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Abstract

Modeling irregularly-sampled time series (ISTS) is challenging because of missing1

values. Most existing methods focus on handling ISTS by converting irregularly2

sampled data into regularly sampled data via imputation. These models assume an3

underlying missing mechanism, which may lead to unwanted bias and sub-optimal4

performance. We present SLAN (Switch LSTM Aggregate Network), which utilizes5

a group of LSTMs to model ISTS without imputation, eliminating the assumption6

of any underlying process. It dynamically adapts its architecture on the fly based on7

the measured sensors using switches. SLAN exploits the irregularity information8

to explicitly capture each sensor’s local summary and maintains a global summary9

state throughout the observational period. We demonstrate the efficacy of SLAN10

on two public datasets, namely, MIMIC-III and Physionet 2012, for the in-hospital11

mortality prediction task.12

1 Introduction13

An irregularly sampled time series (ISTS) is a multivariate time series recorded at inconsistent or14

non-uniform time intervals. Such data can be found in various fields dealing with complex generative15

processes, like meteorology [1], seismology [2], user social-media activity logs [3], e-commerce16

transactions [4], epidemiological and clinical research [5, 6]. The cause of missingness in ISTS17

relates to unobserved data [7]. Thus, modeling applications concerning ISTS are challenging. This18

work focuses on modeling ISTS in the clinical domain since it is a well-established application.19

Many methods handle ISTS by filling missingness via imputation, converting ISTS to regularly20

sampled time series, assuming an underlying missing mechanism [8]. Imputation is the process of21

filling up missing values with estimated values whenever input is not observed. The imputation can22

be performed via forward filling, mean [9], interpolation [10, 11], model-based technique [12], etc.23

However, any form of imputation may alter the data’s original nature with artificial approximation,24

leading to unwanted distribution shifts [13]. This may introduce a bias, resulting in sub-optimal25

performance. We show this empirically in our findings, where the performance of our model (SLAN)26

consistently outperforms the imputation-based models (see Table 1).27

We argue that learning the imputation task is challenging because of the underlying missing mech-28

anism and may not be required for the downstream task. Some non-imputation methods [14, 15]29

exist in the literature but do not properly exploit the temporal structure of missing values. It is worth30

noting that ISTS datasets are not simply incomplete but contain informative missingness [16]. Other31

methods [17] may not exploit the irregularity information of the sensors. Therefore, specialized32

methods are required to handle such missingness in a meaningful way.33

We present Switch LSTM Aggregate Network (SLAN), which utilizes a group of LSTMs to handle34

ISTS. Our proposed model exploits the irregularity information of the ISTS to maintain the local35
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Figure 1: (a) SLAN Architecture. Here xm
j denotes the input at time tj of mth sensor. The closed

circuit in the switch layer means that a particular switch is "on", otherwise it is "off". The X sign in
red implies that there is no input or output to the corresponding LSTM block. (b) The inner working
of an LSTM block is given here. (c) Notations are denoted in the legend.

summary state for each observed time series. In most practical situations, these time series come36

from sensor measurements. The model is equipped with a switch layer that enables it to adapt to the37

input order of measured sensors dynamically. SLAN maintains a global summary state, aiding each38

LSTM with summarised information throughout the observational period. We show the efficacy of39

SLAN on two widely used public clinical datasets: MIMIC-III [18] and PhysioNet 2012 [19] for the40

in-hospital mortality prediction, i.e., a binary classification task. The contributions of our work are:41

(1) We propose a simple and effective switch layer that dynamically changes the SLAN architecture42

to handle ISTS, thus eliminating the need for imputation. (2) We introduce a global summary state43

enriched with the information from each sensor. (3) We maintain a local summary state for each44

sensor, aided by other sensor information.45

2 SLAN: Switch LSTM Aggregation Network46

The motivation of SLAN is propelled by the effectiveness of the sequence model, like LSTM, in47

handling time series data [9]. However, a single LSTM is incapable of modeling ISTS without48

imputation. Therefore, we devise a strategy of employing one LSTM per sensor. Since ISTS has49

irregular sampling, we propose a simple switch layer that facilitates the activation of only those50

LSTMs whose corresponding sensors are measured. Furthermore, we introduce global and local51

summary states to share information between all sensors.52

SLAN is an adaptive LSTM-based model that dynamically changes its architecture depending on the53

measured sensors at any time point by utilizing a switch layer. The architecture of SLAN is presented54

in Fig. 1a. It consists of a pack of LSTMs such that there is a one-on-one connection between a55

sensor and an LSTM block. The switch layer facilitates this (see the yellow-colored box in Fig. 1a).56

Each sensor is connected to its corresponding LSTM block by a switch. A switch goes "on" if its57

corresponding sensor is measured; otherwise, it stays off. The "on" switch results in activating its58

corresponding LSTM block, thus, eliminating the need for any imputation. The LSTM block outputs59

a long-term memory (LTM) and a short-term memory (STM) (Fig. 1b). The LTM of each activated60

LSTM block is aggregated to produce a global summary state and passed on to all the LSTM blocks61

for the next time step as input. This aids the LSTM blocks with summarised information.62

LSTM allows sequential processing of the time series, preserving their arrival order. However, still, it63

is necessary to model the time information associated with each input. This is more so in the case of64

ISTS since the time interval is not fixed. We draw upon the many methods presented in the literature65

to model time information and utilize Time2Vec [20] for its demonstrated effectiveness.66

The previous short-term memory (STM) of each activated LSTM block is decayed based on the vector67

representation of time delay and decay function (discussed below). This decayed STM is passed as an68

input for the next measured time point. This acts as a local summary for each sensor. Finally, at the69

last time point, the STM(s) from each LSTM block are concatenated with the aggregated LTM as seen70

in the concat layer in Fig. 1a. The concat layer is then fully connected to a 2-node output layer for71
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binary classification. The fully connected layer can be easily extended for multi-class classification.72

The problem statement of ISTS is defined mathematically in Section A, and the architecture and73

algorithm of SLAN are also presented in Section B of the Appendix. Moreover, an example of the74

working of SLAN is presented in Section C of the Appendix.75

3 Results76

Model MIMIC-III Physionet 2012

AUPRC AUROC AUPRC AUROC

Imputation
GRU-D 45.91 ± 1.34 83.43 ± 0.66 49.63 ± 1.17 84.94 ± 0.29

IPNets 48.70 ± 0.67 84.90 ± 0.26 50.02 ± 0.61 85.54 ± 0.42

ViTST 47.88 ± 0.49 85.49 ± 0.82 48.53 ± 1.05 84.27 ± 0.37

Non-Imputation
Transformer 48.88 ± 1.01 84.89 ± 0.53 49.37 ± 0.77 84.23 ± 0.14

SeFT 46.01 ± 1.06 85.43 ± 0.26 50.69 ± 0.89 85.28 ± 0.28

Raindrop 35.76 ± 0.29 77.18 ± 0.20 42.28 ± 1.48 79.34 ± 0.19

CoFormer 50.51 ± 0.90 85.08 ± 0.56 48.67 ± 2.55 85.12 ± 0.96

IVP-VAE 47.02 ± 0.75 84.80 ± 0.19 47.35 ± 0.72 85.12 ± 0.59

SLAN 51.12 ± 0.57 85.63 ± 0.07 55.20 ± 0.65 86.42 ± 0.13

Table 1: Comparison of various methods on M-3 and P-12 datasets.
The best and 2nd best performance is represented by bold and
underline, respectively. The metric is reported as the mean ±
standard deviation of three runs with different seeds.

We consider MIMIC-III (M-3)77

[18] and Physionet 2012 (P-78

12) [19] datasets to showcase79

the efficacy of SLAN. We con-80

sider 8 baseline models belong-81

ing to non-imputation or imputa-82

tion methods as outlined in Table83

1 and compare them with SLAN84

in terms of AUROC and AUPRC85

metrics. A detailed description86

of datasets, baselines, compari-87

son metrics, and implementation88

details is provided in Section D,89

E, F, and G of the Appendix, re-90

spectively.91

The performance of SLAN on M-92

3 and P-12 datasets are presented93

in Table 1. SLAN outperforms94

all the baselines on both the datasets for both metrics. SLAN outperforms the second-best results by95

1.2% and 8.9% in absolute AUPRC points, and 0.2% and 1% in absolute AUROC points for M-3 and96

P-12, respectively.97

4 Ablation Studies98

Unless otherwise stated, all the below experiments of SLAN are performed by following the imple-99

mentation details given in the previous section.100

Performance vs the best imputation model We compare SLAN with the best imputation model101

to assess SLAN’s robustness under an increased number of missing observations. IP-Nets perform102

the best among the imputation models, as evident from Table 1. IP-Nets surpasses other imputation103

models in both evaluated metrics on the P-12 and the AUPRC metric on the M-3 dataset. We randomly104

drop 25%, 50%, and 75% of observed data in both the M-3 and P-12 datasets. SLAN consistently105

outperforms IP-Nets across all scenarios. SLAN achieves gains in absolute AUPRC points of 7.32%,106

5.49%, and 6.85% in the M-3 dataset and 7.18%, 7.17%, and 12.63% in P-12 for the respective107

data drop of 25%, 50% and 75%. These results assert the superiority of SLAN even in conditions108

characterized by a substantial proportion of missing observations.109

Imputated SLAN To determine the efficacy of SLAN, we compare it with imputed SLAN. We110

consider three types of imputation, namely, forward fill (ffill), mean, and interpolation imputed via111

the last measured value, global mean, and linear interpolation, respectively. As evident from Table H,112

SLAN (represented by None) outperforms mean and interpolation. SLAN further surpasses ffill in113

the P-12 dataset and in the AUROC metric of the M-3 dataset.114

Different Aggregation Methods We compare SLAN’s performance using mean, max, and simple115

attention [21] as aggregation functions for computing the global summary state, and further examine116

the informativeness of the concat layer. As shown in Table H, max underperforms due to its sensitivity117

to outliers, whereas mean and attention yield competitive results—attention is best on P-12, while118

mean excels on M-3. Regarding the concat layer, the default setting (G.S. + L.S.) is most effective;119

using only local states (Only L.S.) results in slightly poorer performance overall but can surpass in120

AUROC on M-3. In contrast, using only global states (Only G.S.) significantly degrades performance121
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compared to G.S. + L.S., though it still retains enough information to outperform strong baselines122

like Raindrop and GRU-D.123
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Figure 2: SLAN on different percent-
ages of training datasets. The average
with 95% confidence interval of 3 runs
is reported here.

Data Scalability In the practical setting, it is important124

for any model to have data scalability, meaning the per-125

formance of the model on test data should improve as126

the amount of training data increases. We consider the127

first 25%, 50%, 75%, and 100% training data for both128

P-12 and M-3 and train our model on them. The average129

and the 95% confidence interval of 3 different runs of130

SLAN on the test data are shown in Figure 2. The per-131

formance of SLAN steadily increases with the increasing132

amount of training data on both datasets. The percentage133

improvement of AUPRC for M-3, when trained on 50%134

data compared to 25% data is 4.25%, 75% data compared135

to 50% data is 3.17%, and 100% data compared to 75%136

data is 1.43%. Transitioning from 25% to 50% data, we137

double the number of instances; thus, the percentage im-138

provement is the highest. Whereas when trained on 100%139

data compared to 75% data, we add only 1/3rd data; thus,140

the percentage improvement is lowest. The same trend is141

followed in the AUROC of M-3, AUPRC, and AUROC of142

P-12. See section IV in the Supplementary for the exact143

metrics value.144

Figure 3: Comparison of the ranking of
clinical variables w.r.t. sampling rate and
mean importance.

Sampling Rate vs Importance of Sensors We use145

simple attention [21] in the Agg() unit to compute the146

global summary state from the LTMs of active LSTM147

blocks. The attention module assigns weights amj to148

each sensor’s memory using a feed-forward network,149

and we analyze these weights to interpret sensor impor-150

tance. For the M-3 dataset, we sum attention weights151

across time and instances, normalize them by the sen-152

sor’s measurement count, and obtain normalized im-153

portance scores (normIm). Figure 3 compares these154

scores with sensor sampling rates. While sensors like155

oxygen saturation, respiratory rate, and heart rate are156

measured most frequently, the most informative ones157

are pH, height, and weight—pH being the most influ-158

ential despite its low sampling rate. This shows that159

measurement frequency does not directly correlate with160

a sensor’s predictive importance.161

5 Conclusion162

We propose a Switch LSTM Aggregate Network to handle multivariate ISTS data without any163

imputation. The optimal performance of SLAN and various ablation studies empirically demonstrate164

the effectiveness of our proposed model. We also establish the superiority of SLAN compared to165

the imputation model even when additional data is missing. Moreover, the SLAN framework can be166

extended for modeling multi-modality data, like adding clinical notes to sensor measurement data167

[13]. SLAN can be used for forecasting tasks by inheriting the idea of multi-horizon forecasting168

[22]. SLAN can also be leveraged for streaming data modeling in an online setting with time-variant169

dimensions [23]. We plan to explore the above fields in the future.170
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A Problem Formulation254

A.1 Regularly Sampled Time Series (RSTS)255

Consider a dataset represented by D = {X,Y }, where X is a set of instances given by X =256

{X1, ..., Xn}, Y is the set of label given by Y = {y1, ..., yn} and n is the total number of instances.257

Xi is a time series for ith instance given by Xi = {Xi,1, ..., Xi,li} where li is the number of time258

steps ith instance was measured. Xi,j is the set of measured values of all sensors at time ti,j , given259

by Xi,j = {x1
i,j , ..., x

s
i,j}. Here, xm

i,j represents the measured value of sensor m for ith instance at260

time ti,j and s is the total number of sensors/features. We represent all sensors by their indices, and261

the set of indices of sensors is given by M = {1, ..., s}. We present a snapshot of multi-variate RSTS262

data of ith instance in Fig. 4a considering s = 3 and li = 4. Note that ti,2 − ti,1 is equal to ti,3 − ti,2263

in RSTS.264
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Figure 4: (a) A snapshot of multi-variate regularly sampled time series for ith instance. m represents
the index of the sensor. (b) A snapshot of multi-variate irregularly sampled time series (ISTS) for
ith instance. (c) Problem representation of the ISTS with respect to one instance by omitting the
subscript i. (Best viewed in color)

A.2 Irregularly Sampled Time Series (ISTS)265

ISTS follows the definition of RSTS, except not all sensors will be measured at each time step,266

leading to an irregular sampling of each sensor, and ti,2 − ti,1 need not be equal to ti,3 − ti,2. ISTS267

is mathematically given as Xi,j ⊆ {x1
i,j , ..., x

s
i,j}. A snapshot of ISTS for ith instance is shown in268

Fig. 4b where Xi,1 = {x1
i,1, x

3
i,1}, Xi,2 = {x2

i,2, x
3
i,2}, Xi,3 = {x1

i,3} and Xi,4 = {x1
i,4, x

2
i,4}.269

A.3 Problem Representation270

For simplicity, we omit the subscript i representing an instance and consider only one instance to271

discuss the problem and the working of the proposed model. In that sense, each measured value272

is given by xm
j (instead of xm

i,j) and it is received at time tj (instead of ti,j). Let us denote this273

instance by Z = Xi and the set of values of measured sensors at time tj by Zj . Based on this, at274

each time step tj , we represent the measured sensors as Zj = (tj ,
⋃

∀m∈Aj
{(xm

j ,∆m
j )}) where Aj275

is the set of sensors measured at time tj , given by Aj ⊆ M. ∆m
j denotes the time delay between two276

successive values measured by sensor m, i.e., ∆m
j = tj − tk, where k = max(1, ..., j − 1) such that277

m ∈ Ak. Thus, the whole input data is given by Z =
⋃l

j=1{Zj} where l is the number of time steps.278

Following the previous paragraph, we visually present the data representation and the corresponding279

equations in Fig. 4c.280

B SLAN Architecture Details281

SLAN consists of s LSTM blocks {L1, ..., Ls} where Lm is associated with sensor m. We define the282

switch layer (Sj) as the set of switches kept "on" based on the measured sensors at time tj . Since283

there is a one-on-one correspondence between a switch and its corresponding measured sensor, we284

borrow the representation of Sj as the indices of the sensors measured at time tj from section A, thus285

Sj = Aj .286

Each active LSTM block (Lm) at time tj takes the sensor value (xm
j ), STM (hm

j−1), LTM (cmj−1) and287

time delay (∆m
j ) as inputs and outputs hm

j and cmj , given by288

(hm
j , cmj ) = Lm(xm

j , hm
j−1, c

m
j−1,∆

m
j ) ∀m ∈ Sj (1)

where Lm ∀m ∈ Aj are active based on Sj at time tj . An aggregate function is employed on the LTM289

of the active LSTM blocks to get a summary state (cj) at tj . Any function that can group multiple290

values to give a single summary value can be used as an aggregation function and is represented by291

agg(). Some examples of aggregation functions are mean, max, and attention. The summary state is292
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given as293

cj = agg(
⋃

∀m∈Sj

{cmj }) (2)

The cj is used as an input for the next time step for every active LSTM block. An active LSTM at tj294

might not be active at tj−1. Thus, the STM input to Lm at tj is represented by hm
j< (instead of hm

j−1)295

where j< = max(1, ..., j − 1) such that m ∈ Sj . Therefore, equation 1 can be updated as:296

(hm
j , cmj ) = Lm(xm

j , hm
j< , cj−1,∆

m
j ) ∀m ∈ Sj (3)

Finally, the hidden states (or STM) of all the LSTM blocks and the summary state are concatenated to297

give a final output. Note that all the sensors may not be observed in the last timestamp tl. Therefore,298

we represent the last measure time for each sensor by tlm , such that tlm ≤ tl. Thus, the concat layer299

is given by C = {cl, h1
l1 , ..., h

s
ls}. A fully connected network is employed to get a final prediction300

from C as follows301

ŷ = F (C) (4)

Hidden State Decay Since the measurement of each sensor is irregular, we employ a time-decay302

function on the hidden states inspired by [20]. The time-decay function ensures that the previous local303

summary is adjusted based on the time delay (∆m
j ) of each sensor. Since each sensor is different, the304

decaying function should differ for each sensor. Thus, a trainable time-decay function is employed.305

The decay function is given as306

γ1
m
j = tanh(Wm

γ1
xm
j + V m

γ1
t2v(∆m

j ) + bmγ1
), where

t2v(∆m
j ) = sin(ωm

j ∆m
j + φm

j )
(5)

Here, t2v is the Time2Vec function with ωm
j , and φm

j as the learnable parameters. The sine function307

in Time2Vec helps capture periodic behaviors without the need for feature engineering. The Wm
γ1
, V m

γ1
,308

and bmγ1
are the parameters of the decay function. Consequently, the decay of the hidden state is given309

by310

h̃m
j = γ1

m
j ⊙ hm

j< (6)

where ⊙ is the element-wise dot product.311

Working of an LSTM block We employ TimeLSTM [24] as an LSTM block in our study. The312

gates of Lm at time tj are denoted by forget gate (fm
j ), input gate (imj ), output gate (omj ) and cell313

state (c̃mj ). Based on the decayed hidden states (h̃m
j ) given by equation 6 and summary state (cj−1)314

given by equation 2, the gates are determined as315

fm
j = σ(Wm

f xm
j + V m

f h̃m
j + bmf )

imj = σ(Wm
i xm

j + V m
i h̃m

j + bmi ) (7)

omj = σ(Wm
o xm

j + V m
o h̃m

j + bmo )

c̃mj = tanh(Wm
c xm

j + V m
c h̃m

j + bmc )

The final short-term and long-term memory depends on the decayed cell state achieved via γ2
m
j and316

γ3
m
j (equation 5) and is given by317

cmj = fm
j ⊙ cj−1 + imj ⊙ c̃mj ⊙ γ2

m
j

hm
j = omj ⊙ tanh(fm

j ⊙ cj−1 + imj ⊙ c̃mj ⊙ γ3
m
j ) (8)

Algorithm The pseudo-code of SLAN is presented in the Algorithm 1.318

C Unrolled SLAN319

An unrolled architecture based on the snapshot of an instance presented in Figure 4c is shown in320

Figure 5 (from left to right). We present the detailed workflow of the unrolled SLAN architecture321

here. The progression of SLAN at each time step is discussed next.322
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Algorithm 1 Switch LSTM Aggregate Network
Require: Model M with s LSTM block, switch layer S, and aggregation function as shown in
Figure 4a
repeat

for j in timestamp do
Create switch layer Sj from measured sensors Aj

Activate LSTM blocks based on Sj
Calculate hj[Sj], cj[Sj] by equation 3
Calculate cj using aggregation function by equation 2

end for
Concat all final hidden states (hm

lm ) and final summary state (cl) to get concat layer C
Predict ŷ using equation 4
Update M based on the loss

until Batch Left to run

Time t1 We receive input Z1 = (t1, {(x1
1,∆

1
1), (x

3
1,∆

3
1)}). Based on the measured sensors, the323

switch layer is S1 = {1, 3}, indicating switch 1 and switch 3 are “on". Thus, the associated LSTM324

blocks L1 and L3 are activated. The hidden states (h1
0, h

2
0, h

3
0) and summary state (c0) is initialized325

randomly. The time delay is ∆1
1 = ∆3

1 = 0. Using equation 3, we get (h1
1, c

1
1) = L1(x1

1, h
1
0, c0,∆

1
1)326

and (h3
1, c

3
1) = L3(x3

1, h
3
0, c0,∆

3
1) where the inner working of Lm is given by equation 6 and 7. The327

LTM (c11, c
3
1) is aggregated to give the next summary state c1.328

Time t2 At t2, Z2 = (t2, {(x2
2,∆

2
2), (x

3
2,∆

3
2)}), thus S2 = {2, 3}. Corresponding LSTM L2 and329

L3 are kept active. The previous hidden state of L2 and L3 are h2
0 and h3

1 respectively. The time delay330

is ∆2
2 = ∆3

2 = t2−t1. We calculate (h2
2, c

2
2) = L2(x2

2, h
2
0, c1,∆

2
2) and (h3

2, c
3
2) = L3(x3

2, h
3
1, c1,∆

3
2)331

using equation 3. Based on this, the summary state c2 is given by agg(c22, c
3
2).332

Time t3 The input is Z3 = (t3, {(x1
3,∆

1
3)}), time delay is ∆1

3 = t3 − t1 and switch layer is S3 = 1333

. Thus we compute (h1
3, c

1
3) = L1(x1

3, h
1
0, c2,∆

1
3) and c3 = agg(c13).334

Time t4 We get (h1
4, c

1
4) = L1(x1

4, h
1
3, c3,∆

1
4) and (h2

4, c
2
4) = L2(x2

4, h
2
2, c3,∆

2
4) where ∆1

4 =335

t4 − t3 and ∆2
4 = t4 − t2. Finally, the hidden states (h1

4, h
2
4, h

3
2) and the summary state c4, where336

c4 = agg(c14, c
2
4), are concatenated to give C = {c4, h1

4, h
2
4, h

3
2}. A fully connected layer is employed337

to give the final prediction as ŷ = F (C) (see equation 4). This demonstrates the simplicity of SLAN in338

dynamically adapting the irregularly sampled sensor measurements without any need for imputation.339

Concat
Layer

..

.

Figure 5: Unrolled SLAN architecture based on the example in Figure 4c. (Best viewed in color)

D Datasets340

We consider MIMIC-III (M-3) [18] and Physionet 2012 (P-12) [19] datasets to showcase the efficacy341

of SLAN. We prepare the datasets by following SeFT [14]. For both datasets, the mortality prediction342

task is considered. The datasets are skewed with 13.22% and 14.24% positive labels for M-3 and343
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Table 2: Dataset Description. #Instances is the number of patient records in the datasets, #Sensors is
the number of features/sensors in each instance, # Static is the number of static variables, #Observa-
tions is the average number of observations recorded in each instance, i.e., the number of time steps,
#Num-Imputation is the number of imputation or missing values and Imbalance is the percentage of
instances with a minority class label.

Dataset MIMIC-III Physionet 2012

#Instances 22110 11988
#Sensors 17 37
#Static 0 6
#Observations(avg.) 77.7 74.9
#Num-Imputation 1.8 × 107 2.8 × 107

Imbalance (%) 13.22 14.24

P-12, respectively, making them challenging datasets. The number of missingness is 1.8 × 107 and344

2.8 × 107 for the M-3 and P-12 datasets, leading to high irregularity. A detailed description of345

the dataset is presented in Table 2. It is important to note that several studies in the literature have346

also utilized the Physionet 2019 (P-19) dataset. However, due to its substantial size and resource347

constraints, we could not benchmark on the P-19 dataset. MIMIC-III and P-12 are further discussed348

next.349

MIMIC-III It is a dataset of stays of patients in the critical care unit at a large tertiary care hospital.350

It has 21142 stays of unique patients (instances) with a median length of stay of 2.1 days. A total351

of 17 physiological measurements, like vital signs, medications, etc., are recorded for each patient.352

Following SeFT [14], we remove 32 instances. The discarded instances contained dramatically353

different recording frequencies compared to the rest of the dataset. Thus, the total number of354

instances is 21110. We train our model for the in-hospital mortality prediction tasks. Some of the355

features with numerical data type have extreme outlier values, like oxygen saturation, which should356

have values in the range of 0-100, but some values are in the range of 105 (see Figure 6a), possibly357

due to input/formatting error. Therefore, we remove these outliers. From the training data, 0.008%358

extreme values are removed in each numerical feature. 0.008% is selected based on the histogram359

chart of each feature in the training data, as it does not cause too much loss of information and forms360

a well-distributed histogram, as shown in Figure 6b. Based on the lower and upper bound values with361

respect to 0.008% extreme values, the outliers from the test and validation data are also removed.362

Physionet 2012 It is a dataset of 12000 patient records (instances) containing measurements taken363

during the first 48 hours of the ICU stays. Each instance is associated with 37 time series variables364

(sensors) like blood pressure, lactate, respiration rate, etc., and 6 static descriptor features (i.e.,365

RecordID, Age, Gender, height, ICUType, and Weight). We follow the SeFT [14] paper and remove366

12 instances that do not contain any time series information. The weight feature is considered a time367

series since it is measured multiple times in the observation period. The final dataset has 11988368

instances with 37 features. We train our model on the in-hospital mortality task, which is a binary369

classification task to predict if the patient dies before being discharged by using the data of the first370

48 hours of the ICU admission.371

E Baselines372

We consider both non-imputation and imputation baselines. Among imputation, GRU-D [9], IP-Nets373

[10], and ViTST [11] are considered. The non-imputation baselines are Transformer [15], SeFT [14],374

Raindrop [17], CoFormer [25], and IVP-VAE [26]. The imputation strategy of baseline models that375

classify them in the category of imputation baselines is discussed in Section E.1. Some recent models376

were excluded from our baselines either due to their implementation complexity or because they are377

forecasting models rather than classification models. These models are discussed in Section E.2.378

For a fair comparison, we only included models capable of performing classification tasks in their379

original form.380
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(a) Histogram of the numerical features of the MIMIC-III dataset before outlier removal.

(b) Histogram of the numerical features of the MIMIC-III dataset after outlier removal.

Figure 6: Change in the distribution of numerical features in MIMIC-III dataset after removing
0.0008% extreme outlier values.

E.1 Imputation-Based Baseline Models381

GRU-D Che et al. [9] proposed GRU-D, which exploits missingness by considering two main miss-382

ingness representation methods, masking and timestamps, to devise effective solutions to characterize383

the missing patterns. The proposed model aims to use the masking information and temporal pattern384

in the missingness via the two trainable decay terms. The decay is calculated as385

γt = exp{−max(0,Wγδt + bγ)} (9)

where γ is the decay parameter at time t, W and b are model parameters to learn the decay. GRU-D386

decays the hidden states as387

ht−1 = γht ⊙ ht−1 (10)
where ht−1 is the hidden state from time t − 1 and γht

is decay value of hidden state at time t.388

GRU-D further imputes the input missing value whenever the input data is missing. The following389

equation does the imputation390

xd
t = md

tx
d
t + (1−md

t )γxd
t
xd
t′ + (1−md

t )(1− γxd
t
)x̃d (11)

Here, md
t represents the masking value which is 1 if the sensor is measured otherwise 0, γxd

t
is the391

decay factor, xd
t′ is the last observation of the dth variable (t

′
< t) and x̃d is the empirical mean of the392

dth variable. Thus, the missing input feature is imputed whenever not measured.393

IP-Nets Shukla et al. [10] proposed Interpolation-Prediction Networks, which consist of an394

interpolation network followed by a prediction network. IP-Nets convert ISTS to regularly sampled395

time series (RSTS) in the interpolation network. It uses the information from each time series396

to interpolate values of all the other time series. IP-Nets considers a set of reference time points397

r = [r1, ..., rT ]. All the reference time points are evenly spaced within its interval. For each sensor398

of an instance, IP-Nets output three interpolants (cross-channels, transient component, and intensity)399

corresponding to each reference point and a sensor. Thus, the interpolation network takes ith ISTS400

instance (Xi) as input and outputs ith RSTS interpolated output (X̂i) where the dimension of X̂i is401
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(3s)× T . Here, s is the number of sensors/features, T is the number of reference time points, and 3402

represents the number of interpolants corresponding to each time point for each sensor. Finally, in the403

prediction network, X̂i is used as an input to produce the final prediction as ŷi = gθ(X̂i).404

ViTST Li et al. [11] introduced the Vision Time Series Transformer, which converts each sample405

of ISTS data into line graphs. These graphs are subsequently organized into a standard RGB image406

format. The process involves plotting timestamps on the horizontal axis and observed values on the407

vertical axis of the line graph, with observations connected chronologically using linear interpolation408

to address missing values. Each sensor or feature generates a line graph that is arranged into a single409

image following a predefined layout. The vision transformer, specifically the Swin Transformer, is410

utilized for the classification of the created image. To integrate static features, ViTST transforms411

them into text using a template and encodes this text with a RoBERTa-base text encoder. The text412

and image embeddings are then concatenated to facilitate classification.413

E.2 Non-Baseline Models414

In this section, we discuss recent models relevant to ISTS data, which were not included as baselines415

in our study. Notably, GraFITi [27] and Tripletformer [28] are designed for forecasting rather than416

classification. While it is possible to adapt these forecasting models for classification by using a417

two-stage process – where the model first imputes the data followed by a classification network418

predicting outcomes – such an approach could compromise the fairness of comparisons. Therefore,419

our study limited its scope to models that inherently perform classification tasks. In addition to the420

above forecasting methods, we could not include the following classification models in our study.421

ContiFormer [29] The ContiFormer articles detail their outcomes on the MIMIC dataset for event422

prediction tasks, whereas our study focuses on classification tasks. Although ContiFormer is also423

suitable for classifying ISTS, as demonstrated in its article across 20 datasets from the UEA Time424

Series Classification Archive, none of these datasets include MIMIC or P12. For comparison with425

SLAN, we attempt to apply ContiFormer on the MIMIC and P12 datasets. Due to the complexity of the426

ContiFormer model, we utilized the original implementation provided by the authors1. However, we427

encountered issues with the code’s functionality for classification tasks with MIMIC data. Specifically,428

the ‘forward’ function within the ‘PhysioPro/physiopro/model/masktimeseries.py’ file assumes429

the presence of measured values for all sensors at certain timestamps (line 105, ‘tmp_mask =430

torch.bitwise_or(tmp_mask, mask[..., i])’). This assumption does not hold for the MIMIC dataset,431

leading to implementation failures. Consequently, with its current implementation, ContiFormer is432

inapplicable for the classification tasks of the MIMIC dataset, and thus, we could not include it as a433

baseline model in our study.434

TEE4EHR [30] TEE4EHR is designed for classification tasks within EHR datasets, as evidenced435

by its performance on the P12 dataset. However, we were unable to include this model as a baseline436

due to the complexity of the data format required by the model. The publication does not offer437

scripts or detailed guidance on converting raw data into the format suitable for their model. The only438

reference to data conversion is found on their GitHub page2, suggesting that one might understand439

the conversion process by examining one of the processed datasets provided by the authors. Upon440

reviewing the processed P12 dataset available, the steps required to transform raw data into the final441

dataset format remained unclear, preventing us from incorporating TEE4EHR as a baseline model in442

our study.443

DNA-T [31] The code for DNA-T is not publicly accessible. Consequently, we were unable to444

include this model as a baseline in our study.445

Transformer + TPR [32] The code for this model is available at the GitHub 3. However, the446

provided code lacks sufficient detail to facilitate the proper benchmarking of the model. Additionally,447

the complexity of the model presents significant challenges for implementation. Consequently, we448

were unable to include this model as a baseline in our study.449

1https://github.com/microsoft/PhysioPro/tree/main
2https://github.com/esl-epfl/TEE4EHR
3https://github.com/SCXsunchenxi/TPR
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F Comparison Metrics450

The datasets are imbalanced. Thus, we use the area under the receiver operating characteristic451

(AUROC) and the area under the precision-recall curve (AUPRC) as comparison metrics. AUROC452

informs the model’s discriminative ability between positive and negative labels. Different true453

positive rates (TPR) and false positive rates (FPR) are achieved based on different thresholds for454

binary classification. This gives an ROC curve, and the area under this curve is AUROC. AUPRC is455

similar to AUROC, but instead of the TPR as the y-axis, precision is used, and instead of FPR as the456

x-axis, recall is used. It is mainly used for imbalanced data where the focus is on correctly classifying457

positive labels.458

G Implementation Details459

We consider the train-val-test split of all datasets provided in SeFT [14]. To handle the imbalance, we460

resort to a weighted oversampling strategy. Weighted oversampling involves preparing the training461

batch by sampling the data based on the class weights given by the inverse frequency of the class.462

The models are trained for 20 epochs with an early stopping of 5 on AUPRC to avoid overfitting.463

SLAN uses cross-entropy loss, AdamW optimizer, data standardization, and mean aggregate function.464

The size of short-term and long-term memory size is 64, and the learning rate is 0.0005. The learning465

rate is adaptive with decay by a factor of 0.5 after each epoch without improvement. The batch size is466

16, and the dimension of the time embedding vector is 16 for both datasets. Since the P-12 dataset467

has 6 static features, the embedding of these features is concatenated in the final concat layer before468

applying a fully connected layer for prediction. The size of the embedding is kept equal to the size of469

the global summary state. All the experiments are run on an NVIDIA DGX A100 machine equipped470

with 8 40 GB GPUs. Each model is executed three times using random seeds of 2024, 2025, and 2026471

to ensure reproducibility. The best value of the hyperparameter for the models is determined on the472

validation set and subsequently used on the test set to evaluate the final performance. Hyperparameter473

searching is conducted sequentially for each parameter, as detailed in the Section G.1 below. The474

range of hyperparameter values searched, and their best value for all the models on each dataset, is475

documented in Table 3.476

G.1 SLAN477

The hyperparameters in SLAN include hidden size (dimensions of short-term and long-term memory),478

batch size, time embedding dimension, and learning rate. We opted for finding the best hyperparameter479

value on the validation set one at a time as follows:480

1. Initially, we fixed the batch size to 32, the learning rate to 0.0005, the time embedding481

dimension to 16, and varied the hidden size to 16, 32, 64, 128, and 256.482

2. Next, we varied the batch size to 16, 32, 64, 128, 256, and 512. Here, the learning rate is483

fixed to 0.0005, the time embedding dimension to 16, and the hidden size to the best value484

found in the previous step.485

3. Based on the best-hidden size and batch size, we varied the time embedding dimension to486

16, 32, 64, 128, and 256 with a fixed learning rate of 0.0005.487

4. Finally, we vary the learning rate to 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, and 0.05.488

The best value of all the hyperparameters is provided in Table 3.489

G.2 GRU-D, IPNets, Transformer, SeFT, and IVP-VAE490

Similar to SLAN, all the hyperparameters of GRU-D [9], IPNets [10], Transformer [15], SeFT [14],491

and IVP-VAE [26] are determined sequentially in the order mentioned in Table 3. The best values of492

hyperparameters are also documented in Table 3.493
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Table 3: All the hyperparameters used in each model, their search values, and the best value of each
hyperparameter. ViTST requires substantial running time and resources. Therefore, we resort to the
best hyperparameters reported in the ViTST paper.

Model Hyperparameter(s) Search Best Values

M-3 P-12

GRU-D

Hidden Size {16, 32, 64, 128, 256} 256 16
Batch Size {16, 32, 64, 128, 256, 512} 16 16
Learning Rate {5e5, 1e4, 5e4, 1e3, 5e3, 1e2, 5e2} 5e3 1e3
Dropout {0, 0.1, 0.2, 0.3, 0.4} 0.1 0.1
Recurrent Dropout {0, 0.1, 0.2, 0.3, 0.4} 0 0.5

IPNets

Hidden Size {16, 32, 64, 128, 256} 128 128
Batch Size {16, 32, 64, 128, 256, 512} 16 32
Learning Rate {5e5, 1e4, 5e4, 1e3, 5e3, 1e2, 5e2} 1e3 1e3
Imputation Step {0.5, 1, 2.5, 5} 2.5 5
Reconstruction Fraction {0.05, 0.1, 0.2, 0.5, 0.75} 0.2 0.2
Reconstruction Weights {0, 0.5, 1, 1.5, 2} 1.5 2
Dropout {0, 0.1, 0.2, 0.3, 0.4} 0.2 0.2
Recurrent Dropout {0, 0.1, 0.2, 0.3, 0.4} 0.1 0.3

ViTST* Batch Size - 48 48
Learning Rate - 2e5 2e5

Transformer

Hidden Size {16, 32, 64, 128, 256} 32 64
Batch Size {16, 32, 64, 128, 256, 512} 64 16
Learning Rate {5e5, 1e4, 5e4, 1e3, 5e3, 1e2, 5e2} 5e4 5e4
Number of Layers {1, 2, 3, 4} 2 2
Number of Attention Heads {2, 4, 8, 16} 16 2
Maximum Timescale {10, 100, 1000} 100 100
Dropout {0, 0.1, 0.2, 0.3, 0.4} 0.1 0.2
Aggregation Function {sum, max, mean} mean mean

SeFT

Batch Size {16, 32, 64, 128, 256, 512} 64 16
Learning Rate {5e5, 1e4, 5e4, 1e3, 5e3, 1e2, 5e2} 5e4 5e4
Number of Phi Layers {1, 2, 3, 4, 5} 1 1
Number of Psi Layers {1, 2, 3, 4, 5} 3 3
Number of Rho Layers {1, 2, 3, 4, 5} 1 2
Phi Width {16, 32, 64, 128, 256, 512} 64 64
Psi Width {16, 32, 64, 128, 256, 512} 64 16
Rho Width {16, 32, 64, 128, 256, 512} 512 512
Latent Width {32, 64, 128, 256, 512, 1024, 2048} 256 2048
Psi Latent Width {32, 64, 128, 256, 512, 1024, 2048} 128 64
Dot Product Dimension {32, 64, 128, 256, 512, 1024, 2048} 2048 128
Number of Attention Heads {2, 4, 8, 16} 4 16
Number of Positional Dimension {4, 8, 16} 8 8
Maximum Timescale {10, 100, 1000} 1000 100
Attention Dropout {0, 0.1, 0.2, 0.3, 0.4} 0 0.1
Phi Dropout {0, 0.1, 0.2, 0.3, 0.4} 0 0
Rho Dropout {0, 0.1, 0.2, 0.3, 0.4} 0.1 0.1

Raindrop

Batch Size {16, 32, 64, 128, 256, 512} 128 32
Learning Rate {5e5, 1e4, 5e4, 1e3, 5e3, 1e2, 5e2} 5e4 5e4
Observation Embedding Size {2, 4, 8, 16} 16 8
Number of Layers {1, 2, 3, 4} 1 2
Number of Heads {2, 4, 8, 16} 2 2
Dropout {0, 0.1, 0.2, 0.3, 0.4} 0.3 0.3

CoFormer

Batch Size - 16 16
Learning Rate {5e5, 1e4, 5e4, 1e3, 5e3, 1e2, 5e2} 1e4 5e4
Number of Layers {2, 4, 6, 8} 2 2
Number of Heads {2, 4, 8, 16} 8 2
Hidden Size {16, 32, 64, 128, 256} 256 128
Variate Code Dimension {16, 32, 64, 128, 256} 32 128
Dropout {0, 0.1, 0.2, 0.3, 0.4} 0.3 0.3

IVP-VAE Batch Size {16, 32, 64, 128, 256, 512} 64 32
Learning Rate {5e5, 1e4, 5e4, 1e3, 5e3, 1e2, 5e2} 1e3 5e3
Number of Layers {1, 2, 3, 4, 5} 2 5
Hidden Size {16, 32, 64, 128, 256} 128 32

SLAN

Hidden Size {16, 32, 64, 128, 256} 64 64
Batch Size {16, 32, 64, 128, 256, 512} 16 16
Time Embedding Dimension {16, 32, 64, 128, 256} 16 16
Learning Rate {5e5, 1e4, 5e4, 1e3, 5e3, 1e2, 5e2} 5e4 5e4
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G.3 ViTST494

We implemented ViTST [11] by adhering to the methodologies described in the ViTST article and495

its accompanying code4. ViTST necessitates a predefined grid layout to generate images for each496

instance. Specifically, a 4×5 grid layout is used for the M-3 dataset, while a 6×6 grid layout is497

employed for the P-12 dataset. It is important to note that the P-12 dataset comprises 37 features,498

yet the grid layout accommodates only 36 features. Following the original paper’s guidelines, we499

observed that one of the feature values consistently equals 1. Therefore, we stick to a 6×6 grid layout.500

Each grid cell measures 64×64, resulting in total image dimensions of 256×320 for the M-3 dataset501

and 384×384 for the P-12 dataset. Linear interpolation is utilized to impute missing values. To create502

the image, the line style is set to ‘-’ with a line width of 1, and observed values are indicated by ‘*’503

with a marker size of 2. Rather than employing weighted oversampling, we adopted the sampling504

technique from the original paper, which equalizes the number of samples across classes by matching505

the count of minority class samples to that of the majority class samples. Given the substantial time506

requirement of ViTST, we opted to use the best hyperparameter values as reported in the ViTST507

paper. The model employs a pre-trained Swin Transformer with a batch size of 48, a learning rate508

of 0.00002, and a duration of 4 epochs. For handling static data in the P-12 dataset, a pre-trained509

Roberta-base model is used, consistent with the approach outlined in the original article.510

G.4 Raindrop511

Similar to SLAN, the hyperparameters for Raindrop [17], as detailed in Table 3, are determined512

sequentially in the order listed. Unlike SLAN, Raindrop employs a distinct sampling strategy, as513

described in the original article. Specifically, sampling involves selecting from a pool consisting514

of one times the majority class samples and three times the minority class samples, such that every515

processed batch has the same number of positive and negative class samples.516

G.5 CoFormer517

The hyperparameters for CoFormer [25] are listed in Table 3. Due to GPU memory constraints, the518

batch size is fixed at 16. The remaining parameters, specifically the number of neighbors and the519

agent encoding dimension, are set to 30 and 32, respectively, aligning with the specifications provided520

in the original article.521

H Discussion522

SLAN vs TimeLSTM and Time2Vec It is important to note that neither TimeLSTM nor Time2Vec523

is equipped to manage missing data in ISTS datasets. In contrast, SLAN effectively addresses this524

issue by employing a group of TimeLSTM units (enhanced by Time2Vec for decay functions), a525

simple switch strategy, and the sharing of information between TimeLSTM units through both global526

and local summary states. This framework allows SLAN to model ISTS data without the need for527

imputation.528

Switch Layer in SLAN vs Observation Mask in Transformer Note that the switch layer in SLAN529

is different from the observation mask in Transformers [15]. The switch layer dynamically changes530

the architecture of SLAN to adapt to missing values by explicitly informing the model which LSTM531

blocks will be active. The architecture of the Transformer is fixed, where the observation masks532

are concatenated with the input value and passed as input to the model. The Transformer implicitly533

learns the meaning of observational masks via training.534

SLAN vs GRU-D When data is missing, GRU-D performs input imputation and hidden state decay.535

The input is imputed as xd
t = md

tx
d
t + (1 −md

t )γxd
t
xd
t′ + (1 −md

t )(1 − γxd
t
)x̃d where md

t is the536

masking value, γ is the decay factor, xd
t′ is the last observation of the dth variable (t

′
< t) and x̃d is the537

empirical mean of the dth variable. The hidden state is decayed as γj = exp{−max(0, aγ∆j + bγ)}.538

When the data is not missing, GRU-D just performs the hidden state decay to capture richer knowledge539

from missingness. Thus, GRU-D performs imputation when the data is missing. Whereas, in SLAN,540

4https://github.com/Leezekun/ViTST
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when data is missing, the switch of the LSTM corresponding to that data value is ’off’. Hence, SLAN541

don’t perform any form of imputation. When data is not missing, SLAN performs the hidden state542

decay (equation 5 and 6) using Time2Vec to capture information from time delay (∆m
j ). Hence,543

SLAN differs from GRU-D, and unlike GRU-D, SLAN is a non-imputation model.544

MIMIC-III Physionet 2012

AUPRC AUROC AUPRC AUROC

Imputation
ffill 51.46±0.49 85.18±0.46 51.06±0.49 85.07±0.37

mean 48.73±0.79 84.30±0.36 51.65±0.73 85.28±0.32

inter. 49.44±0.26 84.96±0.31 50.75±0.07 84.88±0.34

None 51.12±0.57 85.63±0.07 55.20±0.65 86.42±0.13

Aggregation Function
Max 49.24±0.88 85.40±0.29 54.36±0.89 85.95±0.19

Att 50.38±0.96 85.59±0.47 55.37±0.10 86.44±0.16

Mean 51.12±0.57 85.63±0.07 55.20±0.65 86.42±0.13

Concat
Only G.S. 46.61±0.83 84.63±0.27 48.81±1.84 83.04±0.45

Only L.S. 50.96±0.51 85.80±0.42 54.43±0.31 86.20±0.20

G.S.+L.S. 51.12±0.57 85.63±0.07 55.20±0.65 86.42±0.13

Table 4: Comparison of SLAN for different aggregation
functions and variants of concat layer. Att stands for attention.
G.S. stands for global summary state and L.S. stands for local
summary state. G.S. + L.S. is the default setting of SLAN.

Time Requirement and Scalability545

to Number of Sensors The worst-546

case time complexity of SLAN is547

given by O((N/B)∗T ∗K), whereN548

is the number of instances, B is the549

batch size, T is the maximum length550

of the time series, and K is the time551

complexity to process a single LSTM.552

We utilize GPU to run SLAN, and553

therefore, the time complexity to pro-554

cess a single LSTM is O(H2), where555

H is the hidden size of LSTM. For556

each LSTM, at each timestep, input,557

and weight tensors are constructed of558

shape (F ∗ B,H + 1, 1) and (F ∗559

B,H,H + 1), which are then further560

multiplied using the torch.matmul op-561

eration, as weight∗input=output, with562

output shape of (F ∗ B,H, 1). Here,563

F is the number of sensors. The first564

dimension given by F ∗ B is paral-565

lelized in GPU, so F ∗B numbers of566

matrix multiplication are computed in567

parallel. The overall time complexity becomes equal to the time complexity to multiply a single568

matrix since all matrices are computed parallelly. Matrix multiplication of matrices with shape569

(H,H + 1) with (H + 1, 1) has a time complexity of O(H2). Since the factor H2 comes from570

parallelized operation in GPUs, it will, therefore, have a very small constant factor compared to the571

other part [(N/B) ∗ T ], which is processed sequentially. Therefore, the worst time complexity of572

SLAN in GPU is given by O((N/B) ∗ T ∗H2). It can be seen that the training time of SLAN is573

dependent on the #Instances (N ) and the #Observations (T ). Refer to Table 2 for the definition of574

#Instances and #Observations. This is also evident in the training time required for M-3 and P-12.575

SLAN requires training time of 373.55±4.80 and 183.99±9.45 seconds per epoch (s/ep) for M-3 and576

P-12, respectively. Therefore, the time required for an instance of M-3 and P-12 is 2.55×10-2 and577

2.40×10-2 s/ep, respectively. M-3 requires slightly more time than P-12 because its #Observations578

are slightly higher. Note that the time required by SLAN does not depend on the number of sensors,579

as M-3 has 17 sensors, whereas P-12 has 37. Thus, SLAN is scalable to the number of sensors with580

regard to time complexity.581

Space Complexity The space complexity of the SLAN can be given by O(F ∗L+K +D), where582

O(L), O(K), and O(D) are the space complexity of a single LSTM, final prediction network, and583

Time2Vec function, respectively. The three gates and cell state of an LSTM, given by equation 7,584

account for 4H2+8H parameters. The three time decay function (see equation 5) requires 3H2+6H585

parameters. Therefore, an LSTM requires 7H2 + 14H parameters. The O(K) = 2FH + 2H + 2,586

and O(D) = E, where E is the time embedding dimension. Therefore, the total number of learnable587

parameters in SLAN is 7FH2 + 16FH + 2H + E + 2. The values of H and E are 64 and 16,588

respectively, for both M-3 and P-12. Therefore, the total number of parameters for M-3 (F = 17)589

and P-12 (F = 37) is ∼504K and ∼1 million parameters, respectively. Furthermore, the number of590

parameters required for 1000 sensors would be ∼30 million, which amounts to ∼0.22GB memory591

with 64-bit precision. Therefore, SLAN is scalable compared to large language models, such as592

GPT-like models, which require significant computing resources.593
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