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ABSTRACT

StarCraft II plays an important role in developing AI agents for real-time strategic
reasoning due to its complex nature. However, people usually draw conclusions of
how competent their agents are according to the level of the built-in agents in Star-
Craft II which they can win in terms of the final success rate. Little intermediate
quantitative information is considered while human-in-the-loop analysis is time
inefficient, which results in inadequate reflection of the true strategic reasoning
ability. In this work, we propose StarCraft II Arena, a well-designed benchmark
for evaluating the strategic planning, real-time decision-making, and adaptability
capabilities of large language models (LLMs) agents. We introduce using fine-
grained capability metrics, allowing for targeted capture and analysis of specific
capability, and further propose a detailed decision trace to enhance the under-
standing of LLM behavior. We demonstrate the utility of such a benchmark by
evaluating several state-of-the-art LLMs in various setups. Our results reveal dis-
tinct performances in long-term strategy development, real-time decision-making,
and adapting to environmental changes. Such results show that the StarCraft II
Arena offers a deeper insight into the decision-making process of LLMs and has
the potential to become a challenging and comprehensive benchmark for strategic
reasoning.

1 INTRODUCTION

LLMs have recently demonstrated exceptional capabilities in reasoning, planning, and problem-
solving (Xi et al., 2023) across a range of domains, such as policy formulation (Xiao et al., 2023;
Hua et al., 2023), investment decision-making (Weiss et al.; Li et al., 2023b), and strategic optimi-
sation (Liu et al., 2024; Zhang et al., 2024a). Successfully completing these complex tasks requires
intelligent agents to perceive, make decisions, and execute actions (Wooldridge & Jennings, 1995)
within diverse and dynamic environments. This process not only involves deep reasoning to antic-
ipate risks and weaknesses but also the ability to understand the motivations, beliefs, and potential
deceptive behaviors of other agents (Hao et al., 2023; Premack & Woodruff, 1978; Street et al.,
2024). Although LLMs have shown significant promise in managing such scenarios, positioning
them as key technologies for achieving artificial general intelligence (AGI) (You et al., 2024; Morris
et al.), their performance in real-world applications continues to face numerous challenges.

Evaluating the capabilities of LLM agents effectively is critical for the further development of this
field. Traditional static evaluation datasets, while offering a standardized testing framework (Wang
et al., 2019; Srivastava et al., 2022; Chen et al., 2021; Xie et al., 2024), are insufficient for captur-
ing how models make decisions and adapt in dynamic environments. As a result, there has been
growing interest in assessing the performance of large models within executable environments (Liu
et al., 2023a; Xi et al., 2024)—simulated or real-world interactive platforms, including web naviga-
tion (Lai et al., 2024), household tasks (Li et al., 2024), gaming (Bailis et al., 2024; Qi et al., 2024),
and programming (Qian et al., 2024). Among these, games, with their clear rules and complex
decision-making mechanisms, are considered ideal platforms for evaluating AI decision-making
abilities (Costarelli et al., 2024).
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Figure 1: The overall framework of StarCraft II Arena which is designed to evaluate LLMs in
strategic planning, real-time decision-making, and adaptability. It uses fine-grained capability met-
rics and a decision tracking system to capture key elements like Unit Construction Sequence and
Strategy Innovation Rate, providing insights into LLMs’ decision-making and strategic reasoning.

However, existing evaluation benchmarks usually take the final outcome of a game such as success
rate as the primary measure of performance (Duan et al., 2024). They further neglect the details
of the intermediate outcomes gradually generated by LLM agents during the sequential decision-
making process (Xi et al., 2024; Ma et al., 2024). Although the success rate reflects the overall
ability of the competing agents, this singular metric is usually inadequate for reflecting how capa-
ble an LLM agent is when handling complexity or adapting to changing tasks. Therefore, a more
comprehensive evaluation approach is required to better reflect the actual underlying reasoning ca-
pabilities of LLMs in dynamic environments.

In this study, we introduce StarCraft II Arena, a benchmark specifically designed to evaluate the
abilities of LLMs for strategic planning, real-time decision-making, and adaptation in the game Star-
Craft II. As illustrated in Figure 1, unlike traditional benchmarks which usually depend on static tests
or success rates, StarCraft II Arena incorporates fine-grained capability evaluation metrics, which al-
lows for more detailed analysis of the performance of LLMs across multiple dimensions. Moreover,
we also introduce a decision-tracking mechanism which records the intermediate decision results
of LLMs during the task execution. By looking into the decision trajectories, we can analyze how
LLMs adjust strategies in response to dynamic changes in the environment. As a result, it allows a
more comprehensive understanding of the underlying decision process of LLMs rather than using
the final outcome only. We demonstrate the utility of StarCraft II Arena by applying it to a range of
recent LLM agents, both proprietary and open-source, and leading to the following key findings: (1)
proprietary LLMs excel in long-term strategic planning and resource management but demonstrate
limitations in dynamic environments that require rapid adaptation; (2) most existing LLMs struggle
with handling incomplete information and adapting to rapidly evolving opponent strategies, limiting
their ability to respond effectively to shifting tactics; and (3) smaller models show greater flexibility
in real-time decision-making, particularly in high-frequency decision-making tasks, where they of-
ten outperform their larger counterparts. These findings highlight the potential of StarCraft II Arena
as a challenging benchmark for LLMs agents in strategic reasoning tasks.

2 RELATED WORK

2.1 LLM-AS-AGENT

The application of large language models (LLMs) as agents is rapidly evolving, encompassing a
diverse range of scenarios from single-agent to multi-agent systems (Xi et al., 2023). Early rein-
forcement learning (RL) agents learned through trial and error in complex environments, but they
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Game Imperfect
Information

Strategic &
Tactical

Dynamic
space

Real-time v.s.
Turn-based

Civilization(Wikipedia, 2024a) ✔ ✘ ✔ Turn-based
Dota 2(Wikipedia, 2024f) ✔ ✘ ✔ Real-time
Honor of Kings(Wikipedia, 2024c) ✔ ✘ ✔ Real-time
Diplomacy(Wikipedia, 2024b) ✘ ✘ ✘ Turn-based
WerewolfWikipedia (2024d) ✘ ✘ ✘ Turn-based
StarCraft II(Wikipedia, 2024e) ✔ ✔ ✔ Real-time

Table 1: Compare several games as LLM benchmarking environments based on four key dimen-
sions: Imperfect Information, Strategic & Tactical, Dynamic Space, and Real-time v.s. Turn-based.
Games like StarCraft II and Dota 2 feature imperfect information and dynamic spaces, which present
significant challenges to the decision-making capabilities of LLMs. StarCraft II uniquely integrates
both strategic and tactical elements, making it particularly suitable as a benchmark for assessing
LLMs’ planning and decision-making abilities. Turn-based games like Civilization and Diplomacy
provide a more controlled environment for long-term strategic planning, while real-time games im-
pose time constraints that test the models’ ability to react swiftly.

were typically suited only for highly structured tasks and required substantial training time and
data (Pourchot & Sigaud, 2018). In contrast, LLM-based agents, trained on extensive text datasets,
possess strong language understanding, instruction-following, and generation capabilities (Liu et al.,
2022; Lu et al., 2023), enabling them to flexibly navigate varied situations and demonstrate few-shot
and zero-shot generalization abilities (Wei et al., 2021; Yao et al., 2022), thus achieving seamless
task transfer. Furthermore, these LLM agents exhibit advanced cognitive abilities akin to human
intelligence, including chain-of-thought reasoning (Wei et al., 2022; Jin & Lu, 2023; Zhang et al.,
2023), planning (Huang et al., 2024a), self-reflection (Madaan et al., 2024), memory (Zheng et al.,
2023a; Zhang et al., 2024b), and learning (Zhang et al., 2024a; Xi et al., 2024). These capabilities
empower LLM agents to effectively tackle complex decision-making scenarios.

In multi-agent systems, LLMs must not only interact with their environment but also engage in
effective communication and collaboration among multiple agents to accomplish tasks (Pourchot &
Sigaud, 2018). Such systems emphasize the importance of agent communication and cooperation,
allowing them to operate within dynamic and complex environments, such as game simulations (Xu
et al., 2023), financial market analysis (Chen et al., 2023), and software development (Qian et al.,
2024). Strategic reasoning is particularly crucial in this context, as it requires agents to understand
and predict the actions of other agents and adjust their strategies accordingly.

2.2 BENCHMARKS FOR AI AGENTS

Evaluation Environments. In previous research, the capabilities of large models have primarily
been assessed through the construction of static datasets (Wang et al., 2019; Srivastava et al., 2023;
Zheng et al., 2023b; Yue et al., 2024; Xie et al., 2024). While an increasing number of bench-
marks have introduced broader tasks and datasets, most remain confined to traditional tasks and
fail to comprehensively evaluate the capabilities of large language models (LLMs) in open-ended
generation, multi-turn interactions, and agent-based roles (Gur et al., 2023; Huang et al., 2024b;
Liu et al., 2023b). As LLMs become more adept at addressing real-world challenges, there is a
growing trend towards evaluation methods that are based on executable environments rather than
static datasets (Gur et al., 2023; Wang et al., 2023; Shinn et al., 2024). Specifically, researchers
are now focusing on areas such as web navigation (Deng et al., 2024; Yao et al., preprint), text-
based games (Bailis et al., 2024; Mukobi et al., 2023), household tasks (Wang et al., 2022), digital
games (Qi et al., 2024; Ma et al., 2023), avatar tasks (Han et al., 2024), tool usage (Tang et al.,
2023), and programming (Qian et al., 2024; Zheng et al., 2023b), all of which provide a more re-
alistic context for assessing LLMs. In particular, games are widely regarded as ideal experimental
platforms for evaluating the decision-making capabilities of large models (Liu et al., 2023a). By
placing models in dynamic and complex gaming environments, researchers can effectively gauge
their performance in real-world scenarios.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

With clear rules and flexible customization, gaming environments have been applied widely for
evaluating AI decision-making abilities. We compare several popular games as LLM benchmarking
environments in Table 1 based on four key dimensions: Imperfect Information, Strategic & Tactical,
Dynamic Space, and Real-time v.s. Turn-based. Notably, StarCraft II, as a complex real-time strat-
egy game (Vinyals et al., 2019; Samvelyan et al., 2019), provides an ideal platform for evaluating
LLMs’ capabilities in strategic reasoning and multi-agent interaction. By assessing LLM perfor-
mance in this environment, we can gain deeper insights into how these models respond to complex
decision-making and dynamic changes.

Evaluation Metrics. Some studies employ game-theoretic tools to systematically evaluate the
decision-making abilities of large models within games, aiming to measure their strategic choices
and adaptability (Duan et al., 2024). However, these studies often concentrate on simple games
with a single dimension, failing to fully capture the complexity of the models’ decision-making
processes. Additionally, other research has focused on dissecting the capabilities of large models
to explore performance variations and potential advantages across different gaming scenarios (Wu
et al., 2023; Ma et al., 2024). Nevertheless, most analyses predominantly emphasize win rates, lack-
ing fine-grained capability metrics and decision trajectory analyses, which limits a comprehensive
understanding of the models’ performance (Costarelli et al., 2024; Duan et al., 2024; Liu et al.,
2023a; Wu et al., 2023).

3 PRELIMINARY

The agent’s interaction with the environment in StarCraft II is modeled as a Partially Observable
Markov Decision Process (POMDP), defined by the tuple ⟨W,S,A,O, T ⟩, where W represents the
victory goal, S is the state space, A is the valid actions space, O is the observation space (including
environmental feedback), and T is the state transition function. The agent interacts with the envi-
ronment by selecting actions from A based on the current state S and observations O, with the state
evolving according to T .

Two-level inference. In StarCraft II, the complexity of reasoning arises from the need to handle a
large observation space and multi-dimensional strategic tasks. This requires two levels of reasoning:
high-level strategic planning, such as resource management and army mobilization, and low-level
decision-making, such as micro-control in local battles.

pπ(τ) = p(s0)

T−1∏
t=0

p(ahight |st, chigh) · p(alowt |st, ahight , clow) · T (st+1|st, alowt , ft) (1)

Here, ahight represents a high-level decision based on the global strategy chigh, and alowt is a low-
level action based on local feedback clow. The state transition function T (st+1|st, alowt , ft) models
how the environment transitions in response to the agent’s low-level actions and the feedback re-
ceived from the environment.

3.1 FINE-GRAINED CAPABILITY METRICS

To evaluate the specific capabilities of the Large Language Model (LLM), each model is tested in
m scenarios, and performance is assessed based on aggregated metrics. A final capability score is
calculated as follows:

T =

m∑
i=1

Wi · βi ·

 1

n

n∑
j=1

Ryj
− µj

σj

 (2)

Here, Wi represents the weight of scenario i, and βi is a moderating factor for scenario i. For each
metric j, Ryj

is the average result across kj runs, µj and σj are the mean and standard deviation of
the metric, used for normalization. The final score is a weighted sum of normalized metrics across
all scenarios.
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Capacity Metrics Scene selection
Opponent strategy Operation mode

Strategic Planning RPM, EER, SUR, TRR Macro Async/Sync
Real-time Decision Making APM, EPM Rush Async/Sync
Adaptability WRT, ERT Random Async/Sync

Table 2: Outlines the capacity and metrics utilized in the StarCraft II Arena benchmark for evaluating
large language models (LLMs). The table highlights three key dimensions: Strategic Planning, Real-
time Decision-Making, and Adaptability. Each dimension is associated with specific metrics, such as
Resource Management Ability (RMA), Resource Utilization Efficiency (RUE), Actions Per Minute
(APM), and Win Rate Growth Rate (WRGR), among others. Additionally, the table details the scene
selection strategies, including opponent strategies like Macro, Rush, and Random, along with the
operational modes categorized as Async or Sync. This comprehensive structure facilitates a detailed
assessment of LLM capabilities within complex strategic environments.

4 STARCRAFT II ARENA - OVERVIEW

StarCraft II Arena is a benchmark specifically designed to assess the performance of various LLMs
in the strategic real-time game Starcraft II. It evaluates the capabilities of LLMs from the perspec-
tives of strategic planning, real-time decision-making, and adaptability through a series of carefully
constructed gaming scenarios. In contrast to traditional evaluation methods, StarCraft II Arena
offers more refined quantitative analysis metrics and an additional behavior-tracking mechanism,
allowing for a deeper, multi-faceted understanding of the underlying reasoning process of LLMs.
We shall explain the detailed capability dimensions, the fine-grained capability metrics, the design
of different testing scenarios, and the behavioral analysis using decision tracking as follows. Table 2

4.1 DECOMPOSITION OF THE STRATEGIC REASONING CAPABILITY

LLM agents demonstrate several advanced cognitive abilities akin to human intelligence in complex
environments, including chain-of-thought reasoning(Wei et al., 2022; Jin & Lu, 2023; Zhang et al.,
2023), planning(Huang et al., 2024a), self-reflection(Madaan et al., 2024), memory(Zheng et al.,
2023a; Zhang et al., 2024b), and learning(Zhang et al., 2024a; Xi et al., 2024). Based on these char-
acteristics, the selection of strategic planning, real-time decision-making, and adaptability as core
evaluation dimensions is logically grounded. These three dimensions encapsulate the essential ca-
pabilities required for agents to tackle complex tasks, representing holistic thinking, rapid response,
and flexible adaptation.

Strategic planning serves as the foundation for LLMs when addressing long-term objectives in
dynamic environments. Short-term reactions alone are insufficient to manage fluctuating conditions.
The model must have a broad view, ensuring the efficient allocation of resources, the prioritisation
of tasks, and the formulation of long-term strategies to maintain a competitive edge. Effective
strategic planning demands not only the ability to foresee potential future developments but also
to make informed decisions concerning resource management, technological advancements, and
unit production, thereby securing and sustaining a strategic advantage. In games like StarCraft II,
for instance, an LLM must efficiently manage early resource accumulation and expansion while
preparing for large-scale combat in the mid to late game.

Real-time decision-making is critical when using LLMs in real applications. While several LLM
agents claim to be capable for complex tasks, some are evaluated in a setup where the executing
testing system needs to be suspended while the LLM agents perform inference. A perfect strategic
plan would be ineffective if the model takes too long to perform inference and cannot respond rapidly
enough to the changing conditions. The model must continuously process dynamic information and
adjust its tactics accordingly. For instance, during a sudden enemy assault, the LLM must promptly
deploy units to defend or counter-attack, maintaining control over the situation. This capability
requires not only rapid information processing but also the ability to evaluate multiple strategies
quickly and efficiently to preserve overarching strategic objectives.

5
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Adaptability determines the model’s ability to remain competitive in evolving environments. As
opponent strategies, resource conditions, and task priorities change, an adaptive model can adjust its
approach based on previous feedback, refining its strategies to address new challenges. This reflects
the model’s flexibility and its ability to learn from experience. Quantitative metrics like win-rate
growth and error-rate reduction measure how well the model improves its decision-making over
time, ensuring a sustained advantage in long-term gameplay.

4.2 EVALUATION METRICS FOR THE INDIVIDUAL CAPABILITIES

Recent studies have highlighted that using success rate as the primary metric for agent evaluation
fails to capture the nuanced differences in how language model agents perform partial tasks (Liu
et al., 2023a; Li et al., 2023a). In adversarial games such as StarCraft II, this approach does not dis-
tinguish between the success of local tactics and the failure to achieve overall victory, instead treating
all instances of not reaching the final objective as failures. This overlooks the agent’s incremental
achievements or the effectiveness of its local strategies during gameplay. Although alternative met-
rics like reward scores can be used to assess performance, the lack of standardisation complicates
cross-environment comparisons, limiting their broader applicability(Chevalier-Boisvert et al., 2018;
Wang et al., 2022; Hausknecht et al., 2020).

To address these issues, we introduce Fine-Grained Capability Metrics to provide a more precise
evaluation of LLM performance across different task stages. Quantitative metrics are used to eval-
uate specific competencies such as resource management, real-time decision-making, and adapt-
ability. For instance, the Resource Management Ability (RPM) is calculated by summing the total
minerals and vespene gas collected during the game, reflecting the model’s efficiency in resource
gathering. The formula is:

RPMi =

T∑
t=1

(collected mineralsi(t) + collected vespenei(t)) (3)

Similarly, the Supply Utilization Rate (SUR) measures the ratio of supply used to maximum supply
capacity, offering insight into the model’s ability to effectively produce units. The formula is:

SURi =

∑T
t=1 supply usedi(t)∑T
t=1 supply capi(t)

(4)

These metrics capture the model’s performance across resource allocation, unit production, and tech-
nological development, providing a quantitative basis for evaluating strategic planning capabilities.
A full list of these quantitative metrics, along with their respective formulas, will be provided in the
appendix for reference.

4.3 DECISION TRACKING AND BEHAVIORAL ANALYSIS

To gain a deeper understanding of the decision-making processes and behavioural patterns of LLMs
in the StarCraft II Arena, this paper introduces a decision tracking and behavioural analysis sys-
tem. This system records and analyzes critical operations and decisions made by the LLM during
gameplay, contextualizing them within the current game state and mission objectives to uncover the
underlying strategic logic.

Specifically, the system captures key actions such as resource allocation, technological upgrades,
unit production, and troop movements. A decision trace of an LLM consists of a chronological
record of these key actions and decisions, detailing the context in which they were made. It typically
comprises three main components: (1) Action Type, indicating the specific type of decision made
(e.g., resource allocation, unit production); (2) Decision Context, which includes the game state and
mission objectives at the time of the decision; and (3) Outcome, reflecting the consequences of the
decision on the gameplay.

For example, a decision trace might document an LLM’s choice to produce a specific unit type in
response to an opponent’s strategy, including the unit produced, the rationale based on the game
state, and the subsequent impact on the match outcome. Screenshots illustrating these decision

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Stage Trajectory

Early

Decision: 0: <TRAIN PROBE>→1: <BUILD PYLON>→2: <BUILD NEXUS>→3: <TRAIN PROBE>→4: <BUILD ASSIMILATOR>

Our Strategy: Expand the number of workers, build additional resource collection structures, and ensure base defense. Suggestions: Focus on building

additional Probes to boost resource gathering, construct more Pylons to increase supply cap, and consider expanding to new resource locations. Step:429

Decision: 0: <TRAIN STALKER>→1: <BUILD GATEWAY>→2: <TRAIN PROBE>→3: <BUILD ASSIMILATOR>

→4: <RESEARCH PROTOSSGROUNDARMORSLEVEL1> Our Strategy: Build a stable economy and gradually advance technology and the army.

Suggestions: Continue to build up the economy while gradually increasing army supply and advancing technology to prepare for mid-game engagements. Step:4629

Decision: 0: <BUILD GATEWAY>→1: <BUILD SHIELDBATTERY>→2: <TRAIN SENTRY>→3: <RESEARCH PROTOSSGROUNDAR-

MORSLEVEL2>→4: <SCOUTING PROBE> Our Strategy: Build a solid economic foundation, maintain a basic military presence, and invest

in early upgrades to enhance force capabilities. Suggestions: Consider diversifying our army composition by introducing more advanced units

like Sentries or Adepts to complement the existing Zealots and Stalkers. Focus on scouting to gather intelligence on the enemy’s strategy. Step:7004

Mid

Decision: 0: <TRAIN SENTRY>→1: <BUILD ROBOTICSFACILITY>→2: <TRAIN IMMORTAL>→3: <BUILD ASSIMILATOR>→

4: <RESEARCH PROTOSSGROUNDARMORSLEVEL2> Our Strategy: Improve the effectiveness of the army around balanced economy, unit composition

and early upgrades. Suggestions: Consider diversifying your unit composition to include more advanced units like Sentries or Immortals to counter potential enemy

threats. Additionally, continue upgrading your technology to stay ahead in battles. Step:8454

Decision: 0: <TRAIN IMMORTAL>→1: <TRAIN OBSERVERtgreater→2: <TRAIN VOIDRAY>→3: <BUILD GATEWAY>→4: <BUILD ASSIMILATOR>

Our Strategy: Focus on a mix of ground and air units, supported by upgrades. We are also investing in infrastructure for advanced unit production. Suggestions:

Consider diversifying our army composition by training units from the Robotics Facility and Stargates to counter a wider range of enemy units. Step:9554

Decision: 0: <TRAIN HIGHTEMPLAR>→1: <BUILD ROBOTICSBAY>→2: <RESEARCH EXTENDEDTHERMALLANCE>→3: <BUILD ASSIMILATOR>

→4: <TRAIN OBSERVER> Our Strategy: Focus on upgrading units and technology while maintaining a balanced economy and military composition. Suggestions:

Consider expanding unit diversity by incorporating more advanced units like Colossi or High Templars to enhance our army’s capabilities. Additionally, focus on

tech upgrades to stay ahead in battles. Step:10529

Mid to Late

Decision: 0: <BUILD GATEWAY>→1: <BUILD PHOTONCANNON>→2: <TRAIN STALKER>→3: <RESEARCH PROTOSSAIRARMORSLEVEL2>

→4: <EXPAND TO NEW RESOURCE LOCATION> Our Strategy: Around the mix of gateway units and technical units such as Stalkers, Immorals, and Voidray.

Suggestions: Enhance our unit composition by adding more production structures like Gateways to increase unit production capacity. Consider expanding tech options

to counter potential enemy strategies effectively. Step:14129

Decision: 0: <TRAIN STALKER>→1: <BUILD GATEWAY>→2: <BUILD SHIELDBATTERY>→3: <RESEARCH PROTOSSGROUNDARMORSLEVEL2>

→4: <SCOUTING OBSERVER> Our Strategy: Around the unit diversity and balance method of technological progress. The emphasis on stalkers suggests a flexible

military composition capable of handling a variety of threats. Suggestions: Consider diversifying our unit composition further to adapt to potential enemy strategies.

Focus on maintaining map control and scouting to stay ahead of the opponent. Step:17554

Decision: 0: <TRAIN STALKER>→1: <BUILD GATEWAY>→2: <CHRONOBOOST CYBERNETICSCORE>→3: <RESEARCH PROTOSSAIRWEAPONS-

LEVEL2>→4: <TRAIN IMMORTAL> Our Strategy: Focus on balanced unit composition and technology upgrades to improve the effectiveness of our forces. Suggestions:

Consider diversifying our army composition further to counter the enemy’s Stalkers effectively. Focus on unit production and upgrades to strengthen our army. Step:20929

Table 3: Presents a detailed decision trajectory analysis of an LLM’s gameplay in StarCraft II across
various stages: Early, Mid, and Mid to Late. The table outlines specific decisions made by the model,
including the training of units, building structures, and conducting research. Each entry details the
decision-making process, the associated strategy, and suggestions for optimizing performance. By
capturing these trajectories, the table illustrates how the LLM navigates complex strategic choices,
adapts to the game environment, and develops its military and economic strategies over time, pro-
viding insights into its strategic reasoning capabilities.

traces will be provided in the appendix to offer visual clarity.These actions are traced throughout the
entire decision chain to assess the coherence of the LLM’s strategic planning, flexibility in tactical
adjustments, and adaptability to opponent strategies. Additionally, the system employs visualization
tools to present real-time behavioural pathways, allowing researchers to observe how the model
reacts in various scenarios. This real-time tracking provides insights into effective decision-making
patterns and potential areas for optimization, offering a comprehensive understanding of both tactical
execution and strategic intent.

In parallel, qualitative metrics are introduced to further analyze the LLM’s decision-making patterns
and strategic innovations. These metrics are closely tied to the decision tracking system, capturing
specific game actions such as the Unit Construction Order, which reflects the model’s tactical pri-
orities by documenting the sequence in which units are built. For example, prioritizing basic units
may indicate a focus on early offensive strategies, whereas building high-tech units suggests a de-
fensive or late-game approach. Similarly, the Key Building Completion Time records the timing of
critical structures, such as Nexus or Gateway, to determine whether the construction order supports
economic growth or military objectives.Moreover, the Strategy Innovation Rate, which measures the
frequency of adopting new strategies across multiple games, is derived from continuous monitoring
of strategic shifts. These qualitative metrics provide a detailed view of the model’s adaptability and
capacity for innovation across various game scenarios. Definitions and methods for these metrics
will be further detailed in the figure4.3, along with examples and screenshots to effectively illustrate
the decision tracking process.
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(a) Strategic Planning - EER(b) Real-time Decision Making - EPM (c) Adaptability - ERT

Figure 2: Performance indicators for evaluating LLM capabilities in StarCraft II: (a) Strategic Plan-
ning - EER (Efficiency of Resource Utilization), (b) Real-time Decision Making - EPM (Effective
Actions Per Minute), and (c) Adaptability - ERT (Error Rate Trend). Each graph displays the per-
formance trends of different game sessions (Game0, Game1, Game2, Game3) over time steps.

5 ARENA EVALUATION

5.1 EVALUATION SETUP

We conducted a comprehensive evaluation of popular large language models, including both pro-
prietary API-based models and open heavyweight models. Firstly, we report the success rates and
progress rates of these agents. Subsequently, we provide a detailed analysis of their performance
and measure the various capabilities of the LLM agents, culminating in a further analysis of their
decision-making trajectories.

5.2 MAIN RESULTS

Model Win
Rate

Strategic
Planning

Real-Time
Decision Adaptability Overall

Score
GPT-4o(OpenAI, 2024b) 2/10 62.01 21.12 38.64 57758
GPT-4o mini(OpenAI, 2024a) 5/10 54.71 37.51 24.52 62541
GPT-3.5 Turbo(OpenAI, 2023) 4/10 53.24 36.23 47.41 60914
Gemini 1.5 Flash(Reid et al., 2024) 5/10 37.56 39.34 38.18 55940
DeepSeek-V2.5(DeepSeek-AI, 2024) 2/10 58.35 37.11 20.16 43070
Llama-3.1-8B-Instruct(Dubey et al., 2024) 3/10 37.56 47.05 32.71 44901
Llama-3.1-70B-Instruct(Dubey et al., 2024) 2/10 55.44 30.24 52.77 46825

Table 4: Demonstrates the performance of several large-scale language models on different ability
dimensions, specifically win rate, strategic planning, social reasoning, real-time decision making,
teamwork, learning ability, and overall score.

Fine-grained capability metrics provide a more detailed and insightful evaluation of model
performance than simple success rates. These metrics reveal substantial differences in how mod-
els handle strategic planning, real-time decision-making, and adaptability. GPT-4o achieved the
highest score in strategic planning with 62.01 points, showcasing its strength in long-term resource
management and strategy. However, its real-time decision-making score of 21.12 points was no-
tably lower, indicating slower response times to in-game events. Conversely, Llama 3.1 Instruct 8B
excelled in real-time decision-making with a score of 47.05, yet its strategic planning score was
lower at 37.56, suggesting it is better suited to making quick decisions under pressure rather than
managing long-term strategies. Llama 3.1 Instruct 70B led in adaptability, particularly in metrics
like win rate growth and error rate reduction, which reflects its ability to learn and adjust to evolv-
ing game conditions. These findings demonstrate that fine-grained metrics enable a more nuanced
understanding of each model’s strengths and weaknesses, beyond what win rates alone can offer.
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Evaluating performance in both synchronous and asynchronous settings reveals how time con-
straints impact model behaviour. In synchronous settings, where rapid decision-making is essen-
tial, Llama 3.1 Instruct 8B and GPT-4o mini performed exceptionally well, with real-time decision-
making scores of 47.05 and 37.51, respectively, highlighting their ability to respond quickly to
changing conditions. However, in asynchronous settings, where models have more time to pro-
cess information and plan their strategies, GPT-4o and DeepSeek-V2.5 excelled, achieving strategic
planning scores of 62.01 and 58.35, respectively. This contrast illustrates that models adept at quick
decision-making may face challenges in handling complex, long-term planning, while those strong
in strategic planning may be slower to react in time-critical situations. Therefore, considering both
settings is crucial for a comprehensive evaluation, as it underscores the balance between short-term
reactivity and long-term planning in model performance.

Closed-source models consistently outperform open-source models in strategic planning and
overall performance. GPT-4o and GPT-4o mini were the top performers, with GPT-4o achieving
the highest overall score of 57,758, significantly surpassing open-source models such as Llama 3.1
Instruct 70B and Llama 3.1 Instruct 8B, which scored 46,825 and 44,901, respectively. This demon-
strates that closed-source models benefit from larger training datasets and more optimised architec-
tures, giving them an advantage in resource management and strategic tasks. Despite this, open-
source models like Llama 3.1 Instruct 8B showed competitive performance in real-time decision-
making, scoring 47.05, suggesting that open models are better suited for tasks requiring rapid re-
sponses. While closed-source models dominate in long-term planning and complex reasoning, the
performance of open-source models in real-time decision-making highlights their potential, espe-
cially with further optimisation and development. This suggests that with additional resources,
open-source models could narrow the performance gap, particularly in more complex strategic tasks.

5.3 ANALYTICAL EVALUATION

Unit Construction Order. The Unit Construction Order is a critical metric that reflects the tactical
priorities of the LLM. As illustrated in Table 4.3, the decision trace reveals the sequence of units
constructed during gameplay, allowing us to assess strategic intent. For instance, in Game 3, a no-
table shift occurs as the game progresses into the later stages, with the LLM beginning to prioritize
the construction of advanced units. This transition can be observed through the timing of unit pro-
duction, which indicates that the model is adapting its strategy in response to the evolving game
dynamics. For example, the LLM initially focuses on building basic units, which is typical in the
early game to establish a strong economy and military presence. However, as the game advances,
there is a marked increase in the production of higher-tier units, such as Colossi and High Templars.
This suggests a strategic shift aimed at countering opponent threats and enhancing combat effective-
ness. The visual representation in Figure 2 further emphasizes this point, showing the timing and
frequency of unit production across different game sessions.

Key Building Completion Time. The Key Building Completion Time metric assesses the effi-
ciency and timing of critical structures necessary for advancing the game’s strategy. In Game 3, we
observe that the completion of vital buildings such as the Robotics Facility and Templar Archives
coincides with the shift towards producing more advanced units. This timing indicates that the LLM
is effectively managing its resources to maximize its strategic output. For instance, if the completion
time for these structures is relatively short and aligns with the LLM’s decision to construct advanced
units, it reflects a well-coordinated strategy that prioritizes technological advancement alongside unit
production. This synchronization is crucial for maintaining pressure on opponents and capitalizing
on strategic opportunities.

Strategy Innovation Rate. The Strategy Innovation Rate measures the frequency with which the
LLM adopts new strategies during gameplay. By analyzing the decision traces, we can identify
instances where the model implements novel tactics or unit combinations in response to evolving
game conditions. For example, in the later stages of Game 3, the LLM demonstrates an increase in
strategic innovation, as evidenced by its willingness to experiment with unit compositions that differ
from those used in earlier phases. This adaptability is highlighted in Figure 2, where we can see
fluctuations in performance metrics over time. Such fluctuations suggest that the LLM is actively
refining its strategies to better respond to opponents and the overall game state. This capacity for
innovation is a testament to the model’s robust decision-making framework, enabling it to remain
competitive in a dynamic environment.
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6 CONCLUSION

This study presents StarCraft II Arena as a comprehensive benchmark for assessing the capabilities
of LLMs in strategic planning, real-time decision-making, and adaptability. The findings demon-
strate that LLMs possess varying strengths across these dimensions, with notable performance in
strategic reasoning and adaptability. By employing fine-grained metrics, we highlight the limita-
tions of traditional success rates in capturing the true decision-making processes of LLMs. Our
analysis reveals that models like GPT-4o excel in long-term strategic planning, while others, such as
Llama 3.1 Instruct 8B, exhibit superior real-time decision-making capabilities. This detailed eval-
uation not only enhances our understanding of LLMs’ cognitive abilities in complex environments
but also lays the groundwork for future advancements in AI research, emphasizing the importance
of dynamic assessments in evaluating AI agents.
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Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain,
Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, An-
ders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, An-
drew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Her-
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Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A.
Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Ro-
man Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov,
Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Moham-
mad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R.
Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghaz-
arian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schus-
ter, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar
Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upad-
hyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy,
Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene,
Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Pianta-
dosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen,
Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore
Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Ti-
tus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz,

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh,
Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saun-
ders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong
Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi
Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary
Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the im-
itation game: Quantifying and extrapolating the capabilities of language models, 2023. URL
https://arxiv.org/abs/2206.04615.

Winnie Street, John Oliver Siy, Geoff Keeling, Adrien Baranes, Benjamin Barnett, Michael McK-
ibben, Tatenda Kanyere, Alison Lentz, Robin IM Dunbar, et al. Llms achieve adult human per-
formance on higher-order theory of mind tasks. arXiv preprint arXiv:2405.18870, 2024.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
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A APPENDIX

A.1 EVALUATION METRICS

Capacity Computer Formula

Strategic planning

RPMi =
∑T

t=1 (collected mineralsi(t) + collected vespenei(t))

EERi =
∑T

t=1(collected mineralsi(t)+spent vespenei(t))×100∑T
t=1(collected mineralsi(t)+collected vespenei(t))

SURi =
∑T

t=1 supply usedi(t)∑T
t=1 supply capi(t)

TRRi =
completed techi

total research counti

Real-time decision making
APMi =

total actionsi
game time minutesi

EPMi =
effective actionsi

game time minutesi

Adaptability
WinRateTrendi =

WinRateend,i−WinRatestart,i
total games

ErrorRateTrendi =
ErrorRatestart,i−ErrorRateend,i

total games

Table 5: This table presents the key capacity metrics and their corresponding computational formulas
used to evaluate LLMs in StarCraft II. The metrics are categorized under three primary capacities:
Strategic Planning, Real-time Decision Making, and Adaptability. Each metric captures different
aspects of the LLM’s performance, such as resource management (RPM), supply utilization (SUR),
action efficiency (APM, EPM), and adaptation trends (WinRateTrend, ErrorRateTrend), providing a
comprehensive assessment of the model’s gameplay capabilities.

A.2 GAMES INTRODUCTION

StarCraft II is a real-time strategy game whose core mechanics include resource management, base
building, troop production and command. Players need to efficiently gather resources, build and
upgrade bases, train various military units, and defeat opponents through precise micromanagement
and macro-strategy in a real-time environment. The game emphasizes quick decision-making and
flexibility, requiring players to balance economic development and military operations in a highly
dynamic battlefield in order to ultimately destroy the enemy’s base and win.

The core mechanics of Civilization revolve around turn-based strategy, where players lead a civiliza-
tion from antiquity to the future by managing cities, developing technology and culture, exploring
maps, and engaging in diplomacy and warfare. With an emphasis on resource management, long-
term planning, and strategic decision-making, the game requires players to unlock new abilities
through the tech and culture trees, choose different victory conditions (e.g., military victory, tech
victory, or cultural victory), and gain an advantage in their interactions with other civilizations. The
variety and depth of the game makes it a classic strategy game.
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Game manual

Setting
Map specification

Standard 1v1 map with mining, gas, expansion points, obstacle

terrain and other elements (e.g. map: Jagannatha LE).

Number of players 2 players per match against each other.

Resource type
Two main resources - minerals and gases, used for unit production

and technological upgrading.

Unit configuration

and policy

Basic unit configuration

12 farmers (SCV/Probe/Drone) for resource collection.

1 main base (Command Center/Nexus/Hatchery).

1 Supply Depot (Pylon/Overlord) to control the population cap.

Ethnic divisions

Terran: Focuses on mechanical units and air power, with strong

defensive and multi-functional building capabilities.

Protoss: has shields and powerful individual units, but is

slower to produce.

Zerg: Unit production is fast, relying on massive ground forces

and good ecological control.

Unit Production and

Technology tree

Terran: can produce ground units (such as Marine, Marauder) and

air force units (such as Viking, Banshee).

Protoss: Can produce high-attack units (e.g., Zealot, Stalker)

and powerful air units (e.g., Carrier, Phoenix).

Zerg: Can produce a large number of cheap units (such as Zergling,

Hydralisk) and high-tech units (such as Mutalisk, Ultralisk).

Fixed opening strategy

Initial base strategy

Rapid expansion strategy: quickly establish a second base to enhance

economic output and increase resource collection speed.

Quick attack strategy: Quickly produce early combat units, directly

attack enemy bases, forcing opponents to defend.

Defensive strategy: Strengthen fortifications (such as Terran’s Bunker,

Protoss ’Photon Cannon) to delay enemy attacks and save strength for

later development.

Army layout and defense

Defensive arrangement: Arrange defensive units near the base to ensure

the safety of the mining area and the main base; Different races have

different defensive structures, such as Terran’s Bunker, Protoss ’Shield

Battery, and Zerg’s Spine Crawler.

Offensive placement: Deploy units to harass and control key locations

on the map, such as enemy resource points.

Goals Economic development

Through the collection of minerals and gases, the rapid development of

the economy and science and technology, the establishment of a more

powerful army.

Military victory Destroy all their main bases or render them incapable of reproducing units.

Map control
Capture key positions on the map (e.g., resource points, highlands) and

use tactical advantage to overwhelm the opponent’s economy.

Table 6: Game manual detailing the settings, unit configuration and policy, fixed opening strate-
gies, and goals for gameplay in StarCraft II. This table provides a comprehensive overview of the
game mechanics, including map specifications, player setup, unit production capabilities, strategic
approaches, and objectives essential for effective gameplay.
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