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Abstract

Motion synthesis for diverse object categories
holds great potential for 3D content creation but
remains underexplored due to two key challenges:
(1) the lack of comprehensive motion datasets that
include a wide range of high-quality motions and
annotations, and (2) the absence of methods capa-
ble of handling heterogeneous skeletal templates
from diverse objects. To address these challenges,
we contribute the following: First, we augment
the Truebones Zoo dataset—a high-quality animal
motion dataset covering over 70 species—by an-
notating it with detailed text descriptions, making
it suitable for text-based motion synthesis. Sec-
ond, we introduce rig augmentation techniques
that generate diverse motion data while preserv-
ing consistent dynamics, enabling models to adapt
to various skeletal configurations. Finally, we
redesign existing motion diffusion models to dy-
namically adapt to arbitrary skeletal templates, en-
abling motion synthesis for a diverse range of ob-
jects with varying structures. Experiments show
that our method learns to generate high-fidelity
motions from textual descriptions for diverse and
even unseen objects, setting a strong foundation
for motion synthesis across diverse object cate-
gories and skeletal templates. Qualitative results
are available on this link.

1. Introduction

Imagine a world where creating lifelike motions for any crea-
ture or object is as effortless as describing it in words—a
world where the majestic flight of a dragon or the intri-
cate crawl of a centipede can be seamlessly brought to life
with the power of intuitive text-based synthesis. The ability

“Equal contribution. "Work done at KRAFTON. 'Seoul
National University >)KRAFTON *NVIDIA. Correspondence to:
Byeong-Uk Lee <lview94 @ gmail.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

to create realistic 3D motions for such a diverse array of
entities has long been a shared aspiration across creative
communities and industries, unlocking profound potential
for animation, gaming, virtual reality, and beyond. However,
achieving such realism has traditionally required significant
manual effort and expertise, making the process both labor-
intensive and time-consuming (Baran & Popovié, 2007).

Despite advancements in data-driven motion synthesis, two
key challenges hinder progress in generating motions for
diverse objects. First, the lack of high-quality motion
datasets (Kapon et al., 2024) spanning a broad spectrum of
objects with diverse skeletal structures and rich annotations
limits the opportunity to explore text-driven motion synthe-
sis for large-vocabulary objects. Second, existing methods
rely heavily on fixed skeletal rig templates, such as those
designed for humans (Tevet et al., 2023; Guo et al., 2024),
making them ill-suited for handling the heterogeneous skele-
tal configurations found in real-world 3D motion data in a
unified manner. From the quadrupedal stance of a horse to
the winged anatomy of a bird or the fantastical form of a
dragon, synthesizing coherent and realistic motions across
such diverse skeletal structures remains an open challenge.

To address these challenges, we propose a novel framework
for text-to-motion synthesis that enables motion generation
across arbitrary skeletal structures, accommodating the di-
versity of real-world object motion data.

Specifically, we make the following contributions:

¢ Novel Problem Setup: To the best of our knowledge,
this is the first work to tackle text-driven motion syn-
thesis for a broad range of objects with significantly
different skeletal structures within a unified framework.

¢ High-Quality Text Descriptions: We curate a com-
prehensive set of human-labeled descriptions for True-
bones Zoo dataset (Truebones, 2022), covering mo-
tions over 70 species with unique skeletal templates.

* Rig Augmentation: We introduce novel rig augmen-
tation methods—adjusting bone lengths/numbers and
rest poses—to enhance the model’s adaptability and
generalization to diverse skeletal templates.
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A Wyvern attacks by diving down from the air.

An elephant performs a headbutt attack.
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A Tyrannosaurus is struck and falls to the ground.

A shark rotates its body 180 degrees to the right.

Figure 1. In this work, we address the task of synthesizing high-fidelity 3D motions for a broad spectrum of objects with diverse skeletal
structures, characterized by varying joint counts and differing dependencies, including animals, dinosaurs, and imaginary creatures, based
on textual descriptions. The synthesized motions can be applied to rigged meshes to generate visually appealing 3D animations.

* Generalized Motion Diffusion Models: We extend
motion diffusion models (Tevet et al., 2023), originally
constrained to a single fixed skeletal template, by in-
corporating tree positional encoding (TreePE) (Shiv &
Quirk, 2019) and rest pose encoding (RestPE) , allow-
ing dynamic adaptation to diverse joint hierarchies and
skeletal structures.

Extensive experiments on Truebones Zoo dataset demon-
strate our framework’s ability to generate high-fidelity mo-
tions conditioned on textual descriptions, or even synthesize
motions for novel objects downloaded from the web.

To inspire future work and further advancements, we will
release the code for our data and model pipelines, along
with the annotated captions, establishing a comprehensive
benchmark for motion synthesis across diverse objects with
heterogeneous skeletal structures.

2. Related Work

2.1. Human Motion Synthesis

Most research in motion synthesis has focused on human
motion with a fixed skeletal template, forming the foun-
dation of progress in this field. Early work emphasized
text-driven motion synthesis (Plappert et al., 2016; Guo
et al., 2022), generating human motion from textual descrip-
tions. Recent work introduced fine-grained control (Zhang
et al., 2023) for specific body parts, open-vocabulary motion
generation (Liang et al., 2024) for arbitrary text inputs, and

skeleton-agnostic designs for humans and anthropomorphic
biped characters (Zhang et al., 2024). Despite successes,
most approaches either rely on fixed skeletal templates or
exclusively focus on human or anthropomorphic motion,
limiting their applicability to more diverse objects with het-
erogeneous anatomical structures and motion patterns.

2.2. Non-Human Motion Synthesis

Non-human motion synthesis has received comparatively
less attention, though recent efforts have started addressing
this gap. SinMDM (Raab et al., 2024) identified internal
motion motifs within an arbitrary object motion, enabling
the generation of diverse, flexible-length motions that pre-
serve structural consistency. OmniMotion-GPT (Yang et al.,
2024) leveraged human motion data to synthesize quadruped
animal motions, demonstrating the transferability of human
motion to non-human domains. Similarly, Zhao et al. (2024)
introduced a learning-based retargeting method capable of
adapting dog motions to a T-rex, horse, and hamster, though
it requires training separate CycleGANSs (Zhu et al., 2017)
for each source-target pair. MAS (Kapon et al., 2024) ex-
tended a 2D motion diffusion model with a 2D-to-3D lifting
mechanism to synthesize 3D equine motions. However, all
these approaches rely on fixed skeletal templates or object-
specific components and designs, limiting their adaptability
to arbitrary structures across a large vocabulary of objects.

In contrast, CharacterMixer (Zhan et al., 2024) and Skin-
Mixer (Nuvoli et al., 2022) propose rig-blending techniques
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Bone Length Aug. Bone Number Aug.

[Short Description]:
A Tyrannosaurus swings its tail in a
powerful strike.

[Mid Description]:

A Tyrannosaurus twists its massive
body fo the right and swings its
powerful tail forward to the left,
delivering a fierce strike.
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[Long Description]:

A Tyrannosaurus, initially standing
still, begins to twist its massive body
to the right. As it completes the
twist, it swings its powerful tail
forward to the left, delivering a
fierce and impactful strike.

Figure 2. Left: Given the original skeleton template (white), the rig augmentation technique adjusts bone length (cyan), quantity (pink),
rest poses (orange), or their combinations. The resulting skeleton template is then retargeted (green) to the original poses (dark) at each
frame to generate data that maintains the original motion dynamics while incorporating diverse skeletal templates. Right: Our annotated
captions accurately capture motion, delivering different levels of detail through short, mid, and long descriptions. Details are added
gradually, ranging from high-level actions (blue) to part-level dynamics (green) and initial postures (red).

that create hybrid characters and their motions constructed
from multiple heterogeneous skeletons. While these meth-
ods demonstrate the potential to generalize motion across
structurally diverse rigs, their reliance on motion retargeting
limits flexibility in generating novel or diverse motions.

3. Background: Hierarchical Skeletal Rig

A hierarchical skeletal rig forms the foundation for repre-
senting 3D motion. It encodes an object’s motion as se-
quence of 3D poses Pgopa € R*7*3, where F is the
number of frames and J represents the number of joints.
These 3D poses are reconstructed by integrating static fea-
tures, which define the skeleton’s topology and configura-
tion, with dynamic features, which capture the temporal
aspects of motion across frames.

Static Features include a tree hierarchy of .J joints (S) that
represents a skeletal topology, and the rest pose (P €
R7*3) that encodes joint offsets relative to their parents.
Each joint j is associated with a parent joint P(j).

Dynamic Features describe motion via a sequence of joint
translations (p € R¥*/*3) and rotations (R € RF"*/xD),
where I’ is the number of frames and D the dimension of
the rotation. p[f, j] and R[f, j] define the local translation
and rotation of joint j at frame f relative to its parent. In this
work, we focus on a simplified setting that considers only
the temporal evolution of rotations, R, as dynamic features.

It is also important to note that working with skeletal rig
representations of real-world 3D motions presents two key
challenges. First, skeletal configurations vary significantly

due to anatomical differences across objects and the rigging
styles of different experts, leading to variations in the num-
ber of joints and rest poses. Second, even identical motion
dynamics can result in different joint rotations (R) depend-
ing on the underlying static features. Thus, the ability to
comprehend and generalize across diverse skeletal config-
urations is crucial for accurately modeling motion while
preserving consistency across different structures.

4. Large-Vocab Text-to-Motion Dataset

Large-vocabulary object motion synthesis is challenging
due to the diversity of objects and skeletal configurations.
In this section, we discuss and address three key challenges
for effective text-to-motion synthesis. First, it necessitates
high-quality motion data that captures a variety of objects
and motion patterns. Second, this motion data must be
represented across diverse skeletal templates to account for
real-world scenarios. Third, rich annotations with detailed
text descriptions are essential to ensure that synthesized
motions align accurately with the conditioned input text.

4.1. High-quality Motion Data

To address the first challenge, we utilize the Truebones
Zoo dataset (Truebones, 2022), which contains over 1,000
artist-created animated armature meshes in FBX format, as
illustrated in Figure 1. The dataset spans 70 unique animal
species, including mammals, reptiles, birds, fishes, insects,
and dinosaurs. Each species is uniquely characterized by its
skeletal topology and rest pose, capturing the diversity of
anatomical structures. Also, each animal object is associated
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Figure 3. Generalized Motion Diffusion Model. Left: Our model conditions on skeletal information (S, Pres) to adapt to diverse
skeletal templates and a textual prompt C for text-driven synthesis. At each denoising step, the textual prompt C is encoded using the
SigLip (Zhai et al., 2023) text encoder and the denoising timestep ¢ is embedded to form a conditioning token z:; that guides motion
synthesis. Right: The topological (S) and rest pose information (Pr.) are encoded by Tree Positional Encoding (TreePE) (Shiv & Quirk,
2019) and Rest Pose Encoding (RestPE) and added to the noisy latent motion x,ﬁf ) for the f-th frame and j-th joint. The enhanced
representations, along with the conditioning token, are then processed by transformer blocks to estimate clean motions {:icf)f 9) Y

with multiple animations, ranging from 3 to 70 sequences.

From these FBX files, we extract armature animation data,
capturing both the static structure and dynamic features,
which are then preprocessed to construct our dataset. For
preprocessing, we standardize each skeleton’s rest pose by
aligning its forward direction to the Y-axis and the upward
direction to the Z-axis, and normalizing its scale and center
to fit within a unit-length cube centered at the origin.

4.2. Rig Augmentation

Moreover, we introduce three rig augmentation techniques
to simulate various skeletal rig configurations found in real-
world motion data, as illustrated in Figure 2. These tech-
niques, Bone Length Augmentation, Joint Number Aug-
mentation, and Rest Pose Resetting, expand the diversity of
skeletal configurations in the Truebones Zoo dataset while
preserving the original motion dynamics.

Bone Length Augmentation randomly adjusts joint-to-
joint bone lengths to simulate anatomical variations. To
ensure natural motion after the adjustments, we leverage
GPT-40 to categorize joints into specific body parts based
on hierarchical information, such as joint names and parent-
child relationships. Furthermore, GPT-40 determines ap-
propriate scaling ratios for each part, ensuring the adjusted
skeleton resembles anatomically similar objects (e.g., ad-
justing a dog’s bone lengths to match those of a wolf). Each
part is then scaled accordingly, with proportional and sym-
metrical adjustments applied to left and right counterparts to
maintain anatomical balance and realistic motion dynamics.

Joint Number Augmentation modifies the skeletal rig by
altering its structural complexity and organization. To ad-
just skeletal granularity, joints are randomly removed or
subdivided, creating simpler or more detailed rigs.

Rest Pose Resetting alters the default configuration of the

skeletal rig by changing the root orientations or joint angles
in the rest pose. To determine a new rest pose, we randomly
select a frame from the motion sequence and set the pose at
that frame as the new rest pose.

4.3. High-Quality Multi-Level Text Annotation

High-quality text annotations are essential for ensuring pre-
cise alignment between textual descriptions and motion data.
For this, we manually annotate the motion data in the True-
bones Zoo dataset with detailed, high-quality descriptions.
These annotations are delivered in a multi-level format, pro-
viding varying degrees of detail to address different levels
of abstraction and precision required by the model.

Examples of these multi-level descriptions are displayed in
Figure 2. To elaborate, the captions are structured into three
levels of detail, short, mid, and long, progressively increas-
ing in the amount of information they provide about the
motion. Short captions deliver only the high-level actions,
while details on initial postures, and part-level or directional
dynamics are gradually added in mid and long captions.

For interested readers, detailed statistics on the dataset are
provided in the appendix. These include the full list of
animal categories in Truebones Zoo dataset (Table 3), word
count histograms for each description level (Figure 10), and
statistics on the most frequent verbs and nouns used in the
annotations (Figure 11 and Figure 12, respectively).

5. Generalized Motion Diffusion Model

We introduce a generalized motion diffusion model that ex-
tends single-object motion synthesis to diverse objects with
arbitrary skeletal templates. Figure 3 provides an overview
of our framework. Unlike prior works (Tevet et al., 2023;
Raab et al., 2024), which assume a fixed skeleton topology,
our key innovation is the explicit incorporation of skeletal
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configuration information through Tree Positional Encoding
(TreePE) and Rest Pose Encoding (RestPE), enabling mo-
tion generation across varying skeleton templates. We first
present the background on single-object motion diffusion
models before detailing our generalization extensions.

5.1. Motion Diffusion Models

Diffusion models (Song & Ermon, 2020; Ho et al., 2020)
learn to generate realistic samples xg by progressively re-
versing a noising process that begins with random noise x 7.
At each intermediate step ¢, the data is represented as zy,
gradually refined as the neural network €y denoises it step
by step, which is trained to predict and remove the noise at
each stage. To further control the denoising process with
conditioning variables C, classifier-free guidance (CFG) (Ho
& Salimans, 2021) is often utilized.

In the motion synthesis literature, a fixed skeleton topology
S with a constant rest pose P is typically assumed, focus-
ing solely on synthesizing the dynamic features of motion
for a single object. The task is then simplified to generat-
ing the rotation sequence zo = R € RF"*/*P from noisy
latent variables 7, given an additional input condition C.

Diffusion Transformers (DiTs) (Peebles & Xie, 2023) serve
as the backbone for parameterizing the denoising network €y
to capture spatiotemporal dependencies in motion data. Un-
der the fixed skeleton assumption, the input z; € RF*/*P
is reduced via a linear projection (Tevet et al., 2023):

z; = LinearProj(z;) € RFXP" (D

where the J x D joint dimensions are compacted into D’-
dimensional features per temporal frame, while spatial de-
pendencies among joints are captured during this projection.
To capture the temporal dependency among frames, posi-
tional encodings (Vaswani et al., 2017) are then added:

a7 ==+ PE(S), @
where z,gf ) is the nosiy latent token and PE(f) encodes
position features for frame f. The resulting representation

2 e RFXD'jg processed by the series of transformer blocks
and re-projected back to the original motion space:

%y = Transformers(2;), 3)
&o = eg(x¢,t,C) = LinearReproj(2o) € RF*I*P  (4)

5.2. Extension to Arbitrary Skeleton Topology

Motion synthesis for diverse objects requires the ability to
handle skeleton topologies S with varying number of joints
and their dependencies. To do so, our framework is designed
to preserve the joint dimension throughout the denoising
process. Specifically, the linear projection layer in Eq. (1)

is modified to independently transform D-dimensional per-
joint representations into D’-dimensional tokens:

zt(f’j) = LinearProj(x,Ef’j)) e R 3)

(f.9)
t

Here, z represents the input for frame f and joint j.

To further encode the topological dependencies among
joints, we employ Tree Positional Encoding (TreePE) (Shiv
& Quirk, 2019). For each joint, TreePE captures both abso-
lute position and relative dependencies within the tree-like
skeletal structure S by encoding its path from the root as a
binary-like sequence of transformations that track parent-
child relationships and preserve hierarchical information. To
integrate this information, we apply a simple MLP layer to
each joint’s tree encoding, then add the resulting representa-
tion TreePE(j) € R?" to the corresponding token, ensuring
the hierarchical structure is embedded into the model.

209 = 259 L PE(f) + TreePE(j). ©6)

5.3. Handling Arbitrary Rest Pose

In hierarchical skeletal rig system, the dynamic features of
motions are determined not only by the skeletal topology but
also by the specific rest pose of each object. To ensure accu-
rate modeling of motion dynamics, our framework incorpo-
rates explicit encoding of rest pose information. Specifically,
the rest pose offset Prg(j) € R? for joint j is transformed
into a positional embedding RestPE(j) € RP’ by a simple
MLP module with sinusoidal encoding (Mildenhall et al.,
2020), capturing its relative position and geometry within
the skeleton in 3D space. These embeddings are added to
the corresponding joint tokens:

209 = (59 4 PE(f) + TreePE(j) + RestPE(j). (7)

Through this integration, our model explicitly captures the
skeletal topology and its rest pose configuration, enabling
accurate modeling of motion dynamics for diverse objects.

5.4. Two-Stage Learning Approach

While the proposed modifications enhance adaptability to
diverse skeleton templates, they also increase computational
costs due to the expanded joint dimension. To mitigate
this, we draw inspiration from text-to-video diffusion mod-
els (Blattmann et al., 2023), adopting a two-stage learning
approach with factorized spatial-temporal attention to de-
couple pose modeling from motion dynamics.

In the first stage, we train a pose diffusion model to learn
joint rotation dependencies within each frame independently
using spatial attention blocks. Multi-view rendered images
of each pose are used as conditioning inputs (see Figure 9).
Once trained, this model is frozen. In the second stage, we
enhance the model by introducing temporal attention blocks
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Table 1. Ablation study on the positional encodings (TreePE & RestPE) and the rig augmentation technique in pose-level diffusion models.
R@1 represents top-1 R-Precision (retrieval accuracy), with the *+’ symbol indicating evaluation on a dataset with rig augmentation
applied. The first row represents the oracle performance, where retrieval and alignment are measured between paired ground-truth pose
and image embeddings, reflecting the quality of the embedding space of the learned pose encoder.

Ablated Components Train Set Test Set Test Set™
PEs RigAug. FID(]) R@1(1) Algn (1) FID({) R@I(1) Align.(t) FID({) R@I(]) Align. (1)
- - 0.0000  0.9751 0.9850 0.0000  0.8822 0.9151 0.0000  0.8734 0.9311
X X 0.9203  0.3602 0.6755 22564  0.2626 0.6870 1.0188  0.3705 0.7422
X v 09813  0.3322 0.6627 22714 0.2562 0.6763 0.8628  0.3867 0.7454
v X 0.0070  0.9739 0.9797 0.7704  0.5979 0.8734 0.6871 0.4435 0.7706
v/ 4 0.0072  0.9693 0.9700 0.6802 0.6045 0.8890 0.2636  0.6707 0.9276

after each spatial attention block, allowing it to capture mo-
tion dynamics over time while leveraging the pose-level
knowledge from the first stage. Additionally, we employ
factorized spatial-temporal attention: spatial attention cap-
tures structural dependencies by enabling joints to attend to
each other within a frame, while temporal attention oper-
ates on a per-joint basis to model motion trajectories across
frames. We set J = 150 and F' = 90 throughout the paper.

6. Experiments

All models were trained on a Linux system equipped with ei-
ther an NVIDIA RTX A6000 (48GB) or A100 (40GB) GPU.
The pose diffusion model required approximately 29GB of
VRAM with a batch size of 512 over 400K iterations, com-
pleting training in roughly 30 hours. The motion diffusion
model used about 38GB of VRAM with a batch size of 4
and sequence length of 90, trained for 1M iterations over
approximately 4 days.

To ensure motion integrity of the augmented rigs, bone
length adjustments are restricted to 0.8 x—1.2x of the orig-
inal and applied symmetrically when symmetry existed.
Bone erasing was limited to distal appendages (toes, head
tips, tail ends) and redundant spine/root bones. Under these
constraints, we visually verified 10K augmented results and
found them suitable for training.

6.1. Dataset & Evaluation Metrics

To evaluate the pose synthesis model, we aggregate all mo-
tion data for each object category and extract their poses.
We then apply clustering, generating 30 distinct pose clus-
ters per object. Three clusters are randomly selected as the
test pose set, while the remaining clusters are used for train-
ing. For motion synthesis evaluation, we randomly select
one motion per object for the test set, with the remaining
motions used for training.

Next, we apply the data augmentation techniques introduced
in Section 4.2 independently to each motion, expanding the
dataset to include 2.5M poses and 26K motions, up from

the original 125K poses and 1K motions. Moreover, we use
SigLIP-SO400M-patch14-384 (Zhai et al., 2023) to extract
image and text embeddings to condition our pose and motion
diffusion models, respectively. For further details on data
construction pipeline, please refer to Appendix B.1.

We evaluate the models using six automated metrics, along
with a user study, to comprehensively assess their perfor-
mance. The metrics include Fréchet Inception Distance
(FID) (Lee et al., 2019), R-Precision (Guo et al., 2022),
Alignment (Guo et al., 2022), Coverage (Li et al., 2022),
Multimodality (Lee et al., 2019), and Motion Stability In-
dex (MSI) (Kim et al., 2024). FID measures the similar-
ity between the feature distributions of generated and real
data, with lower scores indicating more realistic outputs.
R-Precision and Alignment evaluate how well generated
samples match input conditions. R-Precision quantifies the
proportion of correct matches, while Alignment measures
cosine similarity, with higher values indicating better corre-
spondence. Coverage assesses how much of the reference
data is represented by the generated samples, considering
a reference covered if its cosine similarity with generated
data exceeds a threshold. Multimodality captures the di-
versity of generated outputs for a single input, with higher
scores reflecting greater variability. MSI measures temporal
smoothness and stability, with higher scores indicating less
jitter and stable motion over time. Finally, we conduct a
user study to evaluate perceptual quality. Given rendered
motion videos from each method, 30 participants compare
the outputs in terms of realism, alignment with the input
prompts, and overall preference. We aggregate the results
across participants and report the average preference scores.

For automated evaluation, we train and utilize a pose-level
encoder to compute all metrics instead of a motion-level
encoder due to the limited availability of motion data. To
ensure the pose encoder captures nuanced and meaningful
representations of poses, we align its embedding space with
that of the pretrained SigLIP image encoder, enabling the
pose encoder to inherit the rich semantic knowledge learned
during large-scale pretraining. We refer the reader to Table 1
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Figure 4. Quantitative comparisons on text-to-motion synthesis scenarios. A higher Area-Under-the-Curve (AUC) indicates the better
adaptability to varied rigs or motion dynamics. Our approach enjoys greater generalization capability in synthesizing motions for diverse
rigs (i.e. leftmost pane) and dynamics (i.e. middle and right panes) compared to the baselines.

Reference

w/ GPT-Caption

w/o Rig Aug.

Figure 5. Adaptability to novel motion descriptions. We compare the synthesized motions of different models for a dragon using the
novel motion description from the ant: “An ant is knocked back and ends up lying on its back, motionless.” Among them, only our method
successfully generates a dragon motion that closely aligns with the reference motion from the ant. Please watch the video in this link.

(i.e. 1st row) and Figure 13 for the quantitative and quali-
tative evaluation of the learned pose encoder, respectively.
Also find Appendix B.2 for additional details regarding the
architecture and training protocol.

6.2. Ablation Study

We first examine the necessity of the introduced positional
encodings (PEs, i.e. TreePE and RestPE) and the rig aug-
mentation technique in enhancing the adaptability of models
to diverse object skeletons to improve overall performance.
These experiments focus on the first-stage, pose-level diffu-
sion models, with results presented in Table 1.

The results clearly demonstrate that models without PEs
suffer from significantly degraded performance across all
evaluation metrics and datasets. In particular, these mod-
els struggle to estimate rotations that produce poses well-
aligned with the conditioned inputs, as reflected in low
R-Precision (R@1) and Alignment scores. When combin-
ing both PEs and rig augmentation, the model achieves the
best generalization performance. While PEs alone deliver
substantial improvements by encoding essential rig-specific
information, rig augmentation further enhances the model’s
robustness to diverse skeleton templates during training.

6.3. Text-to-Motion Synthesis

Next, we evaluate the models’ ability to synthesize motions
from text descriptions, focusing on two key generalization
aspects: (1) adaptability to diverse rigs and (2) ability to syn-

thesize novel motions dynamics. As this is the first work on
text-to-motion synthesis for large-vocabulary objects with
varying skeletal templates, we compare our method against
reasonable ablated baselines in this setup. The following
sections provide further details.

Adaptability to Varied Rig Styles. To evaluate adaptability
across diverse rig styles, we exclude one motion from the
training set per object and augment its rig to create multiple
test sets with consistent dynamics but varied configurations.
Coverage is used as metric, measured as Area-Under-the-
Curve (AUC) by sweeping the similarity threshold from 0
to 1. We compare our method with two ablated variants:
one without rig augmentation and another using GPT-4o-
generated captions. Results are presented in Figure 4-(a).

As shown in the figure, the model without the rig augmen-
tation technique exhibits poor adaptability to diverse rig
styles, indicated by the lowest AUC. Among others, the
model trained with high-quality human-annotated descrip-
tions achieves the largest AUC, validating the effectiveness
of both the rig augmentation technique and the use of high-
quality, human-annotated captions for enhancing adaptabil-
ity and performance.

Ability to Synthesize Novel Motions. This evaluation tests
the model’s capacity to synthesize motion dynamics not in-
cluded in the dataset for a particular object by leveraging
textual descriptions from other objects. We introduce two
additional methods: Single-Object Motion Diffusion Mod-
els (SO-MDMs) (Tevet et al., 2023), trained individually for
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Reference Alamosaurus

Winged Monster

Pegasus

v

Figure 6. Motion synthesis on novel objects and skeletons. Surprisingly, our model generalizes well to objects with unseen skeletal
structures and motion dynamics. Notably, while our dataset includes quadrupedal horses, bipedal reptiles, and dragons, it lacks examples
that combine four legs with wings or feature winged reptiles. Additionally, no objects in the dataset possess necks as long as that of the
Alamosaurus. All evaluation data were sourced from the web. For video demonstrations, please visit the project page in this link.

= dashes forward =
bites into something
= chews and swallows it

= hit by something =
walks awkwardly = falls
to the ground.

wakes up = observes
something = bites
something inside a cave

= walks slowly forward
= sprinting with its
head facing forward

Figure 7. Long motion synthesis. Our model generates temporally coherent extended motions for story-level synthesis by conditioning
on a sequence of descriptions and sampling overlapping short sequences, such as a T-rex’s journey. Please watch the video in this link.

A T-rex Skeleton Template + walking forward (47) + with its body low (41) |+ head, back, tail aligned (31)] + balanced as it strides (25)

"\
|/

Figure 8. Level of detail in description and variability in synthesized motions. The value in parentheses represents the variability of
motions synthesized from the same caption, measured using the multimodality metric with higher values indicate greater variability. The

video can be viewed at this link.

specific objects, and a retargetting approach that bypasses
learning entirely. Due to computational constraints, SO-
MDMs are trained on five representative objects (Dragon,
Tyrannosaurus, Cat, Cricket, and White Shark) chosen for
their structural and dynamic diversity. We narrow the scope
of this evaluation to these five objects accordingly.

Due to the limited scale of motion data, we do not exclude
novel motion data from the training set for evaluation. In-
stead, we curate 10 key high-level actions that encompass
the range of actions represented in the entire dataset. For
each action, we randomly select two motion descriptions
that align with the action from training objects not included
in the five selected. These motions are treated as the target
reference dynamics that the model should replicate when
queried with the corresponding text descriptions.

We use coverage metric to assess how well generated mo-
tions align with reference dynamics. Additionally, we mea-
sure novelty by evaluating the inverse coverage of original
motions of the chosen objects in the training set by their syn-
thesized motions. Lower novelty scores indicate replication
of training data, while higher scores reflect new, adaptive
motions tailored to the queried descriptions.

Figure 4-(b) shows that our method achieves the highest
AUC for both coverage and novelty, demonstrating supe-

rior alignment with queries while introducing novel motions.
The analysis reveals two key insights: (1) The drop in perfor-
mance for models using GPT-generated captions or trained
without rig augmentation underscores the importance of
high-quality human-annotated captions and rig augmenta-
tion, which help improving the model’s understanding of
motion dynamics and facilitating generalization across di-
verse rig styles. (2) The poor performance of SO-MDMs
and retargetting approaches highlights the importance of
amortized learning, which leverages shared structures across
objects, enabling better generalization.

Table 2. User Preference and Smoothness (MSI) Scores.

Method Preference (%, 1) MSI (x102, 1)
Ours 65.60 8.78
w/ GPT-Caption 2.27 7.30
w/o Rig Aug. 12.40 7.39
SO-MDMs 10.67 7.21
Retargeting 9.07 9.93

Finally, we report comparison results from a user study
and a motion smoothness evaluation (measured by MSI),
summarized in Table 2. Our method is consistently preferred
by participants in terms of alignment with text prompts
and overall motion quality, receiving the highest preference
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score by a substantial margin. Regarding smoothness, our
approach achieves the highest score among all data-driven
methods, indicating more temporally stable motions, while
slightly trailing the retargeting method, which benefits from
direct motion transfer but lacks flexibility to handle novel
prompts. The results further highlight the effectiveness of
our method in producing both perceptually preferable and
plausible motions.

7. Additional Analysis

7.1. Generalization To Unseen Objects and Skeletons

We evaluate our model’s ability to generalize to novel ob-
jects with entirely different species and rig configurations.

To this end, we obtain additional object meshes and arma-
ture data from external repositories such as SketchFab and
use the curated text descriptions from Section 6.3 to gener-
ate motions. As shown in Figure 6, our model synthesizes
coherent motions that align with reference dynamics, even
for objects with previously unseen skeletal structures. This
demonstrates its potential as a robust foundation for mo-
tion synthesis in open-vocabulary settings, expanding its
applicability to diverse and novel object categories.

7.2. Long Motion Sequence Generation

Though trained on sequences up to F' = 90 frames, our
model extends to longer motions by conditioning on multi-
ple sequential textual descriptions. To ensure smooth tran-
sitions, we apply weighted blending at the boundaries of
consecutive motion chunks during sampling. As shown in
Figure 7, our method enables the generation of extended,
coherent motion sequences. This ability suggests promising
applications in story-level motion synthesis (Zhou et al.,
2024), where objects dynamically transition through com-
plex, extended narratives, opening new possibilities for ani-
mation, virtual storytelling, and interactive experiences.

7.3. Generating Motions with Multi-Level Descriptions

We examine how textual detail impacts motion synthesis.
Using a T-rex skeleton, we generate motions with progres-
sively detailed descriptions. For each level, we sample 50
motions, measure variability using the Multimodality metric
(higher values indicate greater diversity), and visualize their
mid-frames in Figure 8. As shown, increased detail guides
motion synthesis toward more structured and nuanced mo-
tion patterns, reducing ambiguity while preserving diversity.
Thanks to the multi-level description training, our model
effectively learns to generate both broad and fine-grained
motions, demonstrating the importance of detailed and well-
structured textual annotations in motion synthesis.

8. Discussion

We introduced a novel framework for text-driven motion
synthesis across diverse object categories with heteroge-
neous skeletal structures. By augmenting the Truebones
Zoo dataset with rich textual descriptions, introducing rig
augmentation techniques, and extending motion diffusion
models to dynamically adapt to arbitrary skeletal templates,
our approach enables realistic, coherent motion generation
for diverse objects. Experiments further demonstrate the
potential of our method in generalizing to unseen objects,
generating long motion sequences, and enabling controlled
motion synthesis. We hope our work lays a strong founda-
tion for motion synthesis across diverse object categories,
advancing many applications in 3D content creation.

Despite its strengths, our method has a few limitations. First,
for simplicity, our current implementation uses joint-wise
Euler angle rotations only and ignores global root transla-
tion. However, this is not a fundamental limitation. Our
model operates on motion tensors of shape 7' x J x D,
where D denotes joint features—in our case, rotations. This
formulation can naturally be extended to include additional
features such as global translation, relative translations for
soft-constrained joints, or physically relevant signals like
joint velocities or foot contact indicators. Including these
signals may further improve temporal coherence, realism,
and physical plausibility of synthesized motions.

Second, while our rig augmentation strategy enables gen-
eralization across diverse skeletal structures, the physical
plausibility of augmented skeletons is limited. They may
thus violate physical constraints (e.g. symmetry, balance, or
anatomical consistency), limiting direct use in production-
grade animation or simulation. Future work could improve
plausibility via automated validation (e.g. foot-ground con-
tact, joint velocity bounds, or end-effector stability), com-
bined with rejection sampling or two-stage training. For
example, pretraining on diverse augmented rigs for general-
ization, then fine-tuning on physically grounded data, may
better balance flexibility and realism.

Third, while the method advances the field by offering a
unified framework for motion synthesis across highly het-
erogeneous skeletal structures, it does not generalize well
to human or open-vocabulary objects in zero-shot settings.
This stems from the limited diversity, scale, and anatomical
coverage of the training data: the Truebones Zoo dataset,
though rich in non-human motions, lacks human-like skele-
tal structures and dynamics. Expanding to more balanced,
large-scale motion corpora, such as Objaverse-XL (Deitke
et al., 2024), could improve generalization to both human
and novel object categories. This is a promising direction for
future work, in line with recent advances in open-vocabulary
dynamic mesh synthesis (Ren et al., 2023; 2024).
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broad spectrum of objects with diverse and arbitrary skeletal
structures, enabling more flexible and generalizable motion
generation. Potential applications include gaming, anima-
tion, virtual reality, and interactive experiences, broadening
accessibility to motion synthesis tools.

While our method enhances creative applications, it also
raises considerations regarding the ethical use of synthetic
motion data, such as potential misuse in deceptive media
or unintended biases in generated animations. We encour-
age responsible deployment and further research into bias
mitigation and transparency in generative models.

References

Baran, I. and Popovié, J. Automatic rigging and animation
of 3d characters. SIGGRAPH, 2007.

Batuhan13. Pegasus, 2021.
//sketchfab.com/3d-models/

URL https:

pegasus—62f6e4c9dcc4489b98729661leb51lcfade.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim,
S. W., Fidler, S., and Kreis, K. Align your latents: High-
resolution video synthesis with latent diffusion models.
In CVPR, 2023.

chengzijieczj. icy dragon, 2020. URL

https://sketchfab.com/3d-models/

Guo, C., Zou, S., Zuo, X., Wang, S., Ji, W., Li, X., and
Cheng, L. Generating diverse and natural 3d human
motions from text. In CVPR, 2022.

Guo, C., Mu, Y, Javed, M. G., Wang, S., and Cheng, L.
Momask: Generative masked modeling of 3d human
motions. In CVPR, 2024.

Harris, N. Pig, 2021.
//sketchfab.com/3d-models/
Pig—-83358848ab0b4b7c8cbbe9d6b0860468.

URL https:

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurlPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Kapon, R., Tevet, G., Cohen-Or, D., and Bermano, A. H.
Mas: Multi-view ancestral sampling for 3d motion gener-
ation using 2d diffusion. In CVPR, 2024.

Kim, Y., Lee, H., Kim, S.-B., Nam, S., Ju, J., and Oh, T.-
H. A large-scale 3d face mesh video dataset via neural
re-parameterized optimization. TMLR, 2024.

Lee, H.-Y., Yang, X., Liu, M.-Y., Wang, T.-C., Lu, Y.-D.,
Yang, M.-H., and Kautz, J. Dancing to music. In NeurIPS,
2019.

Li, P., Aberman, K., Zhang, Z., Hanocka, R., and Sorkine-
Hornung, O. Ganimator: Neural motion synthesis from a
single sequence. SIGGRAPH, 2022.

Liang, H., Bao, J., Zhang, R., Ren, S., Xu, Y., Yang, S.,
Chen, X., Yu, J, and Xu, L. Omg: Towards open-
vocabulary motion generation via mixture of controllers.
In CVPR, 2024.

Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-
Eijnden, E., and Xie, S. Sit: Exploring flow and diffusion-
based generative models with scalable interpolant trans-
formers. In ECCV, 2024.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. In ECCYV,
2020.

Nuvoli, S., Pietroni, N., Cignoni, P., Scateni, R., and Tarini,
M. Skinmixer: Blending 3d animated models. SIG-

icyfdragonf2db9268227b943e6a4le88390f2875a@RApHAsia, 2022.

Deitke, M., Liu, R., Wallingford, M., Ngo, H., Michel, O.,
Kusupati, A., Fan, A., Laforte, C., Voleti, V., Gadre, S. Y.,
VanderBilt, E., Kembhavi, A., Vondrick, C., Gkioxari, G.,
Ehsani, K., Schmidt, L., and Farhadi, A. Objaverse-xl: a
universe of 10m+ 3d objects. In NeurIPS, 2024.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In ICCV, 2023.

Plappert, M., Mandery, C., and Asfour, T. The KIT motion-
language dataset. Big Data, 2016.


https://sketchfab.com/3d-models/pegasus-62f6e4c9dcc4489b98729661e51cfadc
https://sketchfab.com/3d-models/pegasus-62f6e4c9dcc4489b98729661e51cfadc
https://sketchfab.com/3d-models/pegasus-62f6e4c9dcc4489b98729661e51cfadc
https://sketchfab.com/3d-models/icy-dragon-2db9268227b943e6a41e88390f2875a6
https://sketchfab.com/3d-models/icy-dragon-2db9268227b943e6a41e88390f2875a6
https://sketchfab.com/3d-models/pig-83358848ab0b4b7c8cbbe9d6b0860468
https://sketchfab.com/3d-models/pig-83358848ab0b4b7c8cbbe9d6b0860468
https://sketchfab.com/3d-models/pig-83358848ab0b4b7c8cbbe9d6b0860468

How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects

Raab, S., Leibovitch, 1., Tevet, G., Arar, M., Bermano,
A. H., and Cohen-Or, D. Single motion diffusion. In
ICLR, 2024.

Ren, J., Pan, L., Tang, J., Zhang, C., Cao, A., Zeng, G.,
and Liu, Z. Dreamgaussian4d: Generative 4d gaussian
splatting. arXiv preprint arXiv:2312.17142,2023.

Ren, J., Xie, K., Mirzaei, A., Liang, H., Zeng, X., Kreis, K.,
Liu, Z., Torralba, A., Fidler, S., Kim, S. W,, and Ling,
H. L4gm: Large 4d gaussian reconstruction model. In
NeurlIPS, 2024.

robertfabiani. Alamosaurus, 2018. URL

https://sketchfab.com/3d-models/

Zhao, Q., Li, P, Yifan, W., Olga, S.-H., and Wetzstein,
G. Pose-to-motion: Cross-domain motion retarget-
ing with pose prior. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion, 2024.

Zhou, Y., Zhou, D., Cheng, M.-M., Feng, J., and Hou, Q.
Storydiffusion: Consistent self-attention for long-range
image and video generation. NeurlIPS, 2024.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networkss. In ICCV, 2017.

alamosaurus—-1a85b9f3612044ad4afa2e96e701a0966.

Shiv, V. and Quirk, C. Novel positional encodings to enable
tree-based transformers. In NeurIPS, 2019.

Song, Y. and Ermon, S. Improved techniques for training
score-based generative models. In NeurIPS, 2020.

Tevet, G., Raab, S., Gordon, B., Shafir, Y., Cohen-or, D.,
and Bermano, A. H. Human motion diffusion model. In
ICLR, 2023.

Truebones. Free fbx/.bvh zoo. over 75 animals with anima-

tions and textures. https://truebones.gumroad.

com/1/skzMC/, 2022. Accessed: 2024-07-01.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NeurIPS, 2017.

Wang, J., Yuan, H., Chen, D., Zhang, Y., Wang, X., and
Zhang, S. Modelscope text-to-video technical report.
arXiv preprint arXiv:2308.06571, 2023.

Yang, Z., Zhou, M., Shan, M., Wen, B., Xuan, Z., Hill, M.,
Bai, J., Qi, G.-J., and Wang, Y. Omnimotiongpt: Animal
motion generation with limited data. In CVPR, 2024.

Zhai, X., Mustafa, B., Kolesnikov, A., and Beyer, L. Sig-
moid loss for language image pre-training. In ICCV,
2023.

Zhan, X., Fu, R., and Ritchie, D. Charactermixer: Rig-aware
interpolation of 3d characters. CGF, 2024.

Zhang, J., Huang, S., Tu, Z., Chen, X., Zhan, X., Yu, G.,
and Shan, Y. Tapmo: Shape-aware motion generation of
skeleton-free characters. In ICLR, 2024.

Zhang, M., Li, H., Cai, Z., Ren, J., Yang, L., and Liu,
Z. Finemogen: Fine-grained spatio-temporal motion
generation and editing. In NeurIPS, 2023.

11


https://sketchfab.com/3d-models/alamosaurus-1a85b9f3612044a4afa2e96e701a0966
https://sketchfab.com/3d-models/alamosaurus-1a85b9f3612044a4afa2e96e701a0966
https://truebones.gumroad.com/l/skZMC/
https://truebones.gumroad.com/l/skZMC/

How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects

Appendix

This section presents additional details that are omitted from the main paper due to space constraints.

BaCkLeﬁ

-

Figure 9. Rendered view images of a hamster’s pose from ten predefined camera viewpoints. We use these rendering images to annotate
descriptions for each motion and to train the pose encoder.

A. Details on Data

Source In this paper, we primarily utilize the Truebones Zoo (Truebones, 2022) dataset for training and evaluation. The
types of objects and the number of 3D animations available for each object are summarized in Table 3. Each animation is
provided in FBX format, consisting of an armature and its corresponding animation, with the armature rigged to a mesh.

Preprocessing To prepare the data for training, we preprocess each sample by standardizing its orientation, scale, and
center. Specifically, during preprocessing, we manually adjust the orientation of each motion to align the forward direction
with the -Y-axis and the upward direction with the Z-axis. The armature and mesh are then uniformly scaled so that the
longest dimension of their bounding box is normalized to 1. Finally, we reposition the object to be centered at the origin
(0,0,0).

Extracting Training Data After preprocessing, we extract the armature animation into BVH format, discarding joint
positions and retaining only the bone hierarchy information (i.e. skeletal structures and rest poses) and joint rotations. These
components are utilized as training features: the bone hierarchy information serves as static features, while joint rotations are
treated as dynamic features. The joint rotations are represented using Euler angles in a ZXY order. Additionally, individual
poses in each motion are rendered from ten distinct camera perspectives: front, front left, left, back left, back, back right,
right, front right, top, and bottom. Please find Figure 9 for the example for a single pose. These rendered images are used to
create motion description annotations and to train image-to-pose diffusion models.

Annotation Pipeline We manually annotate high-quality motion descriptions for each motion sample. Human annotators
are initially provided with rendered videos captured from the front-left camera view but are given access to additional views
when the front-left perspective alone is insufficient to accurately identify the animation. Annotators are instructed to describe
the motions in as much detail as possible, focusing on the following key aspects: (1) Initial Pose: a clear description of the
starting pose of the object (e.g. initially standing), (2) High-Level Actions: the overarching actions being performed over
time (e.g. standing, striking, etc.), and (3) Part-Level and Directional Dynamics: finer-grained details of motions, such as
specific body part movements and directional actions (e.g. “Initially standing on all fours, an object is standing on hind
limbs by pushing off the ground with its two front limbs, followed by striking by lifting its right front paw over its head”).

Subsequently, these annotated captions are refined using GPT-40 to create multi-level descriptions. Specifically, the
annotated captions are first revised to enhance clarity and ensure consistency across descriptions; these revisions are used as
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Table 3. The types of objects, the number of the 3D animations, and thier number of joints in Truebones Zoo dataset (Truebones, 2022).

Object Name # Animations  Average # Joints Object Name # Animations  Average # Joints
Alligator 21 21.00 Jaguar 14 40.00
Anaconda 18 27.00 Great White Shark 10 16.00
Ant 16 34.00 King Cobra 11 17.18
Bat 11 43.00 Leopard 14 43.00
Bear 30 62.00 Lion 15 26.00
Bird 19 53.00 Lynx 14 33.00
Brown Bear 22 32.00 Mammoth 12 36.00
Buffalo 18 36.00 Monkey 15 70.00
Buzzard 11 50.00 Ostrich 10 45.00
Camel 19 46.00 Parrot-1 14 56.00
Cat 4 38.00 Parrot-2 3 50.00
Centipede 9 64.00 Pigeon 12 7.08
Chicken 4 30.00 Piranha 11 22.00
Komodo Dragon 9 50.00 Polar Bear 9 36.00
Coyote 10 36.00 Baby Polar Bear 14 34.00
Crab 11 44.00 Pteranodon 13 34.00
Cricket 11 43.00 Puppy 4 34.00
Crocodile 12 34.00 Reindeer 9 32.00
Crow 10 23.00 Velociraptor-1 10 33.00
Deer 21 37.00 Velociraptor-2 39 49.00
Dog-1 42 46.00 Velociraptor-3 14 50.00
Dog-2 36 46.00 Rat 7 13.00
Dragon 9 111.00 Rhino 9 38.00
Eagle 12 39.00 Roach 11 35.00
Elephant 13 32.00 Sabre-Toothed Tiger 45 54.00
Fire Ant 25 35.00 Sand Mouse 13 33.00
Flamingo 4 34.00 Scorpion-1 13 53.00
Fox 13 35.00 Scorpion-2 40 46.00
Gazelle 18 35.00 Skunk 8 29.00
Giant Bee 9 39.00 Spider-1 33 57.00
Goat 11 27.00 Spider-2 18 51.00
Hamster 5 38.00 Stegosaurus 10 35.00
Hermit Crab 12 55.00 Tyrannosaurus Rex 70 49.00
Hippopotamus 10 36.00 Triceratops 9 27.00
Horse 29 63.00 Toucan 9 15.00
Hound 12 40.00 Turtle 10 39.00
Termite 9 52.00 Tyrannosaurus 10 54.00

the long descriptions. Next, GPT-4o is tasked with producing coarser-level descriptions by progressively omitting part-level
or directional details from the long descriptions, resulting in mid-level and short descriptions.

For a visualization of word count distributions across description levels, see Figure 10. Statistics on the most frequent verbs

and nouns are presented in Figure 11 and Figure 12, respectively.

External Test Data We downloaded and used four armatured object meshes from Sketchfab: Pig (Harris, 2021), Icy
Dragon (chengzijieczj, 2020), Pegasus (Batuhan13, 2021), and Alamosaurus (robertfabiani, 2018) to evaluate our model’s
ability to generate motions for novel objects.
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Figure 12. Top 50 nouns and their counts in our annotated motion descriptions.
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B. Details on Implementation & Training
B.1. Generalized Motion Diffusion Models (G-MDMs)

Architecture We adapt and modify the SiT-S (Ma et al., 2024) model to align with our setup, configuring the depth, hidden
dimension, and the number of self-attention heads to 12, 384, and 6, respectively. On top of this, we introduce additional
encoding layers to enhance the model’s functionality: the condition encoding layer, tree position encoding (TreePE) layer,
rest pose offset encoding (RestPE) layer, and frame position encoding layer. Each layer utilizes a Linear-SiLLU-Linear block
to project input features into a D-dimensional hidden space. Specifically, the condition encoding layer maps features from
either the image or text encoder of the Sigl.IP-SO400M-patch14-384 (Zhai et al., 2023) model into the diffusion model’s
hidden dimension. TreePE and RestPE encode spatial positional information, while the frame position encoding layer
captures the temporal sequence of motion.

To handle the variable number of joints and frames in motion data, we set the maximum number of joints and frames to
140 and 90, respectively. The maximum joint count reflects the largest number of joints observed in the dataset, while the
maximum frame count was manually set to 90 after observing the motion sequences as a reasonable cutoff. During training,
inputs with fewer joints or frames than these maximum values are padded with zeros, and the padded elements are masked
within the self-attention modules to ensure they do not influence the diffusion process. For motions containing more than
90 frames, we randomly sample a chunk of frames during training. To condition the model on rendering images or text,
we adopt the adalLN-Zero conditioning approach (Peebles & Xie, 2023), which has demonstrated strong effectiveness in
integrating conditional embeddings into the model.

Two-Stage Training To address the challenges posed by limited computational resources and potential overfitting due to
the small size of the training motion dataset (approximately 1K samples), we draw inspiration from text-to-video diffusion
models (Blattmann et al., 2023; Wang et al., 2023) and adopt a two-stage training approach alongside factorized attention
mechanisms. This approach decouples the modeling of poses from motion dynamics, effectively reducing computational
complexity while maintaining adaptability and generalization.

In the first stage, we train a pose diffusion model to capture dependencies among joint rotations within each frame using
spatial attention blocks. Instead of relying on textual descriptions, the pose synthesis model is conditioned on average
embeddings of poses image renderings viewed from ten predefined camera angles (e.g. front, front left, left, back left, back,
back right, right, front right, top, bottom). Once the pose diffusion model is trained, it is frozen.

In the second stage, temporal attention blocks are introduced after each spatial attention block. These temporal attention
blocks enable the model to capture motion dynamics across time, leveraging the pose-level knowledge acquired during the
first stage. This staged training approach reduces computational overhead while ensuring the synthesis of coherent and
realistic motion sequences.

To further manage computational complexity, we adopt a factorized attention mechanism inspired by text-to-video diffusion
models. In this setup, spatial attention operates within each frame, allowing joints to attend to one another and effectively
capturing structural dependencies. Temporal attention, on the other hand, operates across frames, enabling each joint to
focus on its motion trajectory over time. By separating spatial and temporal attention, the model reduces the computational
cost of full spatiotemporal modeling while maintaining the capacity to generate realistic and temporally coherent motions.

B.2. Pose Encoder

We train an additional pose-level encoder network to facilitate the evaluation of the pose and motion diffusion models. The
encoder adopts the same architecture as our pose-level generalized diffusion model, as detailed in Section B.1.

The forward pass of the pose encoder is identical to that of the pose diffusion model, except that the pose encoder’s
output is derived by average pooling the pose representations along the joint dimension. Specifically, given two types of
inputs—(1) static feature information, represented by TreePE and RestPE, and (2) dynamic feature information, either real
or synthesized, represented as rotation values with a shape of (B x J x 3)—the pose encoder pools the output along the
joint dimension to produce a final representation of shape (B x D). This representation is then projected into the feature
space of Sigl.IP-SO400M-patch14-384, serving as pose embeddings.

The pose encoder is trained to align its embeddings with those of the image encoder of SigLIP-SO400M-patch14-384
using contrastive learning. To improve this alignment, we introduce a learned view image embedding layer. Specifically,
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Figure 13. Qualitative evaluation of the learned pose embedding space. Given a query pose of a sandmouse, we present rendered images of
the top-1 retrieved poses from four distinct objects: coyote, horse, eagle, and crab. We display the file name of the motion file containing
each retrieved pose. These results highlight the ability of the learned pose encoder to effectively embed similar poses from different
animal objects into the same embedding space, capturing meaningful semantic relationships within the pose space.

for each pose, a paired set of ten camera views, as described in Section A, is embedded into image embeddings using the
pretrained image encoder. Camera position embeddings are then added to these view embeddings, followed by two layers of
self-attention blocks. The outputs are average pooled to produce a unified image embedding, which serves as the target for
alignment with the pose embeddings.

To evaluate the quality of the learned pose embedding space, we perform both quantitative and qualitative analyses. For the
quantitative evaluation, which measures the alignment performance of the trained pose encoder, please refer to Table 1. The
qualitative results can be found in Figure 13.

As evident from both evaluations, our pose encoder demonstrates strong alignment with the aggregated image embeddings of
the pretrained image encoder (e.g., high retrieval and alignment scores in the table). Furthermore, it has learned meaningful
semantic structures within the pose embedding space, effectively identifying and grouping similar poses of different objects
within this space.

C. Details on Coverage and Novelty Metrics

In human motion synthesis, it is common practice to train and utilize a motion encoder that projects motion sequences
into an embedding space, where evaluation metrics are subsequently computed. However, due to the limited availability
of motion data in our setup, we instead leverage a learned pose encoder to assess the quality of the synthesized motions.
We adapt the original coverage metric (Li et al., 2022) to our setup, making slight modifications to better suit our motion
synthesis evaluation.

Given a reference motion = and a synthesized motion & of lengths L, and L;, respectively, we extract all possible windows
of size F, from each motion:
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Figure 14. Quantitative comparisons of the models on the training set, evaluated using the coverage metric. While our model achieves
comparable performance in fitting the training data compared to the version without rig augmentation, our full approach demonstrates
significant gains in generalization (i.e. Figure 4).
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Here, the window size F, is determined as Fy, = min(L,, Lz, F'), where F' = 90 is the predefined maximum frame length
for our generalized motion diffusion model.

Coverage To assess how well the synthesized motion 2 covers the reference motion x, we compute the coverage metric as:

1
Cov(z,z;0) = m Z 1 Lervr\l}z(i;(F) CosineSimilarity (2, #.,) > O | . )
TwEW (x,Fy)

This metric quantifies the proportion of reference motion windows x,, that have at least one synthesized counterpart z,, with
a cosine similarity above a threshold ©. To obtain a comprehensive evaluation, we sweep © from 0 to 1 and compute the
area under the curve (AUC) of the coverage function, providing an aggregate measure of how well the synthesized motion
spans the reference motion across different similarity thresholds.

Novelty We also introduce the novelty metric, which measures how distinct the synthesized motion £ is from the reference
motion x. Higher novelty values indicate that the generated motions introduce new patterns rather than replicating the
reference.

1
Nov(#,2;0) = ———— > 1 [(1 =, max )CosineSimilarity(xw,ijw)) >0|. (10)
) w Fu

This metric captures the proportion of synthesized motion windows z,, that do not closely resemble any reference window
T, ensuring that the generated motions exhibit novelty. As with coverage, we sweep © from 0 to 1 and compute the AUC
of the novelty function to obtain an overall measure of the diversity of the synthesized motion.
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