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Abstract
Data heterogeneity across multiple sources is com-
mon in real-world machine learning (ML) set-
tings. Although many methods focus on enabling
a single model to handle diverse data, real-world
markets often comprise multiple competing ML
providers. In this paper, we propose a game-
theoretic framework—the Heterogeneous Data
Game—to analyze how such providers compete
across heterogeneous data sources. We investi-
gate the resulting pure Nash equilibria (PNE),
showing that they can be non-existent, homoge-
neous (all providers converge on the same model),
or heterogeneous (providers specialize in distinct
data sources). Our analysis spans monopolistic,
duopolistic, and more general markets, illustrat-
ing how factors such as the “temperature” of data-
source choice models and the dominance of cer-
tain data sources shape equilibrium outcomes. We
offer theoretical insights into both homogeneous
and heterogeneous PNEs, guiding regulatory poli-
cies and practical strategies for competitive ML
marketplaces.

1. Introduction
Data heterogeneity is commonplace in real-world machine
learning (ML) applications, where data often originate from
multiple sources with distinct distributions (Li et al., 2017;
Hendrycks et al., 2020; Gulrajani & Lopez-Paz, 2021; Liu
et al., 2023). For example, in health care, patient data may

1MoE Key Laboratory of Interdisciplinary Research of Com-
putation and Economics, Shanghai University of Finance and
Economics, China. 2Institute for Theoretical Computer Sci-
ence, Shanghai University of Finance and Economics, China.
3College of Management and Economics, Tianjin Univer-
sity, China. 4School of Economics and Management, Ts-
inghua University, China. Emails: xurenzhe@sufe.edu.cn,
wangkang330@tju.edu.cn, libo@sem.tsinghua.edu.cn. Correspon-
dence to: Bo Li <libo@sem.tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

be gathered from different hospitals, each serving varied
demographics and disease prevalences. Such heterogeneous
settings arise across diverse fields, including the digital
economy and scientific research.

Much of the existing literature on heterogeneous data fo-
cuses on devising a single ML method that performs ro-
bustly across all data sources (Arjovsky et al., 2019; Kuang
et al., 2020; Liu et al., 2021b; Duchi & Namkoong, 2021).
However, real-world markets typically have multiple ML
providers (Black et al., 2022; Jagadeesan et al., 2023a), each
aiming to optimize its performance relative to others. For
instance, competing diagnostic tool providers offer models
to hospitals, which then choose a provider based on local
performance criteria. This competitive interplay differs sig-
nificantly from single-provider frameworks (Nisan et al.,
2007) and can lead to market dynamics unaddressed by
previous approaches.

Several works (Ben-Porat & Tennenholtz, 2017; 2019; Feng
et al., 2022; Jagadeesan et al., 2023a; Iyer & Ke, 2024; Einav
& Rosenfeld, 2025) have analyzed competition among mul-
tiple ML model providers, examining Nash equilibria, social
welfare, and agents’ strategies under competition. However,
these studies mainly focus on a single data distribution and
do not account for heterogeneity across multiple sources.

In this paper, we develop a game-theoretic framework to
study multiple providers competing over heterogeneous data
sources. We then analyze the resulting pure Nash equilibria
to uncover how data heterogeneity and competitive forces
shape providers’ strategies.

1.1. Overview of the Heterogeneous Data Game

We introduce the Heterogeneous Data Game to model the
competition among multiple ML model providers across
diverse data sources. Consider K distinct data sources, each
associated with a weight wk representing its proportion, and
joint distributions Pk(x, y) over features x and labels y. In
this market, each of the N ML model providers selects a
model parameterized by θ̂n. Following previous works on
model and platform competition (Jagadeesan et al., 2023a;
Drezner & Eiselt, 2024), the utility of each model provider
is determined by its market share across the different data
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Heterogeneous Data Game under the Proximity Choice Model Heterogeneous Data Game under the Probability Choice Model

Monopoly
(N = 1) The single model chooses the parameter given by Eq. (9).

Duopoly
(N = 2)

Equivalent condition for PNE existence (Thm. 5.1)
PNE must be heterogeneous, if it exists (Thm. 5.1)

Equivalent condition for PNE existence (Thm. 5.2)
PNE must be homogeneous, if it exists (Thm. 5.2)

N > 2
Sufficient condition for PNE existence (Thm. 5.4 and Cor. 5.5)
PNE must be heterogeneous, if it exists (Prop. 5.3)

Equivalent condition for homogeneous PNE existence (Thm. 5.6)
Sufficient condition for heterogeneous PNE existence (Thm. 5.7)
Example when both types of PNE exist simultaneously (Ex. 5.2)

Table 1. Overview of the results.

sources. Specifically, each data source k selects an ML
model based on the observed losses of available models.
A provider’s utility is then the sum of wk from all data
sources that adopt its model. Consequently, each provider
strategically chooses θ̂n to maximize its utility.

Motivated by linear models, we represent each data source
with two statistics: a ground-truth parameter θk for Pk(y|x)
and a covariance matrix Σk for Pk(x). From a distribution-
shift perspective, variations in θk and Σk across sources
correspond to concept shift and covariate shift, respectively—
two common types of distribution shifts in practice (Liu
et al., 2021b). Additionally, the loss of a model θ̂n on data
source k is calculated as the squared Mahalanobis distance,
(θ̂n−θk)

⊤Σk(θ̂n−θk), corresponding to the mean squared
error (MSE) in linear model settings.

For data sources’ choice models, we adopt two standard
frameworks (Drezner & Eiselt, 2024): the proximity choice
model (Hotelling, 1929; Plastria, 2001; Ahn et al., 2004),
where each data source selects the provider with the low-
est loss (with ties broken uniformly), and the probability
choice model (Wilson, 1975; Hodgson, 1981; Bell et al.,
1998), where data sources may choose sub-optimal models
based on a logit framework (Train, 2009), controlled by a
temperature parameter t.

1.2. Overview of the Results

An overview of these results is presented in Tab. 1. We
investigate the pure Nash equilibria (PNE) of the Hetero-
geneous Data Game and identify three patterns of PNEs
across different game setups: (1) Non-existence of PNE. In
this case, no PNE exists, leading to an unstable ML model
market. (2) Homogeneous PNE. Here, all model providers
independently train their ML models to minimize the wk-
weighted loss across all data sources. As a result, this type
of PNE leads to the homogeneity of models available in the
market. (3) Heterogeneous PNE. In this scenario, model
providers offer different ML models. Most specialize in
a single data source, typically adopting the ground-truth
parameter θk of a specific data source k.

Monopoly (N = 1). In this setting, a single provider
can achieve the same utility with any ML model parameter.

However, it typically chooses the parameter that minimizes
the weighted loss across all data sources, denoted by θ̂M.

Duopoly (N = 2). Under the proximity choice model,
we specify conditions for the existence of a PNE and show
that, if a PNE exists, both providers choose the ground-truth
parameter of the data source with the maximal weight. In
contrast, under the probability choice model, any PNE must
be homogeneous, with both providers choosing θ̂M, the
parameter that minimizes the weighted loss across sources.

More than two providers (N > 2). Under the proxim-
ity choice model, if a PNE exists, providers tend to pick
different models, leading to a heterogeneous PNE. More-
over, when a few data sources have significantly larger
weights (Kairouz et al., 2021; Li et al., 2020), a PNE exists
if N lies within a certain range, and providers fully spe-
cialize in those dominant sources. In contrast, under the
probability choice model, both homogeneous and hetero-
geneous PNE may arise, depending on the temperature t.
Specifically, when t is small, indicating that data sources
are highly unlikely to choose sub-optimal models, only a
heterogeneous PNE may exist. Conversely, when t is large,
meaning data sources are more likely to uniformly choose
among all available models, only a homogeneous PNE may
exist. We also present an example where both types of PNE
exist simultaneously.

Our theoretical findings yield several insights for multi-
provider ML markets. First, they illuminate how the inter-
play of data heterogeneity, choice models, and competition
can produce either homogeneous or heterogeneous equilib-
ria, thereby influencing the variety of models offered. Sec-
ond, they indicate that when a few data sources dominate,
providers tend to specialize in those sources, potentially
overlooking smaller ones; this outcome calls for appropriate
incentive mechanisms. Finally, market parameters—such
as the temperature in the probability choice model—can
be adjusted by market regulators to foster either heteroge-
neous model offerings or convergence toward homogeneous
solutions. Taken together, these insights can inform both
regulatory policy and practical strategies for building com-
petitive ML marketplaces.
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2. Related Works
Data heterogeneity. In real-world scenarios, data often
exhibit significant heterogeneity due to variations in time,
space, and population during the data collection process (Liu
et al., 2023). The concept of data heterogeneity has been
extensively studied across multiple disciplines, including
ecology (Li & Reynolds, 1995), economics (Rosenbaum,
2005), and computer science (Wang et al., 2019). This
work focuses on the implications of data heterogeneity in
machine learning settings. In this context, considerable re-
search has aimed to ensure that a single model performs
robustly across diverse test environments (Liu et al., 2021b),
leading to a range of effective methodological frameworks,
including causal learning (Bühlmann, 2020; Peters et al.,
2016), invariant learning (Arjovsky et al., 2019; Liu et al.,
2021a; Koyama & Yamaguchi, 2020), stable learning (Xu
et al., 2022; Kuang et al., 2020; Yu et al., 2023), and distri-
butionally robust optimization (Sinha et al., 2018; Duchi &
Namkoong, 2021; Liu et al., 2022). However, these existing
approaches largely overlook the presence of multiple com-
peting model providers and the strategic interactions that
arise in such settings.

Competition in machine learning. Our work extends
prior research on competition among machine learning
model providers under homogeneous data settings (Ben-
Porat & Tennenholtz, 2017; 2019; Feng et al., 2022; Ja-
gadeesan et al., 2023a; Einav & Rosenfeld, 2025). Specifi-
cally, Ben-Porat & Tennenholtz (2017; 2019) studied best-
response dynamics and algorithmic methods for finding pure
Nash equilibria (PNE) in regression tasks, while Einav &
Rosenfeld (2025) extended these insights to classification.
Feng et al. (2022) explored the bias–variance trade-off in
competitive environments, showing that competing agents
tend to favor variance-induced error over bias. Jagadeesan
et al. (2023a) demonstrated that increasing model size does
not necessarily improve social welfare. In contrast to these
studies, we consider heterogeneous data sources with dis-
tinct distributions, uncovering novel equilibrium structures
and establishing new conditions for their existence.

Competitive location models. Our framework is tech-
nically related to competitive location models (Hotelling,
1929; Shaked, 1975; d’Aspremont et al., 1979; Eiselt et al.,
1993; Plastria, 2001; Ahn et al., 2004), as comprehensively
surveyed by Drezner & Eiselt (2024). However, most exist-
ing models focus on low-dimensional spaces or networks
with uniform distance metrics, largely due to two factors:
(1) applications in urban planning naturally align with one-
dimensional (Hotelling, 1929; d’Aspremont et al., 1979),
two-dimensional (Tsai & Lai, 2005; Shaked, 1975; Led-
erer & Hurter Jr, 1986), or network-based (Eiselt & La-
porte, 1991; 1993; Dorta-González et al., 2005) formula-

tions; and (2) many models incorporate additional variables
such as price or quantity, which reduce tractability and re-
strict attention to small-scale settings. While a few studies
investigate high-dimensional competition, they primarily
address quantity competition (Anderson & Neven, 1990)
or pricing (Bester, 1989), rather than spatial or parameter-
based competition. By contrast, our setting considers source-
specific distance metrics arising from distributional shifts,
along with high-dimensional strategy spaces driven by a
large number of data sources and model parameters. These
distinctions introduce substantial challenges for theoretical
analysis.

Other competitive frameworks. Finally, our work con-
nects to competition scenarios in targeted advertising (Iyer &
Ke, 2024; Iyer et al., 2024), online marketplaces (Liu et al.,
2020; Hron et al., 2023; Jagadeesan et al., 2023b; Yao et al.,
2024a;b), platform competition (Jullien & Sand-Zantman,
2021; Calvano & Polo, 2021), and broader game-theoretic
analyses (Immorlica et al., 2011). Unlike these studies,
we highlight how heterogeneous data distributions shape
market equilibria among multiple ML model providers.

3. Heterogeneous Data Game (HD-Game)
3.1. Notations

We begin by introducing several essential notations. For
a positive integer N , let [N ] denote the set {1, 2, . . . , N}.
The N -dimensional simplex, denoted by ∆N , is defined
as ∆N = {(x1, x2, . . . , xN ) :

∑N
i=1 xi = 1 and xi ≥

0,∀i ∈ [N ]}. For any square matrix A, we use A ≻ 0
to indicate that A is positive definite, and A ⪰ 0 to
indicate that A is positive semi-definite. Furthermore,
given a positive definite square matrix Σ ≻ 0, the Ma-
halanobis distance between two vectors x and y is defined
as dM (x, y; Σ) =

√
(x− y)⊤Σ−1(x− y).

3.2. Game Setup

Heterogeneous data. Consider a setting with K ≥ 2
data sources. Each source k has a true model parameter
θk ∈ RD and a covariance matrix Σk. These two terms
capture concept shift (via θk) and covariate shift (via Σk),
respectively (Liu et al., 2021b), as detailed in Sec. 3.3. We
further assume θk ̸= θk′ for all k ̸= k′, since any two
sources with identical parameters can be merged into one.

For a model parameterized by θ ∈ RD, the loss associated
with data source k is defined as the squared Mahalanobis
distance between θ and θk with Σ−1

k , i.e., d2M (θ, θk; Σ
−1
k ).

As shown in Sec. 3.3, the Mahalanobis distance could corre-
spond to the mean square error (MSE) of θ on data source k
in linear model settings, and it can measure the error caused
by both concept shift and covariate shift.

3



Heterogeneous Data Game

Additionally, each data source k is assigned a weight wk,
representing its proportion within the total data. Without
loss of generality, we assume the weights are ordered and
w1 > w2 > · · · > wK > 0, with

∑K
k=1 wk = 1. Let

w = (w1, w2, . . . , wK) denote the vector of weights.

Model providers. There are N model providers (players)1

that need to compete the models in these K data sources.
Each player n ∈ [N ] needs to choose one model θ̂n ∈ RD,
and the loss of player n for data source k, denoted as ℓn,k,
is

ℓn,k = d2M (θ̂n, θk; Σ
−1
k ) = (θ̂n − θk)

⊤Σk(θ̂n − θk). (1)

Data sources’ choice model. The data sources will
choose which model to deploy based on the losses ℓn,k.
Formally, let g : RN → ∆N be the choice model. For a
data source k, given N losses ℓ1,k, ℓ2,k, . . . , ℓN,k, the func-
tion g(ℓ1,k, . . . , ℓN,k) will output an N -dimensional vector,
and its n-th element, denoted as gn(ℓ1,k, . . . , ℓN,k), is the
probability of choosing the n-th model. Following previous
works (Jagadeesan et al., 2023a; Drezner & Eiselt, 2024),
we consider two types of choice models for estimating the
market share of different participants:

• Proximity choice model. Here, each data source
chooses the model with the least loss. When several
models exhibit the same loss, the data source will ran-
domly choose one model with equal probabilities. For-
mally,

gPROX
n (ℓ1,k, . . . , ℓN,k)

=

{
0, if ∃j ∈ [N ], ℓj,k < ℓn,k

1
|{j∈[N ]:ℓj,k=ℓn,k}| , otherwise.

(2)

• Probability choice model. Following (Jagadeesan
et al., 2023a), we assume that data sources may nois-
ily choose the models based on the following logit
model (Train, 2009),

gPROP
n (ℓ1,k, . . . , ℓN,k) =

exp(−ℓn,k/t)∑N
j=1 exp(−ℓj,k/t)

. (3)

with a temperature parameter t > 0. Intuitively, the pa-
rameter t controls the willingness for each data source
to choose sub-optimal models. When t → 0, this
model will become the proximity model as shown in
Eq. (2). By contrast, when t→∞, all models become
indifferent and the data source tends to choose models
randomly.

1We use the terms “model provider” and “player” interchange-
ably.

The Heterogeneous Data Game. Given a strategy profile
θ̂ = (θ̂1, θ̂2, . . . , θ̂N ), the utility of player n is

un(θ̂) =

K∑
k=1

wkgn(ℓ1,k, . . . , ℓN,k). (4)

We note that for each n ∈ [N ], the term ℓn,k is implicitly a
function of θ̂n, as defined in Eq. (1). For any θ ∈ RD, we
use (θ, θ̂−n) to denote the strategy profile in which player
n deviates from their original strategy θ̂n to a new strategy
θ ∈ RD. We focus on the properties of the Pure Nash
Equilibrium (PNE), formally defined as follows.
Definition 3.1 (Pure Nash Equilibrium (PNE)). A strategy
profile θ̂ = (θ̂1, . . . , θ̂N ) is a pure Nash equilibrium if, for
all n ∈ [N ] and θ ∈ RD, un(θ, θ̂−n) ≤ un(θ̂).

In practice, model providers incur significant costs when re-
training multiple models and typically deploy a single model
rather than adopting a mixed strategy. Consequently, it is
more realistic to analyze the pure Nash equilibrium (PNE),
where each provider commits to a specific model, rather
than the mixed Nash equilibrium (MNE), which assumes
randomized selection among multiple models.

Note that the utility function depends on whether the choice
model gn(·) in Eq. (4) is set as gPROX

n or gPROP
n , as defined

in Eqs. (2) and (3). Consequently, different choice models
yield different games and, therefore, different PNEs. For
clarity, we refer to the heterogeneous data game under the
proximity choice model as HD-Game-Proximity and under
the probability choice model as HD-Game-Probability in
the remainder of this paper.

3.3. Motivating Example — Linear Model

Consider a linear model setting with K data sources, each
associated with a distribution Pk(x, y) for k ∈ [K], where
x ∈ RD denotes the feature vector and y ∈ R is the cor-
responding label. Assume that x is normalized such that
EPk

[x] = 0. The covariance matrix under Pk is then given
by Σk = EPk

[xx⊤] ≻ 0. Furthermore, assume that the con-
ditional distribution Pk(y | x) follows a linear model with
parameter βk, perturbed by Gaussian noise ε ∼ N (0, σ2

k);
that is, y | x ∼ N (β⊤

k x, σ2
k).

Consider N players, each selecting a parameter β̂n. The
MSE of player n on data source k is given by

EPk

[(
β̂⊤
n x− y

)2]
=
(
β̂n − βk

)⊤
Σk

(
β̂n − βk

)
+ σ2

k

= d2M

(
β̂n, βk; Σ

−1
k

)
+ σ2

k.

(5)

It is easy to verify that the noise term in Eq. (5) does not
affect the choice models in Eqs. (2) and (3). Consequently,
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we confirm that using the squared Mahalanobis distance as
a loss function aligns with the mean squared error (MSE),
validating that the game effectively characterizes model
provider competition in linear settings.

Moreover, linear probing—where only the final linear layer
is updated—is a widely used technique for adapting pre-
trained models to downstream tasks, particularly when fine-
tuning the full model is computationally expensive or prone
to overfitting (Kumar et al., 2022). Since features x can
represent either raw inputs or embeddings from pretrained
models, our framework also extends to scenarios where
model providers employ the linear probing technique.

4. Basic Properties and Assumptions
4.1. Basic Properties of HD-Game

We first characterize the possible strategy set in equilibria
for each player.

Proposition 4.1. Denote the set ϑ as follows:

ϑ ≜
{
θ̄(q) : q = (q1, q2, . . . , qK) ∈ ∆K

}
, (6)

where

θ̄(q) ≜ argmin
θ

K∑
k=1

qkd
2
M

(
θ, θk; Σ

−1
k

)
=

(
K∑

k=1

qkΣk

)−1( K∑
k=1

qkΣkθk

)
.

(7)

Then, the following holds:

• In HD-Game-Proximity, if a PNE exists, there must be
one where every player’s strategy belongs to ϑ.

• In HD-Game-Probability, any PNE necessarily re-
quires all players’ strategies to lie within ϑ.

Remark 4.1. Prop. 4.1 suggests that players will generally
choose strategies from the set ϑ, which corresponds to mini-
mizing a weighted loss over data sources, with each player
determining their respective weights.

4.2. Assumptions

We introduce the following regularity assumption.

Assumption 4.1. For any θ ∈ RD, there is at most one
q ∈ ∆K such that θ̄(q) = θ.

Remark 4.2. When Σ1 = Σ2 = · · · = ΣK , this assumption
reduces to requiring that θ1, θ2, . . . , θK be affinely indepen-
dent. For general settings, the number of parameters D is
typically large, whereas the number of data sources K is rel-
atively small, often satisfying K ≤ D. Consequently, this
assumption is generally reasonable in real-world settings.

Assumption 4.2. For all i, j, k ∈ [K] with i ̸= j,
dM (θi, θk; Σ

−1
k ) ̸= dM (θj , θk; Σ

−1
k ).

Remark 4.3. This assumption ensures that no two ground-
truth models θi and θj from distinct data sources have iden-
tical losses on a given data source k. Since different data
sources typically have distinct ground-truth models, this
condition is generally satisfied in practice.

Problem-dependent constants. We introduce the follow-
ing constant based on the game’s parameters:

ℓmax ≜ max
θ∈ϑ,k∈[K]

d2M (θ, θk; Σ
−1
k ), (8)

which represents the maximum possible loss for any strategy
in ϑ. Intuitively, ℓmax quantifies the degree of heterogeneity
among data sources. A small ℓmax indicates that any model
θ ∈ ϑ incurs relatively low loss across all data sources, sug-
gesting minimal variation among them. Conversely, a large
ℓmax implies greater difficulty in finding a single model that
performs well across all sources, representing higher data
heterogeneity.

5. Pure Nash Equilibria Analysis
In this section, we formally characterize the pure Nash
equilibria (PNE) of our Heterogeneous Data Game under
the different data-source choice models introduced earlier.
As previewed in the introduction, we establish three possible
outcomes, each governed by distinct sufficient conditions:

1. Non-existence of PNE. In certain settings, no PNE
arises, indicating that the model market remains fun-
damentally unstable. In other words, providers contin-
ually adjust their strategies in response to each other,
preventing any long-term equilibrium.

2. Homogeneous PNE. Here, a stable equilibrium exists
in which all model providers converge on the same
parameter (e.g., the one minimizing the wk-weighted
loss across sources). This outcome yields a market
dominated by essentially one “universal” model.

3. Heterogeneous PNE. Here, model providers differen-
tiate themselves by specializing in distinct data sources.
Typically, each provider adopts the ground-truth param-
eter θk of one source, resulting in a diverse array of
models.

We observe that the concepts of “homogeneous PNE” and
“heterogeneous PNE” are analogous to the ideas of “minimal”
and “maximal” differentiation in location theory (Drezner
& Eiselt, 2024). However, we maintain the terms “homo-
geneous” and “heterogeneous” because our distance metric
differs across data sources.

Below, we present the theoretical results for each outcome
in the contexts of monopoly (Sec. 5.1), duopoly (Sec. 5.2),
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and general multi-provider markets (Sec. 5.3).

5.1. Monopoly Setting

When N = 1, the model choice is arbitrary, as there is no
competition. However, the model provider typically selects
a strategy that minimizes the overall loss across all data
sources. Consequently, the chosen strategy, denoted as θ̂M,
is given by:

θ̂M ≜ θ̄(w) = argmin
θ

K∑
k=1

wkd
2
M

(
θ, θk; Σ

−1
k

)
. (9)

5.2. Duopoly Setting

In this subsection, we consider the duopoly setting where
there are only 2 model providers in the market.

5.2.1. HD-GAME-PROXIMITY

Theorem 5.1. Consider HD-Game-Proximity with N = 2,
and suppose Assump. 4.1 holds. Then:

1. If w1 < 0.5, a PNE does not exist.

2. If w1 ≥ 0.5, a PNE exists, and θ̂ = (θ1, θ1) is a PNE.
Moreover, if w1 > 0.5, (θ1, θ1) is the unique PNE.

Remark 5.1. Thm. 5.1 shows that in HD-Game-Proximity
with N = 2, a PNE exists if and only if w1 ≥ 0.5, indicating
the presence of a dominant data source. Moreover, when
w1 > 0.5, both model providers specialize in the dominant
data source by selecting θ1.

Although both providers adopt the same strategy, this PNE is
still classified as heterogeneous, consistent with the general
HD-Game-Proximity results in Sec. 5.3. Notably, unlike the
homogeneous PNE in HD-Game-Probability, players in this
PNE specialize in a single dominant data source rather than
optimizing across all sources.

5.2.2. HD-GAME-PROBABILITY

Theorem 5.2. Consider HD-Game-Probability with N = 2,
and suppose Assump. 4.1 holds. If a PNE exists, then the
only possible PNE is that both players choose θ̂M (defined
in Eq. (9)).

Furthermore, there exists a constant t ≤ 2ℓmax, depending
on all game parameters, such that θ̂M is a PNE if and only
if t ≥ t.

Remark 5.2. Compared to Thm. 5.1, in HD-Game-
Probability, a PNE may fail to exist even if w1 ≥ 0.5 when
t is smaller than the threshold t. This may seem counterin-
tuitive, as one might expect the probability choice model to
converge to the proximity choice model as t→ 0. However,
the properties of PNEs are not consistent in this limit. This
inconsistency arises because, for N = 2, the only possible

PNE requires both players to choose θ̂M, as established in
the first part of this theorem. Notably, this inconsistency
may not hold for N > 2, which we demonstrate in Thm. 5.7.

Deriving a closed-form expression for the threshold t is
generally intractable. Empirically, we observe that t ≈
C0 · (2ℓmax) with 0 < C0 < 1, where C0 depends on the
game’s parameters. Experiments (see Sec. 6) consistently
show that greater data-source heterogeneity—measured by
ℓmax in Eq. (8)—pushes the threshold t upward. Hence, as
heterogeneity grows, a homogeneous PNE can arise only
when data sources exhibit an even stronger tendency to
select sub-optimal models.

5.3. General Cases with More than Two Model
Providers

In this subsection, we analyze ML model markets with more
than two model providers.

5.3.1. HD-GAME-PROXIMITY

Heterogeneity in PNE. We first show that in HD-Game-
Proximity, any existing PNE tends to be heterogeneous.

Proposition 5.3. Consider HD-Game-Proximity, and sup-
pose Assump. 4.1 holds. Let θ̂ = {θ̂1, . . . , θ̂N} be a
PNE. For any θ ∈ RD such that θ ̸∈ {θ1, . . . , θK}, let
m = |{j : θ̂j = θ}|. Then, m ≤ 1.

Remark 5.3. Prop. 5.3 shows that in HD-Game-Proximity,
if a PNE exists, no two players will adopt the same model
unless it corresponds to a ground-truth model of a data
source. This suggests that model providers tend to offer
distinct models, leading to a heterogeneous PNE.

Moreover, in some cases, achieving a PNE requires certain
players to select strategies outside the set {θ1, θ2, . . . , θK}.
A detailed example is provided in App. A.

Sufficient conditions for the existence of heterogeneous
PNE. We derive sufficient conditions under which a het-
erogeneous PNE exists and can be explicitly characterized.

Theorem 5.4. Consider HD-Game-Proximity and suppose
that Assumps. 4.1 and 4.2 hold. Assume there exists a con-
stant k0 ∈ [K] such that wk0

> 3
∑K

j=k0+1 wj . Then PNE
exists if N satisfies

k0∑
k=1

⌊
3w′

k

w′
k0

⌋
≤ N ≤

k0∑
k=1

(⌈
w′

k∑K
j=k0+1 wj

⌉
− 1

)
(10)

where for any k such that 1 ≤ k ≤ k0,

w′
k = wk+

K∑
j=k0+1

wj1

[
k = argmin

1≤j′≤k0

dM
(
θj′ , θk; Σ

−1
j

)]
.

(11)
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Moreover, for any PNE θ̂ = (θ̂1, . . . , θ̂N ), it must hold
that ∀n ∈ [N ], θ̂n ∈ {θ1, θ2, . . . , θk0}. In addition, let
mk = |{j ∈ [N ] : θ̂j = θk}| be the number of players
choosing strategy θk in the PNE. Then,

∀k ∈ [k0],

∣∣∣∣mk −
⌊
w′

k

z∗

⌋∣∣∣∣ ≤ 1 (12)

where z∗ = sup
{
z > 0 : h(z) ≜

∑k0

k=1 ⌊w′
k/z⌋ ≥ N

}
.

Remark 5.4. Thm. 5.4 suggests that when a few data sources
carry dominant weights—a phenomenon commonly ob-
served in practice (Kairouz et al., 2021; Li et al., 2020)—and
the number of model providers N lies within a certain range,
a PNE exists in which all providers specialize in serving a
single data source. Moreover, in such equilibria, the num-
ber of providers allocated to each source is approximately
proportional to its weight.

Concretely, the choice of k0 indicates that the top-k0 data
sources hold significantly higher weights, each at least three
times the total weight of the remaining data sources. The
constraints on N in Eq. (10) ensure that (1) providers con-
sider the k0-th data source and (2) data sources with small
weights are overlooked. Under these conditions, the ex-
act form of the PNE can be derived. In a PNE, all model
providers select a ground-truth model from the top-k0 data
sources. Consequently, the utility of non-dominant data
sources is assigned to the nearest dominant data source, as
characterized by Eq. (11). Furthermore, since z∗ is fixed in
Eq. (12), mk is proportional to w′

k. This aligns with intu-
ition, as data sources with higher weights typically attract
more model providers optimizing for them.

This insight implies that policymakers can mitigate imbal-
anced attention among different data sources by either intro-
ducing more providers or incentivizing focus on underrepre-
sented sources. Thm. 5.4 provides a quantitative foundation
for both interventions.

We further provide an example to explain Thm. 5.4.

Example 5.1. Consider a setting with K = 4 data sources
and weights w = (0.6, 0.35, 0.03, 0.02). The ground-truth
models are given by θ1 = (1, 0, 0), θ2 = (−1, 0, 0), θ3 =
(1, 0.1, 0), and θ4 = (−1, 0, 0.1), with covariance matrices
Σ1 = Σ2 = Σ3 = Σ4 = I . In this case, the first two data
sources have dominant weights.

Setting k0 = 2, a heterogeneous PNE is guaranteed to exist
when N lies within a specific range ([8, 19] in this case). In
this PNE, model providers will only select strategies from
{θ1, θ2}. Since data source 3 has a similar ground-truth
model to data source 1, and data source 4 to data source
2, providers selecting θ1 benefit from data source 3, while
those selecting θ2 benefit from data source 4.

For instance, when N = 10, the PNE consists of six play-

ers choosing θ1 and four choosing θ2, approximately pro-
portional to (w′

1, w
′
2), where w′

1 = w1 + w3 = 0.63 and
w′

2 = w2 + w4 = 0.37.

In addition, Thm. 5.4 implies the following corollary.
Corollary 5.5. Consider HD-Game-Proximity and sup-
pose that Assumps. 4.1 and 4.2 hold. When N ≥∑K

k=1 ⌊3wk/wK⌋, a PNE exists. Moreover, for any
PNE θ̂ = (θ̂1, . . . , θ̂N ), it holds that ∀n ∈ [N ], θ̂n ∈
{θ1, θ2, . . . , θK}. In addition, let mk = |{j ∈ [N ] : θ̂j =
θk}| be the number of players that choose strategy θk in
the PNE. We have ∀k ∈ [K], |mk − ⌊wk/z

∗⌋| ≤ 1 where

z∗ = sup
{
z > 0 :

∑K
k=1 ⌊wk/z⌋ ≥ N

}
.

Remark 5.5. This result follows directly from Thm. 5.4 with
k0 set to K. It implies that a PNE always exists when N is
sufficiently large.

5.3.2. HD-GAME-PROBABILITY

Unlike HD-Game-Proximity, we show that both homoge-
neous and heterogeneous PNEs can exist in HD-Game-
Probability.

Homogeneous PNE. We first derive equivalent conditions
for the existence of a homogeneous PNE, as well as a suffi-
cient condition for its uniqueness.
Theorem 5.6. Consider HD-Game-Probability and sup-
pose that Assump. 4.1 holds. Let θ̂

Homo
= (θ̂M, θ̂M, . . . , θ̂M),

where θ̂M is defined in Eq. (9). Then there exist two con-
stants: 0 < t ≤ 2ℓmax, depending on all game parameters,
and C > 0, depending only on {Σk, θk, wk}Kk=1, such that
the following results hold:

1. θ̂
Homo

is a PNE if and only if t ≥ t.

2. If t ≥ max{6C/N, 2ℓmax}, then θ̂
Homo

is the unique
PNE.

Remark 5.6. Thm. 5.6 implies that a homogeneous PNE
does not exist when t is small. As t increases, a homo-
geneous PNE may emerge, and for sufficiently large t, it
becomes the unique PNE. The closed-form expressions of t
and C are difficult to derive. However, similar to Thm. 5.2,
synthetic experiments in Sec. 6 suggest that the threshold t
required for PNE existence is approximately C0 × (2ℓmax),
where 0 < C0 < 1 is a game-specific constant. Moreover,
as N increases, a homogeneous PNE is more likely to be
unique, as indicated by the second part of Thm. 5.6. This
trend is further verified by our synthetic experiments in
Sec. 6.

Heterogeneous PNE. We next demonstrate that for suffi-
ciently small t, a heterogeneous PNE can exist.
Theorem 5.7. Consider HD-Game-Probability, and sup-
pose that Assumps. 4.1 and 4.2 hold, with N ≥

7
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k=1 ⌊3wk/wK⌋. Additionally, assume that for all n, n′ ∈

[N ] and distinct k, k′ ∈ [K], it holds that wk/n ̸= wk′/n′.

Let θ̂
Prox

= (θ̂Prox
1 , . . . , θ̂Prox

N ) be a PNE in the correspond-
ing HD-Game-Proximity. Then, there exists a constant t > 0

such that for any t ≤ t, a PNE θ̂
Hete

= (θ̂Hete
1 , . . . , θ̂Hete

N )
exists in HD-Game-Probability and satisfies

∀n ∈ [N ],
∥∥∥θ̂Hete

n − θ̂Prox
n

∥∥∥
2
≤ t2.

Remark 5.7. For simplicity, we build on the conditions of
Cor. 5.5. Thm. 5.7 establishes that when t is sufficiently
small, a heterogeneous PNE exists and closely approximates
the PNE in the corresponding HD-Game-Proximity. This is
expected, as HD-Game-Probability approaches HD-Game-
Proximity for large N as t → 0. However, proving this
result is significantly more challenging due to the continuous
nature of the potential strategy set for each model provider.

Additionally, while the specified range for N is sufficient, it
is not necessary. Our experiments in Sec. 6 suggest that a
heterogeneous PNE may also exist for smaller values of N .

Thms. 5.6 and 5.7 show that, to promote model diversity
(i.e., the emergence of heterogeneous PNE) and prevent
convergence to a single dominant model (i.e., homoge-
neous PNE), policymakers can increase the rationality of
data sources—that is, enhance their ability to select higher-
performing models—which, in turn, encourages the forma-
tion of heterogeneous PNE.

Existence of both PNE at the same time. We now present
an example to illustrate that both types of PNE can coexist
in a single game.
Example 5.2. Let N = 8 and K = 2 with θ1 = (1, 1) and
θ2 = (0, 1). The covariance matrices are Σ1 = Σ2 = I , and
the weights are w = (0.53, 0.47). The temperature param-
eter is set to t = 0.4. Since K = 2, Prop. 4.1 implies that
each model provider selects a weight αn ∈ [0, 1], yielding
the final model θ̂n = αnθ1 + (1− αn)θ2 = (αn, 1).

In this setting, we identify two types of PNE: (1) a homoge-
neous PNE, where all model providers choose αn = 0.53,
and (2) a heterogeneous PNE, where four providers choose
αn ≈ 0.76 (type 1) and the other four choose αn ≈ 0.30
(type 2). In the heterogeneous PNE, model providers spe-
cialize in different data sources, forming two distinct groups.

As shown in Fig. 1, we plot each player’s utility if they
deviate to a different policy. From the figure, it is evident
that no player benefits from deviating, thereby verifying the
correctness of the PNEs.

6. Synthetic Experiments
In this section, we conduct synthetic experiments to inves-
tigate how the temperature parameter t in the probability

0.0 0.5 1.0
Deviated Policy

0.1175

0.1200

0.1225

0.1250

U
til

ity

Homogeneous PNE

Model Provider
Model Provider Policy

0.0 0.5 1.0
Deviated Policy

0.110

0.115

0.120

0.125
Heterogeneous PNE

Type 1 Model Provider
Type 1 Model Provider Policy
Type 2 Model Provider
Type 2 Model Provider Policy

Figure 1. Utility of a single model provider with a deviated policy
for both homogeneous and heterogeneous PNE in the configuration
of Ex. 5.2.

choice model (Eq. (3)) influences the existence of homoge-
neous and heterogeneous PNEs in HD-Game-Probability.

Data-generating processes. Because our theoretical re-
sults do not depend on the number of data sources K, we
set K = 2 for simplicity. We also choose D = 2 to fulfill
Assump. 4.1. We randomly generate 10 game configurations
with different {Σk, βk, wk}k∈[K]. Each covariance matrix
is constructed so that its largest eigenvalue does not exceed
1. In addition, we set w2 ≥ 0.1 to avoid a scenario where
the first data source fully dominates the market. The num-
ber of model providers N is varied from {2, 3, 4, . . . , 30}
to explore the effect of N on the critical values of t.

Calculating critical temperature parameters. Follow-
ing Prop. 4.1, each model provider n’s strategy θ̂n must
take the form θ̄(qn) with qn ∈ ∆2 and qn = (αn, 1− αn)
for 0 ≤ αn ≤ 1. To verify whether a candidate strat-
egy profile θ̂ is a PNE, we enumerate all possible de-
viations: for each provider n, we check every αn ∈
{0, 0.002, 0.004, . . . , 0.998, 1} to see if a profitable devi-
ation exists. Using this enumeration, we identify:

• Homogeneous PNE. We seek the threshold t given
in Thms. 5.2 and 5.6. Specifically, we search over
t ∈ {0.001, 0.002, . . . , 0.999, 1}× (2ℓmax) to find the

minimal t for which the strategy profile θ̂
Homo

(from
Thm. 5.6) is indeed a PNE.

• Heterogeneous PNE. We seek the maximal t for which
a heterogeneous PNE exists. Since determining the ex-
act maximum can be complex in game theory (Gottlob
et al., 2003; Fabrikant et al., 2004), we adopt an em-
pirical procedure inspired by the proof of Thm. 5.7.
For each candidate t, we use Alg. 2 (discussed in
App. B) to obtain a heterogeneous PNE candidate,
then apply the same enumeration technique to ver-
ify whether it is a PNE. We thus find the largest t in
{0.001, 0.002, . . . , 0.999, 1} × (2ℓmax) for which our
approach can produce a heterogeneous PNE. Although
this does not guarantee the true maximum, it provides
a useful lower bound.
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Figure 2. In the probability choice model, this figure reports, across 10 randomly generated games, the threshold t that guarantees the
existence of a homogeneous PNE and the approximate largest value of t that guarantees the existence of a heterogeneous PNE, as N
varies.

Results and analysis. Fig. 2 presents our experimental
results. We make the following observations:

1. Homogeneous PNE. The threshold temperature t
given in Thms. 5.2 and 5.6 generally increases with
N , but the growth curve flattens for larger N . This
is consistent with Thms. 5.2 and 5.6, which guaran-
tee that t ≤ 2ℓmax and thus ensure the existence of a
homogeneous PNE once t ≥ 2ℓmax, independent of
N . Moreover, in our setups, the minimal t is often
significantly less than 2ℓmax (roughly 0.1 × (2ℓmax)
to 0.2× (2ℓmax)).

2. Heterogeneous PNE. Our empirical approach effec-
tively finds heterogeneous PNEs once N exceeds the
lower bound given in Thm. 5.7. Nonetheless, because
the conditions in Thm. 5.7 are sufficient but not neces-
sary, we observe that a heterogeneous PNE can exist
even when N is smaller than that bound. The curve for
the heterogeneous PNE is not smooth and exhibits peri-
odic fluctuations. This is due to the fact that the hetero-
geneous PNE in HD-Game-Probability depends on the
PNE in the corresponding HD-Game-Proximity, which
itself has a non-smooth dependence on N (Thm. 5.4
and Cor. 5.5).

3. Coexistence of homogeneous and heterogeneous
PNE. In some games, the heterogeneous PNE curve ap-
pears above the homogeneous PNE curve, suggesting
that both types may coexist. However, in other cases
(e.g., the second row and second column of Fig. 2),
no such coexistence is observed. In addition, as N
increases, the maximal t required for a heterogeneous
PNE tends to be lower than the threshold t required for
a homogeneous PNE, indicating that the coexistence

of both PNE types becomes increasingly unlikely for
large N .

7. Conclusions
We propose the Heterogeneous Data Game to analyze com-
petition among ML models in heterogeneous data markets.
By studying PNE under proximity and probability choice
models, we derive conditions for the existence of different
PNE types, showing key factors that shape competitive ML
marketplaces.
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Dorta-González, P., Santos-Peñate, D. R., and Suárez-Vega,
R. Spatial competition in networks under delivered pric-
ing. Papers in Regional Science, 84(2):271–280, 2005.

Drezner, Z. and Eiselt, H. Competitive location models: A
review. European Journal of Operational Research, 316
(1):5–18, 2024.

Duchi, J. C. and Namkoong, H. Learning models with uni-
form performance via distributionally robust optimization.
The Annals of Statistics, 49(3):1378–1406, 2021.

Ehrgott, M. Multicriteria optimization, volume 491.
Springer Science & Business Media, 2005.

Einav, O. and Rosenfeld, N. A market for accu-
racy: Classification under competition. arXiv preprint
arXiv:2502.18052, 2025.

Eiselt, H. A. and Laporte, G. Locational equilibrium of two
facilities on a tree. RAIRO-Operations Research, 25(1):
5–18, 1991.

Eiselt, H. A. and Laporte, G. The existence of equilibria in
the 3-facility hotelling model in a tree. Transportation
science, 27(1):39–43, 1993.

Eiselt, H. A., Laporte, G., and Thisse, J.-F. Competitive
location models: A framework and bibliography. Trans-
portation science, 27(1):44–54, 1993.

Fabrikant, A., Papadimitriou, C., and Talwar, K. The com-
plexity of pure nash equilibria. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of com-
puting, pp. 604–612, 2004.

Feng, Y., Gradwohl, R., Hartline, J., Johnsen, A., and
Nekipelov, D. Bias-variance games. In Proceedings of the
23rd ACM Conference on Economics and Computation,
pp. 328–329, 2022.

Gottlob, G., Greco, G., and Scarcello, F. Pure nash equi-
libria: Hard and easy games. In Proceedings of the 9th
Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 215–230, 2003.

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization. In International Conference on Learning
Representations, 2021.

Hendrycks, D., Liu, X., Wallace, E., Dziedzic, A., Krishnan,
R., and Song, D. Pretrained transformers improve out-
of-distribution robustness. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pp. 2744–2751, 2020.

Hodgson, M. J. A location—allocation model maximizing
consumers’ welfare. Regional Studies, 15(6):493–506,
1981.

Hotelling, H. Stability in competition. The economic jour-
nal, 39(153):41–57, 1929.

Hron, J., Krauth, K., Jordan, M. I., Kilbertus, N., and Dean,
S. Modeling content creator incentives on algorithm-
curated platforms. In The Eleventh International Confer-
ence on Learning Representations, 2023.

10



Heterogeneous Data Game

Immorlica, N., Kalai, A. T., Lucier, B., Moitra, A., Postle-
waite, A., and Tennenholtz, M. Dueling algorithms. In
Proceedings of the forty-third annual ACM symposium
on Theory of computing, pp. 215–224, 2011.

Iyer, G. and Ke, T. T. Competitive model selection in algo-
rithmic targeting. Marketing Science, 43(6):1226–1241,
2024.

Iyer, G., Yao, Y. J., and Zhong, Z. Z. Precision-recall
tradeoff in competitive targeting. Unpublished Working
Paper, 2024.

Jagadeesan, M., Jordan, M., Steinhardt, J., and Haghtalab,
N. Improved bayes risk can yield reduced social wel-
fare under competition. Advances in Neural Information
Processing Systems, 36, 2023a.

Jagadeesan, M., Jordan, M. I., and Haghtalab, N. Competi-
tion, alignment, and equilibria in digital marketplaces. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 5689–5696, 2023b.

Jullien, B. and Sand-Zantman, W. The economics of plat-
forms: A theory guide for competition policy. Informa-
tion Economics and Policy, 54:100880, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and trends® in machine
learning, 14(1–2):1–210, 2021.

Koyama, M. and Yamaguchi, S. When is invariance useful
in an out-of-distribution generalization problem? arXiv
preprint arXiv:2008.01883, 2020.

Kuang, K., Xiong, R., Cui, P., Athey, S., and Li, B. Stable
prediction with model misspecification and agnostic dis-
tribution shift. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 4485–4492, 2020.

Kumar, A., Raghunathan, A., Jones, R. M., Ma, T., and
Liang, P. Fine-tuning can distort pretrained features and
underperform out-of-distribution. In International Con-
ference on Learning Representations, 2022.

Lederer, P. J. and Hurter Jr, A. P. Competition of firms: Dis-
criminatory pricing and location. Econometrica: Journal
of the Econometric Society, pp. 623–640, 1986.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Deeper,
broader and artier domain generalization. In Proceedings
of the IEEE international conference on computer vision,
pp. 5542–5550, 2017.

Li, H. and Reynolds, J. F. On definition and quantification
of heterogeneity. Oikos, pp. 280–284, 1995.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Liu, J., Hu, Z., Cui, P., Li, B., and Shen, Z. Heteroge-
neous risk minimization. In International Conference on
Machine Learning, pp. 6804–6814. PMLR, 2021a.

Liu, J., Shen, Z., He, Y., Zhang, X., Xu, R., Yu, H., and Cui,
P. Towards out-of-distribution generalization: A survey.
arXiv preprint arXiv:2108.13624, 2021b.

Liu, J., Wu, J., Li, B., and Cui, P. Distributionally robust
optimization with data geometry. Advances in neural
information processing systems, 35:33689–33701, 2022.

Liu, J., Wu, J., Pi, R., Xu, R., Zhang, X., Li, B., and Cui,
P. Measure the predictive heterogeneity. In The Eleventh
International Conference on Learning Representations,
2023.

Liu, L. T., Mania, H., and Jordan, M. Competing bandits in
matching markets. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 1618–1628. PMLR,
2020.

Mangasarian, O. L. Nonlinear programming. SIAM, 1994.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V.
Algorithmic Game Theory. Cambridge University Press,
USA, 2007. ISBN 0521872820.

Perng, C.-t. On a class of theorems equivalent to farkas’s
lemma. Applied Mathematical Sciences, 11(44):2175–
2184, 2017.
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A. Omitted Examples
Example A.1. Let N = K = 3 with θ1 = (0, 0, 1), θ2 = (2, 0, 1), and θ3 = (0, 1, 1). The covariance matrices are
Σ1 = Σ2 = Σ3 = I , and the weights are given by w = (w1, w2, w3) = (0.6, 0.25, 0.15). A graphical explanation is
provided in Fig. 3, where θ1, θ2, and θ3 correspond to the vertices A, B, and C of the triangle, respectively. In this case, the

A(θ1 = (0, 0, 1), w1 = 0.6)

C(θ3 = (0, 1, 1), w3 = 0.15)B(θ2 = (2, 0, 1), w2 = 0.25) D E

2 1

√
5

Figure 3. The graphical explanation of Ex. A.1.

Mahalanobis distance reduces to the standard Euclidean distance. It is straightforward to verify that, at a PNE, two players
will choose strategy θ1, while the remaining player will adopt a strategy along the segment DE within the triangle (D and E
satisfy that BA = BE and CA = CD), excluding the vertices D and E.

B. An Approach to Find a Potential Heterogeneous PNE in HD-Game-Probability
B.1. Approach Design

We first define the following mapping M from ∆N
K = ∆K × · · · ×∆K︸ ︷︷ ︸

N times

to ∆N
K . For a (q1, q2, . . . , qN ) ∈ ∆N

K ,

M(q1, q2, . . . , qN ) is calculated through Alg. 1.

Algorithm 1 TheM mapping from ∆N
K to ∆N

K

1: Input: q1, q2, . . . , qN ∈ ∆K

2: θ̂n ← θ̄(qn) for all n ∈ [N ]

3: ℓn,k ← d2M (θ̂n, θk; Σ
−1
k ) = (θ̂n − θk)

⊤Σk(θ̂n − θk) for all n ∈ [N ] and k ∈ [K]

4: pn,k ← exp(−ℓn,k/t)/(
∑N

i=1 exp(−ℓi,k/t)) for all n ∈ [N ] and k ∈ [K]

5: q̃n,k ← wkpn,k(1− pn,k)/(
∑K

j=1 wjpn,j(1− pn,j)) for all n ∈ [N ] and k ∈ [K]
6: q̃n ← (q̃n,1, . . . , q̃n,K) for all n ∈ [N ]
7: Output: (q̃1, q̃2, . . . , q̃N )

We also need the following definition.

Definition B.1 (kn). Given a PNE θ̂
Hete

in HD-Game-Proximity, define kn as follows.

kn ≜
(

the index k such that θk = θ̂Prox
n

)
.

Based on the mappingM and the constant kn, the pseudocode of our approach is provided in Alg. 2. The approach consists
of several steps. First, we compute the PNE θ̂

Prox
of the corresponding HD-Game-Proximity using Thm. 5.4 and Cor. 5.5.

Then, starting from this strategy profile, we find a fixed point of the mappingM defined in Alg. 1. Once a fixed point is
identified, we output the corresponding strategy profile θ̂ = (θ̂1, . . . , θ̂N ), where each θ̂n = θ̄(qn).

B.2. The Idea of the Approach

The rationality of the approach is based on the following results.
Lemma B.1. Let q(1), q(2) ∈ ∆K . Suppose ∥q(1) − q(2)∥∞ ≤ ϵ. Then, there exists a constant C > 0, depending only on
{Σk, θk, wk}Kk=1, such that ∥∥∥θ̄(q(1))− θ̄(q(2))

∥∥∥
2
≤ C · ϵ.

13
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Algorithm 2 An Approach to Find a Potential Heterogeneous PNE in HD-Game-Probability
1: Input: Game parameters {Σk, θk, wk}k∈[K] and N

2: Calculate the PNE θ̂
Prox

based on Thm. 5.4 and Cor. 5.5 in HD-Game-Proximity
3: Calculate kn for all n ∈ [N ] based on Def. B.1
4: qn ← (0, 0, . . . , 1, 0, . . . , 0)︸ ︷︷ ︸

the kn-th element is 1
5: while Not convergent do
6: (q1, q2, . . . , qN )←M(q1, q2, . . . , qN ) given in Alg. 1
7: end while
8: θ̂Hete

n ← θ̄(qn) for all n ∈ [N ]

9: θ̂
Hete
← (θ̂Hete

1 , . . . , θ̂Hete
N )

10: Output: θ̂
Hete

Let C̄ be the constant that only depends on {Σk, θk, wk}Kk=1 in Lem. B.1. For any t > 0 and β ≥ 1, define the space

Q(t,β) ≜ Q(t,β)
1 ×Q(t,β)

2 × · · · × Q(t,β)
N (13)

where ∀n ∈ [N ],

Q(t,β)
n ≜

q ∈ ∆K :

∥∥∥∥∥∥q − (0, 0, . . . , 1, 0, . . . , 0)︸ ︷︷ ︸
the kn-th element is 1

∥∥∥∥∥∥
∞

≤ tβ/C̄

 .

Based on the above definition, we could provide two important properties of the mappingM.

Lemma B.2. For any (q1, . . . , qN ) ∈ ∆N
K , let θ̂ = (θ̂1, θ̂2, . . . , θ̂N ) where θ̂n = θ̄(qn), ∀n ∈ [N ]. If (q1, . . . , qN ) is a

fixed point of the mappingM, then for all n ∈ [N ],

∂un(θ, θ̂−n)

∂θ

∣∣∣∣∣
θ=θ̂n

= 0.

Lemma B.3. When β > 1, there exists a constant t, depending only on {Σk, θk, wk}Kk=1 and β, such that when t ≤ t, for
any (q1, q2, . . . , qN ) ∈ Q(t,β) defined in Eq. (13), thenM(q1, q2, . . . , qN ) ∈ Q(t,β).

Based on the Brouwer fixed-point theorem, Lem. B.3 guarantees the existence of a fixed point (q1, . . . , qN ) ∈ Q(t,β) for

the mappingM. Consequently, by Lem. B.2, the corresponding strategy profile θ̂
Hete

= (θ̂Hete
1 , . . . , θ̂Hete

N ), where each

θ̂
Hete
n = θ̄(qn), satisfies the zero partial gradient condition at θ̂Hete

n for un(θ, θ̂
Hete
−n ) for all n ∈ [N ], which is a necessary

condition for a PNE. Therefore, θ̂
Hete

serves as a candidate for a heterogeneous PNE in HD-Game-Probability.

The complete proof is available in the full version of the paper at https://arxiv.org/abs/2505.07688.

C. Omitted Proofs
Additional notations. For any two vectors x = (x1, . . . , xM ) ∈ RM and y = (y1, . . . , yM ) ∈ RM , we say x is
dominated by y if for all i ∈ [M ], yi ≤ xi and there exists a j ∈ [M ], yj < xj .

C.1. Proof of Prop. 4.1

We first prove Eq. (7).

Proof of Eq. (7). According to the definition of the Mahalanobis distance, we have

θ̄(q) = argmin
θ

K∑
k=1

qkd
2
M (θ, θk; Σ

−1
k ) = argmin

θ

K∑
k=1

qk(θ − θk)
TΣk(θ − θk)

14
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Denote the part in argmin in the right-hand side of the above equation as L(θ). And since q ∈ ∆K and Σk ≻ 0, we have

∇L(θ) = 2

K∑
k=1

qkΣk(θ − θk), ∇2L(θ) = 2

K∑
k=1

qkΣk ≻ 0.

As a result, L(θ) is strictly convex and it has the unique minimizer θ̄(q). In addition, θ̄(q) must satisfy that∇L(θ̄(q)) = 0,
which means

2

K∑
k=1

qkΣk(θ̄(q)− θk) = 0.

As a result,

θ̄(q) =

(
K∑

k=1

qkΣk

)−1( K∑
k=1

qkΣkθk

)
.

Now the claim follows.

For the proof of Prop. 4.1, we first introduce the following lemma.

Lemma C.1. Let ϑ be defined in Eq. (6). Then for any θ ̸∈ ϑ, there exists a θ∗ ∈ ϑ such that for all k ∈ [K],
dM (θ∗, θk; Σ

−1
k ) < dM (θ, θk; Σ

−1
k ).

Proof of Lem. C.1. Define the following function f : RD → RK as

f(θ) =
(
d2M (θ, θ1; Σ

−1
1 ), d2M (θ, θ2; Σ

−1
2 ), . . . , d2M (θ, θK ; Σ−1

K )
)
.

For any k ∈ [K], define fk(θ) = d2M (θ, θk; Σ
−1
k ). Note that for any k ∈ [K], since Σk ≻ 0, we have d2M (θ, θk; Σ

−1
k ) =

(θ − θk)
⊤Σk(θ − θk) is convex w.r.t. θ. As a result, according to Boyd (2004), for every Pareto optimal point θ of f , there

is some q ∈ ∆K such that

θ = argmin
θ′

K∑
k=1

qkd
2
M (θ′, θk; Σ

−1
k ) = θ̄(q).

Hence, the set ϑ defined in Eq. (6) contains all Pareto optimal points.

Furthermore, for any points θ ̸∈ ϑ, there must exist a θ′ ∈ ϑ such that f(θ′) dominates f(θ) (Ehrgott, 2005), which proves
the claim.

Now we could prove Prop. 4.1.

proof of Prop. 4.1. (1) In the proximity model, let θ̂ = (θ̂1, θ̂2, . . . , θ̂K) be a PNE. If θ̂k ∈ ϑ,∀k ∈ [K], then the claim is
already satisfied. Now suppose there exists an index n such that θ̂n ̸∈ ϑ. According to Lem. C.1, there exists a policy θ′ ∈ ϑ
such that ∀k ∈ [K], ℓ′n,k = d2M (θ′, θk; Σ

−1
k ) < d2M (θ̂n, θk; Σ

−1
k ) = ℓn,k. Consider the new strategy profile θ̃ = (θ′, θ̂−n).

We now show that θ̃ is also a PNE.

Since gPROX
n is decreasing on the n-th element and θ̂ is a PNE, we have that

un(θ̂) =

K∑
k=1

wkg
PROX
n (ℓ1,k, . . . , ℓN,k) ≤

K∑
k=1

wkg
PROX
n (ℓ1,k, . . . , ℓn−1,k, ℓ

′
n,k, ℓn+1,k, . . . , ℓN,k) = un(θ̃) ≤ un(θ̂).

As a result, un(θ̃) = un(θ̂) and player n will not benefit by deviation. Furthermore, ∀k ∈ [K], we have
gPROX
n (ℓ1,k, . . . , ℓN,k) = gPROX

n (ℓ1,k, . . . , ℓn−1,k, ℓ
′
n,k, ℓn+1,k, . . . , ℓN,k). (Otherwise, player n would benefit by devia-

tion.) Since ℓ′n,k < ℓn,k, we have

gPROX
n (ℓ1,k, . . . , ℓN,k) = gPROX

n (ℓ1,k, . . . , ℓn−1,k, ℓ
′
n,k, ℓn+1,k, . . . , ℓN,k) = 0
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and hence ℓn,k > ℓ′n,k > mini∈[N ] ℓi,k,∀k ∈ [K]. As a result, this deviation will not affect any other players’ utility.
Specifically, consider any other player j ∈ [N ]\{n}. We have

gPROX
j (ℓ1,k, . . . , ℓn−1,k, ℓ

′
n,k, ℓn+1,k, . . . , ℓN,k) = gPROX

j (ℓ1,k, . . . , ℓN,k). (14)

Furthermore, since ℓ′n,k < ℓn,k, we have that for any θ′′ ∈ RD and ℓ′′j,k = d2M (θ′′, θk; Σ
−1
k ), we have ∀j ∈ [N ],

gPROX
j (ℓ1,k, . . . , ℓj−1,k, ℓ

′′
j,k, ℓj+1,k, . . . , ℓn−1,k, ℓ

′
n,k, ℓn+1,k, . . . , ℓN,k)

≤ gPROX
j (ℓ1,k, . . . , ℓj−1,k, ℓ

′′
j,k, ℓj+1,k, . . . , ℓN,k).

(15)

As a result,

uj((θ
′′, θ̃−j))

=

K∑
k=1

wk · gPROX
j (ℓ1,k, . . . , ℓj−1,k, ℓ

′′
j,k, ℓj+1,k, . . . , ℓn−1,k, ℓ

′
n,k, ℓn+1,k, . . . , ℓN,k)

≤
K∑

k=1

wk · gPROX
j (ℓ1,k, . . . , ℓj−1,k, ℓ

′′
j,k, ℓj+1,k, . . . , ℓN,k) (by Eq. (15))

≤
K∑

k=1

wk · gPROX
j (ℓ1,k, . . . , ℓj−1,k, ℓj,k, ℓj+1,k, . . . , ℓN,k) (θ̂ is a PNE and hence uj(θ̂) ≥ uj(θ

′′, θ̂−j))

=

K∑
k=1

wk · gPROX
j (ℓ1,k, . . . , ℓn−1,k, ℓ

′
n,k, ℓn+1,k, . . . , ℓN,k) (by Eq. (14))

=uj(θ̃).

Therefore, any player will not benefit by deviation from θ̃ and θ̃ is a PNE.

To prove the original claim, we can keep this procedure. After at most N steps, we can get a new PNE θ∗ = (θ∗1 , . . . , θ
∗
N )

from θ and θ∗k ∈ ϑ,∀k ∈ [K]. Now the claim follows.

(2) In the probability model, suppose there exists a PNE θ = (θ1, θ2, . . . , θN ) and an index n ∈ [N ] such that θn ̸∈ ϑ. Then
according to Lem. C.1, there exists θ′ ∈ ϑ such that ∀k ∈ [K], dM (θ′, θk; Σ

−1
k ) < dM (θn, θk; Σ

−1
k ). Since gPROP

n is strictly
decreasing on the n-th element, we could conclude that player n will benefit if deviating to the policy θ′, which leads to a
contradiction. Now the claim follows.

C.2. Proof of Thm. 5.1

We first introduce the following lemma.

Lemma C.2. Suppose that Assump. 4.1 holds. Let q ∈ ∆K and θ = θ̄(q). Then for any k0 ∈ [K] such that qk0 > 0, there
exists a strategy θ̃ ∈ ϑ such that

∀k ∈ [K]\{k0}, dM (θ̃, θk; Σ
−1
k ) < dM (θ, θk; Σ

−1
k ).

Proof. For any k ∈ [K]\{k0}, define vk = Σk(θ − θk). Furthermore, define the following matrix

A =
(
v1 v2 . . . vk0−1 vk0+1 . . . vK .

)
Then for any y ∈ RK−1 such that y ≥ 0 and y ̸= 0, we must have Ay ̸= 0. Otherwise, we can construct a new q′ such that

q′k =


yk/

(∑K−1
k′=1 yk′

)
if k < k0,

0 if k = k0,

yk−1/
(∑K−1

k′=1 yk′

)
if k > k0.
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As a result,
K∑

k=1

q′kΣk(θ − θk) =

K∑
k=1

q′kvk = Ay/

(
K−1∑
k′=1

yk′

)
= 0

and θ = θ̄(q′) = θ̄(q), which violates Assump. 4.1.

According to Gordan’s theorem (Lem. D.1, (Mangasarian, 1994)), there must exist a vector x ∈ RD such that (−A)⊤x > 0,
which means for all k ∈ [K]\{k0}, we have v⊤k x < 0. Now construct the following θ′t = θ + t · x with any t ≥ 0. We can
get that, for any k ∈ [K]\{k0},

dd2M (θ′t, θk; Σ
−1
k )

dt

∣∣∣∣
t=0

=
d (θ + t · x− θk)

⊤
Σk (θ + t · x− θk)

dt

∣∣∣∣∣
t=0

= 2x⊤Σk(θ + t · x− θk)
∣∣
t=0

= 2x⊤Σk(θ − θk) = 2x⊤vk < 0.

As a result, there must exist a tk > 0 such that for any 0 < t < tk, we have d2M (θ′t, θk; Σ
−1
k ) < d2M (θ, θk; Σ

−1
k ). Now

choose t′ = min{t1, t2, . . . , tk0−1, tk0+1, . . . , tK}/2 and let θ′ = θ + t′ · x. Then for all k ∈ [K]\{k0}, we must have
dM (θ′, θk; Σ

−1
k ) < dM (θ, θk; Σ

−1
k ).

Now if θ′ ∈ ϑ, the claim has already follows. When θ′ ̸∈ ϑ, according to the proof of Lem. C.1 (see App. C.1), ϑ contains
all Pareto optimal points. As a result, there must exist a strategy θ̃ ∈ ϑ such that for all k ∈ [K]\{k0}, dM (θ̃, θk; Σ

−1
k ) <

dM (θ′, θk; Σ
−1
k ) < dM (θ, θk; Σ

−1
k ). Now the claim follows.

Then we could prove Thm. 5.1.

Proof of Thm. 5.1. (1) We first consider the case where w1 < 0.5. Suppose a PNE θ̂ = (θ̂1, θ̂2) exists. According to
Prop. 4.1, we can assume that θ̂1, θ̂2 ∈ ϑ. Since the sum of the utilities of two players is 1, there must exist one player that
has utility not greater than 0.5. Without loss of generality, we assume that u1(θ̂) ≤ 0.5 and u2(θ̂) ≥ 0.5. Now we construct
a new policy θ′ for player 1 such that u1(θ

′, θ̂2) > 0.5.

According to Assump. 4.1, there exists a unique q ∈ ∆K such that θ̂2 = θ̄(q). Since q ∈ ∆K , there must exist one element
k0 such that qk0

> 0. According to Lem. C.2, there must exist a θ′ ∈ ϑ such that

∀k ∈ [K]\{k0}, dM (θ′, θk; Σ
−1
k ) < dM (θ, θk; Σ

−1
k ).

Now by the proximity model as shown in Eq. (2), we have that

u1(θ
′, θ̂2) ≥

∑
k∈[K]\{k0}

wk = 1− wk0 ≥ 1− w1 > 1− 0.5 = 0.5 ≥ u1(θ̂).

As a result, θ̂ is not a PNE, which leads to a contradiction.

(2) We then consider the case when w1 ≥ 0.5.

We first show that θ̂ = (θ1, θ1) is a PNE. In this strategy profile, Since two players choose the same strategy θ1, we have
u1(θ̂) = u2(θ̂) = 0.5. In addition, when any player deviate from the strategy θ1, he could have higher loss on data source 1
and hence could have utility at most

∑K
k=2 wk = 1− w1 ≤ 0.5. As a result, θ̂ = (θ1, θ1) is a PNE.

Furthermore, consider the case when w1 > 0.5. Suppose there exists another PNE θ̂
′
= (θ̂1, θ̂2) ̸= θ̂. We consider the

following two cases.

1. Suppose θ̂1, θ̂2 ̸= θ1. Since u1(θ̂
′
) + u2(θ̂

′
) = 1, there exist one player such that his utility is not greater than 0.5.

Without loss of generality, we assume u1(θ̂
′
) ≤ 0.5. Then if player 1 choose strategy θ1, he will get utility at least

w1 > 0.5 ≥ u1(θ̂
′
), which leads to a contradiction.

2. Suppose one player choose θ1 and the other player does not. Without loss of generality, we assume θ̂′1 = θ1 and
θ̂′2 ̸= θ1. In this case, u2(θ̂

′
) ≤

∑K
k=2 wk = 1− w1 < 0.5. However, if player 2 choose strategy θ1, he will have the

same strategy with player 1 and get utility 0.5 > u2(θ̂
′
), which leads to a contraction.
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To conclude, θ̂ = (θ1, θ1) is the unique PNE when w1 > 0.5.

Now the claim follows.

C.3. Proof of Thm. 5.2

Proof. (1) We first show that, if a PNE exists, the only possible PNE is that both players choose θ̄(w).

Suppose that θ̂ = (θ̂1, θ̂2) is a PNE. According to the definition of PNE, we must have

θ̂1 ∈ argmax
θ

u1(θ, θ̂2) = argmax
θ

K∑
k=1

wk · p1,k(θ)

where

p1,k(θ) =
exp

(
− (θ − θk)

⊤
Σk (θ − θk) /t

)
exp

(
− (θ − θk)

⊤
Σk (θ − θk) /t

)
+ exp

(
−
(
θ̂2 − θk

)⊤
Σk

(
θ̂2 − θk

)
/t

) .

Note that

∂p1,k(θ)

∂θ

=

exp
(
− (θ − θk)

⊤ Σk (θ − θk) /t
)
· exp

(
−
(
θ̂2 − θk

)⊤
Σk

(
θ̂2 − θk

)
/t

)
(
exp

(
− (θ − θk)

⊤ Σk (θ − θk) /t
)
+ exp

(
−
(
θ̂2 − θk

)⊤
Σk

(
θ̂2 − θk

)
/t

))2 ·
(
−2

t
· Σk (θ − θk)

)

= − 2

t
· p1,k(θ)(1− p1,k(θ))Σk(θ − θk).

As a result,
∂u1(θ, θ̂2)

∂θ
=

K∑
k=1

wk ·
∂p1,k(θ)

∂θ
= −2

t
·

K∑
k=1

wkp1,k(θ)(1− p1,k(θ))Σk(θ − θk).

Hence,
∂u1(θ, θ̂2)

∂θ

∣∣∣∣∣
θ=θ̂1

= −2

t
·

K∑
k=1

wkp1,k(θ̂1)(1− p1,k(θ̂1))Σk(θ̂1 − θk) = 0. (16)

Similarly, we can get that

∂u2(θ̂1, θ)

∂θ

∣∣∣∣∣
θ=θ̂2

= −2

t
·

K∑
k=1

wkp2,k(θ̂2)(1− p2,k(θ̂2))Σk(θ̂2 − θk) = 0.

where

p2,k(θ) =
exp

(
− (θ − θk)

⊤
Σk (θ − θk) /t

)
exp

(
−
(
θ̂1 − θk

)⊤
Σk

(
θ̂1 − θk

)
/t

)
+ exp

(
− (θ − θk)

⊤
Σk (θ − θk) /t

) .
Note that p1,k(θ̂1) + p2,k(θ̂2) = 1. As a result,

∂u2(θ, θ̂2)

∂θ

∣∣∣∣∣
θ=θ̂1

= −2

t
·

K∑
k=1

wkp1,k(θ̂1)(1− p1,k(θ̂1))Σk(θ̂1 − θk) = −2

t
·

K∑
k=1

wkp1,k(θ̂1)p2,k(θ̂2)Σk(θ̂1 − θk) = 0.

∂u2(θ̂1, θ)

∂θ

∣∣∣∣∣
θ=θ̂2

= −2

t
·

K∑
k=1

wkp2,k(θ̂2)(1− p2,k(θ̂2))Σk(θ̂2 − θk) = −2

t
·

K∑
k=1

wkp1,k(θ̂1)p2,k(θ̂2)Σk(θ̂2 − θk) = 0.

Hence,
K∑

k=1

wkp1,k(θ̂1)p2,k(θ̂2)Σk(θ̂1 − θk) = 0 =

K∑
k=1

wkp1,k(θ̂1)p2,k(θ̂2)Σk(θ̂2 − θk)
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and therefore
K∑

k=1

wkp1,k(θ̂1)p2,k(θ̂2)Σk(θ̂1 − θ̂2) = 0.

Define matrix A =
∑K

k=1 wkp1,k(θ̂1)p2,k(θ̂2)Σk and we have A(θ̂1 − θ̂2) = 0. Note that for all k ∈ [K],
wk, p1,k(θ̂1), p2,k(θ̂2) > 0 and Σk ≻ 0. As a result, A ≻ 0 and we must have θ̂1 = θ̂2. Note that when θ̂1 = θ̂2,
p1,k(θ̂1) = p2,k(θ̂2) = 1/2. Now Eq. (16) becomes

−2

t
·

K∑
k=1

wk ·
1

2
· 1
2
Σk(θ̂1 − θk) = 0.

As a result, θ̂1 = θ̄(w) = θ̂2. Hence, if a PNE exists, the only possible PNE is that both players choose θ̄(w).

The claim then follows from the proof of the more general result given by Thm. 5.6 (see Lems. C.3 and C.4 in App. C.6 for
details).

C.4. Proof of Prop. 5.3

Proof. Suppose there exists a PNE θ̂ = (θ̂1, θ̂2, . . . , θ̂N ) such that there are two players choose the same strategy and the
strategy is outside the set {θ1, θ2, . . . , θK}. Without loss of generality, we assume that θ̂1 = θ̂2 ̸∈ {θ1, . . . , θK}.

Define K as the set of data sources that player 1 and 2 could get positive utility, i.e.,

K ≜ {k : ∀j ∈ [N ], dM (θ̂1, θk; Σ
−1
k ) ≤ dM (θ̂j , θk; Σ

−1
k )}.

Note that K cannot be an empty set, as player 1 could otherwise deviate to θ1 and achieve a positive and higher utility. For
any k ∈ K, let

kn =
∣∣∣{j : dM (θ̂j , θk; Σ

−1
k ) = dM (θ̂1, θk; Σ

−1
k )}

∣∣∣
be the number of players that achieve the minimal loss in data source k in the PNE θ̂. Note that kn ≥ 2 since θ̂1 = θ̂2. Then
we can get that

u1(θ̂) = u2(θ̂) =
∑
k∈K

wk

kn
.

We consider two cases about K.

1. Consider the case when |K| = 1 and K = {k0}. If player 1 deviates to policy θk0
, he will become the only player that

has the smallest loss on data source k and hence have a utility at least wk0 > wk0/nk0 , which leads to a contradiction.

2. Consider the case when |K| ≥ 2. We further consider two cases about θ̂1.
(a) Consider the case when θ̂1 ̸∈ ϑ. Then according to the proof of Lem. C.1 (see App. C.1), there must exist a θ ∈ ϑ

such that for all k ∈ [K], dM (θ, θk; Σ
−1
k ) < dM (θ̂2, θk; Σ

−1
k ). As a result, if player 1 deviates to the policy θ, he

will get utility at least
∑

k∈K wk >
∑

k∈K wk/kn = u1(θ̂), which leads to a contradiction.

(b) Consider the case when θ̂1 ∈ ϑ. Let k0 be the smallest element in K. According to Assump. 4.1, let q ∈ ∆K

be the unique vector such that θ̂1 = θ̄(q). Since θ̂ ̸= θk0
by assumption, there must exist a k1 ∈ [K]\{k0} such

that qk1 > 0. Now according to Lem. C.2, there exists a strategy θ ∈ ϑ such that for all k ∈ [K]\{k1}, we have
dM (θ, θk; Σ

−1
k ) < dM (θ̂2, θk; Σ

−1
k ). Let k2 be the second smallest element in K. As a result,

u1(θ, θ̂−1) =
∑

k∈K\{k1}

wk ≥
∑

k∈K\{k2}

wk >
wk0

2
+

wk2

2
+

∑
k∈K\{k0,k2}

wk

kn
≥ u1(θ̂).

Therefore, player 1 will have a higher utility if deviating to the policy θ, which leads to a contradiction.

To conclude, all cases lead to a contradiction. As a result, the claim follows.
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C.5. Proof of Thm. 5.4

Proof. (1) We first show the existence of PNE under the condition in Eq. (10).

Note that z∗ exists since h(z)→∞ when z → 0 and h(z) = 0 when z > 1. Moreover, since h(z) is right continuous, it
must hold that h(z∗) ≥ N . Under the condition in Eq. (10), we have

h

(
w′

k0

3

)
=

k0∑
k=1

⌊
3w′

k

w′
k0

⌋
≤ N.

In addition, for any ϵ > 0, we have

h

(
w′

k0

3
+ ϵ

)
=

k0∑
k=1

⌊
3w′

k

w′
k0

+ 3ϵ

⌋
≤

(
k0−1∑
k=1

⌊
3w′

k

w′
k0

+ 3ϵ

⌋)
+ 2 <

(
k0−1∑
k=1

⌊
3w′

k

w′
k0

⌋)
+

⌊
3w′

k0

w′
k0

⌋
≤ N.

Hence, it must hold that z∗ ≤ w′
k0
/3. Then define

∀k ∈ [k0], m′
k =

⌊
w′

k

z∗

⌋
.

As a result, we have that m′
k ≥ m′

k0
=
⌊
w′

k0
/z∗
⌋
≥ 3 for all k ∈ [k0]. In addition, due to Eq. (10), by making ϵ > 0 small

enough, we have that

h

 K∑
j=k0+1

wj + ϵ

 =

k0∑
k=1

 w′
k(∑K

j=k0+1 wj

)
+ ϵ

 ≥ k0∑
k=1

 w′
k(∑K

j=k0+1 wj

)
− 1

 ≥ N.

We have that z∗ >
∑K

j=k0+1 wj .

We construct the PNE based on two cases.

1. Consider the scenario when h(z∗) =
∑k0

k=1 m
′
k = N . Then let m∗

k = m′
k for all k ∈ [k0].

2. Consider the scenario when h(z∗) =
∑k0

k=1 m
′
k > N . Note that by the choice of z∗, h(z + ϵ) < N for all ϵ > 0.

Define the set K = {k ∈ [k0] : w
′
k/z

∗ = m′
k}. As a result, when ϵ → 0, h(z∗ + ϵ) = h(z∗) − |K| < N . Hence, it

must hold that |K| > h(z∗)−N . Let K′ be the set of the (h(z∗)−N) smallest elements in K. Define m∗
k as follows.

∀k ∈ [k0], m∗
k =

{
m′

k if k ̸∈ K′

m′
k − 1 if k ∈ K′.

(17)

Now it holds that
∑k0

k=1 m
∗
k = N .

Construct a strategy profile θ̂
∗
= (θ̂1, θ̂2, . . . , θ̂N ) such that m∗

1 players choose strategy θ1, m∗
2 players choose strategy

θ2, . . . , and m∗
k0

players choose strategy θk0
. In this profile, for any player that chooses strategy θk, by the construction

of w′
k in Eq. (11), he will get utility at least w′

k/m
∗
k. Moreover, by the construction of m∗

k and m′
k, we have that

w′
k/m

∗
k ≥ w′

k/m
′
k ≥ z∗. Hence, all players have a utility at least z∗. Then we show that for any player i that chooses

strategy θk with k ∈ [k0], he could only get utility at most z∗ by deviation. Consider the two cases of the deviated strategy
θ′.

1. Consider the case when the deviated strategy θ′ ∈ {θ1, . . . , θk−1, θk+1, . . . , θk0}. Suppose the player deviates to
strategy k′ ̸= k. As a result, the player will utility w′

k′/(m∗
k′ + 1). When k′ ∈ K′, we have that w′

k′/(m∗
k′ + 1) ≤

w′
k′/m′

k′ = z∗. When k′ ̸∈ K′, we have that w′
k′/(m∗

k′ + 1) = w′
k′/(m′

k′ + 1) < z∗. Hence, he could get utility at
most z∗ by deviation.

2. Consider the case when the deviated strategy θ′ ̸∈ {θ1, θ2, . . . , θk0
}. Note that m∗

k ≥ m′
k − 1 ≥ 2 by the construction

of m∗
k. As a result, for any strategy θk̃ with k̃ ∈ [k0], at least one player chooses it even if player i deviates to θ′. As a

result, player i could get utility at most
∑K

k=k0+1 wk < z∗.
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To conclude, in the strategy profile θ̂
∗
, every player obtains a utility of at least z∗ and can achieve at most z∗ by deviating.

Therefore, θ̂
∗

is a PNE.

(2) We then show that for any PNE θ̂ = (θ̂1, . . . , θ̂N ), we must have ∀n ∈ [N ], θ̂n ∈ {θ1, θ2, . . . , θk0
}. To prove this claim,

we have several steps.

I: We show that for all k ∈ [k0], there exists i ∈ [N ] such that θ̂i = θk. We prove this by contradiction. Suppose that there
exists k ∈ [k0] such that for all i ∈ [N ], θ̂i ̸= θk. Since the sum of the utilities of all players is 1, there must exist a player j
such that uj(θ̂) ≤ 1/N . Now let θ′ = θk. Since all other players do not choose θk, player j could become the only player
that achieves the minimal loss on data source k. As a result, uj(θ

′, θ̂−j) = wk. Note that

wk ·N ≥ wk0 ·N ≥
k0∑
k=1

wk0 ·

⌊
3w′

k

w′
k0

⌋

≥
k0∑
k=1

wk0

(
3w′

k

w′
k0

− 1

)

≥ 3wk0

w′
k0

− k0 · wk0 (Because
∑k0

k=1 w
′
k =

∑K
k=1 wk = 1)

≥ 3wk0

wk0 +
∑K

k′=k0+1 wk′
− k0 · wk0

(By Eq. (11))

≥ 3wk0

wk0
+ wk0

/3
− k0 · wk0

(By the assumption wk0
> 3

∑K
k′=k0+1 wk′ )

≥ 9

4
−

k0∑
k′=1

wk′ (Because w1 > w2 > · · · > wK)

≥ 9

4
− 1 (Because

∑K
k=1 wk = 1)

=
5

4
> 1.

Hence, wk > 1/N , implying that player j would achieve a higher utility by deviating to strategy θk, leading to a
contradiction.

II: Suppose there exists at least two players i, j ∈ [N ] such that θ̂i, θ̂j ̸∈ {θ1, . . . , θk0
}. According to the first step, for any

k ∈ [k0], there exists at least one player that choose strategy k. As a result, the sum of the utilities of players i and j is at
most

∑K
k=k0+1 wk. Hence, at least one player has utility at most

∑K
k=k0+1 wk/2. Without loss of generality, we assume

this player is player i. Since two players do not choose strategies in {θ1, . . . , θk0
}, there must exist a k′ ∈ [k0] such that the

number of players that choose θk′ is less than m∗
k (defined in Eq. (17)). Hence, if player i deviates to strategy θk′ , the utility

is at least

wk′

mk′
≥

w′
k′ −

∑K
k=k0+1 wk

mk′
≥ w′

k′

mk′
−
∑K

k=k0+1 wk

mk′
≥ z∗ −

∑K
k=k0+1 wk

2
>

∑K
k=k0+1 wk

2
.

This leads to a contradiction.

III: Suppose there is only one player i that chooses a strategy outside the set {θ1, θ2, . . . , θk0}. The utility of player i is
at most

∑K
k=k0+1 wk < z∗. In addition, there must exist a k ∈ [k0] such that in the PNE, at most m∗

k − 1 players choose
strategy θk. Therefore, if player i deviates to strategy θk, he will get utility at least w′

k/m
∗
k ≥ w′

k/m
′
k ≥ z∗. This leads to a

contradiction.

(3) For any PNE θ̂, let mk = |{j ∈ [N ] : θ̂j = θk}| be the number of players that choose strategy θk in the PNE. We finally
show that |mk −m′

k| ≤ 1.

Suppose there exists a k ∈ [k0] such that |mk −m′
k| ≥ 2. Consider two cases.

1. Consider the case when mk −m′
k ≥ 2. Suppose that a player i chooses strategy θk. The utility of player i is at most

w′
k/mk ≤ w′

k/(m
′
k + 2) < z∗. Since

∑k0

k=1 mk =
∑k0

k=1 m
∗
k = N and mk ≥ m′

k + 2 ≥ m∗
k + 2, there must exist a
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k′ ∈ [k0], k
′ ̸= k such that mk′ < m∗

k′ . As a result, if player i deviates to strategy θk′ , he will obtain a utility of at
least w′

k′/(mk′ + 1) ≥ w′
k′/m∗

k′ ≥ w′
k′/m′

k′ ≥ z∗ > ui(θ̂), which leads to a contradiction.

2. Consider the case when m′
k −mk ≥ 2. Since

∑k0

k=1 mk =
∑k0

k=1 m
∗
k = N and m∗

k ≥ m′
k − 1 ≥ mk + 1, there

must exist a k′ ∈ [k0], k
′ ̸= k such that m∗

k′ < mk′ . Let i be any player that chooses strategy θk′ in the PNE. Then
ui(θ̂) = w′

k′/mk′ ≤ w′
k′/(m∗

k′ + 1) ≤ z∗. However, if player i deviates to strategy θk, he will obtain a utility of at
least w′

k/(mk + 1) ≥ w′
k′/(m′

k − 1) > z∗, which leads to a contradiction.

Now the claim follows.

C.6. Proof Sketch of Thm. 5.6

We prove Thm. 5.6 by dividing it into three parts.

Lemma C.3. Under the same assumption as Thm. 5.6, then θ̂
Homo

= (θ̂M, θ̂M, . . . , θ̂M) is a PNE if t ≥ 2ℓmax.

Lemma C.4. Under the same assumption as Thm. 5.6, then there exists a constant t such that θ̂
Homo

= (θ̂M, θ̂M, . . . , θ̂M) is
a PNE if and only if t ≥ t.

Lemma C.5. Under the same assumption as Thm. 5.6, then there exists a constant C > 0 such that if t ≥
max{6C/N, 2ℓmax}, then θ̂

Homo
is the unique PNE.

Now Thm. 5.6 follows from Lems. C.3 to C.5. The complete proof is available in the full version of the paper at
https://arxiv.org/abs/2505.07688.

C.7. Proof Sketch of Thm. 5.7

We first need the following propositions.

Proposition C.6. Under the same conditions as in Thm. 5.7, there is a constant t > 0, depending only on {Σk, θk, wk}Kk=1,
such that whenever t ≤ t, a strategy profile θ̂ = (θ̂1, θ̂2, . . . , θ̂N ) ∈ ϑN exists with∥∥∥θ̂n − θ̂Prox

n

∥∥∥
2
≤ t2 for all n ∈ [N ],

and
∂un(θ, θ̂−n)

∂θ

∣∣∣∣∣
θ=θ̂n

= 0.

We introduce the following constants.

Definition C.1 (ℓD). Since θi ̸= θj for any distinct i, j ∈ [K], we can find a constant ℓD > 0, depending only on
{Σk, θk, wk}Kk=1, such that

∀θ ∈ ϑ,
∣∣{k ∈ [K] : d2M (θ, θk; Σ

−1
k ) ≤ ℓD

}∣∣ ≤ 1.

Definition C.2 (mk). Let mk = |{j ∈ [N ] : θ̂Prox
j = θk}| be the number of players that choose strategy θk in the PNE θ̂

Prox
.

Based on Defs. B.1 and C.1, for any n ∈ [N ], we could partition the space ϑ into four parts.

ϑ
(1)
n,t =

{
θ ∈ ϑ : d2M (θ, θkn

; Σ−1
kn

) ≤ t3/2
}

ϑ
(2)
n,t =

{
θ ∈ ϑ : t3/2 < d2M (θ, θkn

; Σ−1
kn

) ≤ ℓD

}
ϑ
(3)
n,t =

{
θ ∈ ϑ : ∀k ∈ [K], d2M (θ, θk; Σ

−1
k ) > ℓD

}
ϑ
(4)
n,t =

{
θ ∈ ϑ : ∃k ∈ [K]\{kn}, d2M (θ, θk; Σ

−1
k ) ≤ ℓD

}
It holds that ϑ = ϑ

(1)
n,t ∪ ϑ

(2)
n,t ∪ ϑ

(3)
n,t ∪ ϑ

(4)
n,t. Denote the constant t as t0 and the strategy profile θ̂ as θ̂

Hete
in Prop. C.6.

Proposition C.7. Under the same conditions as in Thm. 5.7, there is a constant t > 0 with t ≤ t0, such that when t ≤ t, the

following holds: for all n ∈ [N ] and θ ∈ ϑ
(1)
n,t, we have un(θ̂

Hete
) ≥ un

(
θ, θ̂

Hete
−n

)
.
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Proposition C.8. Under the same conditions as in Thm. 5.7, there is a constant t > 0 with t ≤ t0, such that when t ≤ t, the

following holds: for all n ∈ [N ] and θ ∈ ϑ
(2)
n,t, we have un(θ̂

Hete
) ≥ un

(
θ, θ̂

Hete
−n

)
.

Proposition C.9. Under the same conditions as in Thm. 5.7, there is a constant t > 0 with t ≤ t0, such that when t ≤ t, the

following holds: for all n ∈ [N ] and θ ∈ ϑ
(3)
n,t, we have un(θ̂

Hete
) ≥ un

(
θ, θ̂

Hete
−n

)
.

Proposition C.10. Under the same conditions as in Thm. 5.7, there is a constant t > 0 with t ≤ t0, such that when t ≤ t,

the following holds: for all n ∈ [N ] and θ ∈ ϑ
(4)
n,t, we have un(θ̂

Hete
) ≥ un

(
θ, θ̂

Hete
−n

)
.

Now Thm. 5.7 follows directly by combining Props. C.6 to C.10.

The complete proof is available in the full version of the paper at https://arxiv.org/abs/2505.07688.

D. Important Lemmas
We need the following variants of Farkas’s Lemma (Perng, 2017).

Lemma D.1 (Gordan’s Theorem (Mangasarian, 1994)). For each given matrix A, exactly one of the following is true.

1. There exists a vector x such that Ax > 0.

2. There exists a vector y ≥ 0 and y ̸= 0 such that A⊤y = 0.
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