Under review as a conference paper at ICLR 2026

MODEL AGNOSTIC CONDITIONING OF BOLTZMANN
GENERATORS FOR PEPTIDE CYCLIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Macrocyclic peptides offer strong therapeutic potential due to their enhanced bind-
ing affinity and protease resistance, but their design remains a challenge due to
limited structural data and tools that address only a narrow set of cyclization
chemistries. Moreover, existing models are built to only consider ground state or
mean conformations, rather than conformational ensembles that more accurately
describes peptides. We introduce CYCLOPS (a Cyclic Loss for the Optimiza-
tion of Peptide Structures), a model-agnostic framework that conditions Boltz-
mann generators to sample valid cyclic conformations—without retraining. To
overcome the scarcity of cyclic peptide data, we reformulate the design prob-
lem in terms of conditional sampling over linear peptide structures via chemically
informed loss functions. CYCLOPS encompasses 18 possible inter-amino acid
crosslinks enabled by 6 diverse chemical reactions, and is readily extensible to
many more. It leverages tetrahedral geometry constraints, using six interatomic
distances to define a kernel density-estimated joint distribution from MD simula-
tions. We demonstrate CYCLOPS’s versatility via two distinct generative mod-
els: a modified Sequential Boltzmann Generator (SBG) (Tan et al., [2025a) and
the Equivariant Normalizing flow (ECNF) of [Klein & No¢| (2024). In both set-
tings, CYCLOPS successfully biases the Boltzmann distribution toward chemi-
cally plausible macrocycles.

Figure 1: Cyclization of a linear peptide at two different stapling sites performed through CYCLOPS
conditioning of a Boltzmann Generator.

1 INTRODUCTION

Cyclic peptides offer therapeutic advantages including protease resistance, enhanced binding affin-
ity, and, in some cases, improved membrane permeability, through intramolecular crosslinking
(Craikl 2006} |Zorzi et al. 2017; Hayes et al., 2021; Mizuno-Kaneko et al., 2023} [Ji et al., |2024)).
Recent generative approaches for cyclic peptide design (Li et al., 2025} [Rettie et al., 2025; Zhou



Under review as a conference paper at ICLR 2026

et al.l 2025} Zhu et al) 2025)) face several challenges: they only exploit a limited set of cycliza-
tion chemistries (Bechtler & Lamers| [2021)), do not fully account for conformational flexibility and
complex linkage geometric constraints, consider average conformations rather than the conforma-
tional ensembles peptides adopt in solution (Huang & Nau| [2003), or require retraining to perform
their conditioning (Jiang et al., 2025). Since conformational dynamics govern binding (Buch et al.,
2011)), and peptides exhibit more disorder than proteins (Wang et al.| [2022b; Ho & Dilll 2006), ac-
counting for the peptide’s conformational Boltzmann distribution may be advantageous. Boltzmann
generators (BGs) constitute a class of generative model which learn to sample from conformational
ensembles by mapping noise to approximate data points. BGs fall into two categories: discrete
normalizing flows (DNFs), which apply a fixed number of invertible transforms

fo ' (xo) = fig, oo fxlyy (o) (1)

and continuous normalizing flows (CNFs), which integrate a neural ordinary differential equation
3\ (2,) = da/dt )

over t € [0,1], with xg ~ N(@, I), to arrive at a final sample (Ho et al.,|2019; (Chen et al.| 2018).
Both DNFs and CNFs have shown promise for efficient conformational Boltzmann sampling (Tan
et al., 2025azb; |Klein & Noél [2024)). However, conditional Boltzmann-generator-based peptide de-
sign remains largely unexplored.

Our contributions: This work introduces a Cyclic Loss for the Optimization of Peptide Structures
(CYCLOPS). (1) CYCLOPS is the first framework to condition Boltzmann generators for cyclic
peptide design, generating all-atom cyclic conformations by conditioning the Boltzmann ensem-
ble. (2) CYCLOPS overcomes limited cyclic peptide data by leveraging available linear peptide
MD simulations with chemically informed geometric constraints on 4 canonical atoms shared with
the crosslinks, incorporating 18 cyclization strategies via KDE-fitted tetrahedral conditioning from
small “toy” MD simulations. (3) CYCLOPS conditions any Boltzmann generator architecture with-
out retraining—demonstrated on both DNF and CNF models via latent space simulated annealing
and loss-based flow guidance, respectively.

2 PROBLEM FORMULATION

A significant bottleneck in applying machine learning to science is the availability of large, high-
fidelity, and well-balanced datasets. This is also true of cyclic peptide design. Therefore, an essential
question is how one can identify cyclizations of a linear chain that do not perturb its ensemble prop-
erties enough to affect its binding to a particular protein target. Moreover, can this be done without
additional cyclic-peptide MD simulations or per-cyclization retraining? This may be reframed as a
problem of statistical conditioning. First, we consider what a peptide’s linear conformations reveal
about (1) its binding and (2) its possible cyclizations. (1) is well-studied in the case of structured
targets. It has long been known that a protein’s structure is linked to its function. Hence, conforma-
tional motifs that are preserved across most of the conformational ensemble of the bound state play
a crucial role in the binding interactions to a protein target. In fact, motif-constrained design has
become a standard approach for developing protein binders (Yim et al.,|2024; Ingraham et al., |2023};
Trippe et al.l 2022; [Wang et al.,[2022a). Yet (2) remains largely underexplored.

Consider the random variables .S, a possible conformation of a linear amino acid chain, and .S,
a possible cyclic conformation in any possible linkage, both implicitly conditioned on a particular
initial sequence of amino acids. Of course, the distribution of \S,; is not completely knowable given
the probability density function of .S alone, since the chain never truly exists in a cyclic conforma-
tion; at no point do any of the bonds involved exist. Therefore, we approximate this as a problem of
statistical conditioning.

Intuitively, nearly cyclic conformations—structures which almost satisfy typical bonding con-
straints—appearing with significant probability density suggest that the linear chain may be
amenable to a given cyclization. Let C be the event the chain is approximately cyclic, i.e. the
constraints of a particular linkage are almost satisfied. The problem of cyclic peptide design then
becomes sampling from valid linear conformations conditioned on both binding feasibility and cy-
clizability, as shown in the inner purple region of Fig.[2] We therefore seek to modulate the landscape
of S to increase the probability of sampling approximately cyclic peptides, ideally whilst preserving
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Figure 2: Schematic representation of peptide conformational spaces showing linear Boltzmann
space (.59), cyclic space (C), and bound (B) regions, with S| B, C representing the desired sampling
target. Note that S|B is equivalent to B, because a state can only be bound if it is already a valid
conformation of the chain. Similarly, it is trivial to arrive at cyclizations which completely perturb a
linear chain and whose constraints are never approximately satisfied. Thus C is not a subset of S.

& = Min([€10(x), E1,1(2)])
& = Min([E20(z)))
& = Min([€3,0(2), E3,1(2)])

51(15) = *kTv log(ﬁ([dgl, dog, ey d23]))

Figure 3: Schematic of the CYCLOPS framework: (A) Automatic identification of cyclization sites
on peptide chains, and (B) Computation of cyclization probability via tetrahedral KDE fitted to
toy model simulations and evaluated on four shared atoms. Resonant losses between chemically
equivalent atoms within the same amino acids are set to their hard minimum prior to reweighting.

the dynamics of a binding region or motif. To sufficiently limit the scope of this paper, we shall
principally consider S|C, as conditioning on binding is somewhat well studied.

3 METHODS

We consider structure conditioning in terms of a constraint defining function (CDF), whose minima
represent samples which closely approximate the geometric constraints of cyclicality. The Boltz-
mann micro-canonical ensemble yields an ideal CDF:

Ei(w) = —kpTlogp(z|C;) 3)

where C; is the event that the chain is subject to the constraints of a particular cyclization and x
is the peptide’s conformationﬂ Our insight is that a chain’s degree of cyclicality under a given
cyclization chemistry can be characterized by four atoms it shares with a toy model of the linkage
in question (see Appendix [A.3] for the chemical composition of these models); these four atoms
form a tetrahedron whose side lengths capture the spatial relationships required for cyclization,
given a sufficiently small linkage|| The toy models of each cyclization may then be simulated
via Langevin molecular dynamics, but how can the resulting data points be used to approximate
p(z|C;)? One approach is to use generative models, which have become increasingly popular for
density estimation (Ho et al., 2019} [Dinh et all, 2016). However, these are prohibitively slow for
our conditioning. As such, we employ Kernel Density Estimation (KDE) (Rosenblatt, [1956}, [Parzen),
[1962), to convert our data to approximate distributions (see Appendix [A-1|for details).

'Tiang et al|(2025) consider a similar formulation, though p(x) is implicitly learned during training. This
makes the framework not model agnostic and represents a significant limitation.

2Sufficiently small can be defined as small enough that atoms outside of this tetrahedron do not interact with
the linkage’s virtual atoms. This represents a significant limitation.
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Figure 4: A.) A diagram illustrating some of the chemical permutations possible for peptide cycliza-
tions. B.) Some of the possible cyclizations for the chignolin peptide (Suenaga et al., 2007), based
on some of the chemistries from [Bechtler & Lamers|(2021)).

However, real peptides often admit multiple cyclizations, as illustrated in Fig.[d] We therefore desire
an expected cyclic loss

N
Loe =D P(Ciln)éi(a) )

where N is our number of allowed cyclizations. We make the maximum entropy assumption that
P(Ci|z) x exp(—a&i(z)) :a >0 (5)

(see Appendix [A.2] for a proof), which has the convenient property of becoming a soft minimum if
a >> 1/kpT. We may now sample from valid cyclic conformations, and look at the frequency
with which various cyclizations are chosen to determine the best ways to cyclize a given peptide
whilst minimally perturbing its native Boltzmann distribution. The functionality of the CYCLOPS
framework is summarized in Fig. 3]

4 RESULTS

To test CYCLOPS DNF conditioning, we perform simulated annealing of latent space vectors us-
ing the Sequential Boltzmann Generator (SBG) Tarflow architecture (Zhai et al., 2024) of Tan et al.
(20254), without their post-generation Langevin annealing (see Appendix [A.3|for details). Simu-
lated annealing of the CYCLOPS loss produces valid cyclic structures from a Boltzmann generator
trained only on linear peptide data, as demonstrated across three distinct sequences (Fig. [4).

The conditional samples correspond to valid 3D structures when cyclization atoms are added with
correct bond topology. Only the added atoms are relaxed using force field gradient descent El As
seen in Fig. [7, DNF-simulated annealing appears to explore prior space since the distribution of
finally chosen cyclizations differs from that of the smallest loss before annealing. In the case of
PVAAKKIKW and CCAAAGACEP, this involves changing the most frequent smallest loss. This is
also apparent on a sample-wise level in Fig.[6] which shows the pre- and post-conditioning structures
of the samples from Fig. ] which differ substantially. All together, this suggests that the loss
minimization observed in Fig. [IT] results from genuine latent space exploration rather than simply
refining the initially generated structure.

We test CYCLOPS’s ability to condition CNFs using the Equivariant Normalizing Flow++
(ECNF++) of [Klein & Noé|(2024); Tan et al.| (2025a). We generate samples, filter out mixed chirality

3Good initial guesses must be provided, however, as gradient descent is prone to kinetic traps.
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Figure 5: Conditional samples from CYCLOPS simulated annealing using SBG for peptides (A)
PVAAKKIKW, (B) CCAAAGACP, and (C) Chignolin: (/eff) generated conformations with cycliza-
tion sites in pink, (center) 3D models with added cyclization atoms, (right) 2D skeletal representa-
tions.
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Figure 6: Conformational changes before and after L, simulated annealing demonstrate latent
space exploration for sequences: (A) PVAAKKIKW, (B) CCAAAGACP, (C) Chignolin.

conformations, and select those with lowest L. Results in Fig. El show guided flow conditioning
plus filtering (left) versus just filtering (right). Low Ly corresponds to cyclic conformations, with
flow guidance showing additional improvement. However, this approach yields lower sample qual-
ity, with C-terminal caps frequently separating from the molecule and bulky sidechains becoming
distorted during conditioning. This suggests head-to-tail amide cyclization drives the flow out-of-
distribution.



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

=

Q)

Prior Distribution

w
a

w
S

~
@

Frequency

N
S

,_.
&

,_.
o

40 -

w
S

Frequency
N
S

25+

Frequency

Categories

Frequency

40 -

w
S

Frequency

Posterior Distribution

L @ A L @ A
o & g ° S N N
& & & & &
PP AP A
& & &
& & & & db,;o & &
&
X
o
35
30
25 -
>
v
g
8 20-
g
i 15 -
10
i .
., I , - [ p—
» 3 N o O »
3 & S > o S
o & 3 & K K
° o ol & & &
R o ty & S &
\d 2 o R
R & > A &
v b‘& © & ,g"v'
& & &
& \a Ls
Categories

Figure 7: Prior and posterior distributions of minimum chemical losses reveal that cyclization
preference shifts after simulated annealing. Histograms illustrate the lowest individual chemical
loss within L. before (prior) and after (posterior) simulated annealing of 50 samples for (A)
PVAAKKIKW, (B) CCAAAGACP, and (C) Chignolin. Each cyclization is labeled by its chem-
istry, with bonded amino acid positions in parentheses. Simulated annealing systematically shifts
the loss distributions, with the most favorable cyclization changing for peptides A and B.
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Figure 8: Guided flow conditioning vs. unconditional generation; in both cases, samples shown
represent the four lowest CYCLOPS loss conformations for peptides: (A) AAAA, (B) AAAAAA,
and (C) WLALL. Pink atoms indicate CYCLOPS tetrahedron atoms.
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Figure 9: Box plots of CYCLOPS loss distributions for unconditioned vs. conditioned-with-guided-
flow ECNF++ samples across peptide sequences. The E(3)-equivariant ECNF++ is prone to produc-
ing samples of the wrong-chirality. Generated samples of entirely the wrong chirality are reflected,
whilst those of mixed chirality are discarded. Conditioning used loss-flow guidance (w = 1.06),
significantly altered distributions (Kolmogorov—Smirnov test) and reduced mean loss (permutation
test, 10,000 permutations) for all sequences (p < 0.005, both tests).

The statistical analysis in Fig. [9] demonstrates two key findings: (1) injecting our prior through
guided flow conditioning significantly reduces the cyclic loss distribution across all tested peptides,
and (2) this reduction corresponds to more cyclic (though potentially less physically plausible) struc-
tures. The conditioning succeeds in significantly reducing the distribution of CYCLOPS losses for
all tested peptides, though not to the degree achieved by simulated annealing (Fig. [TT)). In all cases,
conditioning increases the variance of the distributions and produces apparent clusters of datapoints
at the lower extrema of our losses. This suggests that while the prior injection effectively drives the
model toward cyclic conformations, it may also push the flow somewhat out-of-distribution, leading
to structures that are more cyclic but potentially less physically realistic than those generated by the
unconditional model.
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5 CONCLUSION

We present CYCLOPS, the first model-agnostic framework for conditioning Boltzmann generators
to sample cyclic peptide conformations without retraining. By reformulating cyclization as condi-
tional sampling with tetrahedral geometric constraints derived from toy MD simulations, CYCLOPS
successfully generates valid cyclic structures across both DNF and CNF architectures, with DNF-
simulated annealing demonstrating superior sample quality.

CYCLOPS addresses three challenges in computational peptide design: (1) Data scarcity—
repurposing abundant linear peptide trajectories rather than requiring expensive cyclic datasets; (2)
Model-agnostic conditioning—enabling cyclization without architectural modifications or retrain-
ing across diverse generative models; (3) Chemical diversity—encompassing 18 inter-amino acid
crosslinks across 6 distinct reaction chemistries, representing coverage unmatched in the literature.

The encoding of cyclization feasibility through four shared canonical atoms forming KDE-
approximated tetrahedral constraints establishes a generalizable template for incorporating complex
chemical knowledge into existing generative models. This ensemble-based approach captures con-
formational dynamics rather than static ground states, potentially revealing cyclization opportunities
invisible to structure-based methods. Key limitations include small linkage chemistry assumptions
and optimization parameter sensitivity (see Sec.[B.1.3). Future work will include: (1) expanding cy-
clization chemistries through new MD-based losses, (2) integrating binding motif preservation, (3)
targeting therapeutically relevant peptides (PD-1, MDM2, MDMX), and (4) conditioning sequence-
transferable Boltzmann generators.

By demonstrating that complex geometric constraints can be imposed without retraining, we hope
CYCLOPS serves as a foundation for new avenues for knowledge-guided molecular generation.
The combination of model-agnostic conditioning, chemical diversity, and data efficiency suggests
utility in therapeutic cyclic peptide discovery.

6 REPRODUCIBILITY STATEMENT

We provide detailed training parameters, hyperparameters, computational resources, and implemen-
tation details in Tables[I|and [2] along with specific algorithm descriptions. However, code and data
are not publicly released to preserve anonymity during review and to protect ongoing research direc-
tions that build upon this foundational work, preventing potential scooping of future iterations and
extensions of the project.

7 ETHICS STATEMENT

Our research follows ethical guidelines for computational research, uses publicly available datasets
with proper attribution, and develops methods for beneficial applications in drug discovery (see Sec.
[A3). The methods are intended for beneficial drug discovery research and we do not forsee negative
societal implications.
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A TECHNICAL DETAILS AND SUPPLEMENTARY MATERIAL

A.1 KERNEL DENSITY ESTIMATOR IMPLEMENTATION

Kernel density estimators are defined as

1 -
PEH) = 2 > Kn(7—9) (©6)
5eD
and
Ku(Z) = det(H)" 2K (H™Y/2%) (7)

where K is our kernel, D contains our simulated tetrahedral distances for the linkage in question, H
represents a positive definite bandwidth matrix and det(M) denotes the determinant of matrix M. In
this instance, a kernel is a positive function which integrates to one. We allow our data to be vectors
of 6 select interatomic distances which comprise a tetrahedron.

For ease of optimization, we additionally require K be unimodal, spherically symmetric, centered
on the origin, and smooth (Chacdn & Duong] |2018), with heavy tails to ensure finite values once the
log is applied and non zero gradients far from the data. Thus the Cauchy distribution

I (4)
(r (1 + 1 Z)2) %

is ideal for the reasons it is normally difficult to work with. We fit estimators with a bandwidth of
0.64A x I. Ideally, modern multivariate kernel smoothing techniques, like the multivariate extension
of the method of [Sheather & Jones| (1991) proposed by (Chacon & Duong (2010), should be used;
due to the non-triviality of developing a Python implementation, we leave this to future work. For
PyTorch compatible kernel density estimation, where loss calculations are automatically differen-
tiable and benefit from GPU acceleration, we use the implementation provided by Kladny| (2025)).
However, CYCLOPS should not only compute Lcy.(x), but also seamlessly handle the identifica-
tion of possible cyclizations. This functionality is implemented largely through the MDTraj Python
package (McGibbon et al., 2015).

K(7) = ()

A.2 PROOF OF MAXIMUM ENTROPY REWEIGHTING

By Bayes rule:

P(Cilx) o p(a|Ci) P(Cs) ©)

If one has a plethora of MD trajectories for diverse chains, one could compute P(C;) =
Y ses, P(s) [ P(Cilz, s)p(x|s)dx where Sy is the set of all amino acid sequences. As there is no
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such data widely available yet, we make the maximum entropy assumption that P(C;) is uniform
over its support. By &;(x) = kT log p(x|C;), we get

P(Ci|z) o< exp(—&;(x)/kpT) (10

Note that the standard exponential maximum entropy result (Dowson & Wragg,|1973) does not apply
here, since we are computing, rather than constraining, our mean. If we decouple the distribution
temperature, T, from that of each &;, notated T¢, we may define

exp(—a&;(x))
> ics, exp(—a&i(x))

If « is sufficiently large, this prevents optimal structures from being an unphysical superposition of
cyclizations. Hence we define

Pa(OZ|JJ) = ZO{El/kBTd (11)

N—-1
SoftMing ([€o, .., En-1]) = >, PalCil(E0, .- En—1])Ei (12)

1=

This is tantamount to renormalization, given a set of energies, according to what their probabilities
would have been if generated with temperature T,. In practice, we take kg = 1 and o = 3.

A.3 MODEL-AGNOSTIC CONDITIONING

Given our cyclic loss Ly, how do we condition Boltzmann generators without retraining? A uni-
versal method is to optimize over model latent space, searching for conformations which minimize
our CDF (Abdin & Kiml [2024; [Noé et al., 2019)). If the underlying network is differentiable, one
could use a stochastic gradient descent-based optimizer, like ADAM (Kingma & Bal, 2014)). A strat-
egy without this requirement, however, is simulated annealing, which has already seen success in
cyclic peptide design (Zhu et al. [2025). This is a probabilistic optimization algorithm inspired by
annealing in metallurgy, where a material is heated and then slowly cooled to reach an energetic
minimum (a highly ordered crystal structure). Here, our system’s “energy” is some function of our
state we seek to minimize. As illustrated in Alg.[I] simulated annealing involves sequentially updat-
ing some state x; by proposing a new state 2, computing the difference between their energies, and
switching states as a function of some gradually cooling temperature and the change in energy. As
the temperature cools, the algorithm gets more greedy, therefore modulating between exploratory
and exploitative behavior as it runs its course. Thus it is not as prone to local minima as other
optimization algorithms if well tuned (Press et al., |[2002).

Simulated annealing is, by nature, suited to discrete optimization. We adapt this to our continuous
usecase by assigning the system a velocity r; at each timestep, which then determines the radius of
a hypersphere from which a proposal state is sampled from. Inspired by the relationship between
temperature and mean particle velocity, we allow r; to scale with the square root of the ratio of the
current to initial temperature. Since the probability of switching between states depends directly on
AFE /T, care must be taken to pick an appropriate temperature; too large, and the system will “melt,”
switching between states with no regard for their energy. Too small, and the system will collapse
into whatever minimum is most proximal to its initial state. We therefore set an appropriate Tj based
on a calculated mean absolute initial AF, which is then scaled by a user set hyperparameter x that
determines the starting switching probability. We then exponentially cool the simulation to zero by
multiplying the previous temperature at each timestep by a constant A $ 1 to determine its new
temperature; this is so that the system is cooled sufficiently slowly, which, given enough steps, helps
the algorithm find a global minimum. Our specific implementation is shown in Alg.[2} In practice,
we set temperature determining  to 2, cooling rate A\ to 0.995, and define our objective function
E(-) = Leye(+). It may be advantageous to construct the objective function more cleverly, such that
it considers additional desiderata. This may include binding motif preservation or OpenMM-based
conformational energy.

For continuous normalizing flows, direct latent optimization can be prohibitively slow. Instead, one
can guide a CNF to sample from an approximate conditional posterior. In its simplest incarnation,
this takes the form of Bayes rule (Chung et al., 2022; Jiang et al., 2025):

Vi, log pi(24|C) o< Vy, log pe(4) + Vaz, log pe(Clay) (13)
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Algorithm 1: Generic Simulated Annealing

Input: Number of steps Nyep, initial temperature Ty, cooling schedule Cool(-, -), acceptance
probability function Pjecep (-, -), objective function E(-)

Output: Final state z; after simulated annealing

Initialize: Sample initial state z¢ ~ ¢(-);

Tt < To;

t < 0;

while ¢ < Ny, do

Generate proposal state: 2 ~ Proposal(x¢, T3);

Compute energy difference: AFE <+ E(z') — E(xy);

Compute acceptance probability: paccept < Paccepl(AE, T);

Sample u ~ Uniform(0, 1);

if u < paccep: then

‘ xp 2 // Accept proposal
else
‘ Ty < Ty 5 // Reject proposal
end
t<—t+1;
Update temperature: T} < Cool(T},t);
end
return x;;

Algorithm 2: Batch Simulated Annealing for Chemical Loss Optimization

Input: Number of steps Nep, batch size B, number of atoms N,om, initial step size rg, cooling
rate A € (0, 1], initial temperature scaling , objective function E(+)
Output: Final batch of states Sgpy € R X Nuom*3
Initialize temperature:;
Sample initial batch for calibration: Sy, ~ N (0, T) B> Naon*3;
Generate proposal batch: S/, <— Scaiib + 7o - UnitSphere(B, Nyom X 3);
Compute energy differences: AEcuin < E (S, ;) — E(Scaiib);
Set initial temperature: Ty < - mean(|AEcy;|);
Initialize main algorithm:;
Sample initial batch: Sg ~ A/(0, T) B> Nuomx3;
St — So;
t <+ 0;
€<+ 1078; // Prevent division by zero
while ¢ < Ny, do
Update temperature: T; < T - Af;
Update step size: ¢ < 7o + \/1t/To;
for each sample v = 1,..., B do
Generate proposal: sgyi < S;; + 7 - u; where u; ~ UnitSphere(Nyom X 3);
Compute energies: Eoq <— E(St;), Enew E(sgl)
Compute energy difference: AE; < Fpew — Fold;
-1
Compute acceptance probability: paccept,i < (1 + exp (%)) ;
Sample u; ~ Uniform(0, 1);
if % S DPaccept,i then

| St41i ¢ Sp;s // Accept proposal
else
| Stq1i ¢ St // Reject proposal
end
end
t+—1t+1;
end
return Sy, ;
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In many instances, the connection between z; and C' must be learned, which can be challenging;
in these cases, it is preferable to construct a differentiable CDF for the condition in question (Song
et al.,|2023)). For denoising diffusion probabilistic models (Ho et al.,[2020)—since CDFs are naturally
defined over the final structure space rather than the noisy intermediate states—we can employ the
following approximation

. 1 _
Z1(wt) = E[z1|74) = ﬁ(xt + (1 = &)V, logp(z:)) (14)
where ¢ : ¢ € [0,1] — (0, 1] is some scheduler, & = [], 5. Ss» and Seva is the set of discrete

evaluation timesteps in (0, 1) (Ho et al., 2020; Komorowska et al., [2025). This has the intuitive
explanation of linearly interpolating between the current state and the final state based on the present
vector field of the neural ODE to arrive at an expected output. Thus, we get:

Vo, logp(Clay) & V., log p(Clir (1)) = Vo, 10g exp Loye(i1 (1)) = — Vi, Loyelir (1))

as)
where L. enforces C at t = 1. Since diffusion is effectively optimal transport flow matching (Gao
et al.| 2024)E] we construct the heuristics:

@fott) = ﬁét)(xt) —wVg, Leye (21(y)) (16)

1(ze) = (1= )3 (24) + a4 (17)

where w > 0 represents our conditioning strength; greater values will help ensure the condition is
satisfied, but will contribute to lower sample quality. Additionally, by the chain rule:

R oz R
Ve Loyl (21)) = 52V, L) (18)
Lt
iy o

— =(1-t
0xy ( )axt

Komorowska et al.| (2025) note that this comprises of an easy to compute gradient V, Leoyc (1)

+1 19)

and an expensive Jacobian matrix 817“(9) /Ox;, which can be empirically ignored (set to 0). Thus,
CYCLOPS provides a unified framework for conditioning any all-atom Boltzmann generator toward
diverse cyclic peptide conformations without retraining. This can be done in all cases via simulated-
annealing-based latent space optimization, or flow guidance if working with a CNF.

A.4 BOLTZMANN GENERATOR DETAILS

Conditioning is only as good as the underlying model. As such, we begin by discussing the de-
tails of our Boltzmann generators. We approximately follow the training procedures enumerated in
Tan et al.| (2025a) to train our models, with the exception of the energy VW, distance-based early
stopping and the restriction of our training set to the first 100,000 frames present in the MD sim-
ulation. This is because we do not perform importance-based annealing after generation, so our
underlying model must ideally be more robust. We perform no such annealing to avoid the costs
associated with SDE solvers. As substantially larger training sets are used, we reduce the maximum
number of epochs depending on the number of samples. We employ the Chignolin TarFlow (Zhai
et al.,|2024)) architecture, as used by Tan et al.| (2025a), to study DNFs (termed SBG for simplicity),
and ECNF++, an improved version of |[Klein & No¢| (2024)’s TBG, to study CNFs. As large MD
trajectories are very expensive to simulate, we use those provided in the literature when possible.
This notably includes ab initio Chignolin at DFT level (Wang et al.| [2023)), classical MD trajecto-
ries across diverse sequences (Zhu, 2021)), and alanine peptides of various lengths (Schopmans &
Friederich| 2025). Training data and architecture specifics are provided in Table [T} while training
implementation details and resources consumed are included in Table

“This is only rigorously true if the diffusion uses DDIM sampling (Song et al.,2020) and the flow matching
ODE is solved with Eulerian integration. We direct the reader to Gao et al.| (2024)) for more details.
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Table 1: Training Data and Architecture Details

Training Set Details

Type Sequence Params Epochs
T(K) Size(Frames) Data Src.
SBG GYDPE TGTWG 340 4.6M ‘Wang et al.|(2023) 114M 80
(Chignolin)

SBG PVAAKKIKW 300 480K Zhu! (2021) 114M 300
SBG CCAAAGACP 300 480K Zhul(2021) 114M 300
ECNF++ AAAA 300 10M Schopmans & Friederich|(2025) 2.3M 10
ECNF++ AAAAAA 300 10M Schopmans & Friederich|(2025) 2.3M 10
ECNF++ WLALL 300 100K Scherer et al.|(2015) 2.3M 1000

Table 2: Training Details and Computational Resources

Type Sequence Batch Size (cumulative)  Number of GPUs  Total GPU Hours
SBG GYDPETGTWG 2048 8 3512
(Chignolin)
SBG PVAAKKIKW 2048 8 304.6
SBG CCAAAGACP 1024 4 241.2
ECNF++ AAAA 2048 4 359
ECNF++ AAAAAA 1024 4 81.2
ECNF++ WLALL 1024 8 165.6

A.5 LINKAGE SIMULATION AND FITTING DETAILS

CYCLOPS relies on a knowledge of the approximate joint distributions of the edge lengths of a
tetrahedron which encodes the geometry of a given linkage. We must therefore simulate the toy
models of each of these linkages. In all cases, this was performed with the OpenMM python package
(Eastman et al., [2013) with initial configurations generated via PACKMOL Martinez et al.| (2009).
Forces were generated via the Amberff14SB forcefield (Maier et al.,|2015) and the TIP3 water model
(Jorgensen et al.,|1983)). Molecules were parameterized via SMIRNOFF (Mobley et al.,[2018)) using
OpenFF (Qiu et al., 2021} |[Boothroyd et al.| 2023)), with volume calculations handled by CCTK
(Wagen & Kwan, [2020). Simulation code is adapted from Wagen| (2024). Each small molecule
was simulated for 5 ns on one NVidia A100-80GB VRAM GPU over 10 seeds with a step size
of 1 fs at 300K and with a friction coefficient of 1 ps~!. The first nanosecond of each simulation
was discarded for equilibration, leaving a total effective simulation time of 40 ns. The molecule
used to model each linkage constraint is shown in Fig. [I0] along with the atoms used to define the
tetrahedra on which the KDEs are fit. Given the small size of each system, we observe that this was
quite computationally inexpensive.

The joint distributions of the six distances defined by the four specified atoms (forming the ver-
texes of the tetrahedron) were then fit with a KDE with a bandwidth of 0.64A « L Ideally, modern
multivariate kernel smoothing techniques, like the multivariate extension of the method of |Sheather
& Jones| (1991) proposed by |Chacon & Duong| (2010), should be used; due to the non-triviality of
developing a Python implementation, we leave this to future work. For PyTorch compatible kernel
density estimation, where loss calculations are automatically differentiable and benefit from GPU
acceleration, we use the implementation provided by Kladny| (2025). However, CYCLOPS should
not only compute L., but also seamlessly handle the identification of possible cyclizations. This
functionality is implemented largely through the MDTraj Python package (McGibbon et al.| 2015).

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 SIMULATED ANNEALING

B.1.1 STATISTICAL VALIDATION OF LOSS REDUCTION

We examine not only individual samples produced by DNF CYCLOPS conditioning, but also the
effects this has on sample distributions. As shown in Fig. [TT] for all peptides used, CYCLOPS
annealing guides samples toward statistically significant lower values of L. It should be noted
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Figure 10: Schematic of the toy models used to fit KDEs for each cyclization chemistry. Shown
are: (A) amide bond cyclization model, (B) disulfide bond cyclization model, (C) lysine—arginine
cyclization model, (D) lysine—tyrosine cyclization model, (E) carboxyl—carboxyl cyclization model,
and (F) cystine—carboxyl cyclization model. The atoms used to fit the tetrahedral KDE are high-
lighted in yellow. Note that these need not correspond to atoms of the same species after the chem-
istry is applied, highlighting the versatility of CYCLOPS. For instance, the nitrogens of (E) initially
corresponded to carboxyl oxygens in the linear peptide, formed of canonical amino acids.
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Figure 11: Box and whisker plot of the distribution of the CYCLOPS cyclic losses of 50 ran-
dom samples before and after simulated annealing for representative peptides. In all cases, simu-
lated annealing significantly changes the distribution (p < 0.001 represented by ***, two-sample
Kolmogorov—Smirnov test). All mean-to-mean differences between pre- and post-annealing distri-
butions are significant up to 3 decimal places under a permutation test with 10,000 random permu-
tations.
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Figure 12: Box plots of CYCLOPS cyclic loss distributions for 50 random samples of represen-
tative peptides after simulated annealing, comparing all-cyclizations (samples from Fig. [TT) ver-
sus head-to-tail amide bonds only (H2T). H2T distributions show higher mean and median val-
ues, greater variance, and are statistically distinct from unrestricted cyclization (* p < 0.05, ***
p < 0.001, Kolmogorov—Smirnov test). Mean differences are also significant under permutation
test with 10,000 random permutations (p < 0.05).

that most of these samples do not correspond to valid cyclic peptides: in practice, we find that only
about 10% of samples in each case do not have clashes. This sampling paradigm—generating many
candidates and selecting the best—is ubiquitous across protein generative Al, where the power lies
not in perfect individual samples but in the ability to rapidly explore chemical space and identify
top-performing designs. Much of this, we observe, has to do with the aforementioned assumption
of sufficiently small linkage chemistries being violated. For example, the inter-carboxyl benzene-
ring-based chemistry shown in Fig.[T0|E) is large enough to interact with atoms of the peptide chain,
which is capped by the tetrahedral vertices. Unfortunately, we are unaware of an elegant solution to
this problem; the addition of virtual atoms to a model’s chemical graph is likely to cause significant
issues, since each network has only learned a singular topology. Furthermore, only one universally
transferable Boltzmann generator exists (Tan et al.| |2025b)), and it is trained on exclusively linear
trajectories. As such, we adhere to the previously described approach: generate many samples and
eliminate the problematic ones. Clashes are also observed, however less frequently, in regions far
from the linkage since conditioning drives latents somewhat out of distribution by definition.

B.1.2 CHEMISTRY-RESTRICTED CYCLIZATION ANALYSIS

The CYCLOPS framework trivially enables specific cyclization chemistries to be removed from
consideration, which is useful when a particular cyclization is difficult to form or is prohibited. Yet
it also yields insights into the effect of P(C;|x) (our exponential reweighting) on our loss mini-
mization. Intuitively, the fewer allowed cyclizations, the greater the post-conditioning losses should
be; fewer considered cyclizations means fewer options for the framework when annealing a given
prior sample. As such, we condition DNF generation of the peptide chains used in Fig. [} albeit
restricted to just head-to-tail amide bonds, as this cyclization is common to all peptides. This pro-
vides a useful sanity check: if this distribution of H2T-restricted L.y, is generally greater than that
of all cyclizations, this suggests our CYCLOPS annealing protocol may correspond to valid cy-
clizations and that post annealing distributions of L, may reveal how amenable a peptide is to the
considered cyclizations. If, however, the underlying Boltzmann generator is not trained well, such
that it produces structures with little correspondence to valid conformations, we would expect these
distributions to be somewhat similar, as optima will be unrestrained by what is physically possible.
Fortunately, the expected distinction between restricted and unrestricted cyclization is observed in
Fig.[12] For all tested peptides, restricting loss minimization to just H2T amide bonding signifi-
cantly increases the mean of the distribution and significantly alters the distribution itself under a
two-sample Kolmogorov-Smirnov test.

B.1.3 OPTIMIZATION DYNAMICS AND CONVERGENCE

While ablation and simulated annealing hyperparameter studies are left to future work, we do in-
clude a brief examination of the latent dynamics during the optimization process below. Fig. [I3]
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Figure 13: Box and whisker plots of CYCLOPS cyclic loss over 2000 steps of simulated annealing
for peptide sequences from Fig. [rows) for all cyclizations (left column) and just head-to-tail (right

column, H2T).
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displays the progression of L values throughout the 2000-step simulated annealing process for
both unrestricted and head-to-tail restricted cyclizations. Notably, the loss values appear to plateau
in the latter stages of optimization. This either suggests that the simulation may be (1) converging
rather quickly, and hence cooling too fast, or (2) that more steps than necessary are used during the
optimization. Given Fig.[7] and Fig. [6] however, we suspect latent space is at least somewhat well
explored. Still, this suggests the need of thorough studies on the effects of the various simulated
annealing parameters on convergence and cyclization choice, which we leave for future work.

B.2 CONDITIONAL NORMALIZING FLOW (ECNF++) FLOW GUIDANCE

We generally observe that, for the peptides tested, ECNF++ guided flow produces less satisfac-
tory conformational samples than SBG simulated annealing. Of particular significance is that the
peptides employed in this study are limited to those permitting only head-to-tail amide bond cycliza-
tion. This constraint arises from the scarcity of suitable MD trajectories in the existing literature—a
limitation that is further exacerbated by the exponential scaling of inference time with system size
for state-of-the-art CNF-based Boltzmann generators (Tan et al., [2025a). Consequently, only small
peptides are currently computationally feasible, which severely restricts the already limited pool of
available training data. Moreover, as loss guidance is inherently based on gradient descent, we sus-
pect it may be more prone to getting trapped in local minima than simulated annealing, as it lacks
the explicit exploratory potential of the latter.

Since the ECNF++ architecture is E(3) equivariant, it is prone to producing samples of incorrect
chirality or mixed correct-incorrect chirality. Samples of entirely wrong chirality are mirrored and
included, whilst those of mixed chirality are discarded. For Fig. 8] we begin with 128 unconditional
and conditional samples and filter based on the aforementioned procedure.

C LLM USAGE STATEMENT

Large language models (LLMs) were used to assist with writing (e.g., polishing phrasing, proof-
reading) and with code implementation support (e.g., debugging syntax and boilerplate generation).
All outputs were reviewed and verified by the authors. LLMs were not used in research ideation
or experimental design. The authors take full responsibility for the accuracy and integrity of the
manuscript.
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