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Abstract

K-nearest neighbor language models (kNN-001
LMs), which integrate retrieval with next-word002
prediction, have demonstrated strong perfor-003
mance in language modeling as well as down-004
stream NLP benchmarks. These results have005
led researchers to argue that models trained006
on poor quality or outdated data could perform007
well by employing a kNN extension that has ac-008
cess to a higher-quality datastore. In this work,009
we ask whether this improved ability to recall010
information really translates into downstream011
abilities. We extensively evaluate kNN-LMs on012
a diverse set of tasks, ranging from sentiment013
classification and commonsense reasoning to014
multi-hop reasoning. Results show that kNN-015
LMs excel at memory-intensive tasks, where016
utilizing the patterns in the input is sufficient017
for determining the output, but struggle with018
reasoning tasks that require integrating multi-019
ple pieces of information to derive new knowl-020
edge. We further demonstrate through oracle021
experiments and qualitative analysis that even022
with perfect retrieval, kNN-LMs still fail to de-023
termine the correct answers, placing an upper024
bound on their reasoning performance.025

1 Introduction026

A foundational property of pretrained language027

modeling (Peters et al., 2018; Devlin et al., 2019)028

has been that improvements to the perplexity of029

the model lead to improvements on downstream030

tasks. This property is central to the scaling of large031

language models (LLMs) where researchers focus032

nearly exclusively on perplexity as a proxy met-033

ric for improved general purpose abilities (Kaplan034

et al., 2020). In recent years, this research has cen-035

tered primarily on high-quality text data at greater036

and greater quantities as the limiting component037

for producing better language models (Hoffmann038

et al., 2022).039

This increasing need for data to train language040

models has led to significant challenges. On one041

hand, including as much high-quality data as possi- 042

ble results in improved downstream performance. 043

On the other hand, this data is often protected by 044

licenses or copyright, which means training on 045

such data brings legal issues. For example, the re- 046

cent high-profile lawsuit from the New York Times 047

notes the clear use of their data in OpenAI mod- 048

els (Grynbaum and Mac, 2023). 049

It would be ideal to circumvent this issue en- 050

tirely with alternative approaches. If a model could 051

be trained on lower-quality data but adapted to per- 052

form well on real tasks, it might provide a technical 053

workaround. Non-parametric Language Models 054

(NPLMs), such as kNN-LMs, have emerged as 055

a promising approach in this space (Khandelwal 056

et al., 2020). kNN-LMs extend neural LMs by lin- 057

early interpolating with simple k-nearest neighbor 058

LMs. This approach can improve language model- 059

ing with its memory over a massive collection of 060

texts, usually referred to as a datastore. Khandelwal 061

et al. (2021) and Shi et al. (2022) validate that kNN- 062

LMs achieve better performance on downstream 063

tasks compared to standard LMs. The SILO model 064

of Min et al. (2024) applies this approach further 065

by training a LM exclusively on license-permissive 066

data, and using a non-parametric datastore to im- 067

prove the models during inference. 068

In this work, we study the limits of how kNN- 069

LMs can be used to improve LLMs. Specifically, 070

we are interested in whether the improvements in 071

perplexity seen with kNN-LMs are equivalent to 072

other improvements in LM ability, or if improve- 073

ments in non-parametric memory are orthogonal to 074

standard language modeling. This question relates 075

to debates about whether memory is separable from 076

other language abilities and how they interact in 077

NLP benchmarks. 078

To study this question, we implement large-scale 079

kNN-LMs on top of modern open LLMs with two 080

datastores in different domains. We replicate past 081

results that demonstrate significant decreases in per- 082
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Question: When Copsi was made earl of Northumbria he went to reside in a town at the 
confluence of which two rivers? The two rivers are ____

LM

• Top 1: In return, William made Copsi earl of Northumbria and sent him 
back to York. Copsi's rule lasted five weeks, when he was murdered

Ouse
founded

0.02
0.01

• Top 2: York is a historic walled city at the confluence of the rivers
Ouse and Foss in North Yorkshire, England. The municipality is the

Ouse
founded

0.04
0.15

Ouse
founded

0.03
0.08+ =

kNN-LM

• Top 3: Two Rivers Press is an independent publishing house,
based in the English town of Reading. Two Rivers Press was founded

Figure 1: In this multi-hop question answering (QA) example, the LM is uncertain about the answer and likely
benefit from retrieval. The kNN approach finds both irrelevant and relevant documents that may help. However, two
issues occur: first, an irrelevant document increases the probability of the wrong answer; second, even though a
relevant document has been found, it may not upweight the actual answer (Ouse). These issues may impact task
performance more than perplexities.

plexity across domains. This perplexity decrease083

transfers to similar benefits in task accuracy across084

several NLP benchmarks. These benchmarks are085

rather simple, where recognizing the patterns in086

the input and matching them with the patterns in087

memory is sufficient for determining the output.088

We refer to these as memory-based tasks.089

However, we see a different story when apply-090

ing these models to tasks that require significant091

reasoning ability. These tasks often require inte-092

grating multiple pieces of information to derive093

new knowledge. In our experiments, the use of094

kNN-LMs does not improve performance in rea-095

soning, and in fact seems to hurt reasoning ability096

across tasks significantly. This behavior is robust097

and occurs even in domains that are explicitly tar-098

geted by the datastore used by the non-parametric099

model. These experiments lead us to conclude that100

while kNN-LMs may be useful in settings where101

data is constrained, they should not be seen as a102

remedy for low-quality training data, and that per-103

plexity scores should not be seen as a corollary for104

LM ability outside of parametric training settings.105

2 Related Work106

Retrieval Models Although Large Language107

Models (LLMs) achieve superhuman performance108

on a wide range of natural language processing109

tasks, they often produce hallucinations, strug-110

gle with integrating new knowledge, and expose111

private information present in the training data. 112

Recently, research interest has shifted towards 113

retrieval-based LMs, which combine a parametric 114

neural model and a non-parametric external data- 115

store (Guu et al., 2020; Karpukhin et al., 2020). 116

These retrieval-based LMs naturally incorporate 117

new knowledge, enhance the factuality of gener- 118

ated texts, and reduce privacy concerns (Asai et al., 119

2024). Furthermore, studies (Borgeaud et al., 2022) 120

have demonstrated that employing retrieval aug- 121

mentation during large-scale pre-training can out- 122

perform standard LMs while requiring fewer pa- 123

rameters. 124

Among retrieval-based LMs, kNN-LMs (Khan- 125

delwal et al., 2020) emerge as a popular choice 126

(Min et al., 2024). Unlike other retrieval models 127

that encode and retrieve documents, kNN-LMs en- 128

code and retrieve tokens. At every token, kNN- 129

LMs search for the k most similar tokens from 130

the datastore based on contextualized token em- 131

beddings, which are then turned into a next-token 132

distribution. kNN-LMs linearly interpolate the re- 133

trieved kNN distribution with the output of a base 134

LM. They do not require additional training but 135

introduce computational and memory overhead. 136

Reasoning Retrieval. Little research has been 137

conducted on constructing retrieval models for rea- 138

soning tasks. Leandojo (Yang et al., 2023) investi- 139

gates the use of retrieval-based LMs to assist with 140

theorem proving, and Levonian et al. (2023) exper- 141
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iment with retrieving content from mathematical142

textbooks to generate responses to student ques-143

tions. In our study, we create a reasoning-specific144

datastore to assist LMs in performing reasoning-145

intensive tasks.146

Evaluation of kNN-LMs. While kNN-LMs ex-147

cel at language modeling and have demonstrated148

enhanced performance in machine translation149

(Khandelwal et al., 2021) and simple NLP tasks150

(Shi et al., 2022), the question of whether they are151

thoughtful reasoners remains open. Wang et al.152

(2023a) demonstrate that kNN-LMs struggle with153

open-ended text generation as they only provide154

benefits for a narrow set of token predictions and155

produce less reliable predictions when generating156

longer text. BehnamGhader et al. (2023) showed157

that when retrieval is conducted based on the simi-158

larity between queries and statements, kNN-LMs159

often fail to identify statements critical for rea-160

soning. Even when these crucial statements are161

retrieved, it is challenging for kNN-LMs to ef-162

fectively leverage them to infer new knowledge.163

These studies, however, are limited to a narrow164

set of tasks. Our work seeks to provide a compre-165

hensive evaluation of the reasoning capabilities of166

kNN-LMs and provides an extensive analysis of167

the sources of their failures.168

3 k-Nearest Neighbor Large Language169

Models170

Non-parametric language models are variants of171

standard language models that give the model the172

ability to utilize an additional datastore D during173

inference to determine the next word prediction,174

p(xt+1|x1...t;D). This datastore may be part of the175

original training data, data for adaptation to a new176

domain, or be used to incorporate continual updates177

or protected data. As these datastores are typically178

quite large, this process requires a retrieval com-179

ponent in the loop to find the sparse subset of the180

datastore that can best inform the current predic-181

tion. Several popular approaches exist including182

DPR (Karpukhin et al., 2020) and REALM (Guu183

et al., 2020).184

In this work, we focus on kNN-LMs due to their185

popularity as an approach to directly improve LM186

perplexity on fixed models without a need for re-187

training. As noted in the intro, this approach has188

also been put forward as a method for circumvent-189

ing the need for high-quality licensed training data190

in LLMs. Formally kNN-LMs are defined as 191

p(x1:T ;D) =
∏
t

p(xt+1 | x1:t;D) 192

=
∏
t

(λpkNN(xt+1 |x1:t;D)+(1− λ)p(xt+1 |x1:t)) 193

Let (ki, vi) be the ith (key, value) pair in D, f(·) 194

maps a token sequence to its contextual representa- 195

tion, and d(·) measures the distance between two 196

vectors. 197

pkNN(xt+1 | x1:t;D) 198

∝
∑

(ki,vi)∈D

1xt+1=vi × exp(−d(ki, f(x1:t))). 199

When using a Transformer language model, we 200

define the distance metric d(·) as the squared ℓ2 201

distance. To assemble the datastore we run the 202

language model over all the documents to collect 203

the necessary hidden states and corresponding next 204

word. 205

Experimental Setup. The hyperparameters in- 206

clude λ, k, and σ. λ determines the weight of the 207

datastore, and we consider λ ∈ {0.1, 0.2, 0.3}. Ad- 208

ditionally, we retrieve k ∈ {1600, 2048} neighbors 209

and smooth the kNN distribution with a tempera- 210

ture σ ∈ {1, 3, 5, 10}. 211

For each inference model, we use Math and 212

Wiki datastores for language modeling on the cor- 213

responding evaluation datasets: wikitext and math 214

textbooks. Each datastore represents a specific do- 215

main, and we evaluate the performance of kNN- 216

LM on a domain by measuring the perplexity of 217

each evaluation dataset. We conduct a grid search 218

to find the hyperparameters that yield the lowest 219

PPL for each datastore. The optimal hyperparame- 220

ters for each datastore are later applied across all 221

downstream tasks in our experiments. 222

We provide eight demonstrations for GSM8K 223

and three demonstrations for BBH. For the other 224

datasets, we all perform zero-shot inference. We 225

present full details of the experiments in the Ap- 226

pendix A. 227

Inference and Retrieval Models. We use 228

Llama-2-7b (Touvron et al., 2023), Llama-3-8B 229

(AI@Meta, 2024), and Mistral-7B (Jiang et al., 230

2023) as our inference models. For each inference 231

model, we build the corresponding datastores. The 232

keys are the 4096-dimensional hidden representa- 233

tions before the final MLP which predicts the token 234
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D Text Size Tokens Mem

Wiki 2.2GB 610M 44G
Math 0.6GB 200M 15G

Table 1: Overview of the two datastores. Tokens are
produced by Llama2 tokenizers. Mem is the memory
size of the datastore.

LM Performance
Model Wiki Math

Llama2-7b 10.63 7.90
+Wiki 9.74 8.75
+Math 11.33 7.23

Llama-3-8b 9.70 5.36
+Wiki 9.32 6.03
+Math 10.37 5.22

Mistral-7B 9.72 5.64
+Wiki 9.29 6.41
+Math 10.49 5.59

Table 2: Perplexity comparison. Rows vary the datastore
D used. Columns represent different held-out test sets.
Lower numbers indicate better performance.

distribution at each generation step, produced by235

executing forward passes over the datastore cor-236

pora. For efficient similarity search, we create a237

FAISS index (Johnson et al., 2019) and search for238

nearest-neighbor tokens using Euclidean distance.239

Due to the scale of the datastores, we perform ap-240

proximate search instead of exact search. We base241

our implementation on RetoMaton (Alon et al.,242

2022).243

4 kNN-LMs Help In-Domain Perplexity244

To explore how different sources of external knowl-245

edge impact downstream task performance, we ex-246

periment with two datastores. First, we follow the247

choice made by Shi et al. (2022), where they iden-248

tify heterogeneous data sources that are broadly249

relevant to common downstream NLP tasks. In par-250

ticular, they mix Wikitext103 (Merity et al., 2017),251

with other sources including the English portion of252

Amazon Review (He and McAuley, 2016), and CC-253

NEWS (Hamborg et al., 2017) and IMDB (Maas254

et al., 2011). We call this datastore Wiki.255

Then, we hypothesize that the commonly ex-256

plored corpora for building datastores do not con-257

tain relevant knowledge to assist with math rea-258

soning tasks. To maximize the performance gain259

on these tasks, we construct a datastore compris- 260

ing 3.94K mathematical textbooks, sourced from 261

(Wang et al., 2023b). These textbooks contain both 262

theorems and practice questions, from which hu- 263

mans acquire mathematical knowledge. This datas- 264

tore consists of 200M tokens. We will refer to this 265

datastore as Math. We summarize the statistics of 266

each datastore in Table 1. 267

We begin by validating past results of kNN-LMs 268

on language modeling. We present results in Ta- 269

ble 2. To facilitate meaningful comparisons be- 270

tween models with different tokenizers and vocabu- 271

lary sizes, we report word-level perplexities. These 272

results show that having access to a non-parametric 273

datastore leads to lower perplexity compared to 274

using a standalone LM across all datasets. This 275

improvement in perplexity is observed when the 276

corpus used to construct the datastore and the one 277

used for inference share the same data source. For 278

instance, since the training split of Wikitext103 is 279

in Wiki, the LM+Wiki setting achieves the lowest 280

perplexity on Wikitext103’s validation set. Utiliz- 281

ing the other datastore results in performance worse 282

than that of the standalone LM. 283

5 kNN-LMs Can Help Memory-Intensive 284

Tasks 285

We begin by looking at a set of memory-intensive 286

tasks, which we believe can be solved by pattern 287

matching at scale without complex reasoning. We 288

incorporate three types of tasks: sentiment classi- 289

fication, which aims to predict whether the senti- 290

ment of a text is positive or negative; textual entail- 291

ment, which assesses the relationship between two 292

sentences, determining if it constitutes entailment, 293

contradiction, or neutrality; and topic classification, 294

which involves identifying the main topic of a text. 295

The datasets included for these tasks are as follows: 296

• For sentiment classification, we include SST- 297

2 (Socher et al., 2013), movie review (MR) 298

(Pang and Lee, 2005), customer review (CR) 299

(Hu and Liu, 2004), Rotten Tomatoes (RT), 300

and a variant of hyperpartisan news detection 301

(HYP) (Kiesel et al., 2019). 302

• For textual entailment, we use Commitment- 303

Bank (CB) (De Marneffe et al., 2019) and 304

Recognizing Textual Entailment (RTE) (Da- 305

gan et al., 2010). 306

• For topic classification, our datasets are AG 307

News (AGN) (Zhang et al., 2015) and Yahoo! 308
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RTE RT CB Yahoo CR AGN HYP MR SST2

Llama2-7B 66.06 79.74 50.00 59.37 74.55 81.30 64.15 83.10 84.02
+Wiki 66.43 79.46 51.79 58.83 76.95 81.46 64.15 82.85 84.68
+Math 65.70 82.55 51.79 59.10 73.70 81.79 50.39 82.90 84.62

Llama3-8B 70.76 79.46 64.29 58.87 79.10 79.17 59.30 83.80 86.54
+Wiki 61.37 79.55 71.43 58.93 80.45 79.33 59.30 83.50 87.04
+Math 70.76 77.39 66.07 56.83 79.40 80.11 59.30 84.30 87.10

Mistral-7B 76.17 75.32 71.43 56.63 81.90 73.57 56.59 79.35 81.82
+Wiki 76.17 75.05 67.86 56.63 82.15 73.55 56.78 79.30 81.77
+Math 76.17 75.05 75.00 56.63 81.85 73.59 56.78 79.10 81.77

Table 3: Accuracy comparison on various memory-intensive tasks.

Answers (Yahoo) (Zhang et al., 2015).309

For classification and multiple-choice question-310

answering (QA) tasks, we utilize Domain Con-311

ditional Pointwise Mutual Information (DCPMI)312

(Holtzman et al., 2021) to predict answers. We313

then calculate accuracy metrics to compare perfor-314

mance across different models. We measure the315

performance using F1 scores at the token level for316

text generation. Additionally, whenever feasible,317

we employ fuzzy verbalizers (Shi et al., 2022) to318

maximize the performance of kNN-LMs.319

The results of these tasks are summarized in320

Table 3. On these tasks, kNN-LMs exhibit im-321

proved performance. Incorporating an external322

datastore outperforms a standalone LM on eight323

datasets while showing comparable performance324

on the remaining dataset. We further explain this325

performance gap through qualitative analysis in326

Appendix B.327

6 kNN-LMs Hurt Reasoning Performance328

For reasoning tasks, we consider three types:329

knowledge-intensive reasoning, which focuses on330

utilizing world knowledge for making (potential)331

multi-hop inferences; commonsense reasoning,332

which involves leveraging commonsense knowl-333

edge to understand social and physical interactions;334

and mathematical reasoning, which includes arith-335

metic, logical, and discrete reasoning abilities. The336

datasets selected for these categories are as follows:337

• For knowledge-intensive reasoning, we ex-338

plore Natural Questions (NQ) (Kwiatkowski339

et al., 2019), HotpotQA (Yang et al., 2018),340

ARC Easy and Challenge (Clark et al., 2018),341

OpenbookQA (OBQA) (Mihaylov et al.,342

2018), and MMLU (Hendrycks et al., 2020) to343

assess the model’s ability to apply extensive 344

world knowledge. 345

• For commonsense reasoning, we examine 346

HellaSwag (Zellers et al., 2019) and Wino- 347

grande (Sakaguchi et al., 2021), which test 348

the model’s understanding of social norms 349

and physical laws. 350

• For mathematical reasoning, we utilize DROP 351

(Dua et al., 2019), GSM8K (Cobbe et al., 352

2021), and Big Bench Hard (BBH) (Suzgun 353

et al., 2022) to evaluate the model’s capac- 354

ity for complex arithmetic, logical deductions, 355

and handling of discrete concepts. 356

We present the results for knowledge-intensive 357

tasks in Table 6. In stark contrast to the earlier 358

findings, using a standalone LM consistently out- 359

performs kNN-LMs on these tasks. Most surpris- 360

ingly, on Natural Questions and HotpotQA, which 361

consist of QA pairs constructed from Wikipedia 362

documents, performance does not improve even 363

though Wiki contains several million Wikipedia 364

tokens. Retrieving from Wiki leads to a three-point 365

decrease in performance. 366

Results for commonsense reasoning and mathe- 367

matical reasoning tasks are shown in Table 5. The 368

standalone LM once again outperforms kNN-LMs 369

models on four out of the five datasets. The most 370

significant differences in performance occur on 371

GSM8K. Although incorporating an external data 372

store results in a slight performance increase on 373

Mistral, this does not demonstrate the effectiveness 374

of kNN-LMs on GSM8K. Under Mistral’s parame- 375

ter settings,kNN-LMs has minimal changes on the 376

predictions of the standalone LM, merely introduc- 377

ing some randomness. Finally, although kNN-LMs 378
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NQ HotpotQA Arc-Challenge Arc-Easy OBQA MMLU

Llama2-7B 23.18 22.72 41.81 57.49 57.00 39.22
+Wiki 22.53 22.53 38.31 57.41 56.20 38.68
+Math 21.14 21.26 41.04 56.82 56.20 38.53

Llama3-8B 23.64 25.14 44.88 58.83 55.80 42.67
+Wiki 24.00 24.48 43.94 58.59 53.80 42.32
+Math 23.04 24.63 43.26 58.59 54.60 42.46

Mistral-7B 20.63 20.96 46.42 60.94 58.80 41.91
+Wiki 20.58 20.80 46.16 60.61 57.40 41.80
+Math 20.56 20.48 46.08 60.77 57.80 41.55

Table 4: Performance comparison on datasets for knowledge-intensive reasoning tasks.

Winogrande HellaSwag DROP GSM8K BBH

Llama2-7B 69.37 64.46 32.39 14.83 30.69
+Wiki 70.32 63.67 32.14 12.05 32.08
+Math 68.98 63.54 32.31 13.48 30.82

Llama3-8B 73.95 65.99 45.55 45.72 39.67
+Wiki 73.95 64.71 45.02 44.28 39.01
+Math 74.19 65.15 45.54 45.63 39.92

Mistral 74.19 69.08 46.93 36.30 43.37
+Wiki 74.66 68.21 46.69 36.45 42.69
+Math 73.64 68.11 46.38 36.60 43.09

Table 5: Performance comparison on datasets for other reasoning tasks.

Perplexity Accuracy

OBQA LM 255.76 55.80
kNN-LM 9.41 95.60

NQ LM 112.56 23.64
kNN-LM 8.91 46.40

HotpotQA LM 158.26 25.14
kNN-LM 8.15 49.85

Table 6: Results in an oracle setting where the kNN-
LMs always include the correct answer as one of the k
nearest neighbors.

do not improve GSM8K and Drop over standard379

LMs, we find that retrieving from Math improves380

over retrieving from Wiki.381

7 Analysis382

The results of this work show that kNN-LMs gen-383

erally hurt reasoning of models, despite helping384

perplexity and other simpler tasks. In this section,385

we investigate the cause of this further.386

Qualitative Analysis. We conduct qualitative387

analysis to understand the failures of kNN-LMs388

better. In the qualitative analysis, we inspect ex- 389

amples of knowledge-intensive and mathematical 390

reasoning datasets and show the retrieved tokens as 391

well as the proceeding context. Through these ex- 392

amples, we find the following patterns that prevent 393

kNN-LM from retrieving the correct token. 394

• kNN-LMs struggle with multi-hop reason- 395

ing questions. When the task requires ex- 396

tracting multiple pieces of sentences from the 397

corpus and then combining the information 398

to infer the answer, kNN-LMs often retrieve 399

tokens that are contextually appropriate and 400

relevant to part of the question, rather than the 401

correct answer. As shown in Table 7, for the 402

multi-hop reasoning question from HotpotQA, 403

the model needs to identify an actor who both 404

starred in Stargate SG-1 and guest-starred in 405

Twin Peaks. While the required information is 406

available in Wikipedia, it is distributed across 407

two paragraphs. kNN-LMs retrieve only the 408

actors from Stargate SG-1, failing to combine 409

information from two sources to perform ac- 410
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HotpotQA Example Label LM Pred

Which American character actor who starred on the television series “Stargate SG-1”
(1997–2007) and appeared in “Episode 8” of “Twin Peaks” as a guest star? Don S. Davis Don S. Davis

Retrieved Context Token kNN-LM Pred

• After the first three seasons of Stargate SG-1 had been filmed on 16 mm film
(although scenes involving visual effects had always been shot on 35 mm film for
various technical reasons), “Nemesis” was the first episode filmed entirely on 35 mm
film ... “Nemesis” was the last episode before actor

Christopher

Michael Shanks• “200” won the 2007 Constellation Award for Best Overall 2006 Science Fiction
Film or Television Script, and was nominated for the 2007 Hugo Award for Best
Dramatic Presentation, Short Form. The episode also marks the first time original
SG-1 member

Jack

• Season one regular cast members included Richard Dean Anderson, Amanda
Tapping, Michael

Table 7: A multihop reasoning example from HotpotQA with predictions of the standard LM and kNN-LMs.

NQ Example Label LM Pred

who is the largest supermarket chain in the uk? Tesco Tesco

Retrieved context Token kNN-LM Pred

• The majority of stores will open as normal across the UK, however Sainsbury’s advise
shoppers to check details of when your local branch as some may close earlier than normal
using the online store locator tool.(Image: Bloomberg) Supermarket giant

Asda

Asda• Along with Lidl, Aldi has eaten away at the market share of the Big Four supermarkets: Tesco
• buy one, get one free (BOGOF) offers have been criticised for encouraging customers to
purchase food items that are eventually thrown away; as part of its own campaign on food
waste, supermarket retailer

Morris

Table 8: A knowledge-intensive reasoning example from Natural Questions with predictions of the standard LM
and kNN-LMs.

curate multi-hop reasoning.411

• kNN-LMs are sensitive to the syntax but412

not the semantics of the question. While413

kNN-LM retrieves the next token that fits the414

context, it cannot distinguish subtle semantic415

differences between different words in a sen-416

tence. As a result, when more than one word417

fits the context, it may not select the correct418

answer. Table 8 demonstrates this issue with419

an example from the NQ dataset. Even though420

Asda is not the largest supermarket in the UK,421

due to the highly similar contexts of ‘super-422

market giant’ and ‘the largest supermarket,423

kNN-LMs ultimately assign a high probabil-424

ity to Asda and make a wrong prediction.425

• kNN-LMs tend to retrieve high-frequency426

entities in the corpus. The entities are often427

proper nouns like person names and locations.428

If part of the answer overlaps with these high-429

frequency proper nouns, kNN-LMs will re-430

trieve them and make wrong predictions, as431

shown in Table 9 and Table 14.432

• kNN-LMs fail at mathematical reasoning 433

tasks. For instance, in the object counting 434

task from the BBH dataset, even though kNN- 435

LM understands the context that it needs to 436

retrieve a number as the next token, it can- 437

not solve the complex task of first identify- 438

ing which objects are musical instruments and 439

then counting them, as shown in Table 10. 440

Is the problem a failure of model weighting? 441

We investigate whether degraded reasoning capa- 442

bilities of kNN-LMs stem from a failure in choos- 443

ing a good weighting λ. This experiment aims to 444

analyze kNN-LMs’ behaviors when λ is optimal 445

for the downstream task. Specifically, we directly 446

search for λ that maximizes the log probabilities 447

of a small set of labeled downstream task exam- 448

ples. We conduct this experiment on OpenbookQA 449

and HotpotQA. We enumerate through retrieving 450

k ∈ {16, 32, 64, 128, 256, 512, 1024, 2048} neigh- 451

bors and setting temperature σ ∈ {1, 2, 5, 10}. We 452

retrieve from Wiki. We initialize λ at 0.5, and as 453

the optimization proceeds, we find that smaller λ 454

values correlate with lower loss. Ultimately, we 455

arrive at the minimum loss when λ is close to 0. 456
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HotpotQA Example Label LM Pred

What type of plane is the four engine heavy bomber, first introduced in
1938 for the United States Army, which is hangared at Conroe North
Houston Regional Airport?

American Boeing B-
17 Flying Fortress

The B-17 Flying
Fortress

Retrieved context Token kNN-LM Pred

• A famous symbol of the courage and sacrifices made by American
bomber crews during World War II was revealed May 16 at the National
Museum of the U.S. Air Force, Wright-Patterson Air Force Base, Ohio.
The meticulously restored B-

17

The B-25 Mitchell.• As the Avenger made its way to the tower area, the wings began to
fold up, a maneuver which enabled more of its kind to be loaded side by
side into aircraft carriers. The queen of the event was the B-

25

• Spring is here, so why not hop a plane and grab some lunch? Even
better if a World War II-era B- 25

Table 9: Example from HotpotQA showing the impact of high-frequency proper nouns in the corpus on kNN-LMs
predictions retrieving from Wikipedia.

Mathematical Reasoning Example Label LM Pred

I have three violins, three trombones, a flute, and four trumpets. How
many musical instruments do I have? 11 11

Retrieved Context Token kNN-LM Pred

• In this example, the optimal route would be: 1 -> 3 -> 2 -> 4 -> 1, with
a total completion time of

10

• How many different passwords are there for his website system? How
does this compare to the total number of strings of length

10 10

• Using the TSP, the most efficient order in which to schedule these tasks
would be: 2 -> 3 -> 1 -> 4 -> 2, with a total completion time of

14

Table 10: A mathematical reasoning example from BBH requiring object counting with predictions of the standard
LM and kNN-LMs.

This process suggests that without any interpola-457

tion of the kNN distribution, the correct labels of458

the provided demonstrations receive the highest459

log probability. Therefore, OpenbookQA and Hot-460

potQA are unlikely to benefit from having simple461

kNN access to Wiki.462

Is the problem a failure of retrieval? We in-463

vestigate whether degraded reasoning capabilities464

of kNN-LMs stem from a failure in retrieval. We465

examine kNN-LMs’ behaviors when retrieval is466

perfect. To achieve perfect retrieval, we include467

the correct answer among the k nearest neighbors.468

Specifically, we construct a datastore for Open-469

bookQA, NQ, and HotpotQA, respectively, includ-470

ing their train and test examples. We then exam-471

ine both perplexity and accuracy. The results, pre-472

sented in Table 6, indicate that while kNN-LMs can473

significantly reduce the perplexity, the model does474

not always derive the correct answer, even when475

the correct answer is explicitly given as one of the476

k neighbors. Therefore, the failure of reasoning477

cannot be fully attributed to the failure of retrieval.478

However, perfect retrieval does improve LM by a479

large margin, suggesting that better retrieval is ben- 480

eficial. Currently, retrieval is performed by finding 481

similar hidden representations. A training-based 482

approach such as RAG (Lewis et al., 2020) has the 483

potential to improve retrieval substantially. 484

8 Conclusions 485

We investigate whether the improved perplexity 486

observed in kNN-LMs models can be translated 487

into enhanced reasoning capabilities. We con- 488

duct extensive evaluation across 22 datasets. Our 489

findings indicate that while kNN-LMs improve 490

perplexity and can achieve better performance 491

on memory-intensive tasks, they struggle with 492

reasoning-intensive tasks, showing a disconnect 493

between LM ability and task ability. Further qual- 494

itative analysis reveals that even when kNN-LMs 495

produce correct answers, these are often the result 496

of spurious correlations rather than actual reason- 497

ing. We believe this places an upper bound on the 498

usefulness of these approaches compared to results 499

from parametric models. 500
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Limitations501

As we are limited by computing budget, we only502

build datastores up to 610 million tokens. It is un-503

likely although not impossible that larger datastores504

built on general web corpus like C4 will lead to505

better reasoning capabilities. Additionally, we only506

experiment with LLMs with seven- to eight-billion507

model parameters as the base models. The findings508

in this paper may not generalize to other, possibly509

larger, base models.510
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Corpus Text Size Tokens

Wikitext103 0.5GB 140M
Amazon 0.07GB 18M
CC-NEWS 1.6GB 443M
IMDB 0.03GB 8M
Total 2.2GB 609M

Table 11: Statistics of each data source in the Wiki
datastore.

A More Implementation Details 776

Table 11 presents the data sources of the Wiki data- 777

store. Table 12 shows hyperparameters we use for 778

different tasks. 779

B More Qualitative Analysis 780

We explain why retrieving from Math improves 781

LMs on sentiment analysis. First, we consider a 782

sentiment analysis example in Table 13. In this 783

task, given a sentence, a model is required to pre- 784

dict whether the sentiment expressed is positive or 785

negative. The sentence in the example expresses 786

a positive sentiment; however, Llama-2 predicts 787

the sentiment to be negative. kNN-LMs, when re- 788

trieving from Wiki, fail to find sentiment-related 789

tokens, and hence also predict a negative senti- 790

ment. Performing retrieval from Math produced 791

the correct sentiment. However, this is more coin- 792

cidental rather than reflective of the model’s capa- 793

bility, because, although the retrieved tokens dis- 794

play a positive sentiment, the retrieved contexts are 795

not relevant to the test example. we observe that 796

sentiment-related content is ubiquitous, regardless 797

of the source we use to build the datastore. Even 798

in math textbooks, we find many sentences that 799

express sentiment. 800
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Data λ k τ

Llama2 + Wiki 0.2 2048 5.0
Llama3 + Wiki 0.1 2048 5.0
Mistral + Wiki 0.1 2048 10.0

Data λ k τ

Llama2 + Math 0.2 1600 5.0
Llama3 + Math 0.1 2048 3.0
Mistral + Math 0.1 2048 10.0

Table 12: Hyperparameters in kNN-LM. Top: Hyperpa-
rameters for Wiki datastore. Bottom: Hyperparameters
for Math datastore .
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Sentiment Example Label LM Pred

humorous, artsy, and even cute, in an off-kilter, dark, vaguely disturbing
way. The sentence has a tone that is

Positive Negative

Retrieved Context Retrieved kNN-LM Pred

Wiki
• meta-commentator, Imhoff gives us a decidedly modern delivery. His
speaking rhythms are staccato and his tone

bitter

• Collins, who has worked on more than 100 children books and won
several awards: his tone is

fun Negative

• is her own narrator, so the thoughts and feelings of others are conveyed
secondhand or are absent entirely. Her tone and language are at turns

honest

Math
• preferred term is not “Platonist” but “quasiëmpiricist”, a word Ty-
moczko lends a subtly

different

• ... or a horror film (group 2, NH = 29 ). The data are coded so that
higher scores indicate a more

positive Positive

• the failure of the Intermediate Value Theorem is neither here nor there
nor anywhere else to them. This is not a bad nor a

good

Table 13: A sentiment analysis example with predictions of the standard LM and kNN-LMs. We show tokens
retrieved from each datastore and their proceeding tokens.

HotpotQA Example Label LM Pred

who is older, Annie Morton or Terry Richardson? Terry
Richardson

Terry
Richardson

Retrieved context Token kNN-LM Pred

• And she still wasn’t done. Later she tweeted a warning to all women.
“My hard won advice: never get into an elevator alone with [Terry
Gilliam.] Terry

Gilliam

Terry Gilliam• #MeToo https://t.co/jPnFhfB5GQ - Ellen Barkin(@EllenBarkin)
March 17, 2018Barkin got another shot in. Terry Gilliam

• I haven’t posted about Christina Hendricks in a while but it’s Valen-
tine’s Day and that makes me think of chocolate and chocolate reminds
me of Christina Hendricks. And Christina

Hend

Table 14: Another example from HotpotQA explains the impact of high-frequency proper nouns in the corpus on
kNN-LMs predictions retrieving from Wikipedia.
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