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Abstract

Pre-trained deep neural networks (DNNs) are being widely deployed by industry for making
business decisions and to serve users; however, a major problem is model decay, where the
DNN’s predictions become more erroneous over time, resulting in revenue loss or unhappy
users. To mitigate model decay, DNNs are retrained from scratch using old and new data.
This is computationally expensive, so retraining happens only once performance has signif-
icantly decreased. Here, we study how continual learning (CL) could potentially overcome
model decay in large pre-trained DNNs and also greatly reduce computational costs for
keeping DNNs up-to-date. We identify the “stability gap” as a major obstacle in our set-
ting. The stability gap refers to a phenomenon where learning new data causes large drops
in performance for past tasks before CL mitigation methods eventually compensate for this
drop. We test two hypotheses to investigate the factors influencing the stability gap and
identify a method that vastly reduces this gap. In large-scale experiments for both easy and
hard CL distributions (e.g., class incremental learning), we demonstrate that our method
reduces the stability gap and greatly increases computational efficiency. Our work aligns
CL with the goals of the production setting, where CL is needed for many applications.

1 Introduction

Deep neural networks (DNNs) are now widely deployed in the industry; however, a major problem for many
companies is model decay, where the predictive performance of a DNN degrades over time (Zhou et al., 2020).
This is primarily caused by concept drift (Tsymbal, 2004; Gama et al., 2014; Lu et al., 2018), where the
nature of the predicted target variables changes over time, e.g., for a classifier, this would correspond to the
introduction of new categories or an expanded definition individual classes. When model decay is detected,
most companies employ offline retraining (i.e., batch or joint retraining), where a model is retrained from
scratch with a combination of old and new data (Egg, 2021). This is very expensive, so model monitoring is
used to determine when offline training is required (Mäkinen et al., 2021). Despite frequent offline training,
deployed models still suffer from accuracy drops of up to 40% (Mallick et al., 2022).

Continual learning (CL) is a promising solution for preventing model decay (Huyen, 2022a;b; Jain & Shenoy,
2022), where in CL the goal is to update a DNN incrementally with new data while preserving the previous
knowledge (Parisi et al., 2019). In a GrubHub study, this enabled them to avoid model decay and provided a
45× decrease in training costs compared to daily offline training (Egg, 2021). To do this, GrubHub employed
online updates on new samples. Online updates can cause catastrophic forgetting of past knowledge due to
concept drift (McCloskey & Cohen, 1989), but due to the rapidly changing preferences of their customers,
forgetting past knowledge was desirable. However, for most industry applications, catastrophic forgetting is
unacceptable because past knowledge must be retained. For CL to be widely adopted by industry, it must
be shown to inhibit model decay in pre-trained models, provide significant computational benefits, work for
arbitrary shifts in concepts, and ideally be as effective as offline training. The majority of CL algorithms
deviate from these criteria, i.e., they impose constraints on storage that are irrelevant to industry problems,
shun pre-trained models, perform worse than offline retraining, design algorithms for only a single concept
drift distribution (e.g., class incremental learning), and/or are more computationally expensive than offline
retraining (Harun et al., 2023a;b; Prabhu et al., 2023b;a; Verwimp et al., 2024; Lee et al., 2023).
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(a) Stability gap over all rehearsal sessions (b) Stability gap as an average over all rehearsals

Figure 1: An overview of stability gap phenomenon. The stability gap is a phenomenon that occurs
in CL when learning new data, where accuracy on previously learned data (Y-axis) drops significantly as a
function of training iterations when a new distribution is introduced (X-axis). Fig.(a) illustrates this behavior
during CIL, where a network pre-trained on ImageNet-1K, learns 365 new classes from Places365-LT over five
rehearsal sessions. Each rehearsal session involves 600 iterations that combine samples from the old and new
tasks. A gray dotted vertical line marks the end of a rehearsal session or a task transition. When rehearsal
begins, accuracy on the old task for the conventional rehearsal drops dramatically before slowly recovering,
although it fails to recover the original performance on the old data. The traditional measures of catastrophic
forgetting focus on performance at task transitions (red diamonds), ignoring significant forgetting that occurs
during the learning process between task transitions. Fig.(b) shows the stability gap in the learning curve
averaged over five rehearsal sessions. In this work, we attempt to mitigate the stability gap.

Here, we study CL for mitigating model decay and introducing new concepts into a DNN, where we align the
constraints with those of industry where the goal is to deploy effective pre-trained models and update them
over time for arbitrary concept shifts. To do this, we initially studied updating ImageNet-1K pre-trained
models with new classes in class incremental learning (CIL) experiments. We used computationally con-
strained cumulative rehearsal to mitigate forgetting, where rehearsal involves mixing old samples with new
ones to prevent forgetting, and cumulative rehearsal does this using all previously observed samples. Com-
putational constraints were enforced by limiting the total number of rehearsal updates permitted. However,
we found that CL’s stability gap was a major obstacle to our goal (De Lange et al., 2023), as shown in Fig. 1.

The stability gap phenomenon refers to the observation that when the model is updated on new data,
accuracy on the classes observed in earlier batches plummets before rehearsal or other CL methods gradually
recover old performance. In the typical CIL setting we adopted, samples arrive in batches where each batch
contains classes that are only within that batch. As seen in Fig. 1, the performance plummets when learning
a new batch during the rehearsal sessions and does not fully recover. The stability gap can be seen as
transient forgetting due to the introduction of a new task. Typically, catastrophic forgetting refers to the
performance drops observed at the end of learning new tasks (at task transitions), while the stability gap
refers to the performance drops observed over learning steps (between task transitions). In our work, we
seek to understand why the stability gap happens in our scenario and how to effectively mitigate it, which
would enable using fewer rehearsal updates while achieving higher accuracy.

We test two hypotheses to examine the stability gap in CIL with pre-trained DNNs:

1. The stability gap is increased in part due to having a large loss at the output layer for
the new classes. To test this hypothesis, we study two methods to mitigate the large loss 1 in the
output layer for the new classes. The first method is to initialize the output layer in a data-driven
approach rather than randomly initializing the output units responsible for the new classes. The
second method is a specialized form of soft targets for the network, rather than the typical hard

1Referring to the loss when we only train the output layer and freeze all other layers.
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targets used for the network where these soft targets are designed to improve performance for the
new classes while minimally perturbing others.

2. The stability gap is increased in part due to excessive network plasticity. We test this
hypothesis by controlling the level of plasticity in network layers in a dynamic manner. For hidden
layers, we test this hypothesis using LoRA (Hu et al., 2021), which reduces the number of trainable
parameters in the hidden layers of the network. For rehearsal methods, after each rehearsal ses-
sion, these weights are folded into the original network weights. For the output layer, we test this
hypothesis by freezing the output units for classes seen in earlier batches during rehearsal.

In our experiments, we find that both hypotheses are supported. This leads us to develop a combined method
that greatly reduces the stability gap for both CIL and other distributions.

This paper makes the following major contributions:

1. We are the first to study overcoming the stability gap. We test the aforementioned hypotheses in
CIL and discover that they both play an important role. We propose novel metrics to measure the
stability, plasticity, and continual knowledge gaps, which are normalized relative to a jointly trained
universal upper bound.

2. We are the first to study maintaining or improving performance on ImageNet-1K while learning
additional classes, an aspect not investigated in previous research employing ImageNet-1K pre-
trained backbones (Wang et al., 2022b;a; Smith et al., 2023; Gao et al., 2023; McDonnell et al.,
2024). We study this to learn new data for both the CIL and IID (independent and identically dis-
tributed) distributions. These experiments are conducted by combining ImageNet-1K with Places365
or Places365-LT (a combined 1365 total classes).

3. We develop a method that greatly mitigates the stability gap, resulting in significant improvements
in computational efficiency. Our method requires 16.7× fewer network updates than a jointly-trained
(upper bound) model. In terms of TFLOPs, our method provides a 31.9× speedup (see Fig. 5). For
the IID CL distribution, the method achieves backward transfer, where learning the new dataset
helps to improve ImageNet-1K accuracy.

4. We show that our method is effective and can be integrated seamlessly with various CL methods.
Specifically, it performs well in conjunction with the rehearsal methods Vanilla Rehearsal, DERpp,
GDumb, and REMIND as well as the non-rehearsal method LwF.

2 Background

A variety of methods have been proposed to learn continuously from non-stationary datasets in continual
learning (see Zhou et al. (2023) for review). These methods can be broadly divided into three categories:
1) Rehearsal-based methods store or reconstruct a subset of old data to rehearse alongside new data
while learning a new batch (Chaudhry et al., 2019; Hou et al., 2019; Rebuffi et al., 2017; Wu et al., 2019),
2) Regularization-based methods constrain weight updates by adding additional regularization in the
loss function (Aljundi et al., 2018; Chaudhry et al., 2018; Dhar et al., 2019; Kirkpatrick et al., 2017), and
3) Parameter-isolation based methods allocate multiple sets of parameters or multiple copies of the
model to different incremental batches (Douillard et al., 2021; Yan et al., 2021; Yoon et al., 2020). Since
parameter isolation methods do not allow backward transfer, the stability gap does not apply to these
methods (De Lange et al., 2023).

While most of the CL research community has focused on mitigating catastrophic forgetting (McCloskey
& Cohen, 1989), there is a growing body of literature demonstrating its ability to reduce the amount of
compute needed to update the network (Ghunaim et al., 2023; Harun et al., 2023a;b;c; Prabhu et al., 2023b;
Verwimp et al., 2024). Recently, a major obstacle to this objective has been identified in CL: The stability
gap (De Lange et al., 2023). However, it has been studied on small datasets, e.g., CIFAR using randomly
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initialized DNNs. This setting is not aligned with studying model decay in industrial settings that involve
many-class data streams and preserving performance in large pre-trained DNNs.

Traditionally, the training-from-scratch CL would start with a randomly initialized DNN that had no pre-
training. With the prevalence of large pre-trained models, recent CL research has started integrating these
models into the learning process. This has resulted in a growing number of CL works that utilize large
pre-trained vision transformer (ViT) models, which have been pre-trained on ImageNet-1K or ImageNet-
21K (Wang et al., 2022b;a; Smith et al., 2023; Gao et al., 2023; McDonnell et al., 2024). Moreover, many
earlier works use pre-training for CL (Belouadah & Popescu, 2019; Hou et al., 2019; Castro et al., 2018;
Rebuffi et al., 2017; Hayes et al., 2020; Douillard et al., 2020; Harun et al., 2023b) and emphasize the
significance of pre-training in the context of CL (Lee et al., 2023; Mehta et al., 2023; Ostapenko et al.,
2022; Ramasesh et al., 2021b; Gallardo et al., 2021). However, as demonstrated in several works (Wang
et al., 2022a; Mirzadeh et al., 2022), using pre-trained models does not naively enhance CL performance and
effectively leveraging pre-trained models for CL remains an open question. In this work, we mainly focus on
overcoming the stability gap in CL with pre-trained models.

Almost all CL methods focus on the catastrophic forgetting problem with evaluations occurring on discrete
batch or task transitions (Chaudhry et al., 2018) and fail to capture the stability gap that occurs immediately
after a new task is introduced (Fig. 1). De Lange et al. (2023) demonstrates the stability gap occurs for
a variety of CL methods including rehearsal (Chaudhry et al., 2019), GEM (Lopez-Paz & Ranzato, 2017),
EWC (Kirkpatrick et al., 2017)), and LwF (Li & Hoiem, 2017). To quantify the stability gap, they propose
continual evaluation metrics based on worst-case performance i.e., the largest drop in accuracy on old batches.
However, their metrics do not enable comparing different CL models, because they only quantify the largest
drop relative to the same model’s best performance, thus making it impossible to quantify the impact
of different training methodologies aimed at mitigating the stability gap. We address this limitation by
designing and employing novel metrics that are normalized against a jointly-trained universal upper bound
(see Sec. 3.2). We also illustrate this phenomenon using synthetic examples in Appendix F to build intuitions.

We study overcoming the stability gap with both rehearsal and non-rehearsal methods, with a focus on
rehearsal due to its effectiveness (van de Ven et al., 2022; Zhou et al., 2023).

3 Continual Learning Protocol

In this work, we attempt to align CL with the industry setting, where CL updates knowledge in pre-trained
models to prevent model decay when new concepts are introduced while preserving performance on the
original classes. Likewise, because the industry requires maintaining high accuracy, we focus on rehearsal-
based CL; nonetheless, we demonstrate that our mitigation strategies can be used for non-rehearsal methods
that use regularization and knowledge distillation. In this section, we formalize our CL framework and define
the metrics we use to measure the stability gap.

3.1 Formal Continual Learning Setting

To align our work with addressing model decay, we assume CL begins with a pre-trained model capable of
K-way classification. The goal is to incorporate new data, which may have additional classes, into the model,
while preserving or improving performance on the original K classes. For this purpose, we use ImageNet-1K
pre-trained models (K = 1000). While ImageNet-1K pre-trained models are commonly employed in CL
systems, previous studies do not attempt to maintain or measure performance on ImageNet-1K itself (Wang
et al., 2022b;a; Smith et al., 2023; Gao et al., 2023; McDonnell et al., 2024). Our research uniquely explores
this aspect in CL. Upon deployment, the pre-trained model is exposed to a sequence of data batches over
N − 1 learning sessions, i.e., {S2, · · · ,SN}, where S1 is the data used for pre-training. The j’th session
consists of a batch of mj labeled training samples, i.e., Sj = {(xj , yj)i}

mj

i=1, where xj is an instance of
category yj ∈ Yj and Yj is the label space of task j. In the CIL setting, each Sj contains non-overlapping
classes, i.e., Yj ∩ Yj′ = ∅ for j ̸= j′. The total number of samples in the entire sequence is M =

∑N
j=1 mj .

When learning new batch Sj , the learner can access Sj and any stored data from previous batches S1:j−1.
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During test time, the learner is evaluated on test data from all seen classes, Yj = Y1 ∪ · · ·Yj . The batch (or
task) identifier j cannot be exploited during test time.

To efficiently adapt to a large-scale data stream in a real-world setting, a CL system should not increase
compute cost over time. For all learning sessions j after pre-training, it is given a fixed compute budget B
corresponding to the number of SGD model updates i.e., B = U × b, where U and b denote the number of
training iterations and the number of training samples per iteration respectively.

3.2 Measuring the Stability Gap

Popular CL metrics focus on measuring performance after each Sj is learned. They do not permit fine-
grained analysis for a) preserving old knowledge, b) acquiring new knowledge and c) balancing both during
training. To study the stability gap in a manner that enables us to test our hypotheses across models trained
with different strategies, we created metrics that measure these criteria: 1) the stability gap, S∆ (criterion a)
2) the plasticity gap, P∆ (criterion b), and 3) the continual knowledge gap, CK∆ (criterion c). Each metric
asks: How much performance does a learner lack on previously observed, recently observed, or
all observed data compared to a joint model (upper bound) when learning new data?

For the j’th learning session, we denote evaluation sets on old, new, and all seen data by E1:j−1, Ej , and
E1:j , respectively. Ai is the accuracy of the current model θi on batch evaluation set E at training iteration
i, and L is the total number of iterations. Ajoint is the final accuracy of a joint model (θjoint) trained jointly
on all data. We define the stability gap as

S∆ = 1− 1
N − 1

N∑
j=2

Ωold
j ; where Ωold

j = 1
L

L∑
i=1

Ai(E1:j−1, θi)
Ajoint(E1:j−1, θjoint)

. (1)

Similarly, the plasticity gap is

P∆ = 1− 1
N − 1

N∑
j=2

Ωnew
j ; where Ωnew

j = 1
L

L∑
i=1

Ai(Ej , θi)
Abest(Ej , θbest)

, (2)

where Abest stands for the best accuracy achieved by the best CL model (θbest) at any time during training.
And finally, we define the continual knowledge gap as

CK∆ = 1− 1
N − 1

N∑
j=2

Ωall
j ; where Ωall

j = 1
L

L∑
i=1

Ai(E1:j , θi)
Ajoint(E1:j , θjoint)

. (3)

Ωj records CL performance compared to Ajoint or Abest. After learning all N batches, Ωj scores are averaged
to indicate average performance gain. The first batch is excluded since that is used for pre-training. For all
metrics, smaller S∆, P∆, and CK∆ indicate better performance. When Ai = Ajoint and Ai = Abest for all
L iterations, S∆, P∆, and CK∆ become zero which is desirable. Negative value means knowledge transfer
between new and old batches which is also desirable. These metrics are applicable for both offline CL (aka
incremental-batch CL) and online CL with any data distributions including CIL and IID.

4 Stability Gap Mitigation Methods

In this section, we describe the methods we use to test our hypotheses regarding the factors that increase
the stability gap. We use our evaluation metrics, S∆, P∆, and CK∆ to validate the efficacy of proposed
mitigation methods.

Weight Initialization. In CIL, typically the output units for new classes are randomly initialized causing
those units to produce a high loss during backpropagation. We hypothesize that using data-driven initial-
ization for new class units will reduce the loss and therefore reduce the stability gap, S∆. To test this, we
initialize them to the mean of unit length embeddings for that class, i.e.,

wk = 1
V

V∑
j=1

hj

∥hj∥2
, (4)
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where wk ∈ Rd is the output layer weight vector for class k, hj ∈ Rd is the j’th embedding from the
penultimate layer, and V is the number of samples from class k in the batch. Intuitively, this approach aims
to align the initial weights more closely with the distribution of the new class’s data, facilitating faster and
more effective learning adjustments during the initial phase of CL.

Hard vs. Dynamic Soft Targets. For classification, models are often trained with hard targets, i.e.,
at training iteration i a one-hot vector ti with a ‘1’ in position k corresponding to the correct class. We
hypothesize hard target training is partially responsible for the stability gap. Intuitively, hard targets are
one-hot encoded and enforce strict inter-class independence despite several classes sharing distributional
similarities. This property of hard targets, therefore, also causes a large initial loss when learning new
classes. Soft targets, on the other hand, can help the network to retain the joint inter-class distributions,
which further ameliorates the perturbation of learned classes. To test this, we use soft targets constructed
such that the model’s predictions on previously learned classes are largely preserved.

At learning iteration i, let P (k|xi; θi) be the model’s output softmax probabilities for sample xi from class k
given the model’s current parameters θi and the predicted class be y′

i = arg maxkP (k|xi; θi). We maintain a
running average vector uk ∈ RK of the softmax probabilities for each class that is updated when an example
from class k is observed, i.e.,

uk ←
ckuk + P (k|xi; θi)

ck + 1 , (5)

where ck is a counter for class k that is subsequently increased by 1, and uk is initialized to a uniform
distribution prior to the running updates. Subsequently, soft targets ti for iteration i are constructed by
setting ti ← uk and then setting the element for the correct class to 1, i.e., ti [k] ← 1. If y′

i ̸= k, then we
also set ti [y′

i] ← 1/K. Subsequently, ti is normalized to sum to 1 and used to update the network. This
strategy results in targets that minimally perturb the network and smaller loss values. In Appendix. G, we
illustrate the process of updating soft targets.

Limiting Hidden Layer Plasticity Using LoRA. To accumulate knowledge over time, most CL ap-
proaches update the entire network. Given that each batch of data in CL is relatively small, we hypothesize
that this leads to excessively perturbing hidden representations leading to a larger stability gap. To test this
hypothesis, we constrain the number of trainable parameters in hidden representations by using a network
adaptor. While there are various network adaptors (Han et al., 2024) to restrict network plasticity, we con-
sider low-rank adaptation (LoRA) (Hu et al., 2021) due to its simplicity and effectiveness. Specifically, we
inject LoRA weights into the linear layers of the network, and only these parameters and the output layer
are updated greatly reducing the number of trainable parameters.

For batch j, let Wj−1 ∈ Rd×g be a previously learned linear layer. At the start of a each learning session,
we reparameterize this layer by replacing Wj−1 with

Θj = Wj−1 + BA, (6)

where B ∈ Rd×r and A ∈ Rr×g are the LoRA adapter parameters with rank r ≪ min(d, g). Only B and A
are plastic, with A initialized with random Gaussian values and B initialized to a zero matrix, so BA = 0
at the beginning of the learning session. At the end of the session the LoRA parameters are folded into the
network, i.e., Wj ← Θj . In LoRA experiments, only the output layer and the LoRA parameters are plastic.

Limiting Output Layer Plasticity via Targeted Freezing. In CIL, large changes in the network’s
representations for old classes increase the stability gap. While LoRA restricts plasticity in hidden rep-
resentations, we hypothesize that restricting plasticity in the output layer could also be helpful for CIL.
We therefore explore freezing output layer weights for classes that have been previously learned in earlier
batches. For rehearsal methods, samples from classes seen in earlier batches have the hidden layers updated
as usual. We refer to this technique as old output class freezing (OOCF).

Combining Mitigation Methods & SGM. We independently evaluate each of the stability gap mitigation
methods. Additionally, we evaluate them in combination. We refer to the method that combines dynamic
soft targets, weight initialization, OOCF, and LoRA as SGM (Stability Gap Mitigation). Soft targets and
weight initialization prevent higher loss at the output layer to enhance stability. OOCF and LoRA restrict
plasticity in the network to targeted locations so that existing representations are minimally perturbed.
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5 Main Experiments: Hypothesis Evaluation

We design our experiments to emulate using CL to mitigate model decay. Hence, we use an ImageNet-1K
pre-trained DNN that is progressively updated with new data and classes. As shown in Fig. 1 and Fig. 4,
the stability gap is present when vanilla rehearsal is employed.

5.1 Experimental Setup

Bounding Compute. In a real-world scenario, a continual learner must adapt to a large-scale data stream,
which may not be feasible if more computation is required over time. Recently, many works have advocated
computational efficiency for CL (Prabhu et al., 2023b; Harun et al., 2023b;a;c; Verwimp et al., 2024; Zhang
et al., 2023). In our experiments, we bound compute by a fixed number of training iterations or SGD steps.

Rehearsal. Because our goal is to understand and mitigate the stability gap, our main results use rehearsal
and assume the learner has access to all previously observed data, with no constraints on storage. This is
aligned with finding a better alternative to periodically retraining from scratch as more data is acquired,
which is commonly done in industry where the computational budget depends on compute to a far greater
extent than data storage (Prabhu et al., 2023b;a).

Continual Learning Procedure. We aim to study CL in an industry-like setting, requiring a large-scale
data stream with numerous object categories. However, it is difficult to find a suitable dataset that is well-
curated and suitable for large-scale CL experiments. Therefore, we construct a large-scale data stream by
combining ImageNet-1K with another dataset, Places365-LT which is a variant of the Places365 dataset.
Places365 is challenging (Liu et al., 2019) and is widely used for out-of-distribution (OOD) detection with
ImageNet pre-trained models (Zhu et al., 2022).

During CL, the model sequentially learns 5 incremental batches of data from Places365-LT. In the CIL
ordering, each CL batch contains 73 categories, and in the IID ordering each CL batch has 12500 examples.
During rehearsal, the model is updated over 600 minibatches, where the minibatch consists of 128 samples
where 50% are selected randomly from the current CL batch and 50% from data seen in earlier CL batches
and ImageNet-1K. We study two CL orderings for Places365-LT: 1) CIL ordering where each batch has
classes exclusively seen in that batch (maximum concept drift), and 2) IID ordering where each batch
contains examples from randomly sampled classes (minimal concept drift). These are two opposite extreme
situations in CL. Although the stability gap is not known to occur in the IID CL setting, this setting is
critical to demonstrating the algorithm’s generality. To measure the stability gap and other metrics, we
assess performance during rehearsal every 50 training iterations, where the test set consists of the ImageNet-
1K validation set and all of the classes from Places365-LT from the current and prior CL batches. Additional
implementation and dataset details are given in Appendix C and B.

Network Architecture. We choose network architecture that is amenable to LoRA and performs well
in offline training with ImageNet-1K compared to similar-sized DNNs. In our main results, we study CL
using the ConvNeXtV2-Femto (Woo et al., 2023) CNN that has been pre-trained on ImageNet-1K using
a fully convolutional masked autoencoder framework followed by supervised fine-tuning on ImageNet-1K.
While ResNet18 is widely used in CL, it under-performs other lightweight CNNs in CL (Hayes & Kanan,
2022; Harun et al., 2023b). ConvNeXtV2-Femto has 5.2M parameters, which is 2× less than ResNet18’s
11.6M parameters, and it outperforms ResNet18 by absolute 8.47% in final top-1 accuracy on ImageNet-1K.

It is worth noting that LoRA is not appropriate for CNN architectures (e.g., ResNet) that lack 1 × 1
convolutional layers, but it can be used with ViT, ConvNeXtV1, ConvNeXtV2, and other DNN architectures
with these linear layers. Each block of ConvNeXt consists of one 2D convolutional layer and two 1 × 1
convolutional layers. For experiments using LoRA, the 1 × 1 convolutional layers in ConvNeXt blocks are
modified to incorporate LoRA’s weights using Equation 6. The number of trainable LoRA weights is 0.92M,
which is much less than the total number of hidden layer parameters (5.08M). Based on prior work, early
layers in the network are universal feature extractors and are little altered during CL (Ramasesh et al., 2021a;
Ebrahimi et al., 2020; Pellegrini et al., 2020), so we freeze the first 4 blocks of the CNN in all experiments,
leaving the remaining 8 blocks plastic (97.7% of the parameters) which consist of 5.08M parameters.
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Table 1: Hypothesis Evaluation (CIL). Results after learning ImageNet-1K followed by Places365-LT
over 5 rehearsal sessions. µ denotes average accuracy (%) over rehearsal sessions and α is final accuracy
(%) on all 1365 classes. σ stands for final accuracy (%) on ImageNet-1K only. #P denotes the trainable
parameters in Millions. The best and 2nd best values are indicated in bold and underlined respectively.

Method #P ↓ S∆ ↓ P∆ ↓ CK∆ ↓ σ ↑ µ ↑ α ↑
Joint Model (Upper Bound) 5.08 — — — 77.58 — 70.69

Naive Finetune (Lower Bound) 5.08 0.743 0.474 0.739 16.77 14.03 15.60
Output Layer Only 0.53 0.026 0.494 0.032 76.10 71.23 67.89
Vanilla Rehearsal 5.08 0.028 0.393 0.033 76.06 71.52 67.67

Dynamic Soft Targets 5.08 0.022 0.397 0.029 76.26 71.78 68.24
Weight Initialization 5.08 0.024 0.097 0.020 76.69 72.43 69.22

OOCF 5.08 0.026 0.376 0.032 75.95 71.57 67.94
LoRA 1.45 0.018 0.316 0.019 76.92 72.74 69.19

SGM (Combined Method) 1.45 0.006 0.082 0.002 77.64 73.70 70.30

(a) Loss at output layer (b) Hard vs soft targets (c) Plastic layers

Figure 2: Mitigation methods averaged over 5 rehearsal sessions during CIL. (a) The loss on new classes
when only training the output layer, which reveals soft targets and data-driven weight initialization greatly
reduce the initial loss. (b) Accuracy on ImageNet-1K for hard vs. soft targets, which shows that soft targets
reduce the stability gap. (c) Network plasticity increases the stability gap.

5.2 Experimental Results

We describe our findings on how the proposed method (SGM) mitigates the stability gap and enhances
learning efficiency in an unlimited storage setting with rehearsal in CIL.

5.2.1 Evaluating Our Hypotheses

Here, we describe the results for evaluating our two hypotheses.

Baselines. In our experiments, we evaluate each of the methods in Sec. 4 individually and the combined
SGM method. As baselines, we compare SGM with rehearsal against vanilla rehearsal, which uses unlimited
storage for rehearsal without any additional components, as well as joint models (upper bound). The joint
models are jointly trained on ImageNet and the CL batches seen up to the current batch. We also include
naive finetune which is a vanilla variant without rehearsal and serves as a lower bound. Finally, we compare
with the output layer only which updates the output layer with rehearsal while freezing all other layers.

Results. Our main CIL results are given in Table 1. SGM with rehearsal shows the greatest reduction in
the stability gap (S∆), plasticity gap (P∆), and continual knowledge gap (CK∆). It also performs best in
other metrics. Of its components, LoRA reduces the stability gap the most; however, the stability gap for
LoRA is 3× higher than SGM. We next turn to examining the support for our two hypotheses.
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Table 2: Average CIL Results. Results after learning ImageNet-1K followed by Places365-LT over 5
rehearsal sessions. µ denotes average accuracy and α is final accuracy on 1365 classes. σ stands for final
accuracy on ImageNet-1K only. We report the average over 6 data orderings with standard deviation (±).

Method #P ↓ S∆ ↓ P∆ ↓ CK∆ ↓ σ ↑ µ ↑ α ↑
Joint 5.08 — — — 77.58 — 70.69

Vanilla 5.08 0.020 ±0.0017 0.385 ±0.0091 0.031 ±0.0015 75.81 ±0.1585 71.68 ±0.1236 67.94 ±0.1721
Output Layer 0.53 0.021 ±0.0011 0.473 ±0.0250 0.032 ±0.0009 75.79 ±0.2875 71.28 ±0.1410 67.68 ±0.2710

SGM 1.45 0.001 ±0.0012 0.087 ±0.0082 0.002 ±0.0007 77.70 ±0.0509 73.71 ±0.0763 70.31 ±0.0682

Hypothesis 1. Our first hypothesis was that the stability gap in CIL is caused by having a large loss at the
output layer due to the new classes, which we tested by using weight initialization and dynamic soft targets.
Both methods are effective at achieving the goal of reducing the initial loss, especially weight initialization (see
Fig. 2a). As shown in Table 1, both methods reduce the stability gap. We observe that weight initialization
also greatly reduces the plasticity gap. Fig. 2b shows the average performance on ImageNet-1K during the
5 rehearsal sessions for hard vs. soft targets, which reveals that hard targets increase the stability gap to a
greater extent than dynamic soft targets.

Hypothesis 2. Our second hypothesis was that the stability gap in CIL is caused by excessive network
plasticity, which we tested by using LoRA and OOCF. Fig. 2c shows the average results on ImageNet-1K
across the 5 rehearsal sessions for LoRA vs. when only the output layer, top 8 blocks (vanilla), or entire
network are trainable. This reveals that plasticity plays a major role in the stability gap; however, this does
not translate directly into the number of trainable parameters since LoRA includes the output layer but
exhibits a smaller decrease in performance than training only the output layer. Unlike others, LoRA fully
recovers the old performance. As seen in Table 1, both OOCF and especially LoRA reduce the stability gap.

Interim Conclusions. Our experimental results support both hypotheses. LoRA mitigates the stability
and continual knowledge gaps the most. Our data-driven weight initialization greatly improves the plasticity.
This aligns with the prior study that suggests that weight initialization is critical for plasticity in DNN (Lyle
et al., 2023). We find that SGM, a method that combines the approaches used to test these hypotheses,
greatly reduces the stability gap.

CIL with Multiple Data Orderings. To ensure the robustness of our findings, we extend our experiments
to multiple data orderings. In addition to studying SGM and vanilla methods, we also examine training
only the output layer during rehearsal. The averaged results across 6 data orderings are given in Table 2.
We find that SGM consistently mitigates the stability gap. Compared to vanilla, SGM provides 20× more
stability, 4.4× more plasticity, and 15.5× more continual knowledge. SGM also outperforms training only
the output layer in all criteria. This indicates that updating representations in hidden layers besides the
output layer using SGM is critical for learning new knowledge and retaining old knowledge. Moreover, SGM
also maintains a balance between stability and plasticity (see Fig. 6).

5.2.2 Learning Efficiency

Figure 3: Speed of adapta-
tion. SGM needs fewer updates and
TFLOPs to reach 99% of the best ac-
curacy on new classes (highlighted).

One of our goals in studying CL and the stability gap is to enable
more computationally efficient training. To study if SGM achieves
this goal, we evaluated performance during CIL, where we measured
performance on old and new classes every 10 iterations. For new
classes, we measured the number of updates and FLOPs (floating-
point operations) needed to achieve 99% of the best accuracy.

As shown in Fig. 3, SGM learns new classes much faster than vanilla
rehearsal, and on average it is 61.8% more efficient in terms of net-
work updates. Moreover, because the curve shows a decreasing trend
as learning progresses this means that SGM becomes a more effi-
cient learner over time, with it generally requiring fewer updates
and TFLOPs for the current batch than previous batches. For old
class performance, we measured the number of iterations during re-
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hearsal needed to recover the performance of a joint model (upper
bound) on ImageNet-1K for vanilla and SGM. As shown in Table 3, SGM requires far fewer iterations to
recover old performance whereas vanilla rehearsal (without SGM) fails to fully recover old performance.
Compared to a joint model, SGM provides a 16.7× speedup in number of network updates and a 31.9×
speedup in TFLOPs (see Fig. 5). Moreover, SGM requires 18× less training time than the joint model on
the same hardware.

Table 3: Speed of Recovering Old Knowledge. SGM compared to vanilla (without SGM) for the
number of iterations needed to recover 97%, 98%, 99%, or 100% of the accuracy on ImageNet-1K for a joint
model as each of the 5 tasks (denoted by Ti where i ∈ {1, 5}) from Places365-LT is learned during CIL. A
hyphen indicates the model did not recover performance whereas zero means there was no stability gap.

Recovery With SGM Without SGM
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

100% 260 0 70 50 80 — — — — —
99% 110 0 70 0 70 — — — — —
98% 90 0 70 0 70 60 450 110 — —
97% 90 0 70 0 70 30 450 10 360 10

6 Additional Experiments: SGM’s Generality

This section expands on the versatility and efficacy of the SGM method by exploring its application across
various settings and constraints. First, we show how SGM performs in the IID CL setting in Sec. 6.1. Next, we
study storage-constrained rehearsal in both offline CL (Sec. 6.2) and online CL (Sec. 6.3) scenarios with CIL
data ordering. Finally, we summarize additional supporting studies in Sec. 6.4. Additional implementation
details and dataset details are given in Appendix C and B.

6.1 IID Continual Learning

To understand if SGM with rehearsal would be useful for other CL data distributions, we examine its behavior
in an IID ordering where each of the 5 CL batches contains randomly sampled classes from Places365-LT
dataset. In this experiment, we use ConvNeXtV2-Femto pre-trained on ImageNet-1K using self-supervised
learning (SSL). During IID CL, the model sequentially learns 5 incremental batches of data from Places365-
LT where each incremental batch contains 12500 examples. During rehearsal, the model is updated over 600
minibatches, where the minibatch consists of 128 samples with 50% randomly selected from the current CL
batch and 50% drawn from data seen in earlier CL batches and ImageNet-1K.

In this experiment, we omit storage constraints to solely focus on mitigation methods without the influence
of other variables. Our results are summarized in Table 4. In terms of final accuracy, SGM achieves a final
accuracy of 71.23%, outperforming vanilla rehearsal’s 68.77% accuracy. Surprisingly, SGM even surpasses
the jointly trained model’s 70.69% accuracy, resulting in a negative stability gap, which indicates knowledge
transfer from new classes to old classes. In contrast, we found there was a small stability gap in CIL ordering
(see Table 2), likely due to the dissimilarity among subsequent batches.

6.2 Storage Constrained Offline Continual Learning

To study SGM’s efficacy under storage constraints, we combine it with two popular rehearsal methods,
DERpp (Buzzega et al., 2020) and GDumb (Prabhu et al., 2020), under varied storage constraints while
using identical configurations. For this, we use ConvNeXtV2-Femto pre-trained on ImageNet-1K using
SSL. To study varied storage constraints on a large-scale data stream, we combine the ImageNet-1K (1.2M
images) dataset with another large-scale dataset, Places365-Standard (1.8M images). This allows us to
test more restrictive storage constraints on a data stream consisting of 3 million images.

After being pre-trained on ImageNet-1K, a model sequentially learns 5 incremental batches of data (73 classes
per batch) from Places365-Standard in offline CL with CIL ordering. Each rehearsal is compute-constrained
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Table 4: IID CL Results. Results after learning ImageNet-1K followed by Places365-LT over 5 rehearsal
sessions. µ denotes average accuracy and α is final accuracy on 1365 classes. σ stands for final accuracy on
ImageNet-1K only. We report the average over 5 data orderings with standard deviation (±).

Method #P ↓ S∆ ↓ P∆ ↓ CK∆ ↓ σ ↑ µ ↑ α ↑
Joint 5.08 — — — 77.58 – 70.69

Vanilla 5.08 0.014 ±0.0004 0.173 ±0.0056 0.034 ±0.0005 76.12 ±0.1007 68.45 ±0.0470 68.77 ±0.0517
SGM 1.45 −0.004 ±0.0005 0.131 ±0.0017 0.003 ±0.0004 77.84 ±0.0234 70.81 ±0.0151 71.23 ±0.0664

Table 5: Offline CL. SGM’s generality results for CIL on a combination of ImageNet-1K and Places365-
Standard. SGM† and SGM‡ denote variants of DERpp and GDumb respectively when SGM is integrated
with them. µ denotes average accuracy (%) and α is final accuracy (%) on 1365 classes.

Method #P ↓ Storage Constraint 192K Samples Storage Constraint 24K Samples
S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑ S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑

Joint 5.08 — — — — 65.37 — — — — 65.37
DERpp 5.08 0.142 0.109 0.126 62.53 53.38 0.209 0.109 0.187 57.25 44.74
SGM† 1.45 0.071 0.091 0.061 67.41 57.28 0.086 0.095 0.074 66.29 55.98
GDumb 5.08 0.133 0.110 0.120 62.85 54.72 0.224 0.114 0.202 55.54 43.10
SGM‡ 1.45 0.053 0.095 0.046 68.50 59.24 0.073 0.098 0.065 66.88 57.18

where the model is updated over 1200 minibatches. Each minibatch consists of 256 samples where 50% are
selected randomly from the current CL batch and 50% from data seen in earlier CL batches and ImageNet-
1K. During learning a new batch, the model rehearses old data from storage which is bounded by a maximum
number of samples e.g., 192K and 24K corresponding to 6.4% and 0.8% of the entire dataset (ImageNet and
Places combined) respectively. As shown in Table 5, SGM improves each method’s performance in all criteria.
When the storage is bounded by 24K samples, SGM improves final accuracy by absolute 11.24% (DERpp)
and 14.08% (GDumb) and provides 2.4× and 3.1× more stability for DERpp and GDumb, respectively.

6.3 Storage Constrained Online Continual Learning

We also assess SGM’s efficacy in an online CL setting using a state-of-the-art online CL method, RE-
MIND (Hayes et al., 2020). We conduct storage-constrained CL experiments with CIL data ordering, where
we combine SGM with REMIND while using identical configurations. Here we use the same SSL pre-trained
ConvNeXtV2-Femto. Since performing online CL experiments on large-scale datasets is computationally
expensive, we choose a small dataset, CUB-200 as the 2nd dataset after ImageNet-1K. CUB-200 is more
challenging than other small datasets (Lee et al., 2023). After being pre-trained on ImageNet-1K, a model
learns CUB-200 in sample-by-sample manner i.e., after receiving a new sample, it takes one SGD step using
51 samples (50 old samples and 1 new sample). The storage is constrained by a maximum number of samples
e.g., 80K and 20K corresponding to 6.2% and 1.5% of the entire dataset (ImageNet and CUB combined)
respectively. As shown in Table 6, SGM combined with REMIND outperforms standalone REMIND by
large margins in all metrics. When the storage is bounded by 20K samples, SGM improves REMIND’s final
accuracy by absolute 8.64% and reduces REMIND’s stability gap by a factor of 3.95×.

Table 6: Online CL. Results when SGM is combined with REMIND (denoted by SGM†) for CIL on
ImageNet-1K and CUB-200. µ denotes average accuracy (%) and α is final accuracy (%) on 1200 classes.

Method #P ↓ Storage Constraint 80K Samples Storage Constraint 20K Samples
S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑ S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑

Joint 5.08 — — — — 75.99 — — — — 75.99
REMIND 5.08 0.146 0.837 0.162 64.15 62.35 0.166 0.844 0.183 62.58 60.37

SGM† 1.45 0.034 0.675 0.049 72.81 69.67 0.042 0.695 0.057 72.20 69.01
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6.4 Supporting Studies

We include additional supporting studies in the Appendix and summarize the findings here.

Non-Rehearsal Methods. While non-rehearsal methods are less performant for CL, it is interesting to
study SGM when combined with non-rehearsal methods to determine if our findings are consistent. During
CIL of ImageNet-1K and Places365-LT, SGM also benefits a non-rehearsal method, LwF (Li & Hoiem, 2017)
with an absolute gain of 35.24% in final accuracy and a 2.6× reduction in the stability gap (see Appendix E).

Class-Balanced Rehearsal. Since our main experiments are based on conventional rehearsal without class
balance, we also conduct experiments where class-balanced rehearsal is used and improves performance over
prior results. Compared to vanilla, SGM reduces the stability gap by a factor of 7.3×, when both vanilla
and SGM use class-balanced rehearsal. SGM also achieves continual knowledge transfer (see Appendix D.2).

Supervised Pre-Training. In the main results, SGM reduces the stability gap using the self-supervised pre-
trained ConvNeXtV2 model, and self-supervised models are known to perform better in CL (Gallardo et al.,
2021). To examine how SGM performs without a self-supervised backbone, we also conduct experiments
with the supervised pre-trained ConvNeXtV1 (Liu et al., 2022). We find that SGM mitigates the stability
gap without the self-supervised backbone. Compared to vanilla, SGM achieves 6× more stability, 3.9× more
plasticity, and 35× more continual knowledge, when both of them use ConvNeXtV1 (see Appendix D.3).

Vision Transformers. We also study the behavior of SGM with ViTs, which now rival CNNs. Compared
to vanilla, SGM reduces the stability gap by 2.4×, when both vanilla and SGM use ViT (see Appendix D.4).

7 Limitations & Future Work

Our work is built upon the assumption that a well-trained DNN is provided and performance on the original
tasks must be maintained or improved. If this assumption is violated, as seen in some CL papers that do not
start with pre-trained models, then SGM’s dependence on LoRA would impair its utility. Although most
of the components of SGM, such as weight initialization, dynamic soft targets, and OOCF, can be readily
applied to DNNs trained from scratch, LoRA cannot be used because DNN layers without LoRA would
remain frozen and unlearned. Applying SGM in this setting would require a variant of LoRA where LoRA
could be used for all layers from the start of training such that the DNN rivaled a jointly trained model
without LoRA. In this work, we used pre-trained ConvNeXtV1, ConvNeXtV2, and MobileViT DNNs, which
are amenable to LoRA. We considered using LoRA to limit network plasticity. Future work could investigate
different LoRA variants and network adapters (Han et al., 2024) for SGM to mitigate the stability gap.

Our study focused on image classification tasks, while regression tasks are also critical in industry. Future
work could explore SGM in regression tasks. Furthermore, it would be interesting to study SGM in other
domains, such as object detection (Acharya et al., 2020) and semantic segmentation (Zhang et al., 2022).
CL methods developed only on small datasets often do not scale to larger datasets such as ImageNet-
1K (Zhou et al., 2023), so we focused on a combination of ImageNet-1K and Places365. Due to computational
limitations and a lack of readily available large-scale image classification datasets, we could not study CL
for more than 1365 classes. In future work, assessing how well SGM scales with increasing dataset sizes and
class counts would be valuable. We hope our work will inspire future research in finding better approaches
to prevent model decay due to concept drift.

8 Conclusion

Although the CL community has shown remarkable progress in mitigating catastrophic forgetting, almost
all CL methods remain unsuited for practical applications such as addressing model decay (Verwimp et al.,
2024; Harun et al., 2023a). To eliminate the need for frequent retraining of deployed DNNs, CL has to
combat model decay, mitigate the stability gap, and be more computationally efficient than retraining from
scratch in large-scale CL settings. Focusing on this scenario, we showed that SGM meets these criteria
and that it is a candidate solution for addressing model decay using CL. With the growing energy usage of
deep learning models (Luccioni et al., 2022; Patterson et al., 2021; Wu et al., 2022), reducing the need for
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retraining from scratch could significantly contribute to reducing carbon emissions associated with training
DNNs. Our work is among the pioneering efforts in CL that align with these real-world challenges, and we
hope it encourages the CL community to focus on this critical issue.
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Appendix

A Implementation Details and Additional Results

We organize additional supporting experimental findings as follows:

• Appendix B provides details on the datasets used in this paper.

• Appendix C provides additional implementation and training details for all of the methods.

• Appendix D provides additional CIL experiments and results with rehearsal, including an analysis
of learning curves, studying alternative sampling strategies for rehearsal, using a non-self-supervised
backbone CNN, using a vision transformer, and using a balanced dataset. We find that SGM works
well across these experiments and analyses compared to vanilla rehearsal.

• Appendix E studies the behavior of our stability gap mitigation method when used with Learning
without Forgetting (LwF), a popular regularization method used in CL. We find that our method
greatly improves results, illustrating that the mitigation strategy is not specific to rehearsal.

• Appendix F demonstrates that our evaluation metrics facilitate a more accurate and meaningful
comparison between different CL models.

B Dataset Details

In this paper, we use two large-scale datasets (ImageNet-1K and Places365-Standard) and two small-
scale datasets (Places365-LT and CUB-200). ImageNet-1K (Russakovsky et al., 2015) has 1.28 million
images from 1000 categories, each with 732 − 1300 training images and 50 validation images. Places365-
LT (Liu et al., 2019) is a long-tailed dataset with an imbalanced class distribution. It is a long-tailed variant
of the Places-2 dataset (Zhou et al., 2017). Places365-LT has 365 classes and 62500 training images with
5 to 4980 images per class. For its test set, we use the Places365-LT validation set from (Liu et al., 2019)
which consists of a total of 7300 images with a balanced distribution of 20 images per class. Places365-
Standard (Zhou et al., 2017) has over 1.8 million training images from 365 classes with 3068− 5000 images
per class. We use the validation set consisting of 100 images per class to test the models. CUB-200 (Wah
et al., 2011) has RGB images of 200 bird species with 5994 training images and 5794 test images.

C Additional Implementation Details

In this section, we provide additional implementation details for the models.

Main Experiments. For both CIL and IID experiments, we train SGM with rehearsal, vanilla rehearsal,
and output layer only using cross-entropy loss for 600 iterations per rehearsal session. During each iteration
model is updated on 128 samples. All methods use the same ConvNeXtV2 backbone 2, use AdamW optimizer
with weight decay of 0.05 and initial learning rates of 10−3 (SGM and vanilla) and 10−2 (output layer only).
The learning rate is reduced in earlier layers by a layer-wise decay factor of 0.9. The learning rate scheduler
is not applied for vanilla and output layer only due to poor performance. On the other hand, SGM uses
OneCycle learning rate scheduler (Smith & Topin, 2017). The joint model (upper bound) is trained for 12500
iterations on all data i.e., ImageNet-1K and Places365-LT combined using an initial learning rate of 10−4

without a scheduler. For all experiments, we set the rank of the LoRA weight matrices to 48. In all cases,
all metrics are based on Top-1 accuracy (%). Most CL experiments including those in Sec. 5, and Sec. 6.1
adhere to the aforementioned settings unless otherwise noted.

Storage Constrained Offline CL with DERpp and GDumb. We describe settings used in Sec. 6.2
where we combine SGM with DERpp and GDumb while using identical settings e.g., the same ImageNet-
1K pre-trained ConvNeXt V2 Femto network and the same optimizer settings. Each model pre-trained on

2Pre-trained weights are available here: https://github.com/facebookresearch/ConvNeXt-V2
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ImageNet-1K learns Places365-Standard in 5 batches subsequently (73 categories per batch). Each rehearsal
session performs a total of 1200 iterations with 256 samples per iteration. DERpp employs distillation and
regularization along with rehearsal to prevent catastrophic forgetting. It regularizes loss on old samples and
uses an additional distillation loss on logits of old samples for promoting consistency. We set coefficients
α = 0.1 and β = 0.9 for distillation and regularization respectively. GDumb randomly removes a sample from
the largest class when the buffer reaches its maximum capacity and maintains a class-balanced buffer. For
all methods, the buffer is bounded by a maximum number of samples (80% ImageNet-1K + 20% Places365-
Standard). DERpp, GDumb, and SGM use an initial learning rate of 1 × 10−3, 1 × 10−3, and 1.5 × 10−3,
respectively, for batch size 256. The joint model (upper bound) uses an initial learning rate of 10−2 and 12K
iterations with 256 samples per iteration. We assess performance during rehearsal every 100 minibatches to
compute the metrics.

Class-balanced Rehearsal. For class-balanced rehearsal experiments in Appendix D.2, SGM with re-
hearsal and vanilla rehearsal use an initial learning rate of 10−3 and 10−4, respectively.

Non-SSL Backbone CNN. For non-SSL backbone experiments with ConvNeXt V1-Tiny (Liu et al., 2022)
in Appendix D.3, initial learning rates for SGM with rehearsal, vanilla rehearsal, and joint model are 4×10−3,
3× 10−3, and 10−4 respectively. ConvNeXt V1-Tiny has been pre-trained on ImageNet-1K using supervised
learning 3.

ViT Backbone. For ViT backbone experiments in Appendix D.4, we select MobileViT-Small (Mehta &
Rastegari) (5.6M) pre-trained on ImageNet-1K using supervised learning 4. For universal feature extraction,
we freeze the first 8 blocks including stem, 6 MobielNetV2 blocks, and 1 MobileViT block. We keep the
remaining blocks (1 MobileNetV2 block and 2 MobileViT blocks) and layers (1 CNN layer and 1 linear layer)
plastic which correspond to 96.4% of the total parameters. We apply LoRA (rank=48) to query, key, and
value projection matrices in the self-attention module of MobileViT transformer blocks. All methods use
the AdamW optimizer with a weight decay of 0.01. Vanilla rehearsal and SGM with rehearsal use an initial
learning rate of 3 × 10−3 and 4 × 10−3, respectively. The initial learning rate for the joint model is 10−2.
Places365-LT data is learned over 5 rehearsal sessions (73 classes per session) where each session includes
1200 iterations with 32 samples per iteration. The joint model is trained for 25K iterations with 64 samples
per iteration. All other settings are identical to those in the main experiments.

Balanced (Non-LT) Dataset. For experiments with a balanced dataset in Appendix D.5, SGM with
rehearsal and vanilla rehearsal use an initial learning rate of 1.5× 10−3 and 10−3, respectively. Each model
is pre-trained on ImageNet-1K and then learns Places365-Standard in 5 batches subsequently (73 categories
per batch). Each rehearsal session has a total of 1200 iterations with 256 samples per iteration. We set
f = 0.5 for compute budget. Hence, at the end of CL, the total number of SGD model updates is 50% of
the total number of samples in the entire dataset (ImageNet and Places-Standard combined). We assess
performance during rehearsal every 100 minibatches to compute the metrics. The joint model uses an initial
learning rate of 10−2 and 12K iterations with 256 samples per iteration.

Storage Constrained Online CL with REMIND. In Appendix 6.3, we use identical settings and hyper-
parameters for both REMIND and REMIND + SGM methods. We use ImageNet-1K pre-trained ConvNeXt
V2 Femto with similar network configurations and LoRA configurations as used in main experiments. We
use the AdamW optimizer and REMIND’s default per-class learning rate scheduler. We set the initial learn-
ing rate to 1 × 10−3, the final learning rate to 1 × 10−5, and weight decay to 0.05. Following REMIND,
we perform rehearsal with a mini-batch of 51 samples including 50 old samples and 1 new sample. Each
method learns the CUB-200 dataset in sample-by-sample manner. For all methods, the buffer is bounded by
a maximum number of samples (75%− 93% ImageNet).

Non-rehearsal Methods. In Appendix E, LwF has similar configurations as vanilla rehearsal except for
the initial learning rate (6× 10−5). LwF + SGM has a similar configuration as SGM with rehearsal except
the initial learning rate (2 × 10−4). During each iteration model is updated on 64 new samples without
any rehearsal of old samples. Our mitigation approaches e.g., dynamic soft targets, data-driven weight

3The pre-trained weights are available here: https://github.com/facebookresearch/ConvNeXt
4The pre-trained weights are available here: https://github.com/apple/ml-cvnets
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Figure 4: Stability gap over all rehearsal sessions. After pre-training on ImageNet-1K, the model learns
365 new classes from Places365-LT over five rehearsal sessions (600 iterations per rehearsal session). SGM
quickly recovers old performance at the beginning of CL whereas vanilla fails to obtain full recovery. After
each rehearsal session (vertical dotted gray line), the final top-1 accuracy (%) is highlighted by diamond
(SGM), star (joint model), and square (vanilla). The joint model (upper bound) is jointly trained on
ImageNet and seen CL batches from the Places dataset.

initialization, OOCF, and LoRA are applied for LwF similarly as they are applied for rehearsal methods in
main experiments.

Weight Initialization. For SGM, we use our data-driven weight initialization (Sec. 4) to initialize the
weights in the final output layer. For other compared methods, we use He initialization (He et al., 2015) to
initialize the weights in the final output layer.

All other settings adhere to the above-mentioned general settings for the main experiments unless otherwise
mentioned. Hyperparameters are tuned to maximize performance for each method.

Compute. We ran all experiments on the same hardware with a single GPU (NVIDIA RTX A5000).

D Additional CIL Analysis & Experiments

In this section, we conduct additional analysis of the CIL experiments in the main results as well as present
additional experiments.

D.1 Qualitative Analysis

In this section, we present a qualitative analysis to see how SGM mitigates the stability gap and enhances
computational efficiency.

Stability gap over all rehearsal sessions. In our main text, our figures are averaged across rehearsal
sessions. In Fig. 4, we instead present all of the learning curves in sequence, where we denote when the next
batch containing new classes is received.

When rehearsal begins, accuracy on ImageNet-1K for vanilla rehearsal drops dramatically and gradually
decreases throughout the rehearsal sessions. In the end, vanilla fails to recover the original performance
using a total of 3000 iterations. In contrast, SGM shows better performance throughout rehearsal sessions
with reduced stability gap and full recovery compared to the joint model. Models are evaluated every 10
iterations. After each rehearsal session, SGM outperforms vanilla and matches or exceeds the accuracy of
the joint model (upper bound).
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(a) Network Updates (b) TFLOPs

Figure 5: Computational efficiency. Our method, SGM, provides a 16.7× speedup in number of network
updates and a 31.9× speedup in TFLOPs compared to a joint model (upper bound) with the combined 1365
class dataset (ImageNet-1K and Places365-LT combined). For SGM and conventional rehearsal, we show
the stability gap in the learning curve averaged over rehearsal sessions.

(a) Accuracy on new classes (b) Accuracy on old classes (c) Accuracy on all classes

Figure 6: Stability-plasticity. After pre-training on ImageNet-1K, the model learns 365 new classes from
Places365-LT over five batches (73 new classes per batch) in CIL setting. The accuracy is averaged over 6
runs and shaded region indicates standard deviation.

Computational efficiency. To measure computational efficiency, we consider two criteria: 1) number of
network updates (Sec. 3.1) and 2) FLOPs (floating-point operations). For FLOPs analysis, we use Deep-
Speed 5 with the same GPU across compared models. We perform computational analysis for CIL on a
combination of ImageNet-1K and Places365-LT datasets.

As shown in Fig. 5, SGM provides a 16.7× speedup in network updates and a 31.9× speedup in TFLOPs
compared to a joint model (upper bound). SGM fully recovers the original performance on ImageNet-1K
using 600 iterations per rehearsal session whereas conventional rehearsal fails to do that using 3000 iterations
per rehearsal session.

Stability-plasticity. In Fig. 6, we also illustrate the model’s accuracy on new, old, and all classes in all
rehearsal sessions where SGM achieves higher accuracy than vanilla. This indicates that SGM consistently
improves the model’s plasticity (Fig. 6a), stability (Fig. 6b), and knowledge accumulation (Fig. 6c).

5https://github.com/microsoft/DeepSpeed
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Table 7: Class Balanced Rehearsal. A model pre-trained on ImageNet-1K learns Places365-LT in 5
rehearsal sessions. Here µ denotes average accuracy (%) over rehearsal sessions and α is final accuracy (%)
on 1365 classes. #P denotes total number of trainable parameters in Millions.

Method #P ↓ S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑
Joint Model (Upper Bound) 5.08 — — — — 70.69

Vanilla Rehearsal 5.08 0.022 0.316 0.021 72.24 69.03
SGM (Ours) 1.45 0.003 0.089 −0.003 74.00 70.61

Table 8: CIL without Self-Supervised Pre-Training. This table shows results from ConvNeXt V1-
Tiny pre-trained on ImageNet-1K using supervised learning, which then learns Places365-LT in 5 rehearsal
sessions in CIL setting. Here µ denotes average accuracy (%) over rehearsal sessions and α is final accuracy
(%) on 1365 classes. #P denotes total trainable parameters in Millions.

Method #P ↓ S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑
Joint Model (Upper Bound) 27.00 — — — — 74.16

Vanilla Rehearsal 27.00 0.030 0.396 0.035 74.73 70.67
SGM (Ours) 3.53 0.005 0.102 0.001 77.48 73.92

D.2 Class Balanced Uniform Sampling for Rehearsal

In our main results, we sampled randomly during rehearsal without balancing for each class. However, prior
work has shown that class-balanced random sampling works significantly better than unbalanced uniform
sampling for long-tailed datasets (Harun et al., 2023b). We conducted CIL experiments to examine this in
our unlimited storage for rehearsal setup where we learned ImageNet-1K followed by Places365-LT.

Table 7 shows that using class-balanced rehearsal, SGM improves performance in most criteria compared to
previous results without class balance (Table 1). When both vanilla and SGM use class balanced rehearsal,
SGM outperforms vanilla by 7.3× in stability gap, 3.6× in plasticity gap and provides continual knowledge
transfer (CK∆ < 0).

D.3 Analysis with a Non-Self-Supervised Backbone CNN

Much of deep learning has moved toward self-supervised pre-training prior to supervised fine-tuning, espe-
cially in foundation models (Devlin et al., 2018; Brown et al., 2020; Ramesh et al., 2021), since this has
been shown to reduce overfitting on the pretext dataset used for self-supervised learning and to generalize
better to downstream tasks. In the main text, we used the self-supervised ConvNeXtV2 architecture. This
may have enabled our system to achieve higher results on Places365-LT than if the CNN was initialized
from ImageNet-1K with supervised learning. To determine if our general trends for the methods hold, we
conducted another experiment with ConvNeXtV1-Tiny (29M), which is pre-trained on ImageNet-1K without
self-supervision. We conducted CIL experiments to examine ConvNeXtV1 models in our unlimited storage
for rehearsal setup where we learned ImageNet-1K followed by Places365-LT.

Experimental results in Table 8 demonstrate that SGM with a supervised backbone mitigates the stability
gap and enhances performance in all criteria. Therefore the efficacy of SGM does not depend upon self-
supervised pre-training.

D.4 Analysis with using a Vision Transformer Backbone

In this section, we study the behavior of the system for a ViT model pre-trained with supervised learning.
For this, we select a lightweight transformer, MobileViT-Small (Mehta & Rastegari). MobileViT learns
local and global representations using convolutions and transformers, respectively. It has a total of 5.6
million parameters and top-1 accuracy of 78.4% on ImageNet-1K. We conducted CIL experiments to examine
MobileViT models in our unlimited storage for rehearsal setup where we learned ImageNet-1K followed by
Places365-LT.
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Table 9 shows the comparison between vanilla and SGM when they have the same MobileViT backbone.
SGM shows better performance in all criteria using 3.8× fewer parameters than vanilla rehearsal.

Table 9: Vision Transformer Backbone. A model pre-trained on ImageNet-1K learns Places365-LT in 5
rehearsal sessions. Here µ denotes average accuracy (%) over rehearsal sessions and α is final accuracy (%)
on 1365 classes. #P denotes the total number of trainable parameters in Millions.

Method #P ↓ S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑
Joint Model (Upper Bound) 4.97 — — — — 69.10

Vanilla Rehearsal 4.97 0.039 0.434 0.046 70.18 66.35
SGM (Ours) 1.30 0.016 0.140 0.016 72.09 67.96

D.5 Balanced (Non-LT) Dataset

In a real-world setting, data distribution is commonly long-tailed and imbalanced, hence we used Places365-
LT dataset in the main results. However, our analysis holds for balanced and non-LT dataset as well.
We study this using Places365-Standard. We omit storage constraints in this experiment to solely focus on
mitigation methods without the influence of other variables. Results in Table 10 show that SGM outperforms
vanilla rehearsal in all criteria.

Table 10: Non-LT Dataset. A model pre-trained on ImageNet-1K learns Places365-Standard in 5 rehearsal
sessions in CIL setting. Here µ denotes average accuracy (%) over rehearsal sessions and α is final accuracy
(%) on 1365 classes. #P denotes the total number of trainable parameters in Millions.

Method #P ↓ S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑
Joint Model (Upper Bound) 5.08 — — — — 65.37

Vanilla Rehearsal 5.08 0.078 0.201 0.082 66.37 56.63
SGM (Ours) 1.45 0.054 0.091 0.047 68.47 59.21

Table 11: Comparison with non-rehearsal method. A model pre-trained on ImageNet-1K learns
Places365-LT in 5 rehearsal sessions in CIL setting. Results are averaged over 6 runs. Here µ denotes
average accuracy (%) over rehearsal sessions and α is final accuracy (%) on 1365 classes. #P denotes total
trainable parameters in Millions. For the non-rehearsal baseline, we select LwF that regularizes the model
based on knowledge distillation.

Method #P ↓ S∆ ↓ P∆ ↓ CK∆ ↓ µ ↑ α ↑
Joint Model (Upper Bound) 5.08 — — — — 70.69

Vanilla Rehearsal 5.08 0.020 0.385 0.031 71.68 67.94
SGM (Ours) 1.45 0.001 0.087 0.002 73.71 70.31

LwF 5.08 0.605 0.450 0.607 24.04 4.76
LwF + SGM (Ours) 1.45 0.236 0.072 0.235 54.87 40.00

E SGM Enhances Non-rehearsal Methods

We hypothesized that SGM would be helpful for non-rehearsal methods as well. We, therefore, study SGM
using Learning without Forgetting (LwF) (Li & Hoiem, 2017), which pioneered using knowledge distillation
in CL (Zhou et al., 2023). Instead of rehearsal, LwF stores a copy of the model before learning the new
CL batch to update the model with distillation. LwF has been shown to reduce catastrophic forgetting in
a range of CL scenarios, although it and other regularization-based methods have not been shown to be
effective in the CIL setting (Zhou et al., 2023).

We conducted an experiment to compare vanilla LwF with a version of LwF that uses SGM without rehearsal
during CIL of ImageNet-1K and Places365-LT. Overall results are given in Table 11 and a learning curve
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Figure 7: Comparison with non-rehearsal method. The Y-axis shows an average accuracy of 6 runs
with a standard deviation (shaded region). The network is trained on ImageNet-1K and then learns 365 new
classes from Places-LT over five batches (73 new classes and 600 iterations per batch). When a new batch
arrives, accuracy on ImageNet-1k for LwF plummets. LwF fails to recover performance and ends up with a
large stability gap. In contrast, LwF with SGM does not plummet like LwF and shows better performance
throughout the CL phase with a significantly reduced stability gap.

is given in Fig. 7. As expected based on prior results, rehearsal methods vastly outperform LwF; however,
we find that SGM provides an enormous benefit to LwF in terms of reducing the stability gap, resulting in
increased accuracy.

Figure 8: Need for proposed metrics. We present a series of synthetic plots that display the performance
of a model on an old task as it learns a new task. The largest drop in accuracy on the old task is marked
by a dotted line with an arrow. This drop in accuracy is also displayed as a number for ease of comparison.
In sub-figures (a) and (b), our metric delivers a different outcome from theirs. In sub-figures (c) and (d),
unlike their metric, our metric can distinguish between two CL models.
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F Reasons for New Metrics

In the main text in Sec. 3.2, we proposed new metrics that are normalized against a joint model (upper
bound). Unlike earlier metrics (De Lange et al., 2023), our metrics enable a more significant and accurate
comparison between different CL models. Moreover, our metrics can be used to analyze whether the CL
model is meeting the needs of the industry to catch up to the joint model retrained from scratch when new
data becomes available.

In this section, we illustrate two cases using synthetic examples in Fig. 8 to build intuitions. In each plot,
we show the drop in old task accuracy when updating models on a new task. We compare two CL models
in terms of the stability gap i.e., drop in old task accuracy, to find a better model.

Case 1. The metric proposed in earlier work (De Lange et al., 2023) measures the stability gap of a model by
evaluating the largest drop in old task performance compared to the same model’s performance. According
to their metric, CL model 1 is considered to be better than CL model 2 as it exhibits a smaller drop in
accuracy for the old task, as shown in Fig. 8(a). However, in contrast to this observation, it can be observed
that CL model 2 actually performs better than CL model 1 as it shows a smaller drop in old task accuracy
compared to CL model 1 while employing the joint model (upper bound) as a universal reference point. This
is captured by our metric and can be seen in Fig. 8(b).

Case 2. We demonstrate that the metric proposed in previous work (De Lange et al., 2023) is unable to
differentiate between two CL models that show the same decline in old task performance, as depicted in
Fig. 8(c). In contrast, our metric, as illustrated in Fig. 8(d), is capable of identifying that CL model 2 (with
a smaller drop) performs better than CL model 1 (with a larger drop). From this, it is evident that different
CL models cannot be compared without a universal upper bound.

G Soft Targets Update

In the main text in Sec. 4, we proposed dynamic soft targets to prevent the stability gap. In this section,
we illustrate how we update the soft targets in Fig. 9.
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Figure 9: Process of updating soft targets. Here we illustrate the update mechanism of our dynamic soft
targets. For each class k, we maintain a probability distribution over total K classes, denoted by uk ∈ RK .
During iteration i, we update this vector ui

k if the model (θi) correctly predicts the class k. In the following
iteration i + 1, ui

k will serve as soft targets to train the model, θi+1. Unlike hard targets, soft targets do not
enforce strict inter-class independence and prevent the stability gap.
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