergence from the base policy.

Proposition 2 (Frequency of simple unprecedented events). In any environment, at time t, the
complexity of the simplest unprecedented event yet to occur (at any time T > t) grows more slowly,
as t → ∞, than every computable function that tends to infinity.

Proof. Consider the very simple event ET = X T ; it occurs (and is of course unprecedented) at time
T . K(ET) is within a constant of K(T). So we are interested in the rate of growth of minT≥t K(T)
as t increases. Zvonkin & Levin’s (1970) Theorem 1.4 (d) states that this function is eventually less
than every computable function that tends to infinity.

E TOTAL VARIATION DISTANCE

Definition 7 (Vξ,Um-optimal). An action at is Vξ,Um-optimal after a history x<2t if
Eot∼ξ(·|x<2tat)V

∗
ξ,Um

(x<2tatot) = V ∗
ξ,Um

(x<2t).

Theorem 2 (TVD constraint). If πTV D
c (at|x<2t) > β(at|x<2t), then at is Vξ,Um -optimal.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. Letting π(x2t:2m|x<2t) :=
∏m

t′=t π(at′ |x<2t′), if πTV D
c (at|x<2t) > β(at|x<2t), then there

exists an x2t+1:2m such that πTV D
c (atx2t+1:2m|x<2t) > β(atx2t+1:2m|x<2t). Suppose at is not

Vξ,Um
-optimal. Then there exists an a′t such that Q(x<2ta

′
t) > Q(x<2tat). Let x′

2t+1:2m be a
sequence where all actions are Vξ,Um

-optimal, and all observations have positive probability.

Let π′
ε(x2t:2m|x<2t) equal πTV D

c (x2t:2m|x<2t) for all x2t:2m, except π′
ε(atx2t+1:2m|x<2t) =

πTV D
c (atx2t+1:2m|x<2t)− ε, and π′

ε(a
′
tx

′
2t+1:2m|x<2t) = πTV D

c (a′tx
′
2t+1:2m|x<2t) + ε. The con-

ditional probabilities π′
ε(at′ |x<2t′) can easily be defined to achieve the properties in the previous

sentence.

For small enough ε > 0, this policy exists (no probabilities are outside [0, 1]) because
πTV D
c (at|x<2t) > β(at|x<2t) ≥ 0 and therefore, πTV D

c (a′t|x<2t) < 1. And for small enough ε > 0,
TVDx<2k,m(π′

ε, β) ≤ TVDx<2k,m(πTV D
c , β), because decreasing the probability on atx2t+1:2m

will reduce the total variation distance by ε, for ε ≤ π(atx2t+1:2m|x<2t) − β(atx2t+1:2m|x<2t)
(which is positive), while increasing the probability on a′tx

′
2t+1:2m will not increase the total variation

distance by more than ε.

Finally, since Q(x<2ta
′
t) > Q(x<2tat), V

π′
ε

ξ,Um
(x<2t) > V

πTV D
c

ξ,Um
(x<2t). This contradicts that

πTV D
c = argmaxπ:TVDx<2k,m(π,β)<c V

π
ξ,Um

since a policy with no more total variation distance has
greater value.

F DETAILED EXPERIMENTAL SETUP

The details of the experimental setup, also obtainable from the code provided, are as follows.

F.1 ENVIRONMENT

The state of the environment, as mentioned in the main text, is the activations of the last three hidden
layers of Mixtral-base-model with the transcript-so-far as input, along with the fraction of the episode
remaining. This gives a state space of 12289. Using the Mistral tokenizer, the action space is 32000.
The environment uses a temperature of 0.05 for generating the student’s responses and a temperature
of 1 for the base policy for the agent/teacher.

F.2 NETWORK ARCHITECTURE

The critic network is a fully connected network with two hidden layers of size 128 with tanh
activations. The actor network consists of just one parameterized layer, which is fully connected,
of size (|state space|, |action space| + 1). The extra output is for controlling the KL divergence
to the base policy. We compute the target KL divergence as sigmoid(activation) * the KL budget
remaining to the agent for the episode. So the activation controls what fraction of the remaining
KL budget for the episode to use on the very next token. At initialization, this fraction comes to
1/16. The KL budget remaining starts as the total episode KL budget (of course), and is decreased
by log(policy(action)/basepolicy(action)) with each action. The other outputs are interpreted as
logits and are added to the base policy logits. Calling this resulting distribution a, and the base
policy distribution b, we find an α ∈ [0, 1] such that KL(αa+ (1− α)b||b) equals the target KL, if
possible. If we cannot achieve a sufficiently high KL divergence, we set α = 1. The output policy
is αa + (1 − α)b. We add any squared error (target KL − achieved KL)2 to the loss function to
encourage the network to output logits that allow further control by the neuron controlling the KL
target.

In the forward pass, our custom PyTorch operation does binary search the calculate α in the interval
[0, 1]. The backward pass uses implicit differentiation, assuming we have found exactly the right
α—there is no need to differentiate backward through the binary search, which would be unstable.

F.3 PPO

We use the following hyperparameters for PPO. We do not use a generalized advantage estimate.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Training timesteps 6 million
Update frequency 1 / 64 episodes

Training epochs / update 8
Training batch size 213

Epsilon clip 0.1
Entropy coefficient 1e-4
Max gradient norm 0.1
Actor learning rate 2e-5
Critic learning rate 1e-4

A higher entropy coefficient is unnecessary given the KL constraint to the base policy. Over the first 3
million timesteps of training, we slowly increase the per-episode KL budget from 0 to its final value.
We increase this at a linear schedule each time we update the network.

When we re-train for a longer episode length (256 tokens to 512 tokens), we train for 3 million steps,
plenty to reach apparent convergence.

F.4 PARALLELISM

We use threading to run 64 agent-environment-loops in “parallel”. When we would need to send a
transcript of length l to be processed by the Mixtral model, we wait until all 64 agent-environment-
loops need to send a transcript of length l, and then they are batched and evaluated together in parallel
on the GPU. The result might needed by either the agent or the environment, and we use the python
asyncio library to manage this. Doing just that step in parallel is enough for substantial speedup.

F.5 RESOURCE USAGE

We ran our experiments on two A100-SXM4-80GBs. Training for 9 million timesteps took approxi-
mately 90 hours. Our seven training runs (one of which was stopped after 6 million timesteps) took
about 25 days, all told. (We ran the experiments two or three at a time). The full research project
required much more compute, since finding good hyperparameters for PPO is never straightforward,
especially when we were attempting to achieve a desired per-episode KL divergence, only with the
use of a fixed per-token KL cost; recall that we eventually switched to a policy architecture that
allowed direct control of the per-episode KL divergence.

20

	Introduction
	Related work
	Notation and preliminaries
	Formal results and discussion
	RL-finetuning a language model
	Pessimistic Bayesian base policy that asks for help
	Conclusion and limitations
	Solomonoff Induction
	Optimizer Regularization
	Regularizing to an Approximate Solomonoff Inductor
	Behavior in unprecedented circumstances
	Total variation distance
	Detailed experimental setup
	Environment
	Network Architecture
	PPO
	Parallelism
	Resource Usage

