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ABSTRACT

While recent zero-shot text-to-speech (TTS) models have significantly improved
speech quality and expressiveness, mainstream systems still suffer from issues
related to speech-text alignment modeling: 1) autoregressive large language models
are inefficient and not robust in long-sentence inference; 2) non-autoregressive dif-
fusion models without explicit speech-text alignment require substantial model ca-
pacity for alignment learning; 3) predefined alignment-based diffusion models suf-
fer from naturalness constraints of forced alignments and a complicated inference
pipeline. This paper introduces S-DiT, a TTS system featuring an innovative sparse
alignment algorithm that guides the latent diffusion transformer (DiT). Specifically,
1) we provide sparse alignment boundaries to S-DiT to reduce the difficulty of
alignment learning without limiting the search space; 2) to simplify the overall
pipeline, we propose a unified frontend language model (F-LM) training framework
to cover various speech processing tasks required by TTS models. Additionally, we
adopt the piecewise rectified flow technique to accelerate the generation process
and employ a multi-condition classifier-free guidance strategy for accent intensity
adjustment. Experiments demonstrate that S-DiT matches state-of-the-art zero-shot
TTS speech quality while maintaining a more efficient pipeline. Moreover, our sys-
tem can generate high-quality one-minute speech with only 8 sampling steps. Audio
samples are available at https://sditdemo.github.io/sditdemo/.

1 INTRODUCTION

In recent years, neural codec language models (Wang et al., 2023; Zhang et al., 2023; Song et al.,
2024; Xin et al., 2024) and large-scale diffusion models (Shen et al., 2023; Matthew et al., 2023; Lee
et al., 2024a; Eskimez et al., 2024; Ju et al., 2024; Yang et al., 2024d;b) have brought considerable
advancements to the field of speech synthesis. Unlike traditional text-to-speech (TTS) systems (Shen
et al., 2018; Jia et al., 2018; Li et al., 2019; Kim et al., 2020; Ren et al., 2019; Kim et al., 2021; 2022),
these models are trained on large-scale, multi-domain speech corpora, which contributes to notable
improvements in the naturalness and expressiveness of synthesized audio. Given only seconds of
speech prompt, these models can synthesize identity-preserving speech in a zero-shot manner.

To generate high-quality speech with clear and expressive pronunciation, a TTS model must establish
an alignment mapping from text to speech signals (Kim et al., 2020; Tan et al., 2021). However, from
the perspective of speech-text alignment, current solutions suffer from the following issues:

• Autoregressive codec language models (AR LM) are inefficient and lack robustness. These
models (Wang et al., 2023; Chen et al., 2024a) achieve the alignment paths through attention
mechanisms in their time-autoregressive generation processes. However, the lengthy discrete
speech codes, which typically require a minimum bit rate of 1.5 kbps (Kumar et al., 2024;
Wu et al., 2024), impose a significant burden on these autoregressive language models.

• Diffusion models without predefined alignments (Diffusion w/o PA) require substan-
tial parameters. Recent diffusion-based TTS works (Lee et al., 2024a; Eskimez et al.,
2024; Lovelace et al., 2023; Gao et al., 2023; Cámbara et al., 2024; Yang et al., 2024d;b)
demonstrate that non-autoregressive diffusion models can effectively perform text-to-speech
synthesis without the need for explicit duration modeling, which significantly speeds up
the speech generation process. However, these algorithms require a significant portion of
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Table 1: Intrinsic characteristics of zero-shot TTS systems. “−” denotes the moderate performance.

Characteristics AR LM Diffusion w/o PA Diffusion w/ PA Ours

Representative Works VALL-E 1/2 DiTTo-TTS NaturalSpeech 2/3 /

w/o Prosodic Constraints from Alignments ✓ ✓ × ✓
Robust × − ✓ ✓
Controllable Duration × − ✓ ✓

Parameter Efficient × × ✓ ✓
Simple Training Data Preparation ✓ ✓ × ×
Simple Inference Pipeline ✓ ✓ × ✓
Fast Inference × ✓ − ✓

parameters to establish the text-to-speech alignment. ARDiT (Liu et al., 2024b) proves
that when compared under an identical number of parameters, methods without explicit
duration modeling exhibit some decline in speech intelligibility. Besides, these methods
cannot provide fine-grained control over the duration of specific pronunciations and can
only adjust the overall speech rate.

• Predefined alignment-based diffusion models (Diffusion w/ PA) have prosodic naturalness
constraints of forced alignments and a complex inference process. During training, alignment
paths (Ren et al., 2020; Kim et al., 2020) are directly introduced into their models (Matthew
et al., 2023; Shen et al., 2023; Ju et al., 2024) to reduce the complexity of text-to-speech
generation, which achieves higher intelligibility and similarity. Nevertheless, they suffer
from the following two limitations: 1) predefined alignments constrain the model’s search
space to produce natural-sounding speech (Anastassiou et al., 2024; Chen et al., 2024a); 2)
an external alignment tool is required in inference to obtain the duration prompt, which is
time-consuming and complicates the overall pipeline.

Intuitively, we can integrate the two aforementioned diffusion-based methods to pursue optimal
performance. To be specific, 1) we propose a novel sparse speech-text alignment strategy to enhance
the latent diffusion transformer (DiT), termed S-DiT. In our approach, phoneme tokens are sparsely
distributed within the corresponding forced alignment regions to provide coarse pronunciation
information that is then refined by the latent DiT model; 2) we propose a joint training framework
for the frontend language model that facilitates TTS models. In previous zero-shot TTS pipelines,
training and inference often rely on various complex frontend systems, such as automatic speech
recognition (ASR) (Radford et al., 2023), grapheme-to-phoneme (G2P) conversion (Park & Kim,
2019; Park & Lee, 2020; Bernard & Titeux, 2021), external alignment tools (McAuliffe et al., 2024),
and duration prediction (Kim et al., 2020; Ren et al., 2020; Ju et al., 2024; Yang et al., 2024b). In this
work, however, we find that these systems can be merged into a unified language model to efficiently
handle all four frontend tasks within a single autoregressive process.

Experimental results demonstrate that S-DiT achieves nearly state-of-the-art speaker similarity on the
LibriSpeech test-clean set (Panayotov et al., 2015) with only 8 sampling steps, while also exhibiting
high speaker similarity. The main contributions of this work are summarized as follows:

• We design a sparse alignment enhanced latent diffusion transformer model (S-DiT) that
combines the naturalness of “diffusion w/o PA” with the robustness of “diffusion w/ PA”.
The advantages of our model are listed in Table 1. Moreover, sparse alignment is more robust
against duration prediction errors than forced alignment. We also visualize the attention
score matrices of different layers in S-DiT and obtain interesting conclusions in Appendix G.

• To achieve higher generation quality and more flexible control, we propose a multi-condition
CFG strategy to adjust the guidance scales for speaker timbre and text content separately.
Furthermore, we discover that the text guidance scale can also be used to modulate the
intensity of personal accents, offering a new direction for enhancing speech expressiveness.

• We successfully reduce S-DiT’s inference steps from 25 to 8 with the piecewise rectified
flow (PeRFLow) technique, achieving highly efficient zero-shot TTS with minimal quality
degradation. Moreover, when we scale S-DiT from 0.5B to 7B parameters, it exhibits
exceptional performance while maintaining a low inference latency.
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• Our proposed F-LM not only simplifies the inference process of zero-shot TTS models
but also can be directly used for processing training data during model fine-tuning. The
unified training framework enhances F-LM’s speech understanding capabilities, allowing it
to surpass the independent modules for each subtask.

2 BACKGROUND

Zero-shot TTS. Zero-shot TTS (Casanova et al., 2022; Wang et al., 2023; Zhang et al., 2023; Shen
et al., 2023; Matthew et al., 2023; Jiang et al., 2024; Liu et al., 2024b; Lee et al., 2024a; Li et al., 2024;
Lee et al., 2023; Ju et al., 2024; Meng et al., 2024; Chen et al., 2024b) aims to synthesize unseen
voices with speech prompts. Among them, neural codec language models (Chen et al., 2024a) are
the first that can autoregressively synthesize speech that rivals human recordings in naturalness and
expressiveness. However, they still face several challenges, such as the lossy compression in discrete
audio tokenization and the time-consuming nature of autoregressive generation. To address these
issues, some subsequent works explore solutions based on continuous vectors and non-autoregressive
diffusion models (Shen et al., 2023; Matthew et al., 2023; Lee et al., 2024a; Eskimez et al., 2024;
Yang et al., 2024d;b; Chen et al., 2024b). These works can be categorized into two main types: 1)
the first type directly models speech-text alignments using attention mechanisms without explicit
duration modeling (Lee et al., 2024a; Eskimez et al., 2024). Although these models perform well
in terms of generation speed and quality, they typically require a large number of parameters to
learn speech-text alignments. The second category (Shen et al., 2023; Matthew et al., 2023) utilizes
predefined alignments to simplify alignment learning. However, the search space of the generated
speech of these models is limited by predefined alignments and the inference pipeline is quite complex.
To address these limitations, 1) we propose a sparse alignment mechanism to reduce the constraints
of predefined alignment-based methods while also reducing the difficulty of speech-text alignment
learning; 2) we introduce a frontend language model to simplify the inference and fine-tuning pipeline.
Additionally, we describe the CFG mechanism used in zero-shot TTS systems in Appendix B.

Accented TTS. While accented TTS is not yet mainstream in the field of speech synthesis, it
offers valuable potential for customized TTS services, by enhancing the expressiveness of speech
synthesis systems and improving listeners’ comprehension of speech content (Tan et al., 2021;
Melechovsky et al., 2022; Badlani et al., 2023; Zhou et al., 2024; Shah et al., 2024; Ma et al., 2023;
Inoue et al., 2024; Zhong et al., 2024). With the emergence of conversational AI systems, accented
TTS technology has even broader application scenarios. In this paper, we focus on a specific task
of accented TTS: adjusting the accent intensity of speakers to make them sound like native English
speakers or accented speakers who use English as a second language (Liu et al., 2024a). Unlike
previous work, our approach does not require paired data or accurate accent labels; instead, it allows
for flexible control over the accent intensity using the proposed multi-condition CFG mechanism.

TTS Frontend Systems. In traditional TTS systems, the frontend typically refers to text analysis
modules (Tan et al., 2021), such as text normalization (Sproat & Jaitly, 2016; Zhang et al., 2020)
and grapheme-to-phoneme conversion (Yao & Zweig, 2015; Park & Lee, 2020; Bernard & Titeux,
2021; Chen et al., 2022). With the emergence of zero-shot TTS, the frontend has taken on additional
responsibilities, including processing the prompt speech during the inference stage, which should
at least support automatic speech recognition (ASR). Moreover, some advanced non-autoregressive
models (Ju et al., 2024; Li et al., 2024; Lee et al., 2023; Matthew et al., 2023) require additional speech-
text aligners and duration predictors. These complex frontend modules impose significant limitations
on the efficiency of zero-shot TTS models. In this work, we unify these frontend components into a
single language model, thereby simplifying the overall pipeline.

3 METHOD

This section introduces S-DiT. To begin with, we describe the architecture design of S-DiT. Then,
we provide detailed explanations of the sparse alignment mechanism, the piecewise rectified flow
acceleration technique, and the multi-condition classifier-free guidance strategy. Finally, we outline
the unified frontend language model training framework and the overall system’s inference pipeline.
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Latent Diffusion Transformer

Phoneme Token

Latent Vector

VAE Encoder

Discriminator

Wave Decoder

T

T//8

(a) (b)

Wave DecoderMasked Vector

Frontend LM

Target Text Prompt Speech

VAE Encoder

Sparse
Aligner  

Latent with Anchor

Speech

Figure 1: (a) The speech compression model. (b) Overview of S-DiT. We insert the sparse alignment
anchors into the latent vector sequence to provide coarse alignment information. The transformer
blocks in S-DiT will automatically build fine-grained alignment paths.

3.1 ARCHITECTURE

Speech Compression. As shown in Figure 1 (a), given a speech spectrogram s ∈ RT×C , the VAE
encoder E encodes s into a latent vector z, and the wave decoder D reconstructs the waveform
x = D(z) = D(E(s)), where T is the time dimension and C is the frequency dimension. To reduce
the computational burden of the model and simplify speech-text alignment learning, the encoder
E downsamples the spectrogram by a factor of d = 8 in length. The encoder E is similar to the
one used in Rombach et al. (2022), and the decoder D is based on Kong et al. (2020). We also
adopt the multi-period discriminator (MPD), multi-scale discriminator (MSD), and multi-resolution
discriminator (MRD) (Kong et al., 2020; Jang et al., 2021) to model the high-frequency details in
waveforms, which ensure perceptually high-quality reconstructions. The training loss of the speech
compression model can be formulated as L = Lrec + LKL + LAdv, where Lrec = ∥s− ŝ∥2 is the
spectrogram reconstruction loss, LKL is the slight KL-penalty loss (Rombach et al., 2022), and LAdv

is the LSGAN-styled adversarial loss (Mao et al., 2017). After training, a one-second speech clip can
be encoded into 12.5 vector frames. For more details, please refer to Appendix A.1 and J.

Latent Diffusion Transformer with Masked Speech Modeling. The latent diffusion transformer
is used to predict speech that matches the style of the given speaker and the content of the provided
text. Given the random variables Z0 sampled from a standard Gaussian distribution π0 and Z1

sampled from the latent space given by the speech compression model with data density π1, we adopt
the rectified flow Liu et al. (2022) to implicitly learn the transport map T , which yields Z1 := T (Z0).
The rectified flow learns T by constructing the following ordinary differential equation (ODE):

dZt = v(Zt, t) dt, (1)

where t ∈ [0, 1] denotes time and v is the drift force. Equation 1 converts Z0 from π0 to Z1 from π1.
The drift force v drives the flow to follow the direction (Z1 − Z0). The latent diffusion transformer,
parameterized by θ, can be trained by estimating v(Zt, t) with vθ(Zt, t) through minimizing the least
squares loss with respect to the line directions (Z1 − Z0):

min
v

∫ 1

0

E
[
∥(Z1 − Z0)− v(Zt, t)∥2

]
dt. (2)

We use the standard transformer block from LLAMA (Dubey et al., 2024) as the basic structure for
S-DiT and adopt the Rotary Position Embedding (RoPE) (Su et al., 2024) as the positional embedding.
During training, we randomly divide the latent vector sequence into a prompt region zprompt and
a masked target region ztarget, with the proportion of zprompt being γ ∼ U(0.1, 0.9). We use vθ
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to predict the masked target vector ẑtarget conditioned on zprompt and the phoneme embedding p,
denoted as vθ(ẑtarget|zprompt, p). The loss is calculated using only the masked region ztarget. S-DiT
learns the average pronunciation from p and the specific characteristics such as timbre, accent, and
prosody of the corresponding speaker from zprompt.

3.2 SPARSE ALIGNMENT ENHANCED LATENT DIFFUSION TRANSFORMER (S-DIT)

In this subsection, we describe the sparse alignment strategy as the foundation of S-DiT, followed by
the piecewise rectified flow and multi-condition CFG strategies to further enhance S-DiT’s capacity.

Sparse Alignment Strategy. Let’s first analyze the reasons behind the characteristics of different
speech-text alignment modeling methods in depth. “Diffusion w/o PA” requires more parameters
for speech intelligibility due to the difficulty in end-to-end modeling of speech-text alignment non-
autoregressively. On the other hand, the use of predefined hard alignment paths limits the model’s
search space and increases the complexity of the pipeline. The characteristics of these systems moti-
vate us to design an approach that combines the advantages of both: we first provide a rough alignment
to S-DiT and then use attention mechanisms in Transformer blocks to construct the fine-grained im-
plicit alignment path. The visualizations of the implicit alignment paths are included in Appendix G.
In specific, denote the latent speech vector sequence as z = [z1, z2, · · · , zn], the phoneme sequence
as p = [p1, p2, · · · , pm], and the phoneme duration sequence as d = [d1, d2, · · · , dm], where n, m is
the length of the sequence. The length of the speech vector that corresponds to a phoneme pi is the
duration di. Given d = [2, 2, 3], the hard speech-text alignment path used by “Diffusion w/ PA” can
be denoted as a = [p1, p1, p2, p2, p3, p3, p3]. To construct the rough alignment ã, we randomly retain
only one anchor for each phoneme: ã = [M,p1, p2,M,M,M,P3], where M represents the mask
token. ã is downsampled to match the length of the latent sequence z. Then, we directly concatenate
the downsampled ã and z along the channel dimension. We also concatenate the phoneme embedding
p with z along the time dimension as the prefix information. The anchors in ã provide S-DiT with
approximate positional information for each phoneme, simplifying the model’s learning of speech-text
alignment. At the same time, the rough alignment information does not limit S-DiT’s search space
and also enables fine-grained control over each phoneme’s duration.

Piecewise Rectified Flow Acceleration. We adopt Piecewise Rectified Flow (PeRFlow) (Yan et al.,
2024) to distill the pretrained S-DiT model into a more efficient generator. Although our S-DiT is non-
autoregressive in terms of the time dimension, it requires multiple iterations to solve the Flow ODE.
The number of iterations (i.e., number of function evaluations, NFE) has a great impact on inference
efficiency, especially when the model scales up further. Therefore, we adopt the PeRFlow technique
to further reduce NFE by segmenting the flow trajectories into multiple time windows. Applying
reflow operations within these shortened time intervals, PeRFlow eliminates the need to simulate the
full ODE trajectory for training data preparation, allowing it to be trained in real-time alongside large-
scale real data during the training process. Given number of windows K, we divide the time t ∈ [0, 1]
into K time windows {(tk−1, tk]}Kk=1. Then, we randomly sample k ∈ {1, · · · ,K} uniformly. We
use the startpoint of the sampled time window ztk−1

=
√
1− σ2(tk−1)z1 + σ(tk−1)ϵ to solve the

endpoint of the time window ẑtk = ϕθ(ztk−1
, tk−1, tk), where ϵ ∼ N (0, I) is the random noise, σ(t)

is the noise schedule, and ϕθ is the ODE solver of the teacher model. Since ztk−1
and ẑtk is available,

the student model θ̂ can be trained via the following objectives:

ℓ =

∥∥∥∥vθ̂(zt, t)− ẑtk − ztk−1

tk − tk−1

∥∥∥∥2

, (3)

where vθ̂ is the estimated drift force with parameter θ̂ and t is uniformly sampled from (tk−1, tk].
We provide details of PeRFlow training for S-DiT in Appendix C.

Multi-condition Classifier-Free Guidance (CFG). We employ classifier-free guidance ap-
proach (Ho & Salimans, 2022) to steer the model gθ’s output towards the conditional generation
gθ(zt, c) and away from the unconditional generation gθ(zt,∅):

ĝθ(zt, c) = gθ(zt,∅) + α · [gθ(zt, c)− gθ(zt,∅)] , (4)

where c denotes the conditional state, ∅ denotes the unconditional state, and α is the guidance scale
selected based on experimental results. Unlike standard classifier-free guidance, S-DiT’s conditional
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states c consist of two components: phoneme embeddings p and the speaker prompt zprompt. In
the experiments, as the text guidance scale increases, we observe that the pronunciation changes
according to the following pattern: 1) starting with improper pronunciation; 2) then shifting to
pronouncing with the current speaker’s accent; 3) and finally approaching the standard pronunciation
of the target language. The detailed experimental setup are described in Appendix M. This allows
us to use the text guidance scale αtxt to control the accent intensity. At the same time, the speaker
guidance scale αspk should be a relatively high value to ensure a high speaker similarity. Therefore,
we adopt the multi-condition classifier-free guidance technique to separately control αtxt and αspk:

ĝθ(zt, p, zprompt) =αspk [gθ(zt, p, zprompt)− gθ(zt, p,∅)] + αtxt [gθ(zt, p,∅)− gθ(zt,∅,∅)]

+ g(zt,∅,∅)
(5)

In training, we randomly drop condition zprompt with a probability of pspk = 0.10. Only when
zprompt is dropped, we randomly drop condition p with a probability of 50%. Therefore, our model
is able to handle all three types of conditional inputs described in Equation 5. We select the guidance
scale αspk and αtxt based on experimental results.

3.3 FRONTEND LANGUAGE MODEL (F-LM)

Speech 
Vector

TTS Frontend LM

Speech 
Encoder

Speech X

Cut

Tokenizer

Text Duration

BPE Phoneme / Timestamp Tokens

ASR Align DP G2P

Figure 2: The frontend language model, which
first solves the ASR task, followed by addressing
the aligning, DP, and G2P tasks simultaneously.

Training Strategy. Our frontend language
model transforms the ASR, speech-text align-
ment, G2P, and duration prediction processes
required in the TTS pipeline into a unified se-
quence modeling task. Denote the phoneme
embedding sequence as p = [p1, p2, · · · , pm],
the duration embedding sequence as d =
[d1, d2, · · · , dm], the speech vector sequence
as a = [a1, a2, · · · , al], and the byte-pair en-
coding (BPE) sequence of the transcription as
t = [t1, t2, · · · , tm̂]. For duration representation
d, to inform the model of how long it has been
speaking during inference, we use the absolute
timestamp of each phoneme on the time axis to
construct the “phoneme/timestamp tokens” se-
quence in Figure 2, which can be represented
as p̂t = [p1, d1, p2, d1 + d2, · · · , pm,

∑m
i=1 di].

In training, we first concatenate the speech vector sequence a and the BPE sequence t and the
phoneme/timestamp sequence p̂t as the input h to the decoder-only LM, which can be represented as
h = [a1, · · · , al, t1, · · · , tm̂, p1, d1, · · · , pm,

∑m
i=1 di]. Then, we added special tokens to indicate

the start and end of sequences t and p̂t. Notably, as shown in Figure 2, we randomly discard the latter
part of the speech vector sequence. This allows the phoneme/timestamp sequence corresponding to
the discarded region to be used in training F-LM for duration prediction (DP) and G2P. Meanwhile,
the BPE sequence and the phoneme/timestamp sequence from the non-discarded region can be used to
train F-LM for ASR and speech-text aligning, respectively. Details about F-LM’s training procedure
are included in Appendix A.1 and Appendix E. Our experiments in Section 4.4 demonstrate that
large-scale unified training can improve the robustness and generalization of frontend models.

Inference Pipeline. During inference, we can enjoy a highly simplified pipeline with F-LM. As
shown in Figure 1, starting with a speech prompt, we first extract its text through ASR. We then
append the target text to the ASR result and finally obtain the predicted phonemes and durations for
the target text. The entire pipeline can be completed in a single autoregressive process, making it
highly efficient. Moreover, in Section 4.4, F-LM achieves superior and generalizable performance
than that of individual models, demonstrating the effectiveness of the proposed unified training.

4 EXPERIMENTS

In this subsection, we describe the datasets, training, inference, and evaluation metrics. We provide
the model configuration and detailed hyper-parameter setting in Appendix A.1.
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4.1 EXPERIMENTAL SETUP

Datasets. We train S-DiT and F-LM on the LibriLight (Kahn et al., 2020) dataset, which contains
60k hours of unlabeled speech derived from LibriVox audiobooks. All speech data are sampled
at 16KHz. We transcribe the speeches using an internal ASR system and extract the predefined
speech-text alignment using the external alignment tool (McAuliffe et al., 2017). We utilize two
benchmark datasets: 1) the librispeech (Panayotov et al., 2015) test-clean set following (Shen et al.,
2023; Ju et al., 2024) for zero-shot TTS and F-LM’s evaluation; 2) the L2-arctic dataset (Zhao et al.,
2018) following (Melechovsky et al., 2022; Liu et al., 2024a) for accented TTS evaluation.

Training and Inference. We train the speech compression model, S-DiT, and F-LM on 8 NVIDIA
A100 GPUs. The batch sizes, optimizer settings, and learning rate schedules are described in
Appendix A.1. It takes 2M steps for the speech compression model’s training and 1M steps for S-DiT
and F-LM’s training until convergence. The pre-training of S-DiT requires 800k steps and PeRFlow
distillation requires 200k steps. During the inference stage, given the prompt speech and target text,
F-LM will process all the information required by S-DiT. Then, S-DiT synthesizes the target latent
vector, which is converted into the target waveform by the wav decoder. The entire inference pipeline
is simple and efficient.

Objective Metrics. 1) For zero-shot TTS, we evaluate speech intelligibility using the word error
rate (WER) and speaker similarity using SIM-O (Ju et al., 2024). To measure SIM-O, we utilize
the WavLM-TDCNN speaker embedding model1 to calculate the cosine similarity score between
the generated samples and the prompt. As SIM-R (Matthew et al., 2023) is not comparable across
baselines using different acoustic tokenizers, we recommend focusing on SIM-O in our experiments.
The similarity score is in the range of [−1, 1], where a higher value indicates greater similarity. In
terms of WER, we use the publicly available HuBERT-Large model (Hsu et al., 2021), fine-tuned on
the 960-hour LibriSpeech training set, to transcribe the generated speech. The WER is calculated by
comparing the transcribed text to the original target text. All samples from the test set are used for
the objective evaluation; 2) For accented TTS, we evaluate the Mel Cepstral Distortion (MCD) in dB
level and the moments (standard deviation (σ), skewness (γ) and kurtosis (κ)) (Andreeva et al., 2014;
Niebuhr & Skarnitzl, 2019) of the pitch distribution to evaluate whether the model accurately captures
accent variance; 3) For F-LM, we evaluate the WER for ASR models, the alignment boundary error
(AE) for speech-text aligners, and the duration error (DE) for duration predictors.

Subjective Metrics. We conduct the MOS (mean opinion score) evaluation on the test set to
measure the audio naturalness via Amazon Mechanical Turk. We keep the text content and prompt
speech consistent among different models to exclude other interference factors. We randomly choose
40 samples from the test set of each dataset for the subjective evaluation, and each audio is listened to
by at least 10 testers. We analyze the MOS in three aspects: CMOS (quality, clarity, naturalness, and
high-frequency details), SMOS (speaker similarity in terms of timbre reconstruction and prosodic
pattern), and ASMOS (accent similarity). We tell the testers to focus on one corresponding aspect
and ignore the other aspect when scoring.

4.2 RESULTS OF ZERO-SHOT SPEECH SYNTHESIS

Evaluation Baselines. We compare the zero-shot speech synthesis performance of S-DiT with 11
strong baselines, including: 1) VALL-E (Wang et al., 2023); 2) VALL-E 2 (Chen et al., 2024a); 3)
VoiceBox (Matthew et al., 2023); 4) StyleTTS 2 (Li et al., 2024); 5) HierSpeech++ (Lee et al., 2023);
6) UniAudio (Yang et al., 2023b); 7) Mega-TTS 2 (Jiang et al., 2024); 8) ARDiT (Liu et al., 2024b);
9) DiTTo-TTS (Lee et al., 2024a); 10) NaturalSpeech 3 (Ju et al., 2024); 11) CosyVoice (Du et al.,
2024); Explanation and details of the selected baseline systems are provided in Appendix A.4.

Analysis As shown in Table 2, we can see that 1) S-DiT achieves state-of-the-art SIM-O, SMOS, and
WER scores, comparable to NaturalSpeech 3 (the “Diffusion w/ PA” counterpart), and significantly
surpasses other “Diffusion w/o PA” models. The improved SIM-O and SMOS suggest that the
proposed sparse alignment effectively simplifies the text-to-speech mapping challenge like predefined

1https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_
verification
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Table 2: Zero-shot TTS results on LibriSpeech test-clean set. ∗ means the results are obtained
from the paper. † means the results are obtained from the authors. #Params denotes the number of
parameters. RTF denotes the real-time factor.

Model #Params Training Data SIM-O↑ SIM-R↑ WER↓ CMOS↑ SMOS↑ RTF↓
GT - - 0.68 - 1.94% +0.12 3.92 -

VALL-E∗ 0.4B LibriLight - 0.58 5.90% - - 4.520
VALL-E 2∗ 0.4B LibriHeavy 0.64 0.68 2.44% - - -
VoiceBox† 0.4B Collected (60kh) 0.64 0.67 2.03% -0.20 3.81 0.340
StyleTTS 2 0.2B Collected (0.6kh) 0.38 - 2.49% -0.26 3.31 0.045
HierSpeech++ 0.1B Collected (2.8kh) 0.51 - 6.33% -0.37 3.58 0.047
UniAudio 1.0B Mixed (165kh) 0.57 0.68 2.49% -0.24 3.85 3.586
Mega-TTS 2† 0.4B LibriLight 0.53 0.59 2.32% -0.21 3.72 0.368
ARDiT† 0.4B LibriTTS 0.56 - 2.38% -0.22 3.70 1.061
DiTTo-TTS∗ 0.7B Collected (55kh) 0.62 0.65 2.56% - - -
NaturalSpeech 3† 0.5B LibriLight 0.67 0.76 1.81% -0.10 3.95 0.296
CosyVoice 0.4B Collected (172kh) 0.62 - 2.24% -0.18 3.93 1.375

S-DiT 0.5B LibriLight 0.67 0.70 1.84% 0.00 3.94 0.208
S-DiT-accelerated 0.5B LibriLight 0.65 0.69 1.92% -0.04 3.91 0.160

Table 3: The objective and subjective experimental results for accented TTS. MCD (dB) denotes the
Mel Cepstral Distortion at the dB level. σ, γ, and κ are the standard deviation, skewness, and kurtosis
of the pitch distribution.

Model MCD (dB) ↓ σ ↑ γ ↓ κ ↓ ASMOS ↑ CMOS ↑ SMOS ↑
GT - 45.1 0.591 0.783 4.03 +0.09 3.95
CTA-TTS 5.98 41.1 0.602 0.799 3.72 -0.60 3.64
S-DiT 5.69 42.3 0.601 0.790 3.84 +0.00 3.89

forced duration information, allowing the model to focus more on learning timbre information.
And the improved WER indicates that S-DiT also enjoys strong robustness; 2) S-DiT significantly
surpasses all baselines in terms of CMOS, demonstrating the effectiveness of the proposed sparse
alignment strategy; 3) After the PeRFlow acceleration, the student model of S-DiT shows on par
quality with the teacher model and enjoys extremely fast inference speed. For a fair comparison,
we ignore the time taken by the frontend processing for each model when calculating the RTF in
Table 2. Even when taking the frontend processing time into account, the RTF of our pipeline is only
0.432, which is highly efficient. Detailed average frontend processing time comparisons are included
in Appendix K. The duration controllability of S-DiT is verified in Appendix F. We also validate
whether the prosodic naturalness is enhanced by sparse alignments in Appendix N.

4.3 RESULTS OF ACCENTED TTS

standard accented

(a) CTA-TTS
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(b) S-DiT
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0.96 0.07
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Figure 3: The confusion matrices between the per-
ceived and intended accent categories of synthesized
speech. The X-axis and Y-axis represent the intended
and perceived categories, respectively.

In this subsection, we evaluate the accented
TTS performance of our model on the L2-
ARCTIC dataset (Zhao et al., 2018). This
corpus includes recordings from non-native
speakers of English whose first languages
are Hindi, Korean, etc. In this experiment,
we focus on verifying whether our model
and baseline can synthesize natural speech
with different accent types (standard English
or English with specific accents) while main-
taining consistent vocal timbre. We com-
pare our S-DiT model with CTA-TTS (Liu
et al., 2024a). More details of the baseline
model are provided in Appendix A.5. 1)
First, we evaluate whether the models can
synthesize high-quality speeches with ac-
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Table 4: ASR accuracy comparison. We re-
port the WER (%) metric on the LibriSpeech
test-clean and test-other set.

ASR Model test-clean test-other

Mini-Omni 4.5 9.7
Whisper-small 3.4 7.6
F-LM 4.2 8.3

Table 5: Duration accuracy comparison. ∆p

and ∆s denote the absolute boundary differ-
ence of phonemes and sentences, respectively.

Duration Model ∆p (ms) ∆s (s)

NAR-based 28.52 ± 0.75 2.25 ± 0.68
AR-based 21.47 ± 0.91 1.81 ± 0.77
F-LM 18.80 ± 0.94 1.59 ± 0.74

cents. As shown in Table 3, our S-DiT model significantly outperforms the CTA-TTS baseline
in terms of the subjective accent similarity MOS core, the MCD (dB) values, and the statistical
moments (σ, γ, and κ) of pitch distributions. These results demonstrate the superior accent learning
capability of S-DiT compared to the baseline system. Besides, the S-DiT model achieves higher
CMOS and SMOS scores compared to CTA-TTS, indicating a significant improvement in speech
quality and speaker similarity; 2) Secondly, we evaluate whether the models can accurately control
the accent types of the generated speeches. We follow CTA-TTS to conduct the intensity classification
experiment (Liu et al., 2024a). At run-time, we generate speeches with two accent types, and the lis-
teners are instructed to classify the perceived accent categories, including “standard” and “accented”.
Figure 3 shows that our S-DiT significantly surpasses CTA-TTS in terms of accent controllability.

4.4 RESULTS OF F-LM

Table 6: Results for speech-text align-
ing. ∆p means the absolute alignment
boundary difference of phonemes.

Aligner Model ∆p (ms)

MFA 13.42 ± 0.73
F-LM 8.79 ± 0.59

In this subsection, we evaluate the performance of our fron-
tend language model (F-LM) on the LibriSpeech test-clean
set. In this experiment, we evaluate the performance of F-LM
on three important front-end tasks during the TTS inference
process: ASR, speech-text aligning, and duration prediction.
1) For ASR, we compared our model with Mini-Omni (Xie
& Wu, 2024), an end-to-end speech understanding and syn-
thesis system based on the language model, and Whisper-
small (Radford et al., 2023), an advanced expert ASR system
that has the similar model size as F-LM. From Table 4, it can
be seen that F-LM has comparable WER scores with the strong baseline systems, demonstrating
its speech understanding capacity; 2) For speech-text aligning, we train a Montreal Forced Aligner
(MFA) (McAuliffe et al., 2017) on the LibriLight dataset as the baseline. Based on Table 6, the
speech-text alignment accuracy of F-LM is significantly higher than that of MFA; 3) For duration
prediction, we train a non-autoregressive (NAR) duration predictor following Ren et al. (2020) and
an auto-regressive (AR) duration predictor following Jiang et al. (2024) as the baselines. In the
experiments, we keep the parameter size of the baselines consistent with that of F-LM to ensure a
fair comparison. Table 5 demonstrates that F-LM is superior to NAR-based and AR-based methods
in terms of duration prediction accuracy, due to F-LM’s large-scale unified training pipeline; For
additional experimental results, please refer to Appendix E.

4.5 ABLATION STUDIES

Table 7: Ablation studies of alignment strategies and CFG
mechanisms on the LibriSpeech test-clean set.

Setting SIM-O↑ WER↓ CMOS↑ SMOS↑
Ours 0.67 1.84% 0.00 3.94

w/ Forced Alignment 0.67 1.82% -0.17 3.94
w/o Alignment 0.61 2.55% -0.12 3.88

w/ Standard CFG 0.65 1.80% -0.02 3.89
w/o CFG 0.45 6.93% -0.56 3.35

Alignments and CFG We test
the following four settings: 1) w/
Forced Alignment, which replaces
the sparse alignment in S-DiT with
forced alignment used in (Matthew
et al., 2023; Shen et al., 2023); 2)
w/o Alignment, we do not use the
predefined alignments and model-
ing the duration information im-
plicitly; 3) w/ Standard CFG, we
use the standard CFG following
the common practice in Diffusion-
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Figure 4: The visualization for effects of different speech-text alignment strategies on S-DiT training.

based TTS; 4) w/o CFG, we do not use the CFG mechanism. All tests follow the experimental setup
described in Section 4.2. The results are shown in Table 7. For settings 1) and 2), it can be observed
that both forced alignment and sparse alignment can enhance the performance of speech synthesis
models. However, compared to forced alignment, sparse alignment does not constrain the model’s
search space, leading to a higher CMOS score. We also evaluate the effects of sparse alignment on
training efficiency by visualizing the WER and SIM curve in S-DiT’s training process in Figure 4. It
can be seen that the training efficiency of “sparse alignment” is similar to “w/ forced alignment” and
both of them surpass “w/o alignment”, indicating that both sparse alignment and forced alignment
can reduce the training difficulty. Moreover, we visualize the attention score matrices from different
transformer layers in S-DiT in Appendix G, leading to some interesting observations. For setting 3),
compared with the standard CFG, our multi-condition CFG performs slightly better as it allows for
flexible control over the weights between the text prompt and the speaker prompt. Setting 4) proves
that the CFG mechanism is crucial for S-DiT.

Table 8: Results of data and
model scaling experiments.

Setting SIM-O↑ WER↓
2kh 0.52 4.27%
40kh 0.63 2.98%
200kh 0.65 2.34%
600kh 0.66 2.10%

0.5B 0.66 2.10%
1.5B 0.72 1.98%
7.0B 0.74 1.90%

Data and Model Scaling We evaluate the effectiveness of data and
model scaling on the proposed S-DiT model. In this experiment, we
train models with 0.5B parameters on multilingual internal datasets
with data sizes of 2kh, 40kh, 200kh, and 600kh, respectively. We
also train models with 0.5B, 1.5B, and 7.0B parameters on the
600kh dataset. We evaluate the zero-shot TTS performance in terms
of speaker similarity (Sim-O) and speech intelligibility (WER) on
an internal test set consisting of 400 speech samples from various
sources. Based on Table 8, we conclude that: 1) as the data size
increases from 2kh to 600kh, both the model’s speaker similarity
and speech intelligibility improve consistently, demonstrating strong
data scalability of our model; 2) as the model size scales from 0.5B
to 7.0B parameters, SIM-O improves by 12.1% and WER decreases
by 9.52%, validating the model scalability of S-DiT. Additionally,
we find that increasing the model parameters enhances its para-linguistic capabilities, with specific
audio examples available on the demo page. The detailed descriptions of the training corpus, test set,
and visualizations are included in Appendix D.

5 CONCLUSIONS

In this paper, we introduce S-DiT, a zero-shot TTS framework that 1) leverages novel sparse alignment
boundaries to ease the difficulty of alignment learning while retaining the naturalness of the generated
speeches, and 2) incorporates a unified front-end language model (F-LM) to streamline the overall
pipeline. These strategies allow our approach to combine the strengths of both “Diffusion w/o PA”
and “Diffusion w/ PA” methods. Additionally, we employ the PeRFlow technique to further accelerate
the generation process and design a multi-condition classifier-free guidance strategy to offer more
flexible control over accents. Experimental results show that S-DiT achieves state-of-the-art zero-shot
TTS speech quality while maintaining a more efficient pipeline. Due to space constraints, further
discussions are provided in the appendix.
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6 ETHICS STATEMENT

The proposed model, S-DiT, is designed to advance zero-shot TTS technologies, making it easier for
users to generate personalized speech. When used responsibly and legally, this technique can enhance
applications such as movies, games, podcasts, and various other services, contributing to increasing
convenience in everyday life. However, we acknowledge the potential risks of misuse, such as voice
cloning for malicious purposes. To mitigate this risk, solutions like building a corresponding deepfake
detection model will be considered. Additionally, we plan to incorporate watermarks and verification
methods for synthetic audio to ensure ethical use in real-world applications. Restrictions will also
be included in the licensing of our project to further prevent misuse. By addressing these ethical
concerns, we aim to contribute to the development of responsible and beneficial AI technologies,
while remaining conscious of the potential risks and societal impact.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of the experiments and results presented in
this paper: 1) the architecture and algorithm of the S-DiT model are described in Section 3 and and
relevant hyperparameters are fully described in Appendix A.1; 2) The evaluation metrics, including
WER, SIM-O, MCD (dB), the moments of the pitch distribution, alignment error, CMOS, SMOS,
and ASMOS, are described in detail in Section 4.1; 3) For most of the key experiments, we utilize
publicly available datasets such as LibriLight, LibriSpeech, and L2Arctic. The selection of the test
sets is identical to that used in previous zero-shot TTS research. However, as the publicly available
datasets are insufficient for our data scaling experiments, we construct a larger dataset, which is
described in detail in Appendix D; 4) To ensure reproducibility of the results, we have carefully set
random seeds in our experiments and the random seeds are provided in Appendix A.2. All objective
results reported are based on the average performance across multiple runs.

REFERENCES

Keyu An, Qian Chen, Chong Deng, Zhihao Du, Changfeng Gao, Zhifu Gao, Yue Gu, Ting He,
Hangrui Hu, Kai Hu, et al. Funaudiollm: Voice understanding and generation foundation models
for natural interaction between humans and llms. arXiv preprint arXiv:2407.04051, 2024.

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
Lelai Deng, Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile speech
generation models. arXiv preprint arXiv:2406.02430, 2024.

Bistra Andreeva, Grażyna Demenko, Bernd Möbius, Frank Zimmerer, Jeanin Jügler, and Magdalena
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A DETAILED EXPERIMENTAL SETTINGS

A.1 MODEL CONFIGURATION

Our model comprises a speech compression VAE, an S-DiT, and an F-LM.

• The speech compression VAE consists of a VAE encoder, a wave decoder, and discrimina-
tors; The VAE encoder follows the architecture used in Stable Diffusion (Rombach et al.,
2022) but we replace the 2D convolution layers with 1D convolution layers and remove
the attention layers to accommodate data of arbitrary lengths and to improve efficiency.
The channel size is 256 with channel multipliers [1, 2, 4, 8]. The wave decoder consists
of a stable diffusion decoder and a Hifi-GAN decoder (Kong et al., 2020). The stable
diffusion decoder shares the same hyperparameter settings as the encoder, which is used for
upsampling the latent vectors. The latent channel size is set to 16. The weight of the KL
loss is set to 1 × 10−2, which only imposes a slight KL penalty on the learned latent. In
training, we use batches of fixed length, consisting of 800 mel-spectrogram frames, with
a batch size set to 50 for each GPU. We use the Adam optimizer with a learning rate of
1× 10−4, β1 = 0.9, β2 = 0.999, and 10K warmup steps.

• The S-DiT model use the standard transformer block from LLAMA (Dubey et al., 2024) as
the basic structure, which comprises a 24-layer Transformer with 16 attention heads and
1024 embedding dimensions. It contains 339M parameters in total. We adopt the Rotary
Position Embedding (RoPE) (Su et al., 2024) as the positional embedding following the
common practice in LLAMA implementations. For simplicity, we do not use the phoneme
encoder and style encoder like previous works. We only use a linear projection layer to
transform these features to the same dimension. During training, we use 8 A100 80GB
GPUs with a batch size of 12K latent frames per GPU for 1M steps. We use the Adam
optimizer with a learning rate of 5× 10−5, β1 = 0.9, β2 = 0.999, and 10K warmup steps.
In zero-shot TTS experiments, we set the text guidance scale αtxt and the speaker guidance
scale αspk to 2.5 and 3.5, respectively. In accented TTS experiments, we set αspk = 6.5,
αtxt = 1.5 to generate the accented speech and set αspk = 2.0, αtxt = 5.0 to generate the
speech with standard English.

• The F-LM use the same architecture as S-DiT. F-LM use an 8-layer Transformer with 16
attention heads and 1024 embedding dimensions, which contains 124M parameters in total.
The audio encoder of F-LM follows the architecture of Whisper-small encoder (Radford
et al., 2023). We use the tokenizers from Yi-1.52 to obtain the BPE tokens from texts. To
improve robustness, we add SpecAugment (Park et al., 2019) in the training process. We
use the Adam optimizer with a learning rate of 1× 10−4, β1 = 0.9, β2 = 0.999, and 10K
warmup steps.

A.2 RANDOM SEEDS

We ran objective experiments 10 times with 10 different random seeds and obtained the averaged
results. The chosen random seeds are [4475, 5949, 6828, 6744, 3954, 3962, 6837, 1237, 3824, 3163].

A.3 SAMPLING STRATEGY

For S-DiT, we applied the Euler sampler with a fixed step size following the common practice in
flow ODE sampling. We use 25 and 8 sampling steps for S-DiT and S-DiT-accelerated, respectively.
For F-LM, when transcribing the prompt speech, we use beam search with 5 beams using the log
probability as the score function to reduce repetition looping following Radford et al. (2023). For
G2P conversion and speech-text aligning, we use greedy decoding with top-1 sampling. For duration
prediction, we use top-50 sampling to enhance the output diversity.

A.4 DETAILS ABOUT ZERO-SHOT TTS BASELINES

In this subsection, we provide the details about the baselines in our zero-shot TTS experiments:

2https://github.com/01-ai/Yi
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• VALL-E (Wang et al., 2023) regard TTS as a conditional language modeling task and use
an autoregressive and an additional non-autoregressive model for discrete token generation.

• VALL-E 2 (Chen et al., 2024a), based on VALL-E, introduces Repetition Aware Sampling
to stabilize the decoding process and proposes the Grouped Code Modeling to effectively
address the challenges of long sequence modeling.

• VoiceBox (Matthew et al., 2023) is a non-autoregressive flow-matching model designed to
infill mel-spectrograms based on provided speech context and text. We obtained the samples
by contacting the authors.

• StyleTTS 2 (Li et al., 2024) models styles as a latent random variable through diffusion
models to generate the most suitable style for the text and employ large pre-trained speech
language models as discriminators with novel differentiable duration modeling for end-to-
end training. We use the official code and pretrained weights3.

• HierSpeech++ (Lee et al., 2023) designs a hierarchical speech synthesis frameworks that
significantly improve the robustness and expressiveness of the synthetic speech. We use the
official code and pretrained weights4. We do not use its speech super-resolution model for
fair comparison.

• UniAudio (Yang et al., 2023b) utilizes a multi-scale Transformer model to handle the
overly long sequences caused by the residual vector quantization-based neural codec in
tokenization. We obtained the samples by contacting the authors.

• Mega-TTS 2 (Jiang et al., 2024) designs an acoustic autoencoder that separately encodes
the prosody and timbre information into the compressed latent space and proposes a multi-
reference timbre encoder and a prosody latent language model to extract useful information
from multi-sentence prompts. We obtained the samples by contacting the authors.

• ARDiT (Liu et al., 2024b) proposes to encode audio as vector sequences in continuous space
and autoregressively generate these sequences using a decoder-only diffusion transformer
(DiT). We obtained the samples by contacting the authors.

• DiTTo-TTS (Lee et al., 2024a) addresses the challenge of text-speech alignment via cross-
attention mechanisms with the prediction of the total length of speech representations. We
directly obtain the results of objective evaluations from their paper.

• NaturalSpeech 3 (Ju et al., 2024) designs a neural codec with factorized vector quantization
(FVQ) to disentangle speech waveform into subspaces of content, prosody, timbre, and
acoustic details and propose a factorized diffusion model to generate attributes in each
subspace following its corresponding prompt. We obtained the samples by contacting the
authors.

• CosyVoice (Du et al., 2024) utilizes an LLM for text-to-token generation and a conditional
flow matching model for token-to-speech synthesis. We use the official code and the model
snapshot named “CosyVoice-300M” in our experiments5.

The evaluation is conducted on a server with 1 NVIDIA V100 GPU and batch size 1. RTF denotes
the real-time factor, i.e., the seconds required for the system (together with the vocoder) to synthesize
one-second audio.

A.5 DETAILS ABOUT THE ACCENTED TTS BASELINE

CTA-TTS (Liu et al., 2024a) is a TTS framework that uses a phoneme recognition model to quantify
the accent intensity in phoneme level for accent intensity control. CTA-TTS first trains the phoneme
recognition model on the standard pronunciation LibriSpeech dataset, and then uses the output
probability distribution of the model to assess the accent intensity and create accent labels on the
accented L2Arctic dataset. These labels were input into the TTS model to enable control over accent
intensity.

3https://github.com/yl4579/StyleTTS2
4https://github.com/sh-lee-prml/HierSpeechpp
5https://github.com/FunAudioLLM/CosyVoice
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Systems like CTA-TTS require precise accent annotations during training, so we trained them on the
L2-ARCTIC dataset. However, our model does not require accent annotations and learns different
accent patterns from large-scale data, using only the multi-condition CFG mechanism to achieve
accent intensity control. Therefore, we directly compare the zero-shot results of our model with the
baselines, which is a more challenging task.

A.6 DETAILS IN SUBJECTIVE EVALUATIONS

We conduct evaluations of audio quality, speaker similarity, and accent similarity on Amazon
Mechanical Turk (MTurk). We inform the participants that the data will be utilized for scientific
research purposes. For each dataset, 40 samples are randomly selected from the test set, and the TTS
systems are then used to generate corresponding audio samples. Each audio sample is listened to by a
minimum of 10 listeners. For CMOS, following the approach of Loizou (2011), listeners are asked to
compare pairs of audio generated by systems A and B and indicate their preference between the two.
They are then asked to choose one of the following scores: 0 indicating no difference, 1 indicating a
slight difference, 2 indicating a significant difference and 3 indicating a very large difference. We
instruct listeners to “Please focus on speech quality, particularly in terms of clarity, naturalness, and
high-frequency details, while disregarding other factors”. For SMOS and ASMOS, each participant
is instructed to rate the sentence on a 1-5 Likert scale based on their subjective judgment. For speaker
similarity evaluations (SMOS), we instruct listeners to “Please focus solely on the timbre and prosodic
similarity between the reference speech and the generated speech, while disregarding differences in
content, grammar, audio quality, and other factors”. For accent similarity evaluations (ASMOS), we
instruct listeners to “Please focus solely on the accent similarity between the ground-truth speech
and the generated speech, while disregarding other factors”. The screenshots of instructions for
testers are shown in Figure 5. Additionally, we insert audio samples with known quality levels (e.g.,
reference recordings with no artifacts or intentionally corrupted audio with noticeable distortions)
into the evaluation set to verify whether evaluators are attentive and professional. We also randomly
repeat some audio clips in the evaluation set to check whether evaluators provide consistent ratings
for the same sample. If large deviations in scores (larger than 1.0) for repeated clips occurs, we will
select a new rater to evaluate this audio clip. We paid $8 to participants hourly and totally spent about
$500 on participant compensation.

A.7 DETAILS IN OBJECTIVE EVALUATIONS

In zero-shot TTS experiments, we carefully follow the experimental setup of NaturalSpeech 3 (Ju
et al., 2024) to ensure fair comparisons. The LibriSpeech test-clean set contains 40 distinct speakers
and 5.4 hours of speech. We randomly select one sentence for each speaker for LibriSpeech test-clean
benchmark. To construct the prompt-target pairs, we randomly extract 3-second clips as prompts
from the same speaker’s speech.

However, 40 samples may not be sufficient enough to determine the actual SIM-O and WER of
the model. Therefore, we also conduct experiments on the LibriSpeech test-clean 2.2-hour subset
(following the setting in VALL-E 2 and Voicebox), the results are shown in the following Table.

Table 9: Comparisons on the LibriSpeech test-clean 2.2-hour subset.

Model - with Longer Samples WER↓ SIM-O↑
VALL-E 2 2.44% 0.643
MELLE 2.10% 0.625
DiTTo-TTS 2.56% 0.627
Voicebox 1.9% 0.662
S-DiT 1.87% 0.697

B CLASSIFIER-FREE GUIDANCE USED IN ZERO-SHOT TTS

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) is a technique that balances sample fidelity
and mode coverage in diffusion models by combining the score estimates from both a conditional
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(a) Screenshot of CMOS testing.

(b) Screenshot of SMOS testing.

(c) Screenshot of ASMOS testing.

Figure 5: Screenshots of subjective evaluations.

and an unconditional model. The unconditional model is trained alongside the conditional model by
randomly omitting the conditioning variable c with a certain probability, allowing the same model to
provide score estimates for both p(x) and p(x|c). In large-scale zero-shot TTS, VoiceBox (Matthew
et al., 2023) and NaturalSpeech 2 (Shen et al., 2023) achieve CFG mechanism by dropping the
text and prompt speech features. However, these works overlook that text and timbre should be
controlled separately. Inspired by VoiceLDM (Lee et al., 2024b) that introduces separate control
of environmental conditions and speech contents, a concurrent work (Yang et al., 2024e) proposes
separately controlling the speaker fidelity and text intelligibility. However, this work is limited to
improving the audio quality of TTS and does not explore the impact of CFG on accent.

C DETAILS OF PERFLOW TRAINING PROCEDURE

Once the pretrained ODE solver of the teacher model ϕθ is available, we perform the PeRFlow
technique to train an accelerated solver in real time. When training, we only consider the shortened
segments of the ODE trajectories, reducing the computational load of inference for the teacher model
at each training step, and accelerating the training process.
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At each training step, given a data sample z1 and a sample z0 drawn from the source distribution (in
this case, z0 ∼ N (0, I), i.e., Gaussian distribution), we randomly select a time window (tk−1, tk] and
compute the standpoint of the segmented probability path ztk−1

=
√
1− σ2(tk−1)z1 + σ(tk−1)z0,

where K is a hyperparameter indicating the total number of segments, k ∈ {1, · · · ,K}, tk = k/K,
and σ(t) is the noise schedule. The teacher solver only needs to infer the endpoint of this segmented
path, ẑtk = ϕθ(ztk−1

, tk−1, tk), with a remarkably smaller number of iterations T̂ , comparing to that
of a full trajectory, T . Finally, the student model is optimized on the segmented trajectory from ztk−1

to ẑtk . We set T to 25 and T̂ to 8, achieving a non-negligible acceleration of the training process.
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Figure 6: Data scaling results.
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Figure 7: Model scaling results.

D DETAILS ABOUT DATA AND MODEL SCALING EXPERIMENTS

We visualize the experimental results of data and model scaling in Figure 6 and Figure 7. The details
are as follows:

Training Corpus. The data/model scalability is crucial for practical TTS systems. To evaluate the
scalability of S-DiT in Section 4.5, we construct a 600kh internal multilingual training corpus compris-
ing both English and Chinese speech. Most of the audiobook recordings are crawled from YouTube
and online podcasts like novelfm6. We also include the academic datasets like LibriLight (Kahn et al.,
2020), WenetSpeech (Zhang et al., 2022), and GigaSpeech (Chen et al., 2021). Since the crawled
corpus may contain unlabelled speeches. We transcribe them using an internal ASR model.

Test Set. Most prior studies of zero-shot TTS evaluate performances using the reading-style
LibriSpeech test set, which may be different from real-world speech generation scenarios. In
section 4.5, we evaluate our model using the test sets collected from various sources, including: 1)
CommonVoice (Ardila et al., 2019), a large voice corpus containing noisy speeches from various
scenarios; 2) RAVDESS (Livingstone & Russo, 2018), an emotional TTS dataset featuring 8 emotions
and 2 emotional intensity. We follow Ju et al. (2024) and use strong-intensity samples to validate the
model’s ability to handle emotional variance; 3) LibriTTS (Zen et al., 2019), a high-quality speech
corpus; 4) we collect samples from videos, movies, and animations to test whether our model can
simulate timbres with distinctly strong individual characteristics. The test set consists of 40 audio
samples extracted from each source.

Model Scaling. In Section 4.5, we scale up S-DiT from 0.5B to 7.0B following the hyper-parameter
settings in Qwen 2 (Yang et al., 2024a). In this experiment, we only increase the parameters of the
S-DiT model to verify its scalability. The parameters of the speech compression VAE remained
unchanged. In theory, expanding the parameters of both models could yield the optimal results, which
we leave for future work.

Speech-Text Alignment Labels for Large-Scale Data. Training an MFA model directly on a
600k-hour dataset is impractical. Therefore, we randomly sampled a 10k-hour subset from the dataset

6https://novelfm.changdunovel.com/

21

https://novelfm.changdunovel.com/


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

to train a robust MFA model, which is then used to align the full dataset. Since data processing
inherently requires some alignment model (such as an ASR model) for speech segmentation, using a
pretrained MFA model for alignment extraction does not limit the system’s data scalability.

E DETAILS ABOUT F-LM

Special Tokens We add special tokens <Begin of BPE> and <End of BPE> at the beginning and
end of the BPE sequence to indicate the start and end of the BPE sequence. We also add <EOS>
token to the phoneme/timestamp sequence to indicate the end of the sentence. In training, we add
special tokens <Full> or <Partial> to the input sequence depending on whether we discard parts of
the speech encoder output, respectively. Through this strategy, the model given the <Full> token is
constrained to generate only up to the text corresponding to the speech prompt, which is used by the
ASR process.

Training Loss We use the cross-entropy loss computed solely for the BPE and phoneme/timestamp
sequences as the training loss for F-LM. Initially, we train for 500k steps on the ASR task to ensure
F-LM’s speech understanding capability. After that, we conduct multi-task training for an additional
500k steps.

Speech-Text Alignment Labels Since MFA requires a significant amount of CPU power during the
alignment process, we are unable to obtain all the alignment labels for the entire LibriLight dataset at
once for training F-LM. We divided the LibriLight dataset into several 5k-hour subsets and used MFA
on each subset separately to obtain the alignment labels. As shown in Section 4.4, the alignment
accuracy of F-LM surpasses the teacher MFA model, demonstrating that the large-scale training and
unified multi-task training significantly improve the robustness and generalization of models.

Additional Experiment In this section, we evaluated the impact of the unified frontend language
model (F-LM) compared to the cascaded frontend model on the synthesized speeches. We introduce
a baseline frontend system composed of the Whisper-small, a grapheme-to-phoneme conversion
module, and an AR-based duration predictor. For this experiment, we use the 7.0B version of S-DiT
trained on the 600k-hour dataset. The results, shown in Table 10, indicate that the WER of F-LM is
lower than that of the baseline system, demonstrating that the unified system can effectively reduce
cascaded errors.

Table 10: Ablation studies of the unified frontend and the cascaded frontend model.

Frontend Systems SIM-O↑ WER↓ CMOS↑ SMOS↑
Cascaded 0.73 2.02% -0.06 4.14
F-LM 0.74 1.90% 0.00 4.15

F DURATION CONTROLLABILITY OF S-DIT

In this section, we aim to verify S-DiT’s duration control capabilities through case studies. We
randomly selected a speech prompt from the test set and used the sentence “Notably, raising questions
about both the size of the perimeter and efforts to sweep and secure.” as the target sentence to generate
speeches. In the generation process, we first control the sentence-level duration by multiplying the
time coordinates of the phoneme anchors described in Section 3.2 by a fixed value. As shown in
Figure 8, our S-DiT demonstrates good sentence-level duration control. Moreover, our S-DiT is also
capable of fine-grained phoneme-level duration control. As illustrated in Figure 9, we multiplied the
anchor coordinates of the phoneme within the red box by a fixed value while keeping the relative
positions of other phoneme anchors unchanged. The figure shows that our S-DiT also exhibits good
fine-grained phoneme-level duration controllability.
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Figure 8: Sentence-level duration control. Figure 9: Phoneme-level duration control.

G VISUALIZATION OF ATTENTION MATRICES

We visualize the attention matrices from all layers in the 1.4B S-DiT model, using 8 sampling steps.
From Figure 10, we observe: 1) within the same layer, despite different timesteps, the attention
matrices remain identical. In other words, the function of each layer stays consistent across timesteps;
2) the functions of the transformer layers can be categorized into three types. As shown in Figure 10
(a), the bottom layers handle text and audio feature extraction; in Figure 10 (b), the middle layers
focus on speech-text alignment; and in Figure 10 (c), the top layers refine the target latent features.

(a) Layer 8 with different timesteps.

(b) Layer 16 with different timesteps.

(c) Layer 27 with different timesteps.

Figure 10: Visualization of Attention Matrices from different layers in S-DiT.
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H ABOUT DIFFERENT LENGTHS OF CONTEXT

An imbalanced distribution of prompt and target lengths during training can lead to unstable generation
performance during inference. For example, if the majority of the sampled data during training
consists of 20-second targets, the generation performance for audio with a 40-second target will be
worse than that of 20-second targets in inference. To solve the imbalanced distribution issue, we
recommend using the following multi-sentence data sampling strategy: we concatenate all audio
recordings of the same speaker in the dataset in time order, and then randomly extract audio segments
of length t ∼ U(tmin, tmax) from the concatenated audio, where tmin is the minimum sampling
time and tmax is the maximum sampling time. Then, following Section 3.1, we randomly divide the
sampled sequence into a prompt region and a target region. Although we do not use this strategy in
our experiments in order to make a fair comparison with other methods, this strategy is effective in
practical scenarios.

I LIMITATIONS AND FUTURE WORKS

In this section, we discuss the limitations of the proposed method and outline potential strategies for
addressing them in future research.

• Language Coverage. Although our model currently supports both English and Chinese,
there are far more languages in the world. In particular, for some low-resource languages,
the performance of our model requires further validation. To address this, we plan to
incorporate additional training data from a wider range of languages and apply adaptation-
based techniques, such as LoRA tuning (Hu et al., 2021), to enhance speech quality for
low-resource languages.

• Function Coverage. We can make S-DiT more user-friendly by enabling it to generate
speech in various styles according to text descriptions through instruction-based fine-tuning.
We can further fine-tune S-DiT on the paralinguistic corpus, allowing it to generate speech
that is closer to a natural human style.

• Frontend Coverage. While our current F-LM supports four key tasks (ASR, MFA, duration
prediction, and G2P), there are additional tasks in the TTS data preprocessing pipeline, such
as speech enhancement, speaker diarization, and emotion classification, that remain to be
included. In the future, we aim to design a truly universal frontend language model capable
of efficiently handling all speech data processing tasks for TTS, thereby simplifying the
overall workflow.

J EVALUATION OF THE SPEECH COMPRESSION MODEL

In this section, we conduct evaluations of the speech compression model’s impact on the overall
system. First, we evaluate the reconstruction quality of the speech compression model, with re-
sults presented in Table 11. We report the objective metrics, including Perceptual Evaluation of
Speech Quality (PESQ), Virtual Speech Quality Objective Listener (ViSQOL), and Mel-Cepstral
Distortion (MCD). We select the following codec models as baselines: EnCodec (Défossez et al.,
2022), HiFi-Codec (Yang et al., 2023a), Descript-Audio-Codec (DAC) (Kumar et al., 2024), and
SoundStream (Zeghidour et al., 2021). To ensure fair comparisons under the 16kHz setting, we
reproduce the 5 kbps EnCodec model following the hyperparameter configuration of 5 kbps Encodec
reproduced in NaturalSpeech 3 (Ju et al., 2024). The results demonstrates that, despite applying an
additional 8x compression in the temporal dimension, our speech compression model’s performance
on various reconstruction metrics, such as PESQ and ViSQOL, remains close to that of the Encodec
model, due to the use of continuous representations and a slight KL-penalty loss during training.
Moreover, it even significantly outperforms all baseline models in the MCD metric.

Second, in terms of the zero-shot TTS performance resulting from each speech compression method,
we report the experimental results below. It can be seen that although the reconstruction quality of
DAC is better than our speech compression model, S-DiT outperforms “w/ DAC”, due to the fact that
the latent space of our speech compression model is more compact (only 1 layer with 8x time-axis
compression). This conclusion is also verified by a previous work, DiTTo-TTS (Lee et al., 2024a),
which shows compact target latents facilitate learning in diffusion models.
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Table 11: Comparison of the reconstruction quality. ⋆ denotes the reproduced results. Underline
means that results are infered from offical checkpoints. The sampling rate are set to 16 kHz.

Models Hop Size Latent Layer Type Bandwidth PESQ↑ ViSQOL↑ MCD↓
EnCodec⋆ 320 10 Discrete 5.0 kbps 3.10 4.27 3.10
HiFi-Codec 320 4 Discrete 2.0 kbps 3.17 4.19 3.05
DAC 320 9 Discrete 4.5 kbps 3.52 4.54 2.65
SoundStream⋆ 200 6 Discrete 4.8 kbps 3.01 4.16 3.36

Ours 200 (x8) 1 Continuous - 3.06 4.31 2.47

Table 12: Comparison of zero-shot TTS performance with different speech compression models.

Setting SIM-O↑ WER↓
Ours 0.67 1.84%

w/ Encodec 0.56 2.24%
w/ DAC 0.64 1.93%

K AVERAGE FRONTEND PROCESSING TIME COMPARISONS

To evaluate the efficiency gains achieved by our F-LM, we compare its processing time with that
of a traditional frontend pipeline, which is required by Diffusion w/ PA models like NaturalSpeech
3. The traditional pipeline consists of an ASR model (SenseVoice small (An et al., 2024)), a
phonemizer (Bernard & Titeux, 2021), a speech-text aligner (MFA), and an auto-regressive duration
predictor (Yang et al., 2024b; Jiang et al., 2024). Since F-LM decodes phoneme and duration tokens
simultaneously, we divide the decoding time equally into two parts to represent the time required for
each. We report the average processing time per speech clip based on the experiments in Section 4.2.
The results, shown in Table 13, indicate that our model achieves a 5.1x speed-up by significantly
reducing the computational time required by speech-text aligning. It is noteworthy that no additional
acceleration techniques are applied to F-LM in this experiment. In practical applications, since
the entire frontend pipeline is unified within a single language model, further acceleration can be
achieved through techniques like automatic mixed precision or leveraging the parallel capabilities of
GPUs.

Notably, alternatives like training a GPU-compatible aligner (e.g., MAS from Glow-TTS (Kim et al.,
2020)) or using a duration predictor to add alignments to ASR outputs (e.g., WhisperX (Bain et al.,
2023)) could be faster in speech-text aligning than F-LM. However, as demonstrated by Rousso et al.
(2024), MFA significantly outperforms WhisperX in terms of alignment accuracy. Since our F-LM
also outperforms MFA, the alignment accuracy of F-LM is a significant advantage, despite being
slightly slower.

Table 13: Comparison of processing time for each frontend module in seconds.

Frontend ASR↓ Speech-Text Aligning↓ Phonemization↓ Duration Prediction↓ Total↓
Traditional Pipeline 0.69 24.10 0.08 1.86 26.73
F-LM 0.62 2.29 1.16 1.16 5.23

L LOSS WEIGHTS FOR BPE OF F-LM

The loss for t in Section 3.3 that is not from the speech prompt can be regarded as the text-modality
language modeling task. We have conducted experiments with three loss weights for the parts of t that
are not from the speech prompt: {0, 0.01, 1.0}. The results are shown in Table 14 and Table 15. When
the weight is set to 0.01, the performance of duration prediction shows improvement, suggesting that
learning textual information can guide the prediction of prosodic information. When the weight is set
to 1.0, however, the increased difficulty of training a text-only LM might affect the duration prediction
task. Nevertheless, the difference in weights does not significantly impact the alignment accuracy,
possibly because the alignment is already precise enough, leaving limited room for improvement.
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These observations are aligned with the perspectives in BASE-TTS (Łajszczak et al., 2024), which
adopts the text-only loss with a small weight for SpeechGPT to retain textual information and guide
prosody learning.

Table 14: Duration accuracy comparison with different λw. ∆p denotes the absolute boundary
difference of phonemes. λw denotes the loss weight for the parts of t that is not from the speech
prompt.

λw ∆p (ms)

0.00 18.72 ± 0.91
0.01 18.52 ± 0.86
0.10 18.65 ± 0.90
1.00 18.80 ± 0.94

Table 15: Results for speech-text aligning with different λw. ∆p means the absolute alignment
boundary difference of phonemes. λw denotes the loss weight for the parts of t that is not from the
speech prompt.

λw ∆p (ms)

0.00 8.81 ± 0.57
0.01 8.76 ± 0.60
0.10 8.81 ± 0.58
1.00 8.79 ± 0.59

M ADDITIONAL DETAILS FOR MULTI-CONDITION CFG

In Section 3.2, regarding the multi-condition CFG technique, the experimental setup for the prelimi-
nary experiment for accent control is: fixing αspk at 2.5 and varying αtxt from 1.0 to 6.0. Specifically,
as αtxt increases from 1.0 to 1.5, the generated speeches contains improper pronunciations and
distortions. When αtxt ranges from 1.5 to 2.5, the pronunciations align with the speaker’s accent.
Finally, once αtxt exceeds 4.0, the generated speech converges toward the standard pronunciation of
the target language.

N EXPERIMENTS OF PROSODIC NATURALNESS FOR ZERO-SHOT TTS

To validate whether sparse alignment enhances prosodic naturalness, in this section, we evaluate the
moments (standard deviation (σ), skewness (γ), and kurtosis (κ)) of pitch and duration distributions.
The results are presented in the Table 16 and Table 17. Compared to NaturalSpeech 3, the results of
“Ours w/ Sparse Alignment” are closer to the reference speeches. Besides, although both “Ours w/
Sparse Alignment” and “Ours w/ Forced Alignment” use the same durations predicted by F-LM, the
performance of “Ours w/ Sparse Alignment” surpasses that of “Ours w/ Forced Alignment”. This
demonstrates that the proposed sparse alignment strategy offers superior prosodic naturalness than
forced alignment based methods.

Table 16: Comparisons about the moments of pitch distribution. σ, γ, and κ are the standard deviation,
skewness, and kurtosis of the pitch distribution.

Model σ γ κ

Reference 80.75 0.36 -0.81
NaturalSpeech 3 87.38 0.49 -0.66
Ours w/ Forced Alignment 88.17 0.44 -0.96
Ours w/ Sparse Alignment 81.90 0.39 -0.91

We also measure the objective metrics MCD, SSIM, STOI, GPE, VDE, and FFE following In-
structTTS (Yang et al., 2024c) to evaluate the expressiveness of our method. The test set uses the
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Table 17: Comparisons about the moments of duration distribution. σ, γ, and κ are the standard
deviation, skewness, and kurtosis of the duration distribution.

Model σ γ κ

Reference 7.74 3.40 16.39
NaturalSpeech 3 7.52 5.96 62.98
Ours w/ Forced Alignment 7.48 6.30 54.01
Ours w/ Sparse Alignment 7.83 4.84 31.23

same objective evaluation set provided by the authors of NaturalSpeech 3, consisting of 40 samples.
The results in Table 18 demonstrate that our method achieves superior performance than the two
baselines based on forced alignment.

However, 40 samples may not be sufficient to convincingly verify the effectiveness of our method.
To further evaluate the actual performance of the model, we conduct experiments on the LibriSpeech
test-clean 2.2-hour subset (following the setup in VALL-E 2 and Voicebox). The results are shown in
the Table below. We compare S-DiT with the following baselines: 1) “Ours w/ Forced Alignment”, we
replace the sparse alignment with the forced alignment; 2) “Ours w/ Standard CFG”, we replace the
multi-condition CFG with standard CFG; 3) “Ours w/ Standard AR Duration”, we replace the duration
from F-LM with the duration from standard AR duration predictor following SimpleSpeech 2 (Yang
et al., 2024b). The results in Table 19 show that sparse alignment brings significant improvements,
and both multi-condition CFG and F-LM duration contribute positively to the performance.

Table 18: Comparisons about “expressiveness” metrics for 40 samples.

Method MCD↓ SSIM↑ STOI↑ GPE↓ VDE↓ FFE↓
GT - - - - - -
NaturalSpeech 3 4.45 0.46 0.62 0.44 0.33 0.37
Ours w/ Forced Alignment 4.48 0.44 0.63 0.44 0.35 0.40
Ours w/ Sparse Alignment 4.42 0.50 0.63 0.31 0.29 0.34

Table 19: Comparisons about “expressiveness” metrics on the LibriSpeech test-clean set.

Method MCD↓ SSIM↑ STOI↑ GPE↓ VDE↓ FFE↓
GT - - - - - -
Ours w/ Sparse Alignment 4.56 0.52 0.62 0.34 0.30 0.35
Ours w/ Forced Alignment 4.62 0.45 0.62 0.42 0.34 0.40
Ours w/ Standard CFG 4.59 0.51 0.61 0.36 0.32 0.37
Ours w/ Standard AR Duration 4.58 0.50 0.62 0.36 0.31 0.36

O EXPERIMENTS WITH LONGER SAMPLES

To directly compare S-DiT’s robustness to long sequences against other AR models, we have
conducted experiemnts for a test set with longer samples. Specifically, we randomly select 10
sentences, each containing more than 50 words. For each speaker in the LibriSpeech test-clean
set, we randomly chose a 3-second clip as a prompt, resulting in 400 target samples in total. To
make our results more convincing, we include strong-performing TTS models, VoiceCraft (Peng
et al., 2024) and CosyVoice (AR+NAR) (Du et al., 2024), as our baselines. The results for longer
samples are presented in Table 20. As shown, compared to the baseline systems, S-DiT does not
exhibit a significant decline in speech intelligibility when generating longer sentences, illustrating the
effectiveness of the combination of F-LM and S-DiT.
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Table 20: Comparisons with longer samples.

Model - with Longer Samples WER↓ SIM-O↑
VoiceCraft 12.81% 0.62
CosyVoice 5.52% 0.68
S-DiT 2.39% 0.70

Model - with Single-Sentence Samples WER↓ SIM-O↑
CosyVoice 4.07% 0.58
VoiceCraft 2.24% 0.62
S-DiT 1.84% 0.67

P EXPERIMENTS WITH HARD SENTENCES

The transcriptions on the LibriSpeech test-clean set are relatively simple since they come from
audiobooks. To further indicate the speech intelligibility of different methods, we evaluate our
model on the challenging set containing 100 difficult textual patterns from ELLA-V (Song et al.,
2024). Since the speech prompts used by ELLA-V are not publicly available, we randomly sample
3-second-long speeches in the LibriSpeech test-clean set as speech prompts. For this evaluation, we
used the official checkpoint of F5-TTS (Chen et al., 2024b) and the E2-TTS (Eskimez et al., 2024)
inference API provided on F5-TTS’s Hugging Face page. We employ Whisper-large-v3 for WER
calculation. Based on the results presented in Table 21, our model shows stronger robustness against
hard transcriptions.

Table 21: Comparisons with hard sentences.

Model WER↓ Substitution↓ Deletion↓ Insertion↓
E2-TTS 8.49% 3.65% 4.75% 0.09%
F5-TTS 4.28% 1.78% 2.28% 0.22%
S-DiT 3.95% 1.80% 2.07% 0.08%

Q END PREDICTION OR BINARY APPROACH

As described in Appendix E, we use the <Full> token to constrain the model to generate only up
to the text corresponding to the speech prompt, which is used by the ASR process. This approach
simplifies the task to a binary decision of whether to generate up to the end or not. However, the end
prediction is also a possible way to solve this issue. We finetune the pretrained F-LM for 100k steps
to incorporate the end-prediction mode. The ASR performance are shown in Table 22. It can be seen
that the WER of “F-LM w/ End Prediction” is slightly higher. When analyzing specific error cases,
we found that in the end-prediction mode, inaccurate prediction of the end token can also impact the
model’s performance.

Table 22: Ablation study for F-LM’s ASR performance.

Setting test-clean (WER)↓ test-other (WER)↓
F-LM w/ Binary Approach 4.2% 8.3%
F-LM w/ End Prediction 4.9% 11.8%
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