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Abstract

Modeling irregularly-sampled time series (ISTS) is challenging because of missing
values. Most existing methods focus on handling ISTS by converting irregularly
sampled data into regularly sampled data via imputation. These models assume an
underlying missing mechanism, which may lead to unwanted bias and sub-optimal
performance. We present SLAN (Switch LSTM Aggregate Network), which utilizes
a group of LSTMs to model ISTS without imputation, eliminating the assumption
of any underlying process. It dynamically adapts its architecture on the fly based on
the measured sensors using switches. SLAN exploits the irregularity information
to explicitly capture each sensor’s local summary and maintains a global summary
state throughout the observational period. We demonstrate the efficacy of SLAN
on two public datasets, namely, MIMIC-III and Physionet 2012, for the in-hospital
mortality prediction task.

1 Introduction

An irregularly sampled time series (ISTS) is a multivariate time series recorded at inconsistent or
non-uniform time intervals. Such data can be found in various fields dealing with complex generative
processes, like meteorology [1]], seismology [2], user social-media activity logs [3], e-commerce
transactions [4]], epidemiological and clinical research [5}16]. The cause of missingness in ISTS
relates to unobserved data [[7]. Thus, modeling applications concerning ISTS are challenging. This
work focuses on modeling ISTS in the clinical domain since it is a well-established application.

Many methods handle ISTS by filling missingness via imputation, converting ISTS to regularly
sampled time series, assuming an underlying missing mechanism [J§]]. Imputation is the process of
filling up missing values with estimated values whenever input is not observed. The imputation can
be performed via forward filling, mean [9]], interpolation [[10} [11]], model-based technique [[12]], etc.
However, any form of imputation may alter the data’s original nature with artificial approximation,
leading to unwanted distribution shifts [13]. This may introduce a bias, resulting in sub-optimal
performance. We show this empirically in our findings, where the performance of our model (SLAN)
consistently outperforms the imputation-based models (see Table|[T).

We argue that learning the imputation task is challenging because of the underlying missing mech-
anism and may not be required for the downstream task. Some non-imputation methods [[14} [15]]
exist in the literature but do not properly exploit the temporal structure of missing values. It is worth
noting that ISTS datasets are not simply incomplete but contain informative missingness [16]. Other
methods [17] may not exploit the irregularity information of the sensors. Therefore, specialized
methods are required to handle such missingness in a meaningful way.

We present Switch LSTM Aggregate Network (SLAN), which utilizes a group of LSTMs to handle
ISTS. Our proposed model exploits the irregularity information of the ISTS to maintain the local
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Figure 1: (a) SLAN Architecture. Here x’"* denotes the input at time ¢; of m™" sensor. The closed
circuit in the switch layer means that a particular switch is "on", otherwise it is "off". The X sign in
red implies that there is no input or output to the corresponding LSTM block. (b) The inner working
of an LSTM block is given here. (c) Notations are denoted in the legend.

summary state for each observed time series. In most practical situations, these time series come
from sensor measurements. The model is equipped with a switch layer that enables it to adapt to the
input order of measured sensors dynamically. SLAN maintains a global summary state, aiding each
LSTM with summarised information throughout the observational period. We show the efficacy of
SLAN on two widely used public clinical datasets: MIMIC-III [18]] and PhysioNet 2012 [19] for the
in-hospital mortality prediction, i.e., a binary classification task. The contributions of our work are:
(1) We propose a simple and effective switch layer that dynamically changes the SLAN architecture
to handle ISTS, thus eliminating the need for imputation. (2) We introduce a global summary state
enriched with the information from each sensor. (3) We maintain a local summary state for each
sensor, aided by other sensor information.

2 SLAN: Switch LSTM Aggregation Network

The motivation of SLAN is propelled by the effectiveness of the sequence model, like LSTM, in
handling time series data [9]. However, a single LSTM is incapable of modeling ISTS without
imputation. Therefore, we devise a strategy of employing one LSTM per sensor. Since ISTS has
irregular sampling, we propose a simple switch layer that facilitates the activation of only those
LSTMs whose corresponding sensors are measured. Furthermore, we introduce global and local
summary states to share information between all sensors.

SLAN is an adaptive LSTM-based model that dynamically changes its architecture depending on the
measured sensors at any time point by utilizing a switch layer. The architecture of SLAN is presented
in Fig. [Th. It consists of a pack of LSTMs such that there is a one-on-one connection between a
sensor and an LSTM block. The switch layer facilitates this (see the yellow-colored box in Fig. [Th).
Each sensor is connected to its corresponding LSTM block by a switch. A switch goes "on" if its
corresponding sensor is measured; otherwise, it stays off. The "on" switch results in activating its
corresponding LSTM block, thus, eliminating the need for any imputation. The LSTM block outputs
a long-term memory (LTM) and a short-term memory (STM) (Fig. E]D). The LTM of each activated
LSTM block is aggregated to produce a global summary state and passed on to all the LSTM blocks
for the next time step as input. This aids the LSTM blocks with summarised information.

LSTM allows sequential processing of the time series, preserving their arrival order. However, still, it
is necessary to model the time information associated with each input. This is more so in the case of
ISTS since the time interval is not fixed. We draw upon the many methods presented in the literature
to model time information and utilize Time2 Vec [20] for its demonstrated effectiveness.

The previous short-term memory (STM) of each activated LSTM block is decayed based on the vector
representation of time delay and decay function (discussed below). This decayed STM is passed as an
input for the next measured time point. This acts as a local summary for each sensor. Finally, at the
last time point, the STM(s) from each LSTM block are concatenated with the aggregated LTM as seen
in the concat layer in Fig. [Th. The concat layer is then fully connected to a 2-node output layer for
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binary classification. The fully connected layer can be easily extended for multi-class classification.
The problem statement of ISTS is defined mathematically in Section [A] and the architecture and
algorithm of SLAN are also presented in Section [B]of the Appendix. Moreover, an example of the
working of SLAN is presented in Section[C|of the Appendix.

3 Results
We consider MIMIC-III (M-3) -
. MIMIC-IIT Ph 2012

(18] and Physionet 2012 (P- Model ysione

12) [19] datasets to showcase AUPRC AUROC AUPRC AUROC
the efficacy of SLAN. We con- Imputation
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son metrics, and implementation IVP-VAE 47.02 105 84.80 Lo 4735 207 85.12 o5
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details is provided in Section D],
El [Fl and |Gl of the Appendix, re-
e@tivelyg PP Table 1: Comparison of various methods on M-3 and P-12 datasets.
The best and 2™ best performance is represented by bold and
underline, respectively. The metric is reported as the mean +
standard deviation of three runs with different seeds.

The performance of SLAN on M-
3 and P-12 datasets are presented
in Table [l SLAN outperforms
all the baselines on both the datasets for both metrics. SLAN outperforms the second-best results by
1.2% and 8.9% in absolute AUPRC points, and 0.2% and 1% in absolute AUROC points for M-3 and
P-12, respectively.

4 Ablation Studies

Unless otherwise stated, all the below experiments of SLAN are performed by following the imple-
mentation details given in the previous section.

Performance vs the best imputation model We compare SLAN with the best imputation model
to assess SLAN'’s robustness under an increased number of missing observations. IP-Nets perform
the best among the imputation models, as evident from Table[T] IP-Nets surpasses other imputation
models in both evaluated metrics on the P-12 and the AUPRC metric on the M-3 dataset. We randomly
drop 25%, 50%, and 75% of observed data in both the M-3 and P-12 datasets. SLAN consistently
outperforms IP-Nets across all scenarios. SLAN achieves gains in absolute AUPRC points of 7.32%,
5.49%, and 6.85% in the M-3 dataset and 7.18%, 7.17%, and 12.63% in P-12 for the respective
data drop of 25%, 50% and 75%. These results assert the superiority of SLAN even in conditions
characterized by a substantial proportion of missing observations.

Imputated SLAN To determine the efficacy of SLAN, we compare it with imputed SLAN. We
consider three types of imputation, namely, forward fill (ffill), mean, and interpolation imputed via
the last measured value, global mean, and linear interpolation, respectively. As evident from Table[H]
SLAN (represented by None) outperforms mean and interpolation. SLAN further surpasses ffill in
the P-12 dataset and in the AUROC metric of the M-3 dataset.

Different Aggregation Methods We compare SLAN’s performance using mean, max, and simple
attention [21] as aggregation functions for computing the global summary state, and further examine
the informativeness of the concat layer. As shown in Table[H} max underperforms due to its sensitivity
to outliers, whereas mean and attention yield competitive results—attention is best on P-12, while
mean excels on M-3. Regarding the concat layer, the default setting (G.S. + L.S.) is most effective;
using only local states (Only L.S.) results in slightly poorer performance overall but can surpass in
AUROC on M-3. In contrast, using only global states (Only G.S.) significantly degrades performance
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compared to G.S. + L.S., though it still retains enough information to outperform strong baselines
like Raindrop and GRU-D.

Data Scalability In the practical setting, it is important

for any model to have data scalability, meaning the per- 857 ,___cmm== e Ep————— 2
formance of the model on test data should improve as g |

the amount of training data increases. We consider the

first 25%, 50%, 75%, and 100% training data for both '] MIMICl Physionet 2012
P-12 and M-3 and train our model on them. The average 701 zﬂzgcc : 23:';%
and the 95% confidence interval of 3 different runs of 45|

SLAN on the test data are shown in Figure [2| The per- 604

formance of SLAN steadily increases with the increasing

amount of training data on both datasets. The percentage 557

improvement of AUPRC for M-3, when trained on 50% 50 /’*/4
data compared to 25% data is 4.25%, 75% data compared 45

to 50% data is 3.17%, and 100% data compared to 75% 75 50 75
data is 1.43%. Transitioning from 25% to 50% data, we
double the number of instances; thus, the percentage im-
provement is the highest. Whereas when trained on 100%
data compared to 75% data, we add only 1/3rd data; thus,
the percentage improvement is lowest. The same trend is
followed in the AUROC of M-3, AUPRC, and AUROC of
P-12. See section IV in the Supplementary for the exact
metrics value.

100
Percentage of training data

Figure 2: SLAN on different percent-
ages of training datasets. The average
with 95% confidence interval of 3 runs
is reported here.

Sampling Rate vs Importance of Sensors We use
simple attention [21]] in the Agg() unit to compute the

= Mean Importance
Sampling Rate

pH
Weight
Temperature

global summary state from the LTMs of active LSTM
blocks. The attention module assigns weights a7 to
each sensor’s memory using a feed-forward network,
and we analyze these weights to interpret sensor impor-
tance. For the M-3 dataset, we sum attention weights
across time and instances, normalize them by the sen-
sor’s measurement count, and obtain normalized im-
portance scores (normI”). Figure 3| compares these
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Glucose

Glascow coma scale verbal response
Glascow coma scale total

Glascow coma scale motor response
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Fraction inspired oxygen
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scores with sensor sampling rates. While sensors like
oxygen saturation, respiratory rate, and heart rate are o2
measured most frequently, the most informative ones
are pH, height, and weight—pH being the most influ-
ential despite its low sampling rate. This shows that
measurement frequency does not directly correlate with
a sensor’s predictive importance.

00 02 04 06 08 10 12

Figure 3: Comparison of the ranking of
clinical variables w.zt. sampling rate and
mean importance.

5 Conclusion

We propose a Switch LSTM Aggregate Network to handle multivariate ISTS data without any
imputation. The optimal performance of SLAN and various ablation studies empirically demonstrate
the effectiveness of our proposed model. We also establish the superiority of SLAN compared to
the imputation model even when additional data is missing. Moreover, the SLAN framework can be
extended for modeling multi-modality data, like adding clinical notes to sensor measurement data
[13]. SLAN can be used for forecasting tasks by inheriting the idea of multi-horizon forecasting
[22]. SLAN can also be leveraged for streaming data modeling in an online setting with time-variant
dimensions [23]. We plan to explore the above fields in the future.
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A Problem Formulation

A.1 Regularly Sampled Time Series (RSTS)

Consider a dataset represented by D = {X,Y}, where X is a set of instances given by X =
{X1,..., X}, Y is the set of label given by Y = {y1, ..., ¥, } and n is the total number of instances.
X is a time series for i™ instance given by X; = {X; 1, ..., X;, } where [; is the number of time
steps 7™ instance was measured. X;,; is the set of measured values of all sensors at time ?; ;, given
by X; ; = {xll oo xf ;}. Here, z"; represents the measured value of sensor m for it" instance at
time ¢; ; and s 1s the total number of sensors/features. We represent all sensors by their indices, and
the set of indices of sensors is given by Ml = {1, ..., s}. We present a snapshot of multi-variate RSTS
data of M instance in Fig. 4p considering s = 3 and I; = 4. Note that ¢; » — t; 1 isequal to ;3 — t; 2
in RSTS.
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Figure 4: (a) A snapshot of multi-variate regularly sampled time series for i*" instance. m represents
the index of the sensor. (b) A snapshot of multi-variate irregularly sampled time series (ISTS) for

h instance. (c) Problem representation of the ISTS with respect to one instance by omitting the
subscript <. (Best viewed in color)

A.2 Irregularly Sampled Time Series (ISTS)

ISTS follows the definition of RSTS, except not all sensors will be measured at each time step,
leading to an irregular sampling of each sensor, and ¢; » — ¢; 1 need not be equal to t; 3 — ¢; 2. ISTS
is mathematically given as X; ; C {z} e T j}. A snapshot of ISTS for i instance is shown in

F1g. l where X; 1 = {xi,lv i,l}’ Xio = {fig,x?,g}, Xis = {%13} and X; 4 = {1311,4733?,4}

A.3 Problem Representation

For simplicity, we omit the subscript ¢ representing an instance and consider only one instance to
discuss the problem and the working of the proposed model. In that sense, each measured value
is given by z7" (instead of z;";) and it is received at time ¢; (instead of ¢; ;). Let us denote this
instance by Z7 X; and the set of values of measured sensors at time ¢; by Z;. Based on this, at
each time step ¢;, we represent the measured sensors as Z; = (t;, UVmE 2, 1] m ,AT')}) where A;

is the set of sensors measured at time ¢;, given by A; C M. A7T" denotes the tlme delay between two
successive values measured by sensor m, i.e., A}” =t; —ty, where k = max(1,...,5 — 1) such that

m € Ay. Thus, the whole input data is given by Z = Uézl {Z,;} where [ is the number of time steps.
Following the previous paragraph, we visually present the data representation and the corresponding
equations in Fig. .

B SLAN Architecture Details

SLAN consists of s LSTM blocks {L, ..., L®} where L™ is associated with sensor m. We define the
switch layer (S;) as the set of switches kept "on" based on the measured sensors at time ;. Since
there is a one-on-one correspondence between a switch and its corresponding measured sensor, we
borrow the representation of S; as the indices of the sensors measured at time ¢; from section[A] thus
S; =A;.

Each active LSTM block (L™) at time ¢; takes the sensor value (z7"), STM (h7" ), LTM (¢} ) and
time delay (Am) as inputs and outputs hm and c7", given by

(W7, &) = L™ (2, B AT Vm €S, )

i€ AT
where L™ Vm € A; are active based on S; at time ¢;. An aggregate function is employed on the LTM
of the active LSTM blocks to get a summary state (c;) at t;. Any function that can group multiple

values to give a single summary value can be used as an aggregation function and is represented by
agg(). Some examples of aggregation functions are mean, max, and attention. The summary state is
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given as

c; =agg( |J {'}) @)

VYmeS;

The c; is used as an input for the next time step for every active LSTM block. An active LSTM at ¢;
might not be active at ¢;_;. Thus, the STM input to L™ at ¢; is represented by h;’i (instead of A" ;)

where j< = max(1,...,j — 1) such that m € S;. Therefore, equationcan be updated as:
(R} cj) = L™ (2" hi< cj—1, AT")  Vm €S; 3)

3% FIRR
Finally, the hidden states (or STM) of all the LSTM blocks and the summary state are concatenated to
give a final output. Note that all the sensors may not be observed in the last timestamp ¢;. Therefore,
we represent the last measure time for each sensor by ¢;m, such that ¢;m < ¢;. Thus, the concat layer
is given by C' = {¢, hll17 ..., hi. }. A fully connected network is employed to get a final prediction
from C as follows
j=F(C) @)

Hidden State Decay Since the measurement of each sensor is irregular, we employ a time-decay
function on the hidden states inspired by [20]. The time-decay function ensures that the previous local
summary is adjusted based on the time delay (A}") of each sensor. Since each sensor is different, the
decaying function should differ for each sensor. Thus, a trainable time-decay function is employed.
The decay function is given as

Y1 = tanh(W " + V'20(AT") + b7),  where

5
t20(AT") = sin(W]" AT + ¢7") ©)

Here, ¢2v is the Time2Vec function with wi", and ¢’ as the learnable parameters. The sine function
in Time2Vec helps capture periodic behaviors without the need for feature engineering. The W', VT,
and b7} are the parameters of the decay function. Consequently, the decay of the hidden state is given
by

h;n = ’}/1;’1 © h;n< (6)

where © is the element-wise dot product.

Working of an LSTM block We employ TimeLLSTM [24]] as an LSTM block in our study. The
gates of L™ at time ¢; are denoted by forget gate (f;"), input gate (i7"), output gate (0}") and cell

state (6}”). Based on the decayed hidden states (713—") given by equation@and summary state (¢;_1)
given by equation 2] the gates are determined as

= oW + VR + b7
i = o (Wl + V"R + b7 @)
oft = o(Way" + V"R + b))

& = tanh(W " + V"R + b7

The final short-term and long-term memory depends on the decayed cell state achieved via 7>} and
aCYs (equation@) and is given by
it = fi"Ocjm1 +i O O

hi" = o' © tanh(fj" © cj—1 +ij" © &' © ¥37") ®)

Algorithm The pseudo-code of SLAN is presented in the Algorithm [I]

C Unrolled SLAN

An unrolled architecture based on the snapshot of an instance presented in Figure 4f is shown in
Figure 5] (from left to right). We present the detailed workflow of the unrolled SLAN architecture
here. The progression of SLAN at each time step is discussed next.
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Algorithm 1 Switch LSTM Aggregate Network

Require: Model M with s LSTM block, switch layer S, and aggregation function as shown in
Figure dh
repeat
for j in timestamp do
Create switch layer S; from measured sensors A
Activate LSTM blocks based on S;
Calculate h;[S;], ¢;[S;] by equatlonl
Calculate c¢; using aggregation function by equatron|z|
end for
Concat all final hidden states (h}.) and final summary state (c;) to get concat layer C
Predict § using equation 4]
Update M based on the loss
until Batch Left to run

Time t; We receive input Z; = (t1, {(z1, Al), (23, A$)}). Based on the measured sensors, the
switch layer is S; = {1, 3}, indicating switch 1 and switch 3 are “on". Thus, the associated LSTM
blocks L! and L? are activated. The hidden states (h}, h3, h3) and summary state (co) is initialized
randornly The time delay is Al = A3 = 0. Using equatlon I we get (hi, cl) = LY (21, hd, co, A)
and (h17 cl) L3 (23, h, co, A ) where the inner working of L™ is given by equation]@and The
LTM (c}, ¢}) is aggregated to give the next summary state c;.

Time ty Atts, Zo = (t2,{(23,A3), (23, A3)}), thus S5 = {2, 3}. Corresponding LSTM L? and
L3 are kept active. The previous hidden state of L2 and L? are h2 and h$ respectrvely The time delay
is A3 = A3 = tp—t1. We caleulate (h3, ¢3) = L*(23, h3, c1, A3) and (h3, c3) = L (a3, hi, c1, A3)
using equatlonl 3l Based on this, the summary state ¢, is given by agg(c3, c3).

Time t3 The inputis Z3 = (¢3, {(z3, Al)}) time delay is A} = t3 — ¢ and switch layeris S3 = 1
. Thus we compute (h3,ci) = L' (21, hi, c2, Al) and c3 = agg(cl).

Time t;, We et (hi,cl) = LY (x}, hd, c3,A}) and (h ,c3) = L2(x3,h3,c3,A%) where A} =
ty — t3 and A4 = t4 — to. Finally, the hidden states (h hi, hg) and the summary state c4, where
c4 = agg(ci, c3), are concatenated to give C' = {cy, hl, h4, h3}. A fully connected layer is employed
to give the final predictionas § = F(C') (see equatron . This demonstrates the simplicity of SLAN in
dynamically adapting the irregularly sampled sensor measurements without any need for imputation.

/ — \
Agg Agg cq
3

3 3
o7, Ay L.
2 A2 ayer
:1)4,A4

1 1 1 1 1 1
wl z3, A3 z4, 84 J

Figure 5: Unrolled SLAN architecture based on the example in Figure @k. (Best viewed in color)

/o~

D Datasets

We consider MIMIC-III (M-3) [18]] and Physionet 2012 (P-12) [[19] datasets to showcase the efficacy
of SLAN. We prepare the datasets by following SeFT [[14]. For both datasets, the mortality prediction
task is considered. The datasets are skewed with 13.22% and 14.24% positive labels for M-3 and



344
345

347
348
349

350
351
352
353
354
355
356
357
358
359
360
361
362

363
364
365
366

368
369
370
371

372

373
374
375
376
377

379
380

Table 2: Dataset Description. #Instances is the number of patient records in the datasets, #Sensors is
the number of features/sensors in each instance, # Static is the number of static variables, #Observa-
tions is the average number of observations recorded in each instance, i.e., the number of time steps,
#Num-Imputation is the number of imputation or missing values and Imbalance is the percentage of
instances with a minority class label.

Dataset MIMIC-III  Physionet 2012
#Instances 22110 11988
#Sensors 17 37
#Static 0 6
#Observations(avg.) 77.7 74.9
#Num-Imputation 1.8 x 107 2.8 x 107
Imbalance (%) 13.22 14.24

P-12, respectively, making them challenging datasets. The number of missingness is 1.8 x 107 and
2.8 x 107 for the M-3 and P-12 datasets, leading to high irregularity. A detailed description of
the dataset is presented in Table 2] It is important to note that several studies in the literature have
also utilized the Physionet 2019 (P-19) dataset. However, due to its substantial size and resource
constraints, we could not benchmark on the P-19 dataset. MIMIC-III and P-12 are further discussed
next.

MIMIC-III It is a dataset of stays of patients in the critical care unit at a large tertiary care hospital.
It has 21142 stays of unique patients (instances) with a median length of stay of 2.1 days. A total
of 17 physiological measurements, like vital signs, medications, etc., are recorded for each patient.
Following SeFT [14], we remove 32 instances. The discarded instances contained dramatically
different recording frequencies compared to the rest of the dataset. Thus, the total number of
instances is 21110. We train our model for the in-hospital mortality prediction tasks. Some of the
features with numerical data type have extreme outlier values, like oxygen saturation, which should
have values in the range of 0-100, but some values are in the range of 10° (see Figure , possibly
due to input/formatting error. Therefore, we remove these outliers. From the training data, 0.008%
extreme values are removed in each numerical feature. 0.008% is selected based on the histogram
chart of each feature in the training data, as it does not cause too much loss of information and forms
a well-distributed histogram, as shown in Figure[6b] Based on the lower and upper bound values with
respect to 0.008% extreme values, the outliers from the test and validation data are also removed.

Physionet 2012 1t is a dataset of 12000 patient records (instances) containing measurements taken
during the first 48 hours of the ICU stays. Each instance is associated with 37 time series variables
(sensors) like blood pressure, lactate, respiration rate, etc., and 6 static descriptor features (i.e.,
RecordID, Age, Gender, height, ICUType, and Weight). We follow the SeFT [14] paper and remove
12 instances that do not contain any time series information. The weight feature is considered a time
series since it is measured multiple times in the observation period. The final dataset has 11988
instances with 37 features. We train our model on the in-hospital mortality task, which is a binary
classification task to predict if the patient dies before being discharged by using the data of the first
48 hours of the ICU admission.

E Baselines

We consider both non-imputation and imputation baselines. Among imputation, GRU-D [9]], IP-Nets
[10], and ViTST [ 1] are considered. The non-imputation baselines are Transformer [15]], SeFT [14],
Raindrop [17], CoFormer [25]], and IVP-VAE [26]. The imputation strategy of baseline models that
classify them in the category of imputation baselines is discussed in Section Some recent models
were excluded from our baselines either due to their implementation complexity or because they are
forecasting models rather than classification models. These models are discussed in Section [E.2]
For a fair comparison, we only included models capable of performing classification tasks in their
original form.

10
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(a) Histogram of the numerical features of the MIMIC-I1l dataset before outlier removal.
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(b) Histogram of the numerical features of the MIMIC-11I dataset after outlier removal.

Figure 6: Change in the distribution of numerical features in MIMIC-III dataset after removing
0.0008% extreme outlier values.

E.1 Imputation-Based Baseline Models

GRU-D Che et al. [9] proposed GRU-D, which exploits missingness by considering two main miss-
ingness representation methods, masking and timestamps, to devise effective solutions to characterize
the missing patterns. The proposed model aims to use the masking information and temporal pattern
in the missingness via the two trainable decay terms. The decay is calculated as

v = exp{—maz(0, W, 6; + by)} ©

where + is the decay parameter at time ¢, W and b are model parameters to learn the decay. GRU-D
decays the hidden states as
hi—1 =y, © ht—1 (10)

where h;_; is the hidden state from time ¢ — 1 and ~p, is decay value of hidden state at time ¢.
GRU-D further imputes the input missing value whenever the input data is missing. The following
equation does the imputation

o = mifad + (1 - md)pealh + (1 - md)(1 — 7,)5" an

Here, m‘f represents the masking value which is 1 if the sensor is measured otherwise 0, Vad is the

decay factor, z¢ is the last observation of the d™ variable (t' < t)and #7 is the empirical mean of the
d™ variable. Thus, the missing input feature is imputed whenever not measured.

IP-Nets Shukla et al. [10] proposed Interpolation-Prediction Networks, which consist of an
interpolation network followed by a prediction network. IP-Nets convert ISTS to regularly sampled
time series (RSTS) in the interpolation network. It uses the information from each time series
to interpolate values of all the other time series. IP-Nets considers a set of reference time points
r = [rq,...,r7]. All the reference time points are evenly spaced within its interval. For each sensor
of an instance, IP-Nets output three interpolants (cross-channels, transient component, and intensity)
corresponding to each reference point and a sensor. Thus, the interpolation network takes i ISTS
instance (X;) as input and outputs i" RSTS interpolated output (X i) where the dimension of XZ is

11
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(3s) x T. Here, s is the number of sensors/features, T is the number of reference time points, and 3
represents the number of interpolants corresponding to each time point for each sensor. Flnally, in the

prediction network, X, is used as an input to produce the final prediction as §; = gg(X ).

ViTST Lietal. [11] introduced the Vision Time Series Transformer, which converts each sample
of ISTS data into line graphs. These graphs are subsequently organized into a standard RGB image
format. The process involves plotting timestamps on the horizontal axis and observed values on the
vertical axis of the line graph, with observations connected chronologically using linear interpolation
to address missing values. Each sensor or feature generates a line graph that is arranged into a single
image following a predefined layout. The vision transformer, specifically the Swin Transformer, is
utilized for the classification of the created image. To integrate static features, ViTST transforms
them into text using a template and encodes this text with a RoOBERTa-base text encoder. The text
and image embeddings are then concatenated to facilitate classification.

E.2 Non-Baseline Models

In this section, we discuss recent models relevant to ISTS data, which were not included as baselines
in our study. Notably, GraFITi [27] and Tripletformer [28] are designed for forecasting rather than
classification. While it is possible to adapt these forecasting models for classification by using a
two-stage process — where the model first imputes the data followed by a classification network
predicting outcomes — such an approach could compromise the fairness of comparisons. Therefore,
our study limited its scope to models that inherently perform classification tasks. In addition to the
above forecasting methods, we could not include the following classification models in our study.

ContiFormer [29] The ContiFormer articles detail their outcomes on the MIMIC dataset for event
prediction tasks, whereas our study focuses on classification tasks. Although ContiFormer is also
suitable for classifying ISTS, as demonstrated in its article across 20 datasets from the UEA Time
Series Classification Archive, none of these datasets include MIMIC or P12. For comparison with
SLAN, we attempt to apply ContiFormer on the MIMIC and P12 datasets. Due to the complexity of the
ContiFormer model, we utilized the original implementation provided by the author However, we
encountered issues with the code’s functionality for classification tasks with MIMIC data. Specifically,
the ‘forward’ function within the ‘PhysioPro/physiopro/model/masktimeseries.py’ file assumes
the presence of measured values for all sensors at certain timestamps (line 105, ‘tmp_mask =
torch.bitwise_or(tmp_mask, mask[..., i])’). This assumption does not hold for the MIMIC dataset,
leading to implementation failures. Consequently, with its current implementation, ContiFormer is
inapplicable for the classification tasks of the MIMIC dataset, and thus, we could not include it as a
baseline model in our study.

TEE4EHR [30] TEE4EHR is designed for classification tasks within EHR datasets, as evidenced
by its performance on the P12 dataset. However, we were unable to include this model as a baseline
due to the complexity of the data format required by the model. The publication does not offer
scripts or detailed guidance on converting raw data into the format suitable for their model. The only
reference to data conversion is found on their GitHub pag suggesting that one might understand
the conversion process by examining one of the processed datasets provided by the authors. Upon
reviewing the processed P12 dataset available, the steps required to transform raw data into the final
dataset format remained unclear, preventing us from incorporating TEE4EHR as a baseline model in
our study.

DNA-T [31] The code for DNA-T is not publicly accessible. Consequently, we were unable to
include this model as a baseline in our study.

Transformer + TPR [32] The code for this model is available at the GitHub [ﬂ However, the
provided code lacks sufficient detail to facilitate the proper benchmarking of the model. Additionally,
the complexity of the model presents significant challenges for implementation. Consequently, we
were unable to include this model as a baseline in our study.

'https://github.com/microsoft/PhysioPro/tree/main
"https://github.com/esl-epfl/TEE4AEHR
*https://github.com/SCXsunchenxi/TPR
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F Comparison Metrics

The datasets are imbalanced. Thus, we use the area under the receiver operating characteristic
(AUROC) and the area under the precision-recall curve (AUPRC) as comparison metrics. AUROC
informs the model’s discriminative ability between positive and negative labels. Different true
positive rates (TPR) and false positive rates (FPR) are achieved based on different thresholds for
binary classification. This gives an ROC curve, and the area under this curve is AUROC. AUPRC is
similar to AUROC, but instead of the TPR as the y-axis, precision is used, and instead of FPR as the
x-axis, recall is used. It is mainly used for imbalanced data where the focus is on correctly classifying
positive labels.

G Implementation Details

We consider the train-val-test split of all datasets provided in SeFT [14]. To handle the imbalance, we
resort to a weighted oversampling strategy. Weighted oversampling involves preparing the training
batch by sampling the data based on the class weights given by the inverse frequency of the class.
The models are trained for 20 epochs with an early stopping of 5 on AUPRC to avoid overfitting.
SLAN uses cross-entropy loss, AdamW optimizer, data standardization, and mean aggregate function.
The size of short-term and long-term memory size is 64, and the learning rate is 0.0005. The learning
rate is adaptive with decay by a factor of 0.5 after each epoch without improvement. The batch size is
16, and the dimension of the time embedding vector is 16 for both datasets. Since the P-12 dataset
has 6 static features, the embedding of these features is concatenated in the final concat layer before
applying a fully connected layer for prediction. The size of the embedding is kept equal to the size of
the global summary state. All the experiments are run on an NVIDIA DGX A100 machine equipped
with 8 40 GB GPUs. Each model is executed three times using random seeds of 2024, 2025, and 2026
to ensure reproducibility. The best value of the hyperparameter for the models is determined on the
validation set and subsequently used on the test set to evaluate the final performance. Hyperparameter
searching is conducted sequentially for each parameter, as detailed in the Section[G.I|below. The
range of hyperparameter values searched, and their best value for all the models on each dataset, is
documented in Table[3l

G.1 SLAN

The hyperparameters in SLAN include hidden size (dimensions of short-term and long-term memory),
batch size, time embedding dimension, and learning rate. We opted for finding the best hyperparameter
value on the validation set one at a time as follows:

1. Initially, we fixed the batch size to 32, the learning rate to 0.0005, the time embedding
dimension to 16, and varied the hidden size to 16, 32, 64, 128, and 256.

2. Next, we varied the batch size to 16, 32, 64, 128, 256, and 512. Here, the learning rate is
fixed to 0.0005, the time embedding dimension to 16, and the hidden size to the best value
found in the previous step.

3. Based on the best-hidden size and batch size, we varied the time embedding dimension to
16, 32, 64, 128, and 256 with a fixed learning rate of 0.0005.

4. Finally, we vary the learning rate to 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, and 0.05.

The best value of all the hyperparameters is provided in Table 3]

G.2 GRU-D, IPNets, Transformer, SeFT, and IVP-VAE
Similar to SLAN, all the hyperparameters of GRU-D [9], [PNets [10], Transformer [15], SeFT [14],

and IVP-VAE [26] are determined sequentially in the order mentioned in Table[3] The best values of
hyperparameters are also documented in Table
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Table 3: All the hyperparameters used in each model, their search values, and the best value of each
hyperparameter. ViTST requires substantial running time and resources. Therefore, we resort to the

best hyperparameters reported in the ViTST paper.

Model Hyperparameter(s) Search Best Values
M-3 P-12

Hidden Size {16, 32, 64, 128,256} 256 16

Batch Size {16, 32, 64, 128, 256, 512} 16 16

GRU-D Learning Rate {5es5, led, Se4, 1e3, Se3, 1e2, Se2} 5e3 le3
Dropout {0,0.1,0.2,0.3,04} 0.1 0.1

Recurrent Dropout {0,0.1,0.2,0.3,0.4} 0 0.5

Hidden Size {16, 32, 64, 128,256} 128 128

Batch Size {16, 32, 64, 128, 256, 512} 16 32

Learning Rate {5es5, led, Se4, 1e3, Se3, 1e2, Se2} le3 le3

IPNets Imputation Step {0.5,1,2.5,5} 2.5 5
Reconstruction Fraction {0.05,0.1,0.2,0.5,0.75} 0.2 0.2
Reconstruction Weights {0,0.5,1,1.5,2} 1.5 2

Dropout {0,0.1,0.2,0.3,04} 0.2 0.2

Recurrent Dropout {0,0.1,0.2,0.3,0.4} 0.1 0.3

. " Batch Size 48 48
WTST Learning Rate - 25 2e5
Hidden Size {16, 32, 64, 128, 256} 32 64

Batch Size {16, 32, 64, 128, 256, 512} 64 16

Learning Rate {5e5, led, Se4, 1e3, 5e3, le2, Se2} Se4 Se4
Transformer Number of Layers {1,2,3,4} 2 2
Number of Attention Heads {2,4,8,16} 16 2

Maximum Timescale {10, 100, 1000} 100 100

Dropout {0,0.1,0.2,0.3,04} 0.1 0.2
Aggregation Function {sum, max, mean} mean mean

Batch Size {16, 32, 64, 128, 256, 512} 64 16

Learning Rate {5e5, led, 5e4, 1e3, 5e3, le2, S5e2} Se4 Se4

Number of Phi Layers {1,2,3,4,5} 1 1

Number of Psi Layers {1,2,3,4,5} 3 3

Number of Rho Layers {1,2,3,4,5} 1 2

Phi Width {16, 32, 64, 128, 256, 512} 64 64

Psi Width {16, 32, 64, 128, 256, 512} 64 16

Rho Width {16, 32, 64, 128, 256, 512} 512 512
SeFT Latent Width {32, 64, 128, 256, 512, 1024, 2048} 256 2048
Psi Latent Width {32, 64, 128, 256, 512, 1024, 2048} 128 64

Dot Product Dimension {32, 64, 128, 256, 512, 1024, 2048} 2048 128

Number of Attention Heads {2,4,8,16} 4 16

Number of Positional Dimension {4, 8, 16} 8 8

Maximum Timescale {10, 100, 1000} 1000 100

Attention Dropout {0,0.1,0.2,0.3,0.4} 0 0.1

Phi Dropout {0,0.1,0.2,0.3,0.4} 0 0

Rho Dropout {0,0.1,0.2,0.3,04} 0.1 0.1

Batch Size {16, 32, 64, 128,256,512} 128 32

Learning Rate {5e5, led, 5e4, 1e3, 5e3, 1e2, Se2}  Se4 Se4

Raindrop Observation Embedding Size {2,4,8,16} 16 8
Number of Layers {1,2,3,4} 1 2

Number of Heads {2,4,8, 16} 2 2

Dropout {0,0.1,0.2,0.3,04} 0.3 0.3

Batch Size - 16 16

Learning Rate {5e5, led, 5e4, 1e3, 5e3, 1e2, 5e2} led Sed4

Number of Layers {2,4,6,8} 2 2

CoFormer  Number of Heads {2,4,8,16} 8 2
Hidden Size {16, 32, 64, 128,256} 256 128

Variate Code Dimension {16, 32, 64, 128, 256} 32 128

Dropout {0,0.1,0.2,0.3,04} 0.3 0.3

IVP-VAE  Batch Size {16, 32, 64, 128, 256, 512} 64 32
Learning Rate {5e5, led, 5e4, 1e3, 5e3, 1e2, 5e2} le3 5e3

Number of Layers {1,2,3,4,5} 2 5

Hidden Size {16, 32, 64, 128, 256} 128 32

Hidden Size {16, 32, 64, 128, 256} 64 64

SLAN Batch Size {16, 32, 64, 128, 256, 512} 16 16
Time Embedding Dimension {16, 32, 64, 128, 256} 16 16

Learning Rate {5e5, led, 5e4, 1e3, 5e3, 1e2, 5e2} Sed Sed4
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G.3 VIiTST

We implemented ViTST [L1] by adhering to the methodologies described in the ViTST article and
its accompanying codeﬂ ViTST necessitates a predefined grid layout to generate images for each
instance. Specifically, a 4x5 grid layout is used for the M-3 dataset, while a 6x6 grid layout is
employed for the P-12 dataset. It is important to note that the P-12 dataset comprises 37 features,
yet the grid layout accommodates only 36 features. Following the original paper’s guidelines, we
observed that one of the feature values consistently equals 1. Therefore, we stick to a 6x6 grid layout.
Each grid cell measures 64 x 64, resulting in total image dimensions of 256320 for the M-3 dataset
and 384 x 384 for the P-12 dataset. Linear interpolation is utilized to impute missing values. To create
the image, the line style is set to ‘-” with a line width of 1, and observed values are indicated by ‘*’
with a marker size of 2. Rather than employing weighted oversampling, we adopted the sampling
technique from the original paper, which equalizes the number of samples across classes by matching
the count of minority class samples to that of the majority class samples. Given the substantial time
requirement of ViTST, we opted to use the best hyperparameter values as reported in the ViTST
paper. The model employs a pre-trained Swin Transformer with a batch size of 48, a learning rate
of 0.00002, and a duration of 4 epochs. For handling static data in the P-12 dataset, a pre-trained
Roberta-base model is used, consistent with the approach outlined in the original article.

G.4 Raindrop

Similar to SLAN, the hyperparameters for Raindrop [17], as detailed in Table [3 are determined
sequentially in the order listed. Unlike SLAN, Raindrop employs a distinct sampling strategy, as
described in the original article. Specifically, sampling involves selecting from a pool consisting
of one times the majority class samples and three times the minority class samples, such that every
processed batch has the same number of positive and negative class samples.

G.5 CoFormer

The hyperparameters for CoFormer [25] are listed in Table 3] Due to GPU memory constraints, the
batch size is fixed at 16. The remaining parameters, specifically the number of neighbors and the
agent encoding dimension, are set to 30 and 32, respectively, aligning with the specifications provided
in the original article.

H Discussion

SLAN vs TimeLSTM and Time2Vec It is important to note that neither TimeLSTM nor Time2Vec
is equipped to manage missing data in ISTS datasets. In contrast, SLAN effectively addresses this
issue by employing a group of TimeLSTM units (enhanced by Time2Vec for decay functions), a
simple switch strategy, and the sharing of information between TimeLLSTM units through both global
and local summary states. This framework allows SLAN to model ISTS data without the need for
imputation.

Switch Layer in SLAN vs Observation Mask in Transformer Note that the switch layer in SLAN
is different from the observation mask in Transformers [[15]]. The switch layer dynamically changes
the architecture of SLAN to adapt to missing values by explicitly informing the model which LSTM
blocks will be active. The architecture of the Transformer is fixed, where the observation masks
are concatenated with the input value and passed as input to the model. The Transformer implicitly
learns the meaning of observational masks via training.

SLAN vs GRU-D When data is missing, GRU-D performs input imputation and hidden state decay.
d.d

The input is imputed as 2 = mfxf + (1 — mf)ﬂym;m:f, + (1 -md(1 - %g)a}d where m¢ is the
masking value, v is the decay factor, :cf, is the last observation of the d™ variable (t/ < t) and 7% is the
empirical mean of the d'™ variable. The hidden state is decayed as y; = exp{—maz(0,a,A; + b,)}.
When the data is not missing, GRU-D just performs the hidden state decay to capture richer knowledge
from missingness. Thus, GRU-D performs imputation when the data is missing. Whereas, in SLAN,

*https://github.com/Leezekun/ViTST

15


https://github.com/Leezekun/ViTST

541
542
543
544

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

568
569
570
571
572

574
575
576
577
578
579
580
581

582
583
584
585
586

588
589
590
591
592
593

when data is missing, the switch of the LSTM corresponding to that data value is "off’. Hence, SLAN
don’t perform any form of imputation. When data is not missing, SLAN performs the hidden state
decay (equation [5|and [6) using Time2Vec to capture information from time delay (A7"). Hence,
SLAN differs from GRU-D, and unlike GRU-D, SLAN is a non-imputation model.

Time Requirement and Scalability

to Number of Sensors The worst- MIMIC-TIT Physionet 2012
case time complexity of SLAN is AUPRC  AUROC AUPRC  AUROC
given by O((N/B)*T x K ), where N Imputation

is the number of instances, B is the ffill 5146:00 85.18:0c  51.06:00 85.07:0%
batch size, T'is the maximum length mean 4873107 8430.0% 516507 8528.0%
of the time series, and K is the time inter. 49.44.05 84.96:0% 50.75007 84.88 0
complexity to process a single LSTM. None 51.12:057 85.63-007 55.20 06: 86.42:0.13

We utilize GPU to run SLAN, and
therefore, the time complexity to pro-
cess a single LSTM is O(Hz) where Max 49.24:10ss 85.40+029 54.36+080 85.95+0.19

: . ; . Att 5038006 85.59:04 5537010 86.44-0.16
g Cllf E’SeTi}[d‘;etneZieﬁorfl ;f;lv[i'n;?tr Mean 51.12:057 85.63:000 5520005 8642:01:

Aggregation Function

and weight tensors are constructed of Concat

shape (F'*+ B,H + 1,1) and (F'*  Only G.S. 46.6110s3 84.63:02 48.81+15: 83.04+045
B, H, H + 1), which are then further Only L.S. 50.96:051 85.80-0.4 54.43+051 86.20-020
multiplied using the torch.matmul op- G.S.+L.S. 51.12+057 85.63-007 55.20+065 86.42-+0.13

eration, as weightxinput=output, with

output shape of (F'* B, H,1). Here, Table 4: Comparison of SLAN for different aggregation
F' is the number of sensors. The first functions and variants of concat layer. Att stands for attention.
dimension given by F' * B is paral- G.S. stands for global summary state and L.S. stands for local
lelized in GPU, so F' * B numbers of summary state. G.S. + L.S. is the default setting of SLAN.
matrix multiplication are computed in

parallel. The overall time complexity becomes equal to the time complexity to multiply a single
matrix since all matrices are computed parallelly. Matrix multiplication of matrices with shape
(H,H + 1) with (H + 1,1) has a time complexity of O(H?). Since the factor H? comes from
parallelized operation in GPUs, it will, therefore, have a very small constant factor compared to the
other part [(N/B) % T, which is processed sequentially. Therefore, the worst time complexity of
SLAN in GPU is given by O((N/B) % T * H?). It can be seen that the training time of SLAN is
dependent on the #Instances (V) and the #Observations (7). Refer to Table 2] for the definition of
#Instances and #Observations. This is also evident in the training time required for M-3 and P-12.
SLAN requires training time of 373.554-4.80 and 183.99+9.45 seconds per epoch (s/ep) for M-3 and
P-12, respectively. Therefore, the time required for an instance of M-3 and P-12 is 2.55x 1072 and
2.40x 1072 s/ep, respectively. M-3 requires slightly more time than P-12 because its #Observations
are slightly higher. Note that the time required by SLAN does not depend on the number of sensors,
as M-3 has 17 sensors, whereas P-12 has 37. Thus, SLAN is scalable to the number of sensors with
regard to time complexity.

Space Complexity The space complexity of the SLAN can be given by O(F « L + K + D), where
O(L), O(K), and O(D) are the space complexity of a single LSTM, final prediction network, and
Time2Vec function, respectively. The three gates and cell state of an LSTM, given by equation
account for 4?2 +8H parameters. The three time decay function (see equationrequires 3H?+6H
parameters. Therefore, an LSTM requires 7H? + 14H parameters. The O(K) = 2FH + 2H + 2,
and O(D) = E, where E is the time embedding dimension. Therefore, the total number of learnable
parameters in SLAN is 7TFH? + 16FH + 2H + E + 2. The values of H and E are 64 and 16,
respectively, for both M-3 and P-12. Therefore, the total number of parameters for M-3 (F' = 17)
and P-12 (F' = 37) is ~504K and ~1 million parameters, respectively. Furthermore, the number of
parameters required for 1000 sensors would be ~30 million, which amounts to ~0.22GB memory
with 64-bit precision. Therefore, SLAN is scalable compared to large language models, such as
GPT-like models, which require significant computing resources.
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