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Abstract

Large vision-language models (LVLMs) have001
recently dramatically pushed the state of the002
art in image captioning and many image un-003
derstanding tasks (e.g., visual question answer-004
ing). LVLMs, however, often hallucinate and005
produce captions that mention concepts that006
cannot be found in the image. These hallucina-007
tions erode the trustworthiness of LVLMs and008
are arguably among the main obstacles to their009
ubiquitous adoption. Recent work suggests that010
addition of grounding objectives—those that011
explicitly align image regions or objects to text012
spans—reduces the amount of LVLM halluci-013
nation. Although intuitive, this claim is not014
empirically justified as the reduction effects015
have been established, we argue, with flawed016
evaluation protocols that (i) rely on data (i.e.,017
MSCOCO) that has been extensively used in018
LVLM training and (ii) measure hallucination019
via question answering rather than open-ended020
caption generation. In this work, in contrast,021
we offer the first systematic analysis of the ef-022
fect of fine-grained object grounding on LVLM023
hallucination under an evaluation protocol that024
more realistically captures LVLM hallucination025
in open generation. Our extensive experiments026
over three backbone LLMs reveal that ground-027
ing objectives have little to no effect on object028
hallucination in open caption generation.029

1 Introduction030

Large Vision-Language Models (LVLMs) have re-031

cently displayed impressive image understanding032

abilities (Li et al., 2023a; Liu et al., 2023c; Bai033

et al., 2023; Fini et al., 2023; OpenAI, 2023; Anil034

et al., 2023, inter alia). Their widespread adop-035

tion, however, is hindered by object hallucination036

in which the LVLMs—similar to “general” hallu-037

cination of LLMs (Zhang et al., 2023b)—“invent”038

objects (or attributes of or relations between ob-039

jects) not present in the image.040

A range of methods have recently been proposed041

to address LVLM hallucination such as modified042

decoding strategies (Leng et al., 2023; Huang et al., 043

2023), post-hoc removal of hallucinated content 044

(Yin et al., 2023; Zhou et al., 2023), or reinforce- 045

ment learning (Sun et al., 2023; Zhao et al., 2023b; 046

Gunjal et al., 2023; Yu et al., 2023). Most of these 047

approaches, however, either increase inference cost 048

or need expensive additional training and/or data, 049

impeding their ubiquitous applicability. 050

A recent line of work (Chen et al., 2023b; You 051

et al., 2023; Pramanick et al., 2023) has suggested 052

that including grounding objectives—e.g., based 053

on referring expressions (Kazemzadeh et al., 2014) 054

where textual descriptions of image regions have to 055

be grounded to the respective parts of the image— 056

into the LVLM training reduces object hallucina- 057

tion. The claim is intuitive: region-level objectives 058

demand finer-grained image understanding than 059

the ‘global’ image captioning (de facto the main 060

training objective of LVLMs), as demonstrated in 061

visiolinguistic compositionality (Bugliarello et al., 062

2023). Such objectives should thus, intuitively, dis- 063

courage models from generating content they can- 064

not ground in the image. Intuition aside, the empir- 065

ical support for the claim that grounding objectives 066

reduce LVLM hallucination is weak and mainly 067

limited to question-answering (QA) style of evalu- 068

ation in which the model is explicitly asked about 069

existence of objects in an image (Li et al., 2023b); 070

we argue that this evaluation protocol poorly aligns 071

with real-world free-form text generation tasks— 072

primarily open image captioning—for which there 073

is no empirical evidence yet that object grounding 074

reduces hallucination. 075

Contributions. In this work, we perform the first 076

comprehensive analysis of the effects that ground- 077

ing objectives have on LVLM object hallucination 078

in open (i.e., free-form) image captioning, address- 079

ing the shortcomings of existing hallucination eval- 080

uation protocols. Concretely, we measure the ef- 081

fect of adding two popular grounding objectives as 082

additional objectives to standard image captioning- 083
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based training of LVLMs: (1) the referring expres-084

sions (RE) objective asks the model to generate the085

bounding box of the region that corresponds to a086

textual description and vice versa; whereas (2) the087

grounded captioning (GC) objective demands that088

the model generates image descriptions with inter-089

leaved (relative coordinates of) bounding boxes for090

mentioned objects. We then compare the extent of091

hallucination for LVLM variants trained with and092

without these grounding objectives. To this end,093

we compare the hallucination measures based on094

question answering (QA) (Li et al., 2023b) against095

free-form metrics for open captioning (Rohrbach096

et al., 2018; Jing et al., 2023). Critically, observing097

that (1) existing evaluation measures and proto-098

cols (Rohrbach et al., 2018; Li et al., 2023b) rely099

on MSCOCO (Lin et al., 2014) and (2) MSCOCO100

data is part of the training mix for most LVLMs, we101

argue that existing measures are likely to underesti-102

mate LVLM hallucinate; we thus extend our hallu-103

cination evaluation protocol to out-of-distribution104

data that LVLMs will not have seen in training.105

Findings. Our experiments with three different106

LLM backbones show that, under a sound eval-107

uation protocol, including grounding objectives—108

referring expressions and grounded captioning—to109

LVLM training has little to no effect on object110

hallucination, both in QA-based evaluation and111

open-ended captioning. Enforcing generation of112

grounded captions at inference time, on the other113

hand, slightly reduces object hallucinations but the114

effect is small and comes at the cost of (slight)115

reduction in caption detailedness. A qualitative in-116

spection of grounded captions also confirms that117

forcing model to generate a bounding box for men-118

tioned objects most often does not prevent it from119

hallucinating content. In sum, we find that ground-120

ing objectives fail to meaningfully reduce LVLM121

hallucination, calling for novel methodological pro-122

posals towards hallucination reduction.123

2 Grounding Objectives in LVLMs124

Grounding objectives seek to align natural lan-125

guage expressions with regions in the image. These126

objectives either take image regions as input, in the127

form of a bounding box and predict correspond-128

ing language expressions or produce such regions129

as output. Many recent LVLMs have been trained130

with grounding tasks in their training mix alongside131

standard tasks like captioning and VQA (Liu et al.,132

2023b; Bai et al., 2023; Wang et al., 2023b); other133

models have been designed specifically for expres- 134

sion grounding and trained with grounding objec- 135

tives only (Chen et al., 2023b; You et al., 2023; 136

Pramanick et al., 2023; Zhang et al., 2023a; Peng 137

et al., 2023; Chen et al., 2023a; Zhao et al., 2023a). 138

Objectives. Our investigation focuses on the two 139

arguably most popular grounding objectives, com- 140

monly part of LVLM training: referring expres- 141

sions (Kazemzadeh et al., 2014) and grounded cap- 142

tioning (Plummer et al., 2015). 143

Referring expressions is the standard grounding 144

objective, included in training of nearly all LVLMs. 145

Given a natural language description (of a region), 146

the model has to ground it to the correct image 147

region. As is common practice, we also use the 148

inverse task, that is, generation of the natural lan- 149

guage description for the given image region. 150

Grounded captioning is the task of generating 151

an image caption in which the locations of regions 152

for mentioned objects are interleaved in the caption 153

(see Figure 2 for examples). In theory, such explicit 154

grounding is expected to result in closer adherence 155

to the image content and reduce hallucinations. 156

Other grounding objectives have been proposed 157

for LVLMs training, such as question answering 158

with image regions in the input or output (Zhu et al., 159

2016); these, however, are outside the scope of our 160

study, because we focus on the effects of grounding 161

on hallucination primarily in free-form captioning. 162

Encoding regions. Different approaches exist 163

for representing image regions for the LVLMs. 164

Most commonly, regions are represented as bound- 165

ing boxes using either (relative) coordinates in 166

“plain text” (Liu et al., 2023b; Chen et al., 167

2023b; Bai et al., 2023; Wang et al., 2023b) 168

(e.g., “[0.10, 0.05, 0.64, 1.00]”; the coordinates are 169

treated as text and tokenized with the tokenizer of 170

the corresponding LLM) or with learned embed- 171

dings that correspond to a fixed-size rasterization 172

of the image (Peng et al., 2023; You et al., 2023; 173

Pramanick et al., 2023). In this work, we adopt the 174

former region representation, i.e., relative coordi- 175

nates as text, as this avoids introducing additional 176

trainable parameters to the model. 177

3 Measuring Object Hallucination 178

LVLM object hallucination is evaluated via two 179

main protocols: (1) in QA-based evaluation, where 180

models answer questions about object existence in 181

the image (Li et al., 2023b) and (2) in open gener- 182
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A white hound and a cat looking at the camera

"A white hound and a cat looking at the camera""A white hound and a cat looking at the camera"  

CHAIR

1.
2.
3.

1.There is a hound.        
2.There is a cat.             
3.The hound is white. 

FaithScore

dog
cat

collar
human

1. Match to set

1. LLM extracts facts.

2. VQA verifies facts
2. Validate with human annotation

Figure 1: CHAIR and FaithScore are used to measure hallucinations in open caption generation with LVLMs.
CHAIR relies on human object annotation (over a fixed set) to identify objects and check if they are hallucinated.
FaithScore first uses an LLM to convert captions into facts which are then verified by a VQA model.

ation, usually image captioning (Rohrbach et al.,183

2018; Wang et al., 2023a; Jing et al., 2023). The lat-184

ter is arguably more indicative of models’ tendency185

to hallucinate “in the wild” (i.e., in various real-186

world applications) but it is also a more difficult187

setup for automatic evaluation. In contrast, QA-188

based evaluation is straightforward, but an untested189

proxy for actual hallucination in generative tasks.190

QA-Based Hallucination Evaluation. POPE (Li191

et al., 2023b) is the de facto standard benchmark192

for QA-based hallucination evaluation. Relying193

on images annotated with objects from MSCOCO194

(Lin et al., 2014), the benchmark consists of yes/no195

questions about object existence (“Is there X in the196

image?”). The negative questions—about objects197

not in the image—are generated in three differ-198

ent ways using: i) objects randomly selected from199

the total pool of objects that exist in the dataset200

(random); ii) the most frequently annotated ob-201

jects in the dataset (popular); iii) objects with high202

co-occurrence to the image’s actual objects (ad-203

versarial), as co-occurrence statistics are a com-204

mon cause of hallucinations (Rohrbach et al., 2018;205

Biten et al., 2022; Li et al., 2023b; Zhou et al.,206

2023). The performance metric is accuracy, i.e.,207

the percentage of correctly answered questions.208

Open Hallucination Evaluation. We focus on two209

popular meatrics for quantifying hallucination in210

open caption generation: CHAIR (Rohrbach et al.,211

2018) and FaithScore (Jing et al., 2023), illustrated212

in Figure 1). The two metrics identify hallucination213

in different ways: by complementing them with one214

another, we mitigate the risk of our findings merely215

being an artifact of a single (imperfect) evaluation216

metric. Both metrics can also indirectly quantify217

how informative and descriptive the generated cap-218

tions are. As our result will show (§5), there exists219

a tradeoff between faithfulness/hallucination and220

informativeness of the captions. We thus argue that 221

the hallucination metrics should be contextualized 222

with the measures of informativeness: factually cor- 223

rect but uninformative captions are as undesired as 224

captions with hallucinated information. 225

CHAIR detects hallucinated objects using the set 226

of 80 object classes from MSCOCO (Lin et al., 227

2014) with which the images are annotated. Words 228

from the captions are matched—using exact string 229

matching—against the class names, augmented 230

with synonyms. The resulting list of matched ob- 231

jects is then cross-referenced against the gold list 232

of annotated objects and all matched but not anno- 233

tated objects are considered hallucinations. Two 234

scores are produced over the dataset: (1) CHAIRi 235

divides the total number of hallucinated objects 236

across all captions with the total number of de- 237

tected objects; (2) CHAIRs is the proportion of 238

images in the dataset for which the caption con- 239

tains at least one object hallucination. CHAIRs 240

is less than ideal for longer captions as they are 241

more likely to contain at least one hallucination; 242

such a binary caption-level measure would hide 243

potentially substantial differences in hallucination 244

rates between models. Because of this, we adopt 245

only CHAIRi in this work. Following Zhai et al. 246

(2023a), we additionally report the average num- 247

ber of matched objects per caption as well as the 248

gold object coverage (i.e., the average percentage 249

of annotated objects mentioned in the caption) as 250

measures of caption informativeness. 251

CHAIR unfortunately comes with two major 252

shortcomings. First, it is based on MSCOCO im- 253

ages and object annotations which are widely used 254

in a range of derivative datasets leveraged for train- 255

ing LVLMs (Goyal et al., 2017; Kazemzadeh et al., 256

2014; Mao et al., 2016; Liu et al., 2023c). This 257

makes LVLMs a priori less likely to hallucinate 258

on MSCOCO images, which means that CHAIR 259
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is likely overly optimistic about (i.e., it underesti-260

mates) the amount of LVLM hallucination “in the261

wild”. We thus propose to extend CHAIR to an262

out-of-distribution dataset, one that ideally also263

comes with a larger set of object classes. Sec-264

ond, CHAIR relies on exact string matching be-265

tween caption words and synonym sets of the ob-266

ject classes. Adapting vanilla CHAIR based on267

string matching to a larger set of object classes268

would, however, require significant manual effort,269

as one would have to (1) create a curated list of syn-270

onyms for all new classes (without overlap between271

related classes) to correctly account for recall and272

(2) inspect examples and create special rules for273

edge cases to limit false positives (e.g., add ‘baby274

X’ synonyms to all animal classes ‘X’ in order not275

to falsely match the ’person’ class). Addressing276

both issues simultaneously, we propose semantic277

matching between the caption and object classes as278

an alternative to string matching for large sets of ob-279

ject classes. Our extension, dubbed CHAIR-MEN280

(from CHAIR with Matching using Embeddings281

of Noun phrases) (1) extracts all noun phrases from282

the generation,1 (2) embeds the extracted phrases283

as well as classes names with a pretrained sentence284

encoder (Reimers and Gurevych, 2019)2 and (3)285

makes matching decisions based on cosine simi-286

larity between obtained embeddings: to each noun287

phrase, we assign (i) the class amongst the image’s288

objects with the most similar embedding, if cosine289

exceeds a threshold t1, (ii) the class amongst the290

other objects (i.e., not present in the image) with the291

most similar embedding, if cosine exceeds a thresh-292

old t2, or otherwise (iii) no object class. Matching293

first only against the image’s objects makes false294

negatives from a semantically related object not295

in the image less likely. We calibrate the thresh-296

olds (t1 = 0.73, t2 = 0.78) by trying to match the297

scores that vanilla CHAIR produces on MSCOCO,298

as an established measure for that dataset.299

FaithScore (Jing et al., 2023), a model-based hal-300

lucination metric, is designed with finer-grained301

evaluation in mind: it does not only consider ob-302

jects/entities but also other aspects that models303

can hallucinate about (specifically: color, relation,304

count, and ‘other’ attributes), without the need for305

human annotation. FaithScore computation is a 2-306

stage process that relies: (1) on an LLM to extract307

‘atomic facts’ from the generated text, phrasing308

1With spaCy v3 EN_CORE_WEB_SM
2BAAI/BGE-BASE-EN-V1.5 (Xiao et al., 2023)

them as statements (e.g., “There is a man”) the 309

factuality of which, in the context of the image, is 310

then (2) verified with a VQA model (question: “Is 311

the following statement correct?”). The final score 312

is then simply the proportion of positive answers 313

given by the VQA model. We additionally report 314

the average number of facts produced by the LLM 315

as a measure of informativeness of generated cap- 316

tions. The original work of Jing et al. (2023) relies 317

on GPT-4 to extract facts but this is too expensive 318

for our evaluation; instead, we use a smaller LLM3 319

after verifying that it successfully follows task in- 320

structions. We use OFA (Wang et al., 2022) as the 321

VQA model for FaithScore, as it is much faster and 322

only marginally less accurate than Llava-1.5 (Liu 323

et al., 2023b) according to Jing et al. (2023). 324

Caption Quality Metrics. Next to the hallucina- 325

tion measures, we add the following two standard 326

metrics to monitor how grounding objectives af- 327

fect the general caption quality: CIDEr (Vedan- 328

tam et al., 2015) is a measure based on n-gram 329

overlap with a set of reference captions. CLIP- 330

Score, a reference-free metric, is the cosine simi- 331

larity between the image and caption embeddings, 332

produced by a CLIP model (Radford et al., 2021a).4 333

4 Experimental Setup 334

We comprehensively analyze the effect of ground- 335

ing objectives on LVLM hallucination. For the sake 336

of transferability and robustness of our findings, our 337

experimental core, namely the model architecture 338

and training procedure, follows established prac- 339

tices as closely as possible. All model instances 340

are trained according to the same protocol, that is, 341

we control for everything other than the effect of 342

grounding, i.e., inclusion/exclusion of grounding 343

data during training. We primarily focus on measur- 344

ing hallucination in open-ended image captioning 345

as this, we argue, better reflects LVLM’s hallucina- 346

tion in real-world applications; for completeness 347

and comparison of evaluation protocols, we also 348

perform the QA-based evaluation with POPE. We 349

benchmark LVLMs for hallucinations in two differ- 350

ent caption generation scenarios: (1) in standard 351

image captioning, with expected caption length of 352

1-2 sentences (as in MSCOCO), and (2) grounded 353

image captioning (with standard length), where the 354

LVLM is explicitly prompted to interleave region 355

3Llama3-8B-Instruct (AI@Meta, 2024); inference done
with vLLM (Kwon et al., 2023) for speed

4We use VIT-B-16-SIGLIP-256 (Zhai et al., 2023b)
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coordinates into the caption. In the Appendix B,356

we also provide results for long (i.e., detailed, de-357

scriptive) caption generation.358

Evaluation Datasets. Despite the previously359

mentioned shortcomings, MSCOCO (Lin et al.,360

2014) remains the primary dataset for evaluating361

LVLM hallucination in the literature, both with QA-362

based and free-form generation metrics/protocols363

(Rohrbach et al., 2018; Li et al., 2023b). We364

thus include MSCOCO but complement it with365

the Objects365 (O365) (Shao et al., 2019) dataset366

which comes with a much larger inventory of ob-367

ject classes (365 classes in total, including the 80368

MSCOCO classes) and, consequently, more object369

annotations per image. We evaluate on 5000 and370

5386 images from test portion of MSCOCO and371

validation portion of O365, respectively.5 For the372

POPE evaluation, we generate two new test sets373

from O365, each with 1500 examples (matching374

MSCOCO POPE): O365/COCO uses only the 80375

classes from MSCOCO, and O365/non-COCO376

utilizes the remaining 285 classes.377

LVLM Architecture. We adopt the typical LVLM378

architecture: (1) images are encoded by an image379

encoder, (2) projected by an alignment module into380

the LLM embedding space, and (3) prepended to381

the embeddings of textual tokens (Liu et al., 2023b).382

For the alignment module, we adopt as default the383

projection by Chu et al. (2024), which uses a 2-384

layer MLP followed by a pooling layer. We also385

experiment with a resampler (Li et al., 2023a; Bai386

et al., 2023; Alayrac et al., 2022), which learns to387

encode the visual information from the image in a388

set of trainable query embeddings; specifically, we389

use a 3-layer perceiver-resampler (Alayrac et al.,390

2022) with 32 query tokens. We leverage the Ope-391

nAI CLIP ViT-L/14-224 (Radford et al., 2021b)392

as the image encoder. We experiment with three393

different LLM backbones: Vicuna 1.5 7B (Chi-394

ang et al., 2023), Llama-3 8B (instruct) (AI@Meta,395

2024), and Phi-3-mini (Abdin et al., 2024). The396

LLM parameters are frozen and 4-bit quantized397

(Dettmers et al., 2023); instead of direct LLM up-398

dates, we learn the LoRA adapters (Hu et al., 2022)399

for all parameter matrices of the LLM.400

5We have additionally considered Open Images
(Kuznetsova et al., 2020), Visual Genome (VG) (Krishna
et al., 2017), and LVIS (Gupta et al., 2019) as datasets with
gold object annotations but ultimately decided against their
inclusion due to insufficient object coverage in annotations
(i.e., not all objects are annotated in every image).

Pre-Training. We pre-train the alignment module— 401

and only the alignment module (all other parameter 402

frozen)—on image-caption data. For this, we use 403

the 560k examples from Liu et al. (2023b). 404

Training Mix. LVLMs are generally instruction- 405

trained on a mix of tasks and datasets. The mix we 406

adopt reflects the main goal of our study: to iso- 407

late the effect of grounding objectives on LVLMs 408

hallucination. We thus include the following tasks: 409

1. Standard image captioning: we train on the 410

MSCOCO captions (400k examples); 411

2. Long captioning: we use LLAVA-DETAILED 412

(Liu et al., 2023c) with 23k long captions gener- 413

ated by GPT-4 on the basis of (short) MSCOCO 414

reference captions and gold object annotations; 415

3. VQA: we select from VQAv2 (Goyal et al., 2017) 416

all 170k yes/no questions. VQA is only added to 417

the training mix for the sake of QA-based halluci- 418

nation evaluation with POPE;6 419

4. Referring expressions (see §2): we combine 420

RefCOCO (Kazemzadeh et al., 2014; Mao et al., 421

2016) (320k examples) and Visual Genome (Kr- 422

ishna et al., 2017) (we sample 320k examples); 423

5. Grounded captioning (see §2): we use Flickr30k- 424

Entities (Plummer et al., 2015) (150k examples). 425

We name our LVLM model variants based on 426

their respective training mix. The Base LVLM has 427

been trained only on non-grounding tasks (1-3); ad- 428

dition of the referring expressions and grounded 429

captioning tasks is indicated with +RE and +GC, re- 430

spectively. For brevity, we provide further training 431

and inference details in the Appendix A. By de- 432

fault, we use the pooled MLP projection from Chu 433

et al. (2024) for all models. Additionally, we train a 434

Vicuna-based model with the perceiver-resampler, 435

which we denote with (Perc). 436

5 Results 437

We now report the observed hallucination effects 438

under both protocols: in free-form captioning 439

and in QA-based hallucination evaluation (as indi- 440

cated by the POPE metric/protocol). The reported 441

CHAIR results correspond to our CHAIR-MEN 442

variant; we report the results obtained with the 443

vanilla CHAIR based on string matching in Ap- 444

pendix C. We did not separately optimize hyperpa- 445

rameters for each LLM and will thus refrain from 446

their mutual performance comparison; instead, for 447

6Without VQA in the training mix, the LVLMs do not
follow the POPE task instruction.
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MSCOCO O365/COCO O365/non-COCO
Model rand. pop. adv. rand. pop. adv. rand. pop. adv.
Llama-3 Base 86.87 81.73 75.83 83.13 70.47 65.63 78.53 66.13 58.20
Llama-3 +GC 86.83 82.43 78.90 81.87 71.60 68.50 77.57 67.70 60.37
Llama-3 +RE 84.10 81.87 79.93 76.07 73.10 71.73 70.53 67.07 64.57
Llama-3 +RE+GC 84.70 83.77 79.93 75.47 71.00 69.73 67.63 64.50 61.27

Phi-3 Base 87.17 85.30 81.87 81.57 77.57 73.73 79.10 74.77 66.40
Phi-3 +GC 85.30 83.73 81.80 78.93 75.53 73.47 72.43 69.50 65.80
Phi-3 +RE 86.43 85.50 83.50 78.93 76.20 74.10 75.17 72.40 68.83
Phi-3 +RE+GC 87.57 85.43 81.77 84.63 78.27 74.00 77.03 74.30 68.30

Vicuna Base 87.23 84.03 81.40 81.10 74.17 70.80 78.80 74.53 64.10
Vicuna +GC 85.73 83.93 81.43 83.17 76.20 73.17 73.57 69.27 65.73
Vicuna +RE 85.30 84.07 81.90 79.83 76.40 74.67 76.00 71.43 65.83
Vicuna +RE+GC 88.27 86.10 82.37 84.37 75.77 73.13 77.93 72.53 65.80
Vicuna (Perc) Base 85.90 82.73 78.00 79.37 69.40 65.10 76.60 67.27 57.80
Vicuna (Perc) +GC 83.93 82.23 78.33 76.37 69.77 64.97 73.20 66.47 59.20
Vicuna (Perc) +RE 83.63 82.60 78.37 76.40 73.13 70.03 69.13 68.03 62.33
Vicuna (Perc) +RE+GC 84.97 80.27 76.03 78.20 71.30 67.90 71.87 65.90 60.27

Table 1: POPE results (accuracy) for MSCOCO, O365/COCO (using the 80 MSCOCO object classes), and
O365/non-COCO (remaining 285 classes) for random, popular, and adversarial example sets.

Model R+ Rg R
Llama-3 +RE 60.02 53.69 65.41
Llama-3 +RE+GC 64.62 60.51 71.50
Phi-3 +RE 63.33 61.06 67.09
Phi-3 +RE+GC 68.23 65.50 73.33
Vicuna +RE 58.03 58.78 61.89
Vicuna +RE+GC 68.25 65.30 73.66
Vicuna (Perc) +RE 23.00 22.21 30.60
Vicuna (Perc) +RE+GC 35.68 34.32 42.20

Table 2: Precision@50 for expression grounding (pro-
vide the bounding box for a region) for the test split of
RefCOCO (R), RefCOCO+ (R+), and RefCOCOg (Rg).

each of the three LLMs, we analyze how inclusion448

of grounding objectives affects their hallucination.449

Referring Expressions. Before we test the effects450

of grounding on free-form and QA-based halluci-451

nation, we first analyze if the two grounding objec-452

tives are mutually compatible. Concretely, we test453

how the models trained with grounding objectives454

(+RE, and +RE+GC) perform on one of the ground-455

ing tasks itself. In other words, we test if and how456

well models explicitly trained with grounding ob-457

jectives learn to ground expressions and whether458

the two grounding objectives are mutually benefi-459

cial. The results for expression grounding (one of460

the two RE tasks: given the description, provide the461

bounding box) are shown in Table 2. The metric is462

precision@50, that is, the proportion of examples463

where the intersection between the predicted and464

gold bounding box contains at least 50% of their465

union. The results indicate that adding grounded466

captioning (+GC) consistently and substantially im-467

proves the performance for all three LLMs: this468

strongly suggests that the two grounding objectives 469

are mutually compatible. Vicuna-based model with 470

the perceiver-resampler (Perc) aligner consider- 471

ably underperforms the (default) MLP aligner; we 472

suspect that this is because the (pre-)training data 473

was insufficient for it to learn to properly encode 474

positional information. 475

QA Hallucinations with POPE. Table 1 sum- 476

marizes the hallucination results according to the 477

QA-based evaluation protocol with POPE. Overall, 478

both grounding objectives, referring expressions 479

(+RE) and grounding captions (+GC) fail to con- 480

sistently and non-negligibly improve performance, 481

i.e., reduce hallucination. While their combination 482

+RE+GC greatly improves grounding capabilities 483

over +RE alone for all LLMs (Table 2), the same is 484

not true for QA-based hallucination reduction (i.e., 485

POPE), pointing to the lack of causal link between 486

object grounding and hallucination reduction. 487

Standard Captions. Table 3 displays the perfor- 488

mance of our LVLM variants on standard image 489

captioning. We observe consistently, for all tested 490

models on both evaluation datasets, that grounding 491

objectives (i.e., their inclusion or exclusion) have 492

little to no effect on performance: all models learn 493

to generate proper captions in the MSCOCO style, 494

with 10 words on average and of similar general 495

quality, as captured by the caption quality met- 496

rics (CIDEr, CLIPScore). The metrics that capture 497

caption detailness (coverage, number of objects & 498

atomic facts) also show little difference between 499

the models. Most importantly, the same is true 500

for hallucination metrics CHAIRi and FaithScore, 501
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Model CIDEr↑ CLIPS.↑ #Words CHAIRi ↓ Coverage↑ Objects FaithScore↑ Facts

MSCOCO

Llama-3 Base 112.31 11.71 10.22 3.84 56.43 1.61 91.25 4.49
Llama-3 +GC 110.40 11.33 10.68 3.61 54.34 1.56 90.74 4.50
Llama-3 +RE 109.01 11.36 10.52 3.78 55.74 1.60 90.86 4.64
Llama-3 +RE+GC 107.95 11.72 10.66 3.63 55.46 1.61 90.64 4.69

Phi-3 Base 112.54 11.97 11.41 3.28 57.54 1.68 90.98 4.88
Phi-3 +GC 114.78 12.15 11.06 3.83 56.55 1.66 90.90 4.79
Phi-3 +RE 113.22 12.07 11.14 3.43 57.18 1.68 91.06 4.87
Phi-3 +RE+GC 113.68 11.90 11.06 3.68 56.21 1.64 91.28 4.66

Vicuna Base 115.57 11.93 10.31 3.68 54.14 1.56 91.95 4.61
Vicuna +GC 117.35 11.80 9.82 3.08 53.98 1.50 92.05 4.37
Vicuna +RE 112.06 11.76 9.92 3.41 54.21 1.55 92.19 4.53
Vicuna +RE+GC 113.30 11.77 9.79 3.64 52.69 1.50 91.98 4.27

Vicuna (Perc) Base 107.74 11.27 10.05 4.73 53.71 1.55 90.56 4.46
Vicuna (Perc) +GC 110.61 11.50 9.86 4.16 54.11 1.53 90.53 4.35
Vicuna (Perc) +RE 107.38 11.31 9.96 4.54 54.21 1.57 90.66 4.51
Vicuna (Perc) +RE+GC 109.64 11.25 10.11 5.15 54.20 1.57 90.39 4.56

Objects365

Llama-3 Base — 10.99 10.15 14.51 27.67 1.94 88.68 4.56
Llama-3 +GC — 10.84 10.72 13.33 26.72 1.84 88.88 4.52
Llama-3 +RE — 10.67 10.50 12.74 26.73 1.86 88.57 4.66
Llama-3 +RE+GC — 10.98 10.74 12.48 28.16 1.96 87.97 4.86

Phi-3 Base — 11.27 11.36 12.99 29.23 2.03 88.33 4.77
Phi-3 +GC — 11.60 11.08 13.17 28.73 1.96 88.90 4.70
Phi-3 +RE — 11.41 11.22 13.30 28.20 1.97 89.06 4.88
Phi-3 +RE+GC — 11.31 11.18 12.27 28.78 1.97 88.93 4.64

Vicuna Base — 11.06 10.28 12.44 27.38 1.88 88.81 4.55
Vicuna +GC — 11.12 9.78 12.62 26.23 1.76 89.82 4.24
Vicuna +RE — 10.93 10.17 12.85 26.96 1.84 89.33 4.58
Vicuna +RE+GC — 11.07 9.83 12.60 26.25 1.79 90.20 4.24

Vicuna (Perc.) Base — 10.14 10.12 15.82 25.82 1.87 86.18 4.36
Vicuna (Perc) +GC — 10.52 9.81 14.42 25.50 1.74 87.65 4.19
Vicuna (Perc) +RE — 10.24 10.26 15.81 25.98 1.88 86.07 4.55
Vicuna (Perc) +RE+GC — 10.30 10.23 16.68 25.92 1.84 86.50 4.48

Table 3: Results on standard image captioning. CIDEr and CLIPScore indicate general caption quality; CHAIRi

and FaithScore reflect hallucination, whereas (average number of) #Words, CHAIR Coverage and Objects, and
(number of FaithScore) Facts aim to quantify informativeness.

confirming that there is no positive transfer from502

grounding to hallucination reduction.503

Grounded Captions. Previous results establish504

that training on grounding objectives does not re-505

duce hallucination in open caption generation. We506

next test whether forcing the model to generate507

grounded captions at inference can reduce halluci-508

nation. Intuitively, prompting the model to produce509

grounded captions should encourage it to generate510

only objects contained in the image. The results511

in Table 4 show that generating grounded captions512

indeed results in some hallucination reduction, but513

the effect is rather small. Reduction is more promi-514

nent on Objects365 where the baseline hallucina-515

tion rate is higher than on MSCOCO. On the flip516

side, generating grounded captions at inference517

slightly reduces their informativeness too (i.e., we518

observe fewer objects and atomic facts in the gen-519

erated captions). A closer qualitative inspection520

(see §6) reveals that LVLMs trained with ground-521

ing objectives still incorrectly describe objects or522

fabricate them entirely.523

6 Qualitative Grounded Caption Analysis524

We show examples for grounded captioning in Fig-525

ure 2. The grounding itself does not necessarily526

prevent the model from hallucinating: in the first527

Standard: A painting of a woman
with a vase and oranges.
Grounded: An artistic painting of
a woman with a vase .

Standard: Two elephants are in a
field near water.
Grounded: Two elephants are in
a field with water.

Standard: A small bird is stand-
ing in a pot of food.
Grounded: A black bird is eating
a peeled apple out of a pot .

Figure 2: Qualitative examples of Vicuna +RE+GC
for standard and grounded captioning. Hallucinations
are underlined in red. Predicted bounding boxes are
visualized in the image and marked in the caption.

example, the model fully hallucinates a woman 528

along with a bounding box for her. In the second 529

example, the second ‘elephant’ bounding box is 530

positionally correct in that it points to an animal, 531

but that animal is a rhino. In the third example, sim- 532

ilarly, the bounding box correctly contains an apple 533

but the attribute ‘peeled’ is hallucinated. These 534
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Model CIDEr↑ CLIPS.↑ #Words CHAIRi ↓ Coverage↑ Objects FaithScore↑ Facts

MSCOCO

Llama-3 +GC -8.52 0.28 -0.48 0.17 -5.63 -0.21 1.12 -0.18
Llama-3 +RE+GC -7.92 -0.20 -0.44 -0.39 -5.44 -0.25 0.88 -0.28

Phi-3 +GC -6.23 -0.25 -0.34 -0.14 -6.33 -0.28 0.63 -0.41
Phi-3 +RE+GC -8.12 -0.17 -0.24 0.44 -7.36 -0.28 1.08 -0.29

Vicuna +GC -9.32 -0.03 0.46 0.51 -6.64 -0.19 0.72 -0.09
Vicuna +RE+GC -8.22 0.09 0.91 0.03 -4.80 -0.19 0.48 0.11

Vicuna (Perc.) +GC -7.78 -0.22 0.12 0.06 -6.87 -0.22 0.61 -0.18
Vicuna (Perc.) +RE+GC -13.69 -0.16 0.23 -1.08 -8.13 -0.32 0.87 -0.19

Objects365

Llama-3 +GC — -0.02 -0.50 -1.07 -3.06 -0.25 0.46 -0.18
Llama-3 +RE+GC — -0.34 -0.31 -0.01 -3.67 -0.32 1.09 -0.30

Phi-3 +GC — -0.39 -0.03 -1.91 -2.89 -0.26 0.87 -0.22
Phi-3 +RE+GC — -0.28 -0.05 -0.48 -3.12 -0.28 0.74 -0.09

Vicuna +GC — 0.04 0.44 -1.38 -2.03 -0.17 0.21 0.09
Vicuna +RE+GC — -0.06 0.86 -1.06 -3.35 -0.27 -0.25 0.26

Vicuna (Perc.) +GC — -0.00 0.25 -0.77 -2.61 -0.21 -0.14 0.03
Vicuna (Perc.) +RE+GC — -0.12 0.30 -2.37 -3.40 -0.37 1.59 -0.06

Table 4: Absolute performance difference of grounded image captioning w.r.t. standard captioning (Table 3).

examples point to causes of hallucination that go535

beyond insufficient or incorrect grounding and help536

explain why grounding objectives do not really re-537

duce the LVLM hallucination in open captioning.538

7 Related Work539

Large Vision-Language Models. LVLMs are es-540

sentially Large Language Models (LLMs) (Brown541

et al., 2020; Touvron et al., 2023; OpenAI, 2023;542

Jiang et al., 2023) extended to “understand” visual543

input. Recent models have shown an impressive un-544

derstanding of images (OpenAI, 2023; Anil et al.,545

2023; Li et al., 2023a; Dai et al., 2023a; Liu et al.,546

2023c; Bai et al., 2023; Fini et al., 2023; Zhu et al.,547

2023; Laurençon et al., 2023; Geigle et al., 2023;548

Wang et al., 2023b) and a range of models have549

been proposed specifically for grounding and refer-550

ring (Chen et al., 2023b; You et al., 2023; Praman-551

ick et al., 2023; Zhang et al., 2023a; Peng et al.,552

2023; Chen et al., 2023a; Zhao et al., 2023a).553

Measuring Object Hallucinations. A range of554

hallucination metrics have been proposed: CHAIR555

(Rohrbach et al., 2018) identifies hallucinated ob-556

jects by checking captions (via string matching)557

against a set of annotated objects (i.e., MSCOCO).558

Wang et al. (2023a) fine-tune an LLM to identify559

hallucinatory captions through comparison with560

reference captions; FaithScore (Jing et al., 2023),561

a reference-free approach, uses an LLM to extract562

verifiable facts and then tests these facts with a563

VQA model. POPE (Li et al., 2023b) indirectly564

measures hallucination with questions about object565

existence: while a good test of image understand-566

ing , which may indicate the extent of models’ ten-567

dency to hallucinate, it is not a direct measure of568

hallucination in open-ended captioning.569

Hallucination Mitigation. A range of ap- 570

proaches have been proposed to mitigate hallu- 571

cination: Biten et al. (2022); Dai et al. (2023b); 572

Zhai et al. (2023a) propose adaptions to the train- 573

ing data and objectives. Liu et al. (2023a); Gunjal 574

et al. (2023); Zhao et al. (2023b); Yu et al. (2023) 575

use reinforcement-learning methods to reduce hal- 576

lucinations in model output. Leng et al. (2023); 577

Huang et al. (2023) propose (training-free) decod- 578

ing methods that mitigate hallucinations. Zhou et al. 579

(2023); Yin et al. (2023) create pipeline approaches 580

that post-hoc clean the generated text from hallu- 581

cinated content. Finally, for QA hallucinations, re- 582

searchers have created robust instruction data (Liu 583

et al., 2023a), VQA examples (Hu et al., 2023), and 584

additional benchmarks (Lu et al., 2023). 585

8 Conclusion 586

Object hallucination remains one of the main obsta- 587

cles to wide-range adoption of LVLMs. Prior work 588

suggested that grounding objectives like referring 589

expressions reduce hallucination but the empirical 590

support for this claim is confined to QA-based eval- 591

uation. In this work, we carried out an in-depth 592

analysis of the effects that grounding objectives in 593

LVLM training have on their hallucination in open 594

image captioning. Our extensive experiments with 595

three backbone LLMs show that there is no causal 596

link between improved object grounding (via ob- 597

jectives like referring expressions) and hallucina- 598

tion reduction: this observation is true both under 599

QA-based and open captioning hallucination evalu- 600

ation protocols. Finally, we observe that explicitly 601

prompting LVLMs to generate grounded captions 602

at inference can slightly reduce hallucination but at 603

the expense of reduced caption informativeness. 604

8



9 Limitations605

There are two main limitations to our analysis.606

First, while we aim for a comprehensive analy-607

sis of the effects of different training objectives608

and task mixes on downstream hallucination, there609

are a number of modeling decisions that we had610

to fix (i.e., we could not explore other variants)—611

primarily w.r.t. to the architecture of the LVLM—612

due to a limited computational budget. One could,613

inter alia, consider a different image encoder, addi-614

tional or larger LLMs, and/or alignment modules615

other than the MLP or perceiver-resampler. Addi-616

tionally, due to our limited computational budget,617

we train our models on less data and for fewer618

steps than a lot of other work that trains LVLMs619

(e.g. Chen et al. (2023b); Liu et al. (2023b); Bai620

et al. (2023)); we thus cannot rule out that a reduc-621

tion in hallucination due to grounding objectives622

might emerge at some larger scale of grounding623

training.624

Second, our findings are (modulo anecdotal ev-625

idence from manual qualitative analysis of a lim-626

ited number of examples) based on reliance on627

imperfect automatic metrics. While this is a com-628

mon practice in related work as well, we increase629

the likelihood of the robustness of our findings630

and conclusions by employing two mutually com-631

plementing hallucination quantification metrics,632

CHAIR and FaithScore (see §3), as well as addi-633

tionally proposing a semantic extension to CHAIR634

(CHAIR-MEN, see §3).635
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Task Prompt

Standard Caption Briefly describe the image.
Long Caption Describe the image in detail.
Grounded Caption Describe the image and include

the bounding box coordinates for
every mentioned object.

VQA (POPE) QUESTION Answer with yes or
no.

Referring Expression Give the bounding box coordi-
nates for the region described as
"DESCRIPTION".

Referring Generation Briefly describe the region [x1,
y1, x2, y2].

Table 5: Prompts used for training and inference.

A Training and Details1084

All models were trained on a single NVIDIA1085

RTX3090s card, with training duration ranging be-1086

tween 2-4 GPU days, depending on the training1087

task mix. We train for one epoch (on the concatena-1088

tion of corpora from all tasks, as all tasks are—from1089

the low-level technical point of view—instances1090

of causal language modeling, i.e., next token pre-1091

diction) with AdamW optimizer (Loshchilov and1092

Hutter, 2019) and a cosine schedule. For LoRA,1093

we set r = 64, α = 128. During pre-training,1094

where only the parameters of the alignment mod-1095

ule are updated, we use batch size 32, learning rate1096

0.001, and weight decay 0. For training on the task1097

mix, we use learning rate 2e-4, weight decay 0,1098

and batch size 16/32/64 for Vicuna/Phi-3/Llama-31099

(achieved with gradient accumulation).1100

For generation (i.e., inference), we use greedy1101

decoding with a repetition penalty (Keskar et al.,1102

2019) of 1.15 to avoid degenerative repetitions in1103

long caption generation. We use one fixed prompt1104

per task (see Table 5) both in training and at infer-1105

ence (for the subset of tasks on which we evaluate).1106

We encode bounding boxes with 2 signif-1107

icant digits (, e.g., [0.10, 0.05, 0.64, 1.00]).1108

For grounded captions where multiple bound-1109

ing boxes are needed (e.g., for something1110

like “three zebras”), we follow Plummer1111

et al. (2015) and combine the coordinates1112

with semicolons in the same brackets (, e.g.,1113

[0.10, 0.05, 0.64, 1.00; 0.50, 0.15, 0.64, 1.00]). If1114

we would have more than three boxes in brackets,1115

we instead create a single bounding box covering1116

all boxes to limit the final sequence length.1117

Model #Words CHAIRi ↓ Coverage↑ Objects

Llama-3 Base 94.46 30.78 44.45 7.44
Llama-3 +GC 100.61 31.74 44.80 8.08
Llama-3 +RE 100.39 29.08 43.66 7.57
Llama-3 +RE+GC 103.75 26.42 43.86 7.66

Phi-3 Base 99.17 27.18 46.16 7.00
Phi-3 +GC 94.33 25.69 45.45 6.97
Phi-3 +RE 97.09 27.75 45.20 6.85
Phi-3 +RE+GC 96.55 27.74 45.69 7.12

Vicuna Base 93.91 26.10 45.12 7.18
Vicuna +GC 89.69 25.61 44.42 7.25
Vicuna +RE 96.45 28.76 43.20 6.94
Vicuna +RE+GC 90.18 26.06 44.10 7.28

Vicuna (Perc.) Base 93.98 31.52 41.18 7.02
Vicuna (Perc.) +GC 92.64 31.28 40.67 7.24
Vicuna (Perc.) +RE 96.39 32.79 40.15 7.08
Vicuna (Perc.) +RE+GC 96.14 35.10 41.32 7.94

Table 6: Results for long captions on Objects365. We
report the average number of words and CHAIR metrics.
Results with FaithScore and on MSCOCO are qualita-
tively the same so we omit them for brevity.

B Long Captions 1118

Table 6 shows long captioning results. For brevity, 1119

we only report the results for Objects365 with 1120

CHAIR(-MEN): for MSCOCO and FaithScore the 1121

results are qualitatively the same. Overall, the dif- 1122

ferences between model variants are negligible sim- 1123

ilar to the standard captions. The grounding objec- 1124

tives (+RE and +GC) thus does not seem to affect 1125

long captions. This again questions the extent to 1126

which improved fine-grained image understanding 1127

from grounding actually transfers to hallucination 1128

reduction in open generation. 1129

C CHAIR and CHAIR-MEN 1130

We report results based on our CHAIR-MEN ap- 1131

proach in the main paper. In the following, we 1132

compare them against vanilla CHAIR results based 1133

on the string matching method. In Table 7, we re- 1134

port string-matching CHAIR results for MSCOCO, 1135

which can be compared to Table 3 (standard cap- 1136

tions), Table 4 (grounded captions), and Table 6 1137

(long captions). 1138

We find that results with CHAIR-MEN are 1139

highly proportional to CHAIR. This validates 1140

CHAIR-MEN as an alternative approach for identi- 1141

fying hallucinated objects and opens up the exten- 1142

sion to other datasets like Objects365. 1143
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Model CHAIRi ↓ Coverage↑ Objects

Llama-3 Base 4.36 58.84 1.62
Llama-3 +GC 4.12 57.30 1.57
Llama-3 +RE 4.36 58.06 1.61
Llama-3 +RE+GC 5.30 59.41 1.68
Phi-3 Base 4.26 60.39 1.70
Phi-3 +GC 4.39 59.79 1.67
Phi-3 +RE 4.41 59.73 1.69
Phi-3 +RE+GC 4.44 59.21 1.67
Vicuna Base 4.45 58.62 1.62
Vicuna +GC 3.46 57.74 1.55
Vicuna +RE 4.14 57.78 1.59
Vicuna +RE+GC 3.92 56.80 1.55
Vicuna (Perc.) Base 5.66 57.50 1.60
Vicuna (Perc.) +GC 4.87 57.10 1.55
Vicuna (Perc.) +RE 5.38 57.57 1.60
Vicuna (Perc.) +RE+GC 6.08 58.33 1.62

(a) MSCOCO Standard Captions
Model CHAIRi ↓ Coverage↑ Objects

Llama-3 +GC 4.32 53.21 1.41
Llama-3 +RE+GC 5.21 54.71 1.48
Phi-3 +GC 4.03 54.61 1.44
Phi-3 +RE+GC 3.49 54.28 1.43
Vicuna +GC 3.98 52.66 1.38
Vicuna +RE+GC 3.33 53.54 1.41
Vicuna (Perc.) +GC 4.78 52.29 1.38
Vicuna (Perc.) +RE+GC 6.65 52.37 1.41

(b) MSCOCO Grounded Captions
Model CHAIRi ↓ Coverage↑ Objects

Llama-3 Base 23.45 80.62 7.10
Llama-3 +GC 24.54 80.02 7.62
Llama-3 +RE 23.22 79.37 7.55
Llama-3 +RE+GC 20.63 79.23 7.20
Phi-3 Base 20.92 81.05 6.28
Phi-3 +GC 18.10 78.89 6.13
Phi-3 +RE 21.01 79.32 5.82
Phi-3 +RE+GC 22.16 79.82 6.31
Vicuna Base 17.54 80.17 6.51
Vicuna +GC 17.70 78.76 6.33
Vicuna +RE 18.27 79.59 6.16
Vicuna +RE+GC 18.20 78.68 6.49
Vicuna (Perc.) Base 23.35 77.82 6.71
Vicuna (Perc.) +GC 22.19 77.11 6.76
Vicuna (Perc.) +RE 22.74 77.85 6.67
Vicuna (Perc.) +RE+GC 24.83 78.09 7.31

(c) MSCOCO Long Captions

Table 7: CHAIR results for MSCOCO using the classic
string-matching approach.

15


