How Benchmark Prediction from Fewer Data
Misses the Mark

Guanhua Zhang* -2, Florian E. Dorner' 23, Moritz Hardt!-2
'Max Planck Institute for Intelligent Systems, Tiibingen
2Tiibingen Al Center 3ETH Zurich

Abstract

Large language model (LLM) evaluation is increasingly costly, prompting interest
in methods that speed up evaluation by shrinking benchmark datasets. Benchmark
prediction (also called efficient LLM evaluation) aims to select a small subset of
evaluation points and predict overall benchmark performance from that subset. In
this paper, we systematically assess the strengths and limitations of 11 benchmark
prediction methods across 19 diverse benchmarks. First, we identify a highly com-
petitive baseline: Take a random sample and fit a regression model on the sample
to predict missing entries. Outperforming most existing methods, this baseline
challenges the assumption that careful subset selection is necessary for benchmark
prediction. Second, we discover that all existing methods crucially depend on
model similarity. They work best when interpolating scores among similar models.
The effectiveness of benchmark prediction sharply declines when new models
have higher accuracy than previously seen models. In this setting of extrapolation,
none of the previous methods consistently beat a simple average over random
samples. To improve over the sample average, we introduce a new method inspired
by augmented inverse propensity weighting. This method consistently outperforms
the random sample average even for extrapolation. However, its performance still
relies on model similarity and the gains are modest in general. This shows that
benchmark prediction fails just when it is most needed: at the evaluation frontier,
where the goal is to evaluate new models of unknown capabilitieﬂ

1 Introduction

Increasingly, computational cost is a major bottleneck in the evaluation of recent generative mod-
els. Growing model size and benchmark task difficulty, as well as the sheer number of available
benchmarks all escalate the problem. For example, evaluating a single 176B parameter model on
the HELM multi-task benchmark required 4,200 GPU hours [35]]; even major companies noted the
significant computational burden of evaluation on the BigBench multi-task benchmark [17]].

The problem has prompted much recent work on more efficient LLM evaluation. The typical approach
is to find a subset of data points to evaluate on, and to predict benchmark performance from these
few evaluations. The simplest method is the random sample mean: Take a random sample of n
evaluation points, and compute the mean of the benchmark metric on the sample. For a metric, like
accuracy, with values in the interval [0, 1], the sample mean gives an additive approximation up to
error O(1/+/n). More sophisticated methods try to improve over this baseline by following a common
strategy: cleverly choose a small core set of evaluation points, evaluate multiple known models on
these points, then fit a model to predict overall benchmark performance from these evaluations.
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Figure 1: The x-axis denotes the real accuracy in ImageNet while the y-axis denotes the estimation
gap (equation [I)) for each target model. The gray stands for the accuracy range of source models.
Left: source models are randomly sampled across all models. Right: source models are randomly
sampled from models with accuracy lower than 80%.

We group existing efforts following this strategy under the term benchmark prediction. Previous
research has proposed several hypotheses for why benchmark prediction can work: Core sets identify
the most informative data points [49], they exploit the dependence between model performance on
different data points [60]], and they can capture the unobserved abilities of models [43].

The goal of our work is to systematically examine the strengths and weaknesses of benchmark
prediction as a solution concept for efficient LLM evaluation.

1.1 Our Contributions

We conduct a large-scale, systematic evaluation of 11 state-of-the-art benchmark prediction methods
across 19 diverse benchmarks. For each benchmark, we collect detailed performance results for at
least 83 models on all data points. We split all models into two groups: source models and target
models. For the source models, performance data is available for all data points. In contrast, for the
target models, performance information is available only for up to 50 data points. Each method must
adhere to this constraint of selecting no more than 50 data points, and the objective is to estimate
each target model’s mean performance across the full benchmark. To evaluate method effectiveness,
we compute the average estimation gap—the absolute difference between the true and estimated
full-benchmark performances across all target models.

Many methods work well on similar models, but a simple baseline works best. We first study
the interpolation regime where the source and target models are random drawn from the same set of
all models. Our empirical findings first confirm that in this regime it is possible to reduce the average
estimation gap relative to RANDOM-SAMPLING, which simply reports the mean performance on a
randomly selected core set. All evaluated methods outperform RANDOM-SAMPLING in over half of
the benchmarks. Given that all methods operate on the same number of core-set evaluations, their
computational costs are comparable. Thus, a lower average estimation gap indicates superior data
efficiency—effectively, more informative use of the evaluation budget.

Surprisingly, what works best in the interpolation regime is remarkably simple: after randomly
sampling a core set, rather than computing its mean, we fit a regression model to predict the true
mean performance. This method, RANDOM-SAMPLING-LEARN, consistently outperforms most
other methods and reduces the average estimation gap by an average of 37% compared to RANDOM-
SAMPLING. This suggests that the manner of core-set selection is relatively unimportant; rather, the
key to success is modeling the correlation between core-set and full-benchmark performances.

Methods fail at the evaluation frontier. However, our analysis reveals a major limitation: the
effectiveness of benchmark prediction methods drops sharply when source and target models are
not drawn from the same distribution. We call this the extrapolation regime. To explore this regime,
we conduct an experiment in which we select the top-performing models (according to the full



benchmark) as target models and use the poorer-performing ones as source models. This setup
reflects the typical use of benchmarking at the evaluation frontier where new models are being
released that are likely better than existing ones.

In the extrapolation regime, we show that most benchmark predictions methods fail to outperform the
naive RANDOM-SAMPLING baseline. This is illustrated in Figure[I] When source models cover the
full range of performances (left), RANDOM-SAMPLING-LEARN more than halves the estimation error.
When source models are restricted to the lower-than-80% accuracy (right), RANDOM-SAMPLING-
LEARN still outperforms RANDOM-SAMPLING for target models similar to the source distribution,
but its predictions substantially degrade for better-performing targets outside the source range.

ATIPW is an overlooked exception to the rule. One notable exception is a method inspired by
augmented inverse propensity weighting (AIPW)—used in other statistical applications—that we
introduce in the context of benchmark prediction. AIPW reliably outperforms RANDOM-SAMPLING
both under interpolation and extrapolation. Although it sometimes performs worse than RANDOM-
SAMPLING-LEARN when targets resemble sources, it consistently maintains an advantage when they
do not, thanks to being a consistent estimator. However, as illustrated in Figure[T] (right), even AIPW
sees diminishing improvements as target models’ accuracies exceed those of the sources.

Benchmark prediction relies on model similarity. To more systematically examine the general-
ization of benchmark prediction methods, we calculate the model similarity [38]], quantifying how
closely the predictions of each target model match those of the source models used in training. We
observe a strong negative correlation between model similarity and estimation gap: methods that
beat RANDOM-SAMPLING tend to do so primarily for targets similar to sources, while accuracy
on disimilar models deteriorates. In contrast, RANDOM-SAMPLING exhibits neutral correlation,
providing consistent (albeit less accurate) estimates regardless of similarity.

Main takeaway. Our findings suggest that while benchmark prediction techniques can be useful
in specific scenarios, their reliance on similarity between source and target models poses a risk of
misestimating the performance of new models. This underscores the importance of applying these
methods with caution, especially for evaluating models that significantly deviate from previous ones.

2 Related Work

Evaluating large language models (LLMs) has become increasingly costly as these models grow
in size and capabilities 35,116} 165, 168]]. These costs manifest in several ways. First, the collection
and annotation of evaluation data can require significant resources [66]. To mitigate these costs,
researchers have turned to methods such as using LLMs-as-judges [21} 23] or employing active
labeling [32, 131} [10} [12} [70] to generate evaluation data and labels. However, these savings come
with drawbacks. For instance, LLM-as-a-judge does not produce reliable evaluation outcomes, as
judge models tend to prefer models similar to them, and have other biases [63\ 42} 14, [7].

Another significant cost in LLM benchmarking arises from the model inference itself. Generating
responses with LLMs can be time-consuming [35} 168} 53], and common inference time scaling
techniques [I57, 124) 154} 133]] may exacerbate this issue. The success of scaling laws [29, |50] in
predicting model performance has fueled interest in the development of benchmark prediction
techniques [60, 143} 144,140} 41]], which aim to estimate benchmark performance by evaluating LLMs
on a limited set of data?]

The key idea underpinning benchmark prediction is that not all evaluation examples carry the same
amount of information [49]. It is hypothesized that a smaller core set of examples can represent
the entire test set, allowing for accurate estimation of overall benchmark performance [60]. This
is similar to efficient model training approaches, which aim to identify a subset of training data
that enable performance comparable to training on the full dataset [52] [69]]. Indeed, a popular
benchmark prediction method, k-medoids clustering, is a classical approach to core-set selection for
training [[15]. However, it is important to recognize that the objectives of training and evaluation differ
significantly. While training focuses on minimizing empirical risk and enhancing model performance,

2Unlike bandit literature [68] 53], which focuses on identifying the best model from a pool, benchmark
prediction is more challenging as it seeks to forecast overall benchmark performance for any new model.



evaluation seeks to provide an unbiased estimation of a model’s performance to facilitate fair model
comparison [40]. Our work challenges the assumption that core-set selection is the key to the success
of benchmark prediction by introducing competitive methods that do not rely on core-set selection.

Many existing approaches treat benchmark prediction as a learning problem, aiming to predict a
model’s overall performance based on its performance on a subset of data [60, 4334, |30} 45]]. Despite
promising results, previous work has highlighted limitations in terms of estimation variance [36].
Going further, we highlight that most benchmark prediction methods rely on model similarity, with
estimation performance deteriorating when target models deviate from familiar source models.

3 What is Benchmark Prediction?

3.1 Problem Formulation

We define a benchmark as a triplet (D, F, s). Here F refers to the set of models to be evaluated on
the benchmark and s represents the evaluation metric. Lastly, D represents the benchmark data with
|D| = N data points. A data point is referred to as z € D, where z = (z,y), « refers to the query
and y refers to the ground truth answer.

* s(f, z) refers to the performance of any f € F on any data point z € D. For example, s(f, z) =
1[f(z) = y] if the benchmark uses standard accuracy as the metric.

e 5(f,D) = ﬁ > .cp 8(f, z) represents the average performance of f € F onany D' C D.

* s(f,D') = {s(f,2)}.ep represents the vectorized performance of f € F on all data points in
D' C D, and s(F',z) = {s(f, z)} re 7 represents the vectorized performances of all models in
F’ C F ondata point z € D.

« S(F',D') = {s(f,D)}er = {s(F',2)}Lcp is the performance matrix of all models in
F' C F on all data points in D’ C D.

We refer to F(*) = {f1,--., fm} C F as the set of source models, whose performances on every
data point of the benchmark S(F (%), D) are known. The rest of the models are the target models
F® = F\ F), which are only be evaluated on n < N data points to save computational costs.

Benchmark prediction with fewer data aims to estimate 5(f, D) for every f € F®*) with only n data
points. In practice, benchmark prediction often involves two steps: @ identifying a representative
core-set C C D with |C| = n data points, and @ learning a performance estimator / to estimate the
average performance on the full benchmark based on the core-set. Formally, the goal of benchmark
prediction is to find C and & to minimize the estimation gap over target models,

> |s(£,D) = h[s(f.C), S(F™),D)]]. (1

feFr®

1
estimation gap: m

For simplicity, in the remainder of the paper, we will denote the estimated performance of target
model f € F®) as h(f), instead of explicitly writing h[s(f,C), S(F), D)].

3.2 Benchmark Prediction Methods
Previous methods. In this paper, we examine five widely-used benchmark prediction methods,

* RANDOM-SAMPLING randomly samples a subset as C and directly returns the mean performances
as hRANDOM-SAMPLING(f).

¢ ANCHOR-POINTS-WEIGHTED [60] uses k-medoids clustering to identify C and returns a weighted
sum based on the density of each cluster as hANCHOR-POINTS-WEIGHTED ( £

* ANCHOR-POINTS-PREDICTOR [60] extends ANCHOR-POINTS-WEIGHTED. Instead of directly
returning the weighted sum, a linear regression model is learned as hANCHOR-POINTS-PREDICTOR ( £

e P-IRT [43] extends ANCHOR-POINTS-PREDICTOR by replacing the regression model with an
Item Response Theory (IRT) model as AP IRT( f).

e GP-IRT [43] further generalizes P-IRT by combining its estimation with ANCHOR-POINTS-
WEIGHTED as a weighted sum, and use it as RSP IRT(f).



New methods. We introduce six methods that have not yet been applied to benchmark prediction.

* RANDOM-SAMPLING-LEARN randomly samples a subset as C and learns a Ridge regression
model g, which predict 3(f, D) based on s(f,C), as hRANPOM-SAMPLING-LEARN ( £)

* RANDOM-SEARCH-LEARN performs RANDOM-SAMPLING-LEARN for 10,000 times and selects
the run based on cross-validation.

» LASSO trains a Lasso regression model to predict 5(f, D) based on s(f, D) with sparsity con-
straints on number of non-zero weights lower than n. The learned model is then used as h-*55°(f).

* DOUBLE-OPTIMIZE employs gradient descent to optimize both a subset selection vector, which
models C, and a linear regression model, hPOVBLE-OPTIMIZE [77] [3])

* Principal Component Analysis (PCA) treats benchmark prediction as a matrix completion problem
by assuming the performance matrix S(F, D) is of low rank. By randomly sampling a subset as
C, this methods conducts PCA to impute the missing values for target models [59} 6.

* Augmented inverse propensity weighting (AIPW) [48]]: Inspired by the application of prediction

powered inference (2, 1] to the LLM-as-a-judge setting [5,14]], we apply a more general AIPW
estimator to benchmark prediction. We train a Ridge regression model g for every target model f,
which predicts the point-wise performance s(f, z) based on s(F(®), z). Formally,

1
g=argmin~ 3" [¢'[s(F,2)] = s(/,2)]" @
9 zeC

The idea behind the AIPW estimator is to use the predicted performance §(f, z) = g[s(F(®), 2)]
as a proxy score to estimate S(f, D) and “debias” that estimator as follows

PPV () = $(£,) + T ( T Y e —;Zé(f,Z)) G

1 n
Rl = 2€D—C zeC

Unlike the other learning-based baselines, AIPW is a consistent estimator for 5(f, D)[19].
Compared to RANDOM-SAMPLING, it reduces estimator variance by a factor of up to
ﬁp(é(f, 2),s(f,2))? [14], where p is the Pearson correlation coefficient.

N

More details of each method are listed in Appendix [A]

4 Experiments

4.1 Experiment Setup

We select a diverse range of benchmarks from the following sourcesﬂ

HELM-Lite benchmarks [35]]: OpenbookQA [39], GSM8K [9], LegalBench [22], Math [26]],
MedQA [28], and MMLU [25]. We obtain the per-data point performances of |F| = 83 models
from the official leaderboard.

GLUE benchmarks [61]]: MRPC [[13], RTE [IL1, 18l 4], SST-2 [55]], MNLI [64], and QNLI [46]]. We
use the per-data performances of | F| = 87 models provided by AnchorPoint*| [60].

OpenLLM benchmarks [16]: IFEval [67], Math [26]], MMLU-Pro [62], Arc-Challenge [8],

BBH [58]], GPQA [47] and MUSR [56]. We use |F| = 448 models provided by HuggingfaceE]and
collect their performance scores.

ImageNet [51]]: We collect | F| = 110 models from Pytorch Hubﬁand evaluate them on ImageNet.

A summary of benchmark statistics is provided in Appendix [B]

3Since P-IRT and GP-IRT requires s( f, z) to be binary, we only use benchmarks with accuracy as metric.
“The provided score file for QQP is broken so we exclude it.
Shttps://huggingface.co/spaces/open-11lm-leaderboard/open_11lm_leaderboard#
Shttps://pytorch.org/vision/stable/models.html#classification
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Figure 2: The estimation gaps (/) for target models (equation [T)) under the interpolation split, where
source and target models are identically distributed. Each target is evaluated on n = 50 data points.
The estimation gap reduction (}) over RANDOM-SAMPLING is shown in parentheses. A negative
reduction means that the method achieves a lower gap than RANDOM-SAMPLING. % is omitted.

4.2 Estimation Gap Reduction under Interpolation

As done in previous work [60} [43]], we examine the effectiveness of benchmark prediction methods
under the interpolation model split where source models are identically distributed with target models.

Interpolation model split. For each benchmark, we randomly select 75% of models as source
models F(*), for which performance scores across all data points S (F (), D) are available. The
remaining 25% of models serve as target models F(*) for assessment of benchmark prediction
methods. Each target model is evaluated on only n = 50 data points unless specified otherwise.
Benchmark prediction methods are used to estimate the full benchmark average performance 3( f, D)
of each target model f € F() and evaluated based on the estimation gap from equation Each
experiment is repeated over 100 random trials, and we report the average estimation gap across all
target models in these trials to ensure robustness. See standard errors in Appendix [C]

Results. The results are presented in Figure 2} Compared to RANDOM-SAMPLING, all other
benchmark methods effectively reduce the estimation gap in over half of the evaluated benchmarks.
Notably, nine out of ten methods reduce the estimation gap by more than 20% on average across
all benchmarks, as indicated in the last row. This verifies the effectiveness of benchmark prediction
methods in the interpolation setting, where source and target models are identically distributed.
Interestingly, the top-performing method is the simple baseline, RANDOM-SEARCH-LEARN, which
achieves a 42.1% reduction compared to RANDOM-SAMPLING averaged accross all benchmarks. In
comparison to the previous state-of-the-art, GP-IRT, which leads to a 29.9% reduction on average,
RANDOM-SEARCH-LEARN results in a lower estimation gap in nearly all benchmarks.
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Figure 3: The estimation gaps ({) for target models (equation[I) under extrapolation split, where
source models are the lowest-performing 50%, and target models are the top 30%. Each target
model is evaluated on n = 50 data points. We also report the estimation gap reduction () over
RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves a lower
estimation gap than RANDOM-SAMPLING. % is omitted.

On the other hand, the selection of the core-set does not significantly enhance the effectiveness of
benchmark prediction. For example, the second best-performing method, RANDOM-SAMPLING-
LEARN, also consistently outperforms RANDOM-SAMPLING across all benchmarks, despite the
sole difference being the use of a Ridge regression model rather than directly averaging across the
core-set. With a 37.2% reduction in estimation gap, it performs comparably to RANDOM-SEARCH-
LEARN, despite the latter conducting 10,000 iterations of RANDOM-SAMPLING-LEARN to identify
the best subset. Moreover, it surpasses methods like DOUBLE-OPTIMIZE and GP-IRT, which select
subsets through optimization or clustering. Another benchmark prediction method, AIPW, which
also utilizes a randomly sampled core-set, consistently achieves a lower estimation gap across all
benchmarks, yielding results comparable to the state-of-the-art GP-IRT. These findings challenge
the prevailing notion that the core of benchmark prediction lies in identifying the most informative or
representative subset. Instead, our results suggest that the primary driver of benchmark prediction
success is learning to predict the mean, with core-set selection playing a relatively minor role.

4.3 Estimation Gap Increase under Extrapolation

We examine the effectiveness of benchmark prediction methods under the extrapolation model split
where target models all perform better than source models.

Extrapolation model split. Different from the random source-target model split last subsection,
we begin by ranking all models for a given benchmark based on their average performance on the full
benchmark 5( f, D). The lowest-performing 50% of these models are designated as source models,
while the top 30% serve as target models for evaluating benchmark prediction methods. This strategy



reflects real-world model development scenarios, where developers debug and assess improved
models based on existing less effective models. The estimation gap as defined in equation[T]is used
for measuring the effectiveness of benchmark prediction. We again repeat each experiment 100 times.

Results. The results are shown in Figure 3] The average estimation gap for RANDOM-SAMPLING
(4.6%) is largely comparable with the interpolation setting (4.8%) as it doesn’t rely on source
models. However, for all other methods, the estimation gap increases when compared to the inter-
polation setting. Nearly all benchmark prediction methods that outperform RANDOM-SAMPLING
in the interpolation scenario now show diminished performance. Notably, the previous best method
RANDOM-SEARCH-LEARN now results in a 185.1% increase in estimation gap than RANDOM-
SAMPLING, and performs worse than RANDOM-SAMPLING across all benchmarks. The only method
that still outperforms RANDOM-SAMPLING on average is AIPW, beating RANDOM-SAMPLING in
18 out of 19 benchmarks. This is because AIPW, like RANDOM-SAMPLING, is a consistent estimator,
but has lower variance than random RANDOM-SAMPLING when its predictor is effective. However,
the estimation gap reduction (-12.6%) of AIPW over RANDOM-SAMPLING in the extrapolation
setting is also less pronounced than in the interpolation setting (-30.4%).

This stark contrast between interpolation and extrapolation settings underscores the heavy reliance
of most benchmark prediction methods on the similarity between source and target models. This
is unsurprising, given that many methods approach benchmark prediction as a machine learning
problem, which often struggles in out-of-domain scenarios. However, unlike traditional machine
learning, which primarily emphasizes in-domain performance, a key objective of benchmarking is to
assess and identify new superior models. Therefore, extrapolation is a more prevalent and pertinent
setting than interpolation in the context of benchmarking, and the decline in the estimation gap of
benchmark prediction methods in this setting calls for more caution.

4.4 Reliance on Model Similarity

In this subsection, we investigate the extent to which benchmark prediction methods rely on the
similarity between target and source models.

Model similarity. We follow previous works [38| 20] and define the model similarity of target
model £ to all source models F(*) as follows
(s) D Cobs — CE.Lp 4
SUFOD) = S, B, @
Here, ceppp = 5(f,D)5(f, D)+ (1 — 5(f,D))(1 — 5(f’, D)) measures the chance agreement rate,
i.e., the expected probability of {s(f,z) = s(f’, 2)} if s(f, z) is independent of s(f’, z). In contrast,
Cobs = 7 >sep Ls(f,2) = s(f/, )] is the observed agreement rate. For simplicity, we use S(f)
to denote S(f, F(*), D) in the remainder of the paper. S(f) quantifies how similar the performance
pattern of the target model f is to all source models F(*), with a higher value indicating greater
similarity [20].

We aim to examine the correlation between model similarity and estimation gap. However, we
note that the estimation depends on the standard deviation of s(f, z). Since we use accuracy as the
metric in our experiment, s( f, z) is Bernoulli with parameter py = 5(f, D) and standard deviation

o5 = +/ps(1 —py). By randomly sampling n data points as C, Chebyshev’s inequality ensures that

with probability at least (1 — «). In other words, the performance of target models with lower o is
easier to estimate with the same amount of data. Thus, the standard deviation of the basic estimation
gap could potentially confound the observed correlation between model similarity and estimation gap.
Consider the method RANDOM-SAMPLING, whose estimation does not depend on source models.
If all target models with low o coincidentally have high S(f), while those with high o ¢ have low
S(f), then a spurious correlation between estimation gap and model similarity to target models could
appear even for RANDOM-SAMPLING. To prevent this, we deﬁne the normalized estimation gap as

normalized estimation gap for f: E(f) = | (f.D) —h(f). (6)

Then we measure the Pearson correlation between model snmlarlty in equation @ and the normalized
estimation gap in equation 6]
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Figure 4: The Pearson correlation between normalized per-model estimation gap (equation [6) and
model similarity (equationd). Negative correlation indicates that target models that are dissimilar to
source models tend to have larger estimation gap, and vice versa.

Results. The results are shown in Figure[d A clear negative correlation between model similarity
and estimation gap emerges for almost all benchmark prediction methods except for RANDOM-
SAMPLING. In particular, the best-performing method under the interpolation model split, RANDOM-
SAMPLING-LEARN, exhibits a negative correlation below -0.2 in 13/19 benchmarks. Despite its
asymptotic unbiasedness, we also find negative correlations for AIPW. This is perhaps unsurprising:
While AIPW is consistent independent of how well its regression model g[s(F(*), z)] predicts
s(f, ), its variance depends precisely on that prediction quality. If the predictions are good, AIPW
improves substantially over RANDOM-SAMPLING, while there is no improvement when predictions
are fully uninformative. But intuitively, predicting s( f, z) is harder when f is very different from the

models F(*) used for training the predictor g[s(F(*), z)].

4.5 Ablation on Core-set Size

We conduct an ablation study on the size of the core-set n. We experiment with n €
{10, 20, 50, 100, 200}, and the summarized results are shown in Table [1| (detailed results can be
found in Appendix [C). As expected, the estimation gap generally decreases as n increases for most
methods. Our previous conclusions remain valid across both settings. With larger core-set sizes, most
methods continue to perform better than RANDOM-SAMPLING in the interpolation split but fail to do
so in the extrapolation model split. Interestingly, we also find that RANDOM-SAMPLING outperforms
all other methods when given twice as much data, even in the interpolation model split.

AIPW remains effective in both settings. However, its advantage over RANDOM-SAMPLING
diminishes as n increases. While AIPW reduces the estimation gap by -30.4% in interpolation and
-12.6% in extrapolation for n = 50, these advantages shrink to -12.4% in interpolation and a mere
-2.3% in extrapolation for n = 200. This is because the estimator variance reduction factor of AIPW
is up to ﬁ p(5'f, 2),5(f, 2))%. On the other hand, the advantage of AIPW remains significant

when the dataset is large and thus % is small. FigureElcompares ATPW with n = 50 to RANDOM-
SAMPLING with n = 100 data points using ImageNet. AIPW achieves a lower average normalized
estimation gap compared to RANDOM-SAMPLING, despite using only half the data. However, the
normalized estimation gap for AIPW is biased with respect to model similarity. In contrast, the



Table 1: Ablation study on the core-set size n. We report the estimation gap averaged over all
benchmarks. % is neglected for each metric. The lowest estimation gap in each column is highlighted
in bold. See detailed results in Appendix [C]

Interpolation Extrapolation
n=10|n=20| n=50 | n=100 | n=200 | n=10 | n=20 | n =50 | n=100 | n =200
RANDOM-SAMPLING 11.0 7.7 4.8 33 2.1 10.7 7.4 4.6 3.1 2.0
RANDOM-SAMPLING-LEARN 54 4.2 29 2.1 15 17.6 15.8 13.6 12.1 11.1
PCA 6.6 52 3.7 2.8 2.1 19.9 17.6 14.9 12.2 9.3
AIPW 8.3 5.4 3.3 2.3 1.8 9.6 6.5 4.0 2.8 2.0
RANDOM-SEARCH-LEARN 4.5 3.7 2.7 2.0 14 16.0 144 12.8 11.8 11.1
LAssoO 7.8 6.1 3.6 2.6 22 22.0 19.3 16.6 15.3 14.6
DOUBLE-OPTIMIZE 6.6 4.8 3.0 23 1.9 11.3 9.0 8.2 8.0 7.0
ANCHOR-POINTS-WEIGHTED 8.9 6.9 4.9 4.0 32 104 6.7 5.6 4.7 34
ANCHOR-POINTS-PREDICTOR 4.7 4.1 3.6 34 4.1 16.2 14.8 13.4 12.4 11.2
P-IRT 73 59 35 2.1 1.3 9.8 8.2 5.1 3.7 3.0
GP-IRT 72 5.7 33 2.1 14 9.7 7.8 4.7 34 2.5
AIPW with n = 50 on ImageNet RANDOM-SAMPLING with 7 = 100 on ImageNet
0.10 0.10
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Figure 5: Average normalized estimation gap relative to model similarity for AIPW (n=50) and
RANDOM-SAMPLING (n=100) on ImageNet. Each bar represents the target models whose similarity
to source models falls within the corresponding range. The normalized estimation gap is defined as
shown in equation[6] On average, AIPW outperforms RANDOM-SAMPLING, even with half the data.
However, RANDOM-SAMPLING shows better performance when model similarity is low.

normalized estimation gap under RANDOM-SAMPLING remains largely neutral regarding model
similarity. Consequently, while AIPW reduces the average, it produces a higher gap for models with
low similarity compared to RANDOM-SAMPLING with twice the data.

5 Conclusion

In this paper, we study the problem of benchmark prediction from fewer data and examine 11
benchmark prediction methods. Our findings call into question the necessity of meticulous core-set
selection and reveal that these methods are most proficient at interpolating scores among similar
models. However, except RANDOM-SAMPLING and AIPW, all methods face significant difficulties
when predicting target models that differ substantially from those they have encountered before.

We caution against the indiscriminate use of benchmark prediction techniques, as their dependence on
model similarity causes most of them to fail precisely when most needed: at the evaluation frontier,
where the aim is to assess new models with unknown capabilities. Even in the context of interpolation,
no method outperforms RANDOM-SAMPLING, when that simple baseline is given access to twice as
much data. Thus, while we recommend to use AIPW as a consistent estimator with lower variance,
this suggests that simply raising the sampling budget for RANDOM-SAMPLING can be competitive,
especially in settings where predictions of other models for fitting AIPW are costly to obtain.
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on draft versions of this work. Florian Dorner is grateful for financial support from the Max Planck
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section[I]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Justification: This paper is mainly an empirical work and doesn’t provide many new
theoretical results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Appendix |B|and the code.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We release our codes in the supplemental materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Appendix [C]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [C]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper doesn’t release any new data or model.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All used models and datasets are well cited in Section (4]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: This paper doesn’t provide new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper doesn’t involve crowd-sourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper doesn’t involve crowd-sourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Benchmark Prediction Methods

A.1 Problem Formulation
We repeat the notation and the problem formulation here for the reader’s convenience.

* A benchmark is represented as a triplet (D, F, s).

* D represents the benchmark data with |D| = N data points. A data point is referred to as z € D,
where z = (x,y), « refers to the query and y refers to the ground truth answer.

» F refers to all potential models that can be evaluated on the benchmark.
* s represents the metric of the benchmark.
- s(f, z) refers to the performance of any f € F on any data point z € D. For example,
s(f,z) = 1[f(x) = y] if the benchmark uses standard accuracy as the metric.
- 5(f,D) = ﬁ > .cp ([, z) represents the average performance of f € F onany D' C D.
- s(f, D) = {s(f, 2) }sep represents the vectorized performance of f € F on all data points

in D’ C D, and s(F',z) = {s(f,z)}ser represents the vectorized performances of all
models in 7' C F on data point z € D.

- S(F, D) ={s(f, D) }ser = {s(F',2)}.cp as the performance matrix of all models in
F' C F on all data points in D’ C D.
o« Flo) = {f1,..., far} C F refers to a set of source models, whose performances on every data
point of the benchmark S(F(*), D) are known.

* The rest of the models are referred to as target models F*) = F \ F (), which can only be
evaluated on at most n < N data points to save computational costs.

Benchmark prediction with fewer data aims to estimate 5( f, D) for every f € F () with only n data
points. In practice, benchmark prediction often involves two steps: @ identifying a representative
core-set C C D with |C| = n data points, and @ learning a performance estimator / to estimate the
average performance on the full benchmark based on the core-set. Formally, the goal of benchmark
prediction is to find C and h to minimize the estimation gap over target models,

L 1 - s
estimation gap: Fo| Z |5(f, D) — h[s(f,C), S(F! ),D)] | (7
ferF®

For simplicity, in the remainder of the paper, we will denote the estimated performance of target
model f € F®) as h(f), instead of explicitly writing h[s(f,C), S(F), D)].

A.2 Benchmark Prediction Methods
Previous methods In this paper, we examine five widely-used benchmark prediction methods,

* RANDOM-SAMPLING randomly samples a subset as C and directly returns the mean performance,

hRANDOM—SAMPLING (f) — g(f C) . (8)

If the benchmark metric s is standard accuracy, the gap |5(f,C)—35(f, D)| is bounded by O(1/1/n)
with high probability based on Hoeffding’s inequality.

* ANCHOR-POINTS-WEIGHTED [60] treats benchmark prediction as a k-medoids clustering prob-
lem. The selected medoids are used as C, and a weight vector 8 € IR" is calculated as the
normalized cluster size of each medoid. The final estimate for any target model f € F(®) is

hANCHOR—POINTS—WEIGHTED (f) — S(f C)To . (9)

* ANCHOR-POINTS-PREDICTOR [60] extends ANCHOR-POINTS-WEIGHTED. Instead of directly
returning the weighted sum, a linear regression model g[s(f,C)] is learned to predict s(f, D — C).

hANCHOR-POINTS-PREDICTOR(f) — Q[S(ﬁ C)] (10)
1 2

where g = argmin — Z Is(f,D—C)—g'[s(f.C)l]5. (11)
g/ M fe]-'(b) 2

where we note that g[s(f,C)] is a (N — n) dimensional vector and we use g[s(f,C)] as its mean.
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e P-IRT [43] extends ANCHOR-POINTS-PREDICTOR by replacing the regression model g in
equation [IT) with an Item Response Theory (IRT) model. Following the notation for ANCHOR-

POINTS-PREDICTOR, we estimate performance for any f € F*) as follows:

N—n
N

e GP-IRT [43] further generalizes P-IRT by combining its estimation with ANCHOR-POINTS-
WEIGHTED as a weighted sum,

hGP—IRT(f) — )\hANCHOR—POINTS—WEIGHTED(f) + (1 o )\)hP—IRT(f) , (13)

RPIRT(f) — gls(f,C)] + %g(f,C). 12

where ) is chosen heuristically to control the error of P-IRT.

New methods We introduce six methods that have not yet been applied to benchmark prediction.

* RANDOM-SAMPLING-LEARN randomly samples a subset as C and adopts a Ridge regression
model g for estimation as follows,

hRANDOM—SAMPLING-LEARN (f) — g[S(f, C)} (14)
. 1 — /
where g = arg min 5 > [8(£,D) = g'ls(£,0)]|- (15)
feF®

* RANDOM-SEARCH-LEARN performs RANDOM-SAMPLING-LEARN for 10,000 times and selects
the best-performing subset as C based on cross-validation. A Ridge regression model g is then
trained and used in the same way as RANDOM-SELECTION-LEARN.

+ LASSO trains a Lasso regression model with weights & € R as follows,

RESO(f) = s(£,0)"6c (16)
where 0 = arggrlnin% ZEZC [S(ﬁ D)o’ — 5(f, D)}2 + 0|1, (17)

where ) is selected so that only n dimensions of 8 are non-zero and 6. is the non-zero slice of 6.

» DOUBLE-OPTIMIZE optimizes both a subset selection vector 7 € RY and a linear regression
model with weights @ € R" with gradient descent as follows,

hDOUBLE—OPTIMIZE(f) _ [S(f, D) . TOpM&Sk(ﬂ'; n)]TO (18)
where 7,0 = argmin {[s(f, D) - TopMask(w';n)]"6’ — 5(f, D)}2 , (19)
6/

where - refers to the bitwise multiplication between two vectors, and TopMask(#’; n) replaces
the top n largest values of 7’ with 1s and the rest with 0s. We directly pass the gradient on
TopMask(7’;n) to 7’ during optimization following the Straight-Through technique [27, [3]).

Principal Component Analysis (PCA) treats benchmark prediction as a matrix completion problem.
This method assumes the performance matrix S(F, D) is of low rank. By randomly sampling a
subset as C, this methods conducts PCA to impute the missing values for target models [59,6]. As
a more intuitive view, one could also take the acquired principal components as model capability
indicators [50], i.e., the (M X k) PCA-transformed scores indicate the k-capabilities of each
model, while the (k x N) principal components represent the capability requirements for each
data point. We select k among {2, 5, 10, 20} through cross-validation. The Pseudo codes are in
Algorithm

* Augmented inverse propensity weighting (AIPW) [48]]: Inspired by the application of prediction
powered inference [2l 1] to the LLM-as-a-judge setting [15,[14]], we apply a more general AIPW
estimator to benchmark prediction. We train a Ridge regression model g for every target model f,
which predicts the point-wise performance s(f, z) based on s(F (%), z). Formally,

1
g=argmin~ 3" [¢'[s(F,2)] - s(/,2)]" (20)
9' zeC

24



The idea behind the AIPW estimator is to use the predicted performance §(f, z) = g[s(F(®), 2)]
as a proxy score to estimate 5(f, D) and ”debias” that estimator as follows

PAP(f) = 5(£,C) + T (Nl_n > st(ﬁz)—;zst(f,z)). e

1 n
T N—n zeD—-C z€eC

Unlike the other learning-based baselines, AIPW is a consistent estimator for 5(f, D)[19].
Compared to RANDOM-SAMPLING, it reduces estimator variance by a factor of up to

ﬁ p(5'f, 2), s(f, z))? [14], where p is the Pearson correlation coefficient. Recent research [37]
N

shows that AIPW estimator will outperform random sampling if and only if the correlation between
3(f, z) and s(f, z) is above a certain level that depends on n.

Al

gorithm 1 PCA Impute Process

1

b

11:
12:
13:
14:
15:
16:
17:
18:
19:

: Input: Data matrix with missing values
: Parameters: number of components k, max iteration max_iter, stopping threshold tol
: Output: Imputed data matrix
. Step 1: Initialization
Compute initial values for missing entries using column means
: Step 2: Iterative Imputation
. for iteration <— 1 to max_iter do
PCA Decomposition:
Perform PCA retaining £ components
Transform data to the lower-dimensional space
Reconstruct the data from the lower-dimensional space
Evaluate Convergence:
Compute the norm of differences between imputed and original values at missing entries
if norm < tol then
Break the loop
end if
Update Imputed Values:
Replace missing values with reconstructed values
end for

20:

21:

return Fully imputed data matrix
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B Additional Experiment Setup

We select a diverse range of benchmarks from the following sourceﬂ

e HELM-Lite benchmarks [35]]:

OpenbookQA [39]: N = 500 data points.

GSMBK [9]: N = 1000 data points.

LegalBench [22]: N = 2047 data points.

Math [260]: N = 437 data points.

MedQA [28]: N = 1000 data points.

MMLU [25]]: N = 567 data points.

We obtain the per-data point performances of |F| = 83 models from the official leaderboard. Note

that Helm-Lite often only uses a subset of the original testing set for each benchmark to save
compute.

¢ GLUE benchmarks [61]:
— MRPC [13]]: N = 408 data points.
RTE [L1L 18, 4]: N = 277 data points.
SST-2 [55]: N = 872 data points.
MNLI [64]: N = 9815 data points.
QNLI [46]: N = 5463 data points.
We use the per-data performances of |F| = 87 models provided by AnchorPoin [60].
* OpenLLM benchmarks [[16]:
IFEval [67]: N = 541 data points.
Math [26]: N = 894 data points. Only level 5 MATH questions are used in OpenLLM.
MMLU-Pro [62]]: N = 12032 data points.
Arc-Challenge [8]: N = 1172 data points.
BBH [58]]: N = 5761 data points.
GPQA [47]: N = 1192 data points.
MUSR [56]: N = 756 data points.
We use | F| = 448 models provided by Huggingfaceﬂand collect their performance scores.

* ImageNet [51]: We collect |F| = 110 models from Pytorch Hub [13] and evaluate them on
ImageNet with N = 50, 000 data points.

For simplicity, we report the overall average accuracy directly for MMLU, MMLU-Pro, and BBH, rather
than the weighted average accuracy computed across sub-tasks. Alternatively, one could apply
benchmark predictions separately to each sub-task and then calculate the weighted average accuracy.

"Since P-IRT and GP-IRT requires s( f, z) to be binary, we only use benchmarks with accuracy as metric.
8The provided score file for QQP is broken so we exclude it.
‘https://huggingface.co/spaces/open-1lm-leaderboard/open_11lm_leaderboard#
""https://pytorch.org/vision/stable/models.html#classification
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Table 2: Training and inference time of each method on ImageNet with N = 50000 data points and
|F| = 110 models. Training is based on 83 source models, and inference is on 27 target models.

Training Time (s) Inference Time (s)

RANDOM-SAMPLING 0.00 0.00
RANDOM-SAMPLING-LEARN 0.02 0.00
PCA 0.59 19.20

AIPW 0.00 0.27
RANDOM-SEARCH-LEARN 81.02 0.00
LAsso 105.58 0.01
DOUBLE-OPTIMIZE 4.88 0.00
ANCHOR-POINTS-WEIGHTED 84.26 0.00
ANCHOR-POINTS-PREDICTOR 197.71 0.26
P-IRT 585.72 0.90

GP-IRT 1750.20 0.89

Table 3: Average estimation gap between the predicted rankings based on the coreset and the actual
rankings based on the full benchmark, measured by Kendall’s 7 (1). The results are averaged over all
benchmarks.

Interpolation
n=10 n=20 n=50 n=100 n=200

Extrapolation
n=10 n=20 n=50 n=100 n=200

RANDOM-SAMPLING 0.52 0.61 0.70 0.78 0.84 0.36 0.43 0.53 0.63 0.73
RANDOM-SAMPLING-LEARN 0.57 0.66 0.75 0.81 0.86 0.07 0.12 0.18 0.27 0.36
PCA 0.55 0.63 0.72 0.78 0.83 0.04 0.10 0.21 0.40 0.57

AIPW 0.52 0.62 0.72 0.79 0.84 0.33 0.40 0.51 0.61 0.70
RANDOM-SEARCH-LEARN 0.66 0.70 0.76 0.82 0.86 0.13 0.13 0.20 0.29 0.38
LASSO 0.68 0.71 0.77 0.81 0.82 0.05 0.06 0.12 0.19 0.22
DOUBLE-OPTIMIZE 0.58 0.66 0.76 0.81 0.84 0.31 0.36 0.44 0.50 0.58
ANCHOR-POINTS-WEIGHTED 0.65 0.70 0.76 0.81 0.85 0.37 043 0.50 0.60 0.69
ANCHOR-POINTS-PREDICTOR 0.67 0.72 0.77 0.80 0.80 0.21 0.25 0.32 0.38 0.44
P-IRT 0.52 0.58 0.71 0.80 0.87 0.28 0.31 0.42 0.56 0.69

GP-IRT 0.53 0.59 0.72 0.80 0.86 0.28 0.33 0.45 0.59 0.71

C Additinoal Experiment Results

C.1 Detailed Results

In this paper, we experiment with n € {10, 20, 50, 100, 200} under both interpolation and extrapola-
tion settings. The detailed results, along with standard errors, are reported in Figures 6] [7} [8] 0] [TO}
and

C.2 Running time

While some of the benchmark prediction methods could potentially benefit from the use of GPUs, we
opted to run all methods without them, as they are sufficiently fast on standard hardware. Table[2]
presents the training and inference times for each method on ImageNet. Among the models, GP-
IRT is the slowest during training because it involves fitting a large Item Response Theory (IRT)
model. During inference, PCA is the slowest, as it requires multiple imputations of the entire matrix.
Although AIPW needs training a separate regressor for each target model during inference, the
regressor is small, making the inference process remain efficient.

C.3 Ranking Preservation

We further compare the predicted rankings of target models with the actual rankings based on the full
benchmark using Kendall’s 7. Specifically, we calculate Kendall’s 7 for each random trial and average
the results over 100 trials. Our conclusions mostly remain unchanged, with almost all benchmark
prediction methods outperforming Random Sampling under interpolation, while none can surpass
RANDOM-SAMPLING under extrapolation.
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Figure 6: The estimation gaps () for target models (calculated as equation [I)) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 10 data points. We also report + the standard error of the mean and
the estimation gap reduction (J) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 7: The estimation gaps (J.) for target models (calculated as equation [I)) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 20 data points. We also report + the standard error of the mean and
the estimation gap reduction (J) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 8: The estimation gaps () for target models (calculated as equation [I)) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 50 data points. We also report =+ the standard error of the mean and
the estimation gap reduction (|) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 9: The estimation gaps (J) for target models (calculated as equation [I)) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 100 data points. We also report + the standard error of the mean and
the estimation gap reduction (]) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 10: The estimation gaps (|) for target models (calculated as equation [I)) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 200 data points. We also report + the standard error of the mean and
the estimation gap reduction (|) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 11: The estimation gaps ({) for target models (calculated as equation [T) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated on
n = 10 data points. We also report £ the standard error of the mean and the estimation gap reduction
(J) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves
a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 12: The estimation gaps (|) for target models (calculated as equation [T) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated on
n = 20 data points. We also report £ the standard error of the mean and the estimation gap reduction
(J) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves
a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 13: The estimation gaps ({.) for target models (calculated as equation [I)) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated on
n = 50 data points. We also report £ the standard error of the mean and the estimation gap reduction
({) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves
a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 14: The estimation gaps ({.) for target models (calculated as equation [I)) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated
on n = 100 data points. We also report £ the standard error of the mean and the estimation gap
reduction (}) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method
achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 15: The estimation gaps ({) for target models (calculated as equation [T) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated
on n = 200 data points. We also report =+ the standard error of the mean and the estimation gap
reduction (]) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method
achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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C.4 Case Studies

We further investigate two additional experimental settings that deviate from the primary setting in
the main paper.

Fewer source models under interpolation. Different from the previous interpolation setting
that utilized 75% of models as source models, we now use only 10 models as source models for
each benchmark and use the rest as target models. All other settings remain unchanged. This
setting allows us to assess the effectiveness of benchmark prediction when “training data” from
source models is more limited. Results are shown in Figure[T6] Consistent with the findings in the
paper, most methods still outperform RANDOM-SAMPLING, while RANDOM-SEARCH-LEARN and
RANDOM-SAMPLING-LEARN remain to be the best-performing methods.

Near extrapolation. We modify the previous extrapolation setting, which used the lowest-
performing 50% of models as source models and the top 30% as target models. In this new setting,
we designate the top 25% of models as target models and utilize all remaining models as source
models. All other settings remain unchanged. This setup enables us to examine whether benchmark
prediction methods demonstrate improved performance when the distribution gap between source
and target models is reduced. Results are shown in Figure Consistent with the findings in the
paper, most methods fail to consistently outperform RANDOM-SAMPLING, except for AIPW.
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Figure 16: Experiment with fewer source models (randomly selected 10 models as source models)
under the interpolation model split. We report the estimation gaps ({.) for target models (calculated as
equation[I)). We also report + the standard error of the mean and the estimation gap reduction (/)
over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves a
lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 17: Experiment with the near extrapolation model split by using the top 25% of available
models as target models and the remaining bottom 75% models as source models. We report the
estimation gaps ({) for target models (calculated as equation[I). We also report + the standard error of
the mean and the estimation gap reduction (}) over RANDOM-SAMPLING in parentheses. A negative
reduction implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is
omitted. Best viewed in color.
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D Broarder Impacts and Limitations

This paper addresses the benchmark prediction problem in scenarios with limited data. One potential
limitation of our study is the relatively small number of models examined. For both the HELM-Lite
and GLUE benchmarks, we have collected full benchmark results for fewer than 100 models. Despite
conducting 100 random trials for each experiment, including additional and more diverse models
could further strengthen the comprehensiveness and robustness of our analysis.

We do not anticipate any direct societal impacts from this work, such as potential malicious or
unintended uses, nor do we foresee any significant concerns involving fairness, privacy, or security
considerations. Additionally, we have not identified potential harms resulting from the application of
this technology.

41



	Introduction
	Our Contributions

	Related Work
	What is Benchmark Prediction?
	Problem Formulation
	Benchmark Prediction Methods

	Experiments
	Experiment Setup
	Estimation Gap Reduction under Interpolation
	Estimation Gap Increase under Extrapolation
	Reliance on Model Similarity
	Ablation on Core-set Size

	Conclusion
	Details of Benchmark Prediction Methods
	Problem Formulation
	Benchmark Prediction Methods

	Additional Experiment Setup
	Additinoal Experiment Results
	Detailed Results
	Running time
	Ranking Preservation
	Case Studies

	Broarder Impacts and Limitations

