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Abstract

Gaussian process state-space models (GPSSMs)
provide a principled and flexible approach to mod-
eling the dynamics of a latent state, which is
observed at discrete-time points via a likelihood
model. However, inference in GPSSMs is compu-
tationally and statistically challenging due to the
large number of latent variables in the model and
the strong temporal dependencies between them.
In this paper, we propose a new method for in-
ference in Bayesian GPSSMs, which overcomes
the drawbacks of previous approaches, namely
over-simplified assumptions, and high computa-
tional requirements. Our method is based on free-
form variational inference via stochastic gradient
Hamiltonian Monte Carlo within the inducing-
variable formalism. Furthermore, by exploiting
our proposed variational distribution, we provide
a collapsed extension of our method where the
inducing variables are marginalized analytically.
We also showcase results when combining our
framework with particle MCMC methods. We
show that, on six real-world datasets, our ap-
proach can learn transition dynamics and latent
states more accurately than competing methods.

1. Introduction

State-space models (SSMs; Murphy, 2023, Ch. 29) charac-
terize the underlying dynamics of a latent state given a set
of observations via a transition function and an observation
model. As a modeling framework, they provide a general ap-
proach for understanding time-series data (Kitagawa, 1987)
and for data assimilation problems (Katzfuss et al., 2016).
Applications of SSMs abound and span diverse areas such
as econometrics (Tsay, 2005), control engineering (Ogata
et al., 2010) and neuroscience (Brown et al., 1998).
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In this paper, we focus on Bayesian SSMs, where the transi-
tion function describing the dynamics of the system is given
a prior distribution. A paradigmatic example of Bayesian
SSMs are Gaussian process state-space models (GPSSMS;
Frigola, 2015), where this prior distribution is a Gaussian
process (GP; Williams & Rasmussen, 2006). Due to their
Bayesian non-parametric nature, GPSSMS represent a prin-
cipled and flexible approach to Bayesian SSMSs.

However, the flexibility of Gaussian processes (GPs) adds
significant computational and statistical challenges to the
already difficult problem of inference in Bayesian SSMs. In-
deed, even for non-Bayesian SSMs, standard problems such
as filtering, smoothing, and prediction are, in general, ana-
lytically intractable'. Having a GP prior over the transition
function in SSMS increases the number of latent variables
significantly; incorporates strong (and potentially long-term)
dependencies across states; and introduces a cubic time com-
plexity as a function of the number of observations.

Within the GP community, significant advances have been
made addressing the computational issues in GP regression
and classification problems, most notably using inducing-
variable approximations (Titsias, 2009; Hensman et al.,
2015; Rossi et al., 2021) but also random-feature expansions
(Cutajar et al., 2017; Marmin & Filippone, 2022) and, more
recent innovative approaches such as the Vecchia approxi-
mation (Sauer et al., 2022). Although these approximations
are applicable to GP-based dynamic models, the challenges
above remain prevalent within the context of GPSSMS.

Nevertheless, previous approaches have developed insight-
ful and practical algorithms for inference in GPSSMSs,
mainly based on inducing-variable approximations, which is
also our main underpinning methodology for scalable GPs.
In outlining the most relevant approaches, our main object
of interest is the approximate joint posterior over state tra-
jectories xo.7r and inducing variables u, ¢(xo.7, u), where
T + 1 is the length of the trajectory. We consider two main
aspects of this joint distribution: (i) whether the dependen-
cies between state trajectories and inducing variables are
captured and (ii) whether their corresponding distributions
are unconstrained, i.e., not restricted to a sub-optimal para-
metric form. The seminal variational Gaussian process state

'With the notable exception of the linear-Gaussian case where
the optimal solution is given by the Kalman filter (Kalman, 1960).
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space model (VGPSSM) proposed by Frigola et al. (2014)
as well as the subsequent identifiable Gaussian process state
space model (IGPSSM) of Eleftheriadis et al. (2017) use
mean-field approaches, therefore, ignoring the posterior de-
pendencies between state trajectories and inducing variables.
The more recent methods, namely the probabilistic recur-
rent state space model (PRSSM) of Doerr et al. (2018) and
the variationally coupled dynamic trajectories (VCDT) of
Ialongo et al. (2019) introduce couplings across state trajec-
tories and inducing variables. However, their posteriors are
constrained to be Gaussians. Thus, these previous works
have either assumed independence between state trajecto-
ries and inducing variables or imposed strong parametric
constraints in their corresponding posteriors or both.

As shown by Ialongo et al. (2019), a mean-field posterior
can yield poor practical performance. Similarly, a Gaussian
assumption on the state posterior or the inducing variable
posterior is also very strong and, by definition, will not gen-
erally capture the true posterior even in the limit of infinite
computation. To address these issues, we propose a free-
form variational inference approach to posterior estimation
in GPSSMSs that models the full joint distribution over states
and inducing variables, ¢(x.7, u), without any mean-field
or parametric assumptions. We refer to our method as free-
form variational dynamics (FFVD) and summarize the major
differences between its posterior assumptions and those of
previous approaches in Table 1. Below we describe our
contributions in more detail.

(i) Flexible posterior: We develop FFVD, an inference
algorithm for GPSSMS based on stochastic gradient Hamil-
tonian Monte Carlo (SGHMC; Chen et al., 2014; Havasi
et al., 2018), which represents the posterior over states and
inducing variables using samples. FFVD lifts the limitations
of previous variational approaches to GPSSMs, which have
ignored couplings in this posterior or have assumed a con-
strained parametric form. More precisely, FFVD captures
the posterior correlations between states and inducing vari-
ables; does not constrain this posterior to any parametric
form, and, is scalable to a large number of observations.

(ii) Collapsed inference that accelerates convergence: we
show that (i) our formulation allows us to collapse the in-
ducing variables u, (ii) sample from the lower-dimensional
marginal ¢(xo.7) and, at the end of the sampling procedure,
(iii) obtain samples from the conditional ¢(u |x¢.7), for
which we derive a closed-form expression. We show that
collapsing accelerates convergence significantly.

(iii) Extensions with particle Markov chain Monte Carlo
(PMCMC): we further investigate whether more elabo-
rate inference algorithms, such as PMCMC (Andrieu et al.,
2010), that account for the sequential nature of the problem
can provide more accurate posteriors.

(iv) State-of-the-art performance: we showcase the prop-
erties and benefits of our approach compared to previous
methods such as VGPSSM, PRSSM and VCDT in a syn-
thetic example and six system identification benchmarks.
Overall, our method provides state-of-the-art performance
when evaluated on these problems, while having compa-
rable computational requirements to previous approaches.
Our code and supplementary material can be found at
https://github.com/xuhuifan/FFVD.

2. Inference in Gaussian Process Models

Gaussian processes (GPS) are priors over functions where ev-
ery subset of function values follow a Gaussian distribution.
We use f(x) ~ GP (my(x), ks(x,x";0)) to denote that f
is distributed according to a GP with mean function m(-)
and covariance function k¢ (-, -;0), where @ are referred
to as the GP hyper-parameters?. By definition, a GP prior
over functions implies a finite prior over 1" function values
f=[f(x1),..., f(x7)]",ie, f~N(f;m,K), where m
and K are obtained by evaluating the mean function and
covariance function at all the inputs X := {xy,...,xr}.

In supervised learning settings, we are given input-output
observations {x;, y; }7_, and a conditional likelihood model
p(y | f). Inference involves estimating the posterior distribu-
tion p(f | y, X) and the hyper-parameters 6 from data. Con-
sequently, we can use these to estimate the posterior predic-
tive distribution at a new point x,, i.e., p(f(%+) | X, ¥, Xx)-
Notoriously, these tasks have cubic time complexity as a
function of the number of training observations, i.e., O(T3),
arising from algebraic operations involving the computa-
tion of the inverse covariance and its log determinant. This
motivates the need for sparse approximations.

2.1. Sparse GP Approximations via Inducing Variables

To deal with the cubic computational complexity of infer-
ence in GP models, we focus on inducing-variable approx-
imations based on variational inference, as originally pro-
posed by Titsias (2009) and made scalable to very large
datasets by Hensman et al. (2013). The main idea of these
approximations is to augment the space of function values
with a set of M inducing variables u := {u;} and their
corresponding inducing inputs Z := {z;}. Thus, inference
involves estimating the posterior ¢(u,f) ~ p(u,f|X,y)
and the GP hyper-parameters 0 via variational inference.
Under the assumption that ¢(u, f) := ¢(u)p(f | u) where
p(f | u) is the conditional prior, the variational objective, the
so-called evidence lower bound (ELBO), decomposes over
the observations, and inference can be carried out with time
complexity of O(M?3), providing significant advantages
when M < T

>We have simply assumed identity mean functions.
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Table 1. Comparison across methods in terms of their assumptions on the variational distribution. The rows refer to whether the variational
posterior captures the dependencies between the state trajectories and the inducing variables (coupled g(xo.7, u)); the distribution over
states is unconstrained (unconstrained g(xo.7 | 1) or g(xo.7)), i.e., not restricted to a sub-optimal parametric form; and whether the
distribution over the inducing variables is also unconstrained (unconstrained g(u)). Our method is referred to as FFVD.

VGPSSM IGPSSM PRSSM VCDT FFVD
Coupled ¢(xo.7, 1) X X v v v
Unconstrained g(xq.7 | u) or g(xo.7) v X X X v
Unconstrained ¢(u) 4 X X X 4

3. Gaussian Process State-Space Models

Let us assume we are given a time series of 7' multi-
dimensional observations y ;. and denote their correspond-
ing latent states with xg.7, where xg is the initial state.
Here we denote the time series Xy, .t, 1= {X¢y,--., Xty |
and similarly for y,.p. In general, x; € R% andy, € R%.
Gaussian process state-space models (GPSSMs) formulate a
discrete-time state-space model (SSM) where the transition
dynamics is given by a GP. The full generative process is:

X0 ~ p(Xo), f(x) ~GP(ms(x),ks(x,%x;0)), (1)
f, = f(Xt—l), Xt|ft NN(Xt;th)v )
yelxe ~p(ye | xe, P), 3)

where Q is the transition process covariance, and ¢ is
the vector of parameters of the conditional likelihood
p(y; | Xt, ). Although our framework does not make any
parametric assumptions about this conditional likelihood, in
our experiments in § 7, we adopt the same setting as in pre-
vious works (Ialongo et al., 2019; Doerr et al., 2018) and set
p(yy | Xts ¢) = N(Yt; Cx; +d, R), with ¢ = {Ca d, R}’
where C, d are the weights and bias of the linear transfor-
mation on x; and R is the observation covariance.

3.1. Joint Distribution

As shown by Frigola (2015), to sample f;, instead of con-
ditioning on an infinite-dimensional function, we can con-
dition only on the transitions seen up to (but not including)
time ¢, i.e., {(x;_1,f;)}\Z]. We can then write the joint
distribution over latent variables and observations as:

(¥ 1.7 Xo:, i) =
T
p(x0) [ [ p(Fr | 1o 1, X0 1)p(xe | £0)p(y, | %0), ()

t=1

where p(x0), p(x¢ | ft), p(y, | x¢) are defined as above and,
for the edge case of t = 1, we have: p(f;|xg) =
N (f1;my(x0), K (X0, Xo; 0)). Furthermore, we recognize
each conditional distribution p(f; | £1.1—1,X0.t—1) in Eq. (4)
as the GP prediction at a single point x;_; using noiseless

outputs f1.;_; and inputs xg.;—2,

(&)
6)

p(fe [ f1.0-1,%0:e—1) = p(fe | x¢—1, 161, X0:4—2)
:N(ft;u'ﬂzf)a

with conditional mean and covariance given by

py=my g+ Kt—l,o:t—QK(;tl,Q(th—l —mg.r—2) (7)
=K1 — Ki1,00-2KooKou—2,0-1), ®)
where the subscript notation indicates the mean vectors

and covariance matrices obtained from evaluating the mean
function and covariance function, respectively, at the cor-

responding ranges, my,.;, = My(Xeyit,), My 1= My,
Ktlztg,t3:t4 = fif(th:tz,XtS:u;e), Kt1:t2 = Ktlztz,tlztz
and Kt = Kt:t'

3.2. Multidimensional Latent States & Control Inputs

In the case of multidimensional latent states, i.e., d, > 1, we
assume independent GPs on each dimension, each with its
own mean function and covariance function. Because of this
independence assumption, each GP only has to condition on
its own function evaluations. Therefore, for simplicity in the
notation, we do not index the means and covariances with re-
spect to their dimension d and consider the underlying GPs,
their means, and covariance functions as multi-dimensional.
Furthermore, as we shall see in § 7, our experiments con-
sider additional control inputs (a;) that affect the transitions
in a Markovian way. This is easy to incorporate in our
framework by augmenting our input space and, therefore,
indexing the GPs in the higher-dimensional space given by
the concatenation [x",a']". However, since the control
inputs are fixed and deterministic, we do not need to include
them as part of out inference method and do not make them
explicit in our subsequent mathematical development.

3.3. Sparse GPSSM

In order to make the GPSSM inherently scalable, similarly
to the standard supervised regression setting with GPs de-
scribed in § 2, we augment the full GPSSM model with
M inducing variables and corresponding inducing inputs
u = {u;}M, and Z := {z;}},. This gives rise to the
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sparse GPSSM model:

(¥ 1.1 Xo:7, frr,u | Z) = p(u| Z)p(xo)

T
Hp(ft | f1e—1,X0:0—1, W, Z)p(x¢ [ £)p(y | %), (9)
=1

where the prior over the inducing variables is determined
by the GP prior, i.e., p(u|Z) = N(mz,Kz) withmy :=
my(Z) and Kz = k¢(Z,Z;0). Besides having a prior
over the inducing variables u, the main difference with
our previous full-model formulation of § 3.1 is that the
conditional distributions over f; have been augmented
with inducing variables u and corresponding inducing in-
puts Z. Each conditional, p(f; |f1.:-1,%X0t-1,u,Z) =
p(fi | x¢—1,f1.4-1, 0, X0.t—2, Z), is the predictive (GP re-
gression) distribution of f; at test input x;_; when observ-
ing (f1.:—1, u) at their respective locations (xg.t—2, Z).

4. Free-Form Variational Inference

In this section, we develop a posterior estimation method
using variational inference (VI). We show that under a spe-
cific form of the approximate posterior, we can estimate the
joint posterior over {X¢.7, u} in free-form, i.e., optimally,
without making any assumptions such as independence be-
tween state trajectories and inducing variables, typical of
mean-field approaches (Frigola et al., 2014; Eleftheriadis
et al., 2017), or constraining the form of the posterior to
sub-optimal parametric forms (Ialongo et al., 2019; Doerr
etal., 2018).

4.1. Variational Family and Evidence Lower Bound

Variational inference is underpinned by the maximization
of the evidence lower bound (ELBO), which is equivalent
to minimizing the Kullback-Leibler (KL) divergence be-
tween the approximate posterior and the true posterior. This
objective is given by

Lerso(q) = Eq(xo.ru,f1.0) 10 P(Y 1.7, X0.7, fr.7, 0| Z)
—log q(xo.7,u,f1.7)], (10)

where p(y,.p, Xo.1, f1.7,u| Z) is the joint distribution in
Eq. (9) and ¢(x0.7, u, f1.7) is our proposed approximate
joint posterior, which we define as

T
q(fr.r [ %07, 0) = H (£ [ f14-1,X0:e—-1,1,Z), (11)

q(xo.7,u, f1.7) == (XOT» w)q(f1.7 | x0:7, u). (12)

It is easy to show that the ELBO, as defined in Eq. (10),
is a lower bound on the log marginal likelihood, i.e.,
Lr1po(q) < logp(y|Z). We see that our joint variational

posterior over state trajectories Xg.7, inducing variables u
and latent function values f.7 in Eq. (12) uses the condi-
tional prior over the latent function values in Eq. (11). This
is, of course, an assumption and limits the flexibility of our
approximate posterior. However, all previous scalable varia-
tional approaches to GPSSMS, such as VGPSSM, IGPSSM,
PRSSM and VCDT, have made the very same assumption.
Indeed, these types of approximations where the conditional
prior is used to define the join variational posterior have
become customary and necessary to avoid the cubic time
complexity of inference in GP models. See § 8 for further
discussion on the limitations of our approach.

Nevertheless, our proposed joint variational distribution
in Eq. (12), will allow us to derive an optimal variational
distribution ¢(xg.7, u) in free-form, without imposing any
parametric constraints over it and, instead, represent it via
samples. We will describe this in the next section.

4.2. Evidence Lower Bound Maximization

Our first step is to expand the expression for the ELBO in
Eq. (10) using our joint model distribution in Eq. (9) and our
proposed variational distribution in Egs. (11) and (12). We
first note that our definition of the variational distribution
in Eq. (12) uses the same conditional prior as in the joint
distribution in Eq. (9). Therefore, this term cancels out,
avoiding the computation of operations on fully-coupled
high-dimensional distributions over latent functions. Thus,
we have that:

Leipo(q) = /Q(XO:%U){ — log q(xo.7, 1)

T
p(ulZ) HP yt|Xt}
t=1

T
+ Eq(ror | xoru) [logH xt|ft}}dx0;Tdu. (13)

+log{

Next we aim to maximize the ELBO functional above
with respect to ¢(Xo.r—1,u) subject to the constraint
J a(x0:7—1, 1) dxg.7—1du = 1. We can do this by solving
the corresponding Euler-Lagrange equation:

0

aq(XOT,U){ - q(XO:Ta u) 1Og q(XO:T, u)

T
p(u|Z) [T oy, 1x)]
t=1

T
+ q(%0:7, WEq(£, . | 0. m) {log Hp(Xt | ft)} } =0.
t=1

+ q(x0.7, u) log [

(14)
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By doing the corresponding derivatives we obtain

T
—log g(xo.7, 1) — 1+10g[ p(u|Z) [T »( ytlxt}
t=1
T

+]Eq(fm:co:T,u){long(xt Ift)] =0. (15)

t=1
Now the expectation above can be solved in closed form:

T
Eq(e1.7 | x0.21) [log HP(Xt | ft)}

t=1

T
Z p(f¢ | x¢—1,u,Z) logp(xt|ft)

[1ogN(xt,um,Q) Tr(Q 'B, 1)}, (16)

Il
\IMH 1

where p(f; |x¢—1,u,Z) is the GP predictive distribution
over the function values f; at locations x;_; given the in-
ducing variables u at inducing inputs Z, i.e.,

p(ft | thlvuaz) = N(ft;p’qutfl% (17)
My, =my 1+ Ay j(u—mg). (18)

Here we have defined

A=K K5 (19)
B 1=K, 1 -K; 12K,;'Kz; 1,  (20)

and the cross-covariance term K;_1 7 := k¢(x¢—1,7Z;0)
and similarly for Kz ;. Finally, Tr(-) is the trace operator
and, as defined at the beginning of § 3, Q is the transition
noise covariance.

4.2.1. OPTIMAL VARIATIONAL POSTERIOR
With this, we obtain the form of the optimal variational
distribution ¢*(u, Xo.7) up to a normalizing constant Z, as:

log ¢ (u,x0.7) = log p(u | Z) + log p(xo)

T
+> [ogply, [x) +1og N (x: 1, Q)

t=1

1
_ 5T]r(Qlet_l)} +logZ,. (1)

Here we note that the function values f;.7 have, effectively,
been marginalized variationally. The optimal joint posterior
over inducing variables and state trajectories depends on
the prior over the inducing variables p(u|Z) stemming
from the GP functional prior, the prior over the initial state
p(x0) and the conditional likelihood terms p(y, | x;). It also
depends on the resulting transitions mapping x;_ to x; via

the densities NV (xy; p,,, Q), where p, depends on x;_;
in a nonlinear way, as specified by Eq. (19). The final trace
term, Tr(Q_lBt,l), can be seen as a regularization term
acting on state transitions, encouraging higher transition
variances and, therefore, helping prevent overfitting.

4.2.2. ALTERNATIVE PERSPECTIVE

An alternative way to obtain the optimal joint posterior
over state trajectories and inducing variable is by bounding
the true log joint marginal log p(y;.7, Xo.7, u|Z) using
Jensen’s inequality. We give the details in Appendix E.
This has been used by previous work in standard regression
settings (see, e.g., Rossi et al., 2021, and references therein).
However, our setting considers the more complex case of
GPSSMs. Additionally, our development shows much more
clearly the optimal nature of the variational posterior, as we
have obtained it via calculus of variations.

4.3. Posterior Sampling

Having the form of the optimal posterior in Eq. (21), we
can then set the latent variables ¥ := {u,xo.r} and
have §(¥) o« q(¥) ~ p(¥|y,.r). Thus, we can draw
samples from our approximate posterior using stochas-
tic gradient Hamiltonian Monte Carlo (SGHMC; Chen

et al., 2014; Havasi et al., 2018) and the energy func-
tion U(¥) = —logp(¥,y,.7) = —logp(¥|y,.7) +
log Z, =~ —log ¢(¥) + log Z,. Using this procedure, sam-

ples from the target distribution can be obtained even with
noisy gradients (e.g., with mini-batches) without requiring
the evaluation of Metropolis ratios. Importantly, other vari-
ables such as GP hyper-parameters 6 and inducing locations
Z can be easily included in ¥ using suitable priors and
incorporating them in our objective in Eq. (21).

4.3.1. COMPUTATIONAL COST & PRIOR WHITENING

An interesting aspect of GPSSM models is that, despite
their apparent Markovian nature, sampling at time 7" re-
quires conditioning on all the previous 1" — 1 points. This
is due to the non-parametric coupled GP prior over the tran-
sition function, making inference in the full model O(T?)
in time. Sparse variational inference approaches, such as
those based on inducing variable approximations, still re-
quire expectations over entire trajectories and, unlike stan-
dard supervised i.i.d settings, their time complexity is inher-
ently dependent on 7. Evaluation of the stochastic gradient
Hamiltonian Monte Carlo (SGHMC) objective in Eq. (21)
for sampling in our free-form variational dynamics (FFVD)
algorithm is O(M?T). this is the same cost as that attained
for ELBO evaluation in variationally coupled dynamic trajec-
tories (VCDT), which like our FFVD, models dependencies
between state trajectories and inducing variables.

Here we expand on the details of the computational cost
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of our approach when compared to VCDT. Our SGHMC
objective in Eq. (21) is very similar to the ELBO used in
VCDT. The ELBO in VCDT requires expectations over ¢(u)
and q(x¢, x¢—1|u). Given the factorization assumptions and
the Gaussian constraints on these distributions, these ex-
pectations are estimated straightforwardly via Monte Carlo
samples. The time complexity of evaluating Eq. (21) or the
ELBO in VCDT once (using one sample) is the same, i.e.,
O(M?3 + M?T).

The overall time complexity of both algorithms, FFVD and
VCDT, depends on (i) the number of samples (noting, again,
that VCDT also requires samples from the approximate
posterior to estimate the gradients of the ELBO) and (ii)
the number of iterations (either the length of the SGHMC
chain in FFVD or the number of epochs for gradient-based
optimization in VCDT). As described in Appendix I, our
experimental setting followed closely that of the original
VCDT paper, which used S = 100 samples for training
and S = 10° for predictions. Similarly, we used S = 100
samples for FFVD. Remarkably, the number of iterations in
our experiments for FFVD was 50, 000 while for VCDT was
200, 000 to achieve convergence. Furthermore, our analysis
in Appendix J shows that, in fact, our FFVD algorithm
converges in less than 10,000 iterations.

As in previous work (see, e.g., Hensman et al., 2015), we
have observed that whitening the prior over the inducing
variables improves the performance of our algorithm. See
details of our whitening procedure and the resulting unnor-
malized log posterior in Appendices D and E. 1.

4.4. Smoothing and Predictive Distributions

We are interested in estimating the smoothing dis-
tribution p(xo.7|y;.) and the predictive distribution
P(Yri1 | Y1) for T/ > T. At the end of our SGHMC

procedure, we have S samples from our joint approximate

posterior ¢(xo.7, ) ~ p(Xo.7 | ¥1.7)5 1-€-5 {ng%, ul® le

and, therefore, the smoothing distribution (i.e., the marginal
posterior over Xg.r) is readily available through this Monte
Carlo approximation.

We can also make one-step-ahead predictions using our
posterior samples. In particular, using Egs. (2) and (17) we
have that:

P(x¢ [ Xe—1,0,Z) = N(xp;my1 + Ay (u—my),
B; 1+Q), (22)

Vvt > T. Thus, replacing the values of A;_1,B;_; using
Egs. (19) and (20) we can make predictions for the next

state using samples as

ng) | ng_)D u® ~ N (x¢; uﬁs), EES)) with
i =mf, + KES—)LZK;(U(S) —mgz),
=Y =K, - K" KZ'KS),  + Q. (23)

For a general likelihood model, we can sample the (noisy)
targets using ygs) | xﬁ“') ~ p(y, | XES), ¢). In the case of a
Gaussian conditional likelihood, as described in § 3, we can
see that given samples from the latent state, the predictive
distribution is a Gaussian

yt‘) |Xt;1au(s) ~ N(yt; C/J'§S) +d,
cz¥cT +R). (24)

where the samples of {ng ), u(®)} are readily available after
running SGHMC on their joint space.

5. Collapsing Inducing Variables

So far we have described our method to obtain samples from
the optimal variational posterior over the joint distribution of
state trajectories and inducing variables using Eq. (21) and
SGHMC. In this section we show that we can, in fact, inte-
grate out the inducing variables u from our joint variational
distribution and obtain the optimal marginal distribution
for latent states xo.r. We start by retaking Eq. (21) and
isolating the terms that depend on the inducing variables,

q*(XO:T):/q*(u7XO:T)du
T

= 0 I [ty [ exp(— THQBy1)

t=1

/ p(u| ) [N (s 1y, Q)d, (25)

t=1

where we note that p,,, as defined as in Eq. (18), depends
on the inducing variables u. With this, we can complete the
square and identify the terms in the integral as products of
Gaussian distributions, whose normalization constant is a
Gaussian. Therefore, we have

¢ (xor) = pxo) T [pyibee) exp(—3 TH(Q By 1)

t

Nixiime1, Q)] /N (%:0,8,), (26)
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where the Gaussian in the denominator is determined by

T
~ ~T _
x=> A, Q '(xs —my_y), 27)
t=1
~ T ~T ~
Y. =1+) A, ,Q'A, (28)
t=1
A1 =K, z(Ly)"", (29)

where L 7 is the Cholesky decomposition of K z,i.e., Kz =
L ZL;. We note here that x is actually a projection of the
cumulative uncorrelated inputs Q_l(xt — my_1) via the
projection matrix L ,' K 7 ;1 and, therefore, X € RM.

Furthermore, in this collapsed version, the terms unrelated
to u are kept the same as those in the original optimal joint
distribution in Eq. (21). The individual Gaussian transitions
for the latent states are now N (x¢; m;_1, Q) since u has
been integrated out and we recall that m;_q = m(x;—1).
The additional term, which is the inverse of a multivari-
ate Gaussian distribution, records the cumulative projected
trajectory with the corresponding projected variances. Max-
imizing ¢*(xo.7) would tend to minimize this density func-
tion, which pushes the latent states away from 0 and also
decreases the values of the Q regulated variance.

Our algorithm in this collapsed version runs SGHMC using
as energy function ¥ (xg.7) = — log ¢(Xo.7) to obtain sam-
ples {x(()S)T} from the marginal ¢* (xq.7) and then uses the
closed-form expression for the conditional (Appendix G) to
obtain {u(®) |XéS)T}

5.1. Advantages of Collapsed Algorithm

Collapsing the inducing variables u will generally tend to
improve the convergence of our algorithm, as we are re-
quired to sample from a significantly lower number of latent
variables. The computational cost is similar to that of the
uncollapsed algorithm since despite avoiding the computa-
tion of KEl in p(u|Z), we require a similar term, Lgl, in
the evaluation of the projected Gaussian distributions.

It is important to emphasize one particular difference in our
approach with respect to the closely related VCDT algorithm
of Ialongo et al. (2019). As described before, Ialongo et al.
(2019) also propose a coupled joint posterior between state
trajectories and inducing variables. Their factorization is
gvepr = q(u)g(xq.1 | u), and they impose additional Gaus-
sian constraints on these densities. Our implicit assumed
factorization is grrvp = q(x0.7)g(u | Xq.7), which allows
us to obtain the optimal variational distribution without im-
posing any additional parametric constraints, integrate out
the inducing variables analytically and get a Monte Carlo
approximation to the optimal marginal ¢(x.7") via samples.
We also provide an expression for the conditional g(u | xg.7)
in closed-form. Details can be found in Appendix G.

5.2. Particle Markov chain Monte Carlo (PMCMC)

It is clear that the latent states are constructed in a Markovian
manner when the transition function f(-) is given, as the
value of the current latent state is dependent on the previous
latent state’s value. Therefore, we can use PMCMC methods
(Andrieu et al., 2010) to infer the posterior distribution of
the Markov structured latent states xo.7. This Bayesian
treatment might improve performance over SGHMC, as it
incorporates the sequential nature of the problem into the
sampling algorithm. The advantages of PMCMC over stan-
dard sequential Monte Carlo approaches have been docu-
mented previously, see. e.g., Andrieu et al. (2010). Here we
note that Frigola et al. (2013) also proposed a PMCMC treat-
ment for xo.7. However, their algorithm is very different
from ours as it is based on the fully-independent conditional
approximation (see, e.g., Quinonero-Candela & Rasmussen,
2005). More details can be found in Appendix K.

6. Related Work

We have already described the main differences between our
method and closely-related approaches throughout the pa-
per, e.g.,in §§ 1,4 and 5. We refer the reader to Appendix K
for more details. Other works have considered the GPSSM
in partially observable unstable settings (Curi et al., 2020),
combined variational inference with the Laplace approxima-
tion (Lindinger et al., 2022) or used sample-based inference
with a reduced rank approximation (Svensson et al., 2016).
With regards to scalable GPs, we note they have been the
subject of much research effort in machine learning, with
extensions to more general frameworks such as composi-
tional models (see, e.g., Wilson & Nickisch, 2015; Salim-
beni & Deisenroth, 2017; Yu et al., 2019; Cutajar et al.,
2017; Havasi et al., 2018; Rossi et al., 2021; Duncker et al.,
2019; Heinonen et al., 2018; Hegde et al., 2022; Auzina
et al., 2022; Bui, 2018). Our approach can be seen as a gen-
eralization of the fully-Bayesian supervised learning method
proposed by Rossi et al. (2021) to state-space models, where
we have included the non-trivial component of GP-transition
dynamics and have proposed a collapsed optimal variational
distribution for state trajectories.

Other models for GPS on sequential data have been pro-
posed, see, for example, Frigola (2015) for an excellent
overview. Of interest here is the state-space model view
of GPs that for time-series data with d, = 1 and Marko-
vian covariance functions can provide exact inference in
linear time O(T') (Solin, 2016). This has been extended to
non-Gaussian likelihood models and made more efficient us-
ing several computational primitives (Nickisch et al., 2018).
More recently, there has been some work on using the sig-
nature kernel (Toth & Oberhauser, 2020; Salvi et al., 2021)
within GP models. In particular, Lemercier et al. (2021)
generalize variational orthogonal features (Burt et al., 2020;
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Figure 1. Results on synthetic data. Left: Observations shown as
green dots, Ground truth as a solid black line, and FFVD’s mean
fitting as a dashed red line with one standard deviation error bars.
Right: Histograms of p-values for the hypothesis test that each
marginal posterior over states {z;} (top) and inducing variables
{u;} (bottom) is generated from a Normal distribution.
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t

Figure 2. Training (¢ <= 150) and test performance (t >= 150)
on the Furnace dataset. The black solid line is the underlying
ground truth signal and the dashed red line is FFVD’s mean pre-
diction. The blue solid line indicates the training/test split. An
underlying d, = 4-dimensional latent stated was used.

Hensman et al., 2017) to the sequential case, constructing
inducing variables associated with the signature kernel that
yield a variational inference algorithm that does not require
any matrix inversion.

7. Experiments

We evaluate our FFVD method on synthetic data and on
six real-world system identification benchmarks (Ialongo
et al., 2019; Doerr et al., 2018), comparing it with VGPSSM
(Frigola et al., 2014), PRSSM (Doerr et al., 2018), VCDT
(Talongo et al., 2019), and use a LSTM network (Hochreiter
& Schmidhuber, 1997) as a baseline non-GP based model.
All experiment details can be found in Appendix L.

7.1. Synthetic Data

We generate data from a sparse GPSSM with a squared expo-
nential covariance function. Our goal here is to investigate
the properties of our FFVD algorithm. Therefore, we fix the
value of all parameters to their ground-truth values except
for the latent states xg. and the inducing variables u. The
left panel of Fig. 1 illustrates that FFVD effectively learns
the intricate transition function with two modes within re-
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Figure 3. Traceplot of the training log-likelihood when using
SGHMC (FFVD-M) and when collapsing the inducing variables
FFVD-C-M. Collapsing generally improved convergence.

gions containing latent states. As the number of latent states
increases, FFVD more accurately approximates the true
function. A lack of fit in regions without latent states is
to be expected. Having a good fit, we are now interested
in knowing whether the true posterior (as estimated by our
algorithm) is close to a Gaussian distribution. The right
panel in Fig. 1 indicates that more than 10% of the latent
states xo.7 and more than 50% of the inducing variables
u do not provide enough support for the hypothesis that
their marginal distributions follow a Normal distribution
(see Appendix I). This brings into question the parametric
assumptions over the variational posterior made by previous
work (e.g., lalongo et al., 2019; Doerr et al., 2018).

7.2. Real-World Data

Here we evaluate the different methods using six system
identification benchmarks with a latent state dimension
d, = 4, as used by Ialongo et al. (2019); Doerr et al. (2018).
See more details in Appendix I.

Predictive performance: The test performance is shown in
Table 2 and Table 3, where we see that FFVD attains the best
NMLL values in three out of the six benchmarks and obtains
lowest RMSE values in four out of the six benchmarks (in
bold). Furthermore, for Actuator and Dryer, FFVD-C-M
ranks second among all the algorithms (underlined). The
performance of VGPSSM and PRSSM is usually worse than
others, which is likely due to their strong mean-field and
parametric assumptions, respectively. LSTM obtains good
performance on three datasets, although its deterministic
structure is different from our random function setting. The
performance of VCDT is the closest to our FFVD methods,
as it models a coupled ¢(xo.7, u).

Qualitative analysis: In addition to this quantitative eval-
uation, we can see a qualitative illustration of using our
algorithm for predicting the training and test (future) obser-
vations in Fig. 2. This is an example of good generalization,
although it is (of course) not consistent across all problems,
given the limited training data. Finally, we analyze the con-
vergence of our algorithm in Fig. 3, where we see that FFVD-
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Table 2. Test root mean square error (RMSE) values =+ one standard deviations on the real-world system identification benchmarks. Our
method, FFVD, when using SGHMC (FFVD-M); the collapsed version (FFVD-C-M); and when using PMCMC (FFVD-P).

Methods Actuator Ballbeam Drive Dryer Flutter Furnace

LSTM 0.586 +0.411  0.027+£0.023 0.537£0.108 0.115+£0.029 0.912+0.562 1.261 +0.610
VGPSSM 0.580 £0.274 0.073+£0.011  0.722+£0.087 0.241 £0.023 1.4824+0.218 1.1154+0.358
PRSSM 0.497 +£0.381  0.059 +£0.013 0.813+0.101 0.017+0.042 1.371 +£0.156  1.243 +0.407
VCDT 0.239+0.040 0.011+£0.002 0.585+0.017 0.142+0.003 1.7824+0.324 1.166 +0.011
FFVD-M 0.358 +£0.242  0.019+£0.018 0.673£0.207 0.205+£0.313 0.2804+0.193 0.571 +0.185
FFVD-C-M  0.259 £0.209 0.009 £0.011 0.775+£1.615 0.065+0.112 0.663 = 0.189 0.548 £ 0.051
FFVD-P 0.388 £0.087 0.199 £0.045 0.342+0.057 0.317+0.050 0.562+0.088 0.669 +0.174

Table 3. Test negative mean log likelihood (NMLL) values 4 one standard deviation on the real-world system identification benchmarks.
Methods as in Table 2.

Methods Actuator Ballbeam Drive Dryer Flutter Furnace
VGPSSM  1.09 £0.11 0.92 £0.07 —0.60+0.07  0.46 £0.09 2.38£0.21 240 £0.27
PRSSM 0.29 +0.17 0.40+0.09 —-1.14+0.13 0.524+0.07 0.514+0.11 3.46 +0.31
VCDT —-0.36 £0.02 —-0.65+0.01 1.234+0.01 —0.024+0.01 6.13£0.48 7.49 £ 0.07
FFVD-M  —0.03+0.10  0.09 £ 0.05 1.66 £0.01 —0.08+0.09 048+0.33 —-0.43+0.05

Table 4. Mean training running times in seconds (T) and mean
RMSE (R) as a function of the number of iterations on Furnace.

Iterations 10 100 500 1000
i i
RSN g e w4 Lo
YT g Yyt 1%
FFVD-M IZ i’ég 21(?5: 1(2).1%12 2(?;.8%28

C-M uses less iterations (~ 8 000 iterations) than FFVD-M
(~ 40000 iterations) to achieve similar performance. This
confirms the benefits of collapsing the inducing variables
and sampling only on the lower-dimensional space of state
trajectories. We can see these analyses for all benchmarks
in Appendices J.1 and J.2.

Running times: We illustrate the advantages of our ap-
proach when considering running time as a function of the
number of iterations in Table 4. We can clearly see that our
approach is around 10 times faster than PRSSM/VCDT and
obtains the best RMSE values after 100 iterations. VGPSSM
runs fastest at the expense of higher prediction errors. These
time results were done using a Macbook Pro 2021 with
16GB in memory, M1 chip, and 8 cores. It is noted that
caution must be taken with interpreting these results, as they

depend on implementation specifics, computer architectures
along with other practical details.

8. Conclusions, Limitations and Future Work

We have presented FFVD, a new variational inference al-
gorithm for GPSSMs. Unlike previous approaches, FFVD
does not make any independence or parametric assumptions
on the joint variational posterior over state trajectories and
inducing variables ¢(xo.7, u) and, instead, represents the
posterior via samples from the “optimal” variational dis-
tribution. However, as described in § 4.1, despite having
a free-form posterior over state trajectories and inducing
variables, our approach is still an approximation in that it
assumes the conditional posterior over the latent functions
to be the same as the conditional prior. This is a customary
and necessary (albeit questionable) assumption in scalable
variational methods for general GP models.

Our method also assumes independent GPS over the state
dimensions. However, one can expect the dynamics to be
correlated across dimensions, bringing a need for the so-
called multi-output/multi-task GPS. This has been a fairly
extensive area of research and we believe a weight-space
view of such models could be suitable, where dimensions
are correlated through a weight matrix. Approximate infer-
ence algorithms in this setting can be developed in O(d,,),
where d, is the state dimensionality, or even independent
of d,. (see, e.g., Aglietti et al., 2019, in the context of Cox
process models). As we would like to scale up to very
high-dimensional spaces, we leave this to future work.
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A. Basic Results on Gaussian Distributions
A.1. Conditional Gaussian Distribution

Assuming the joint Gaussian distribution p(x) = N (x; u, X) over the random vector x such that:

Xa Hn Eaa 2ab
X = , =", ¥= 30
[Xb] H [MJ |:Eba ZJbbJ 30)
where 3, = X7, we have that the conditional distributions are given by:

P(Xp | Xa) = N (x5 1y + BoaZna (Xa — o) Ziob — ZpaZnn Dab)- (€)))

A.2. Expectation over log of Normal Distribution

With an approximate marginal posterior ¢(f,) and a Normal distribution p(y | f,.) of the form:

q(f*) = N(f*7 uw 2*)7 (32)
p(y ) = N(y: i, By), (33)

Wwe can compute
Eqt.) logp(y | £.) = log N (y; p,., By) + Tr (B, ' ). (34)

B. Posterior Marginal in Sparse GP Models

In variational sparse GP models we usually have the joint Gaussian model p(f,, u) and a posterior distribution over ¢(u)
with

p(f*) = N(l’l’l*, K*)a (35)
p(u) = N(u;mz,Kz), (36)
Cov(fy,u) = K, 7, (37)
q(u) = N(u; py, Eu), (38)
and we wish to compute:
alt) = [ aft..w)du (40)

where we have omitted conditional dependencies on x, and Z for simplicity in the notation. For example this is necessary
to compute the expectations over the conditional log likelihood term during inferencce or to make predictions on a new test
point. Using Eq. (31) we obtain:

p(fy|u) = N(fo;m, + K, K, '(u—my), K, - K, ;K,'Kz,). (41)

In order to integrate out over ¢(u) we know that the result is a Gaussian with mean and covariances obtained from the
following linear transformation of u:

fo=m, + K, ;K '(u—myz)+e, e~N(0,K, K, K,'Kz,). (42)
Thus, we obtain:
q(f) =N (fo;m, + K, 2K, (p, —mz), K, ,K;'S.K, 'Kz, + K, - K, 7K, 'Kz,) (43)

=N (fom, + K, 7K, (1, —mz), K, + K, 7K' (Zu - Kz)K;'Kz,). (44)

C. Graphical Model

Fig. 4 illustrates GPSSM’s graphical model.
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Figure 4. Generative process of the GPSSM (left panel) and the sparse GPSSM (right panel).

D. Details of Prior Reparameterization: Whitening Prior over Inducing Variables

Here we show a more detailed derivation of the prior reparameterization and, consequently, the new form of the required
conditional distribution. We know that our prior over the inducing variables is p(u) = N (u; mz, Kz) and that we use the
new whitened prior v = L' (u — my) with L;L% = K and p(v) = N(v;0,1,;). We also have that the marginal prior
over f, is p(f,) = N (f,; m,, K,). It follows that p(f, v) is a Gaussian with cross-covariance:

Cov(f,,v) = E[(f, — m,)(L,'(u — my))T] (45)
=E[(f, - m,)(u—mz)T|(L;")" (46)
Cov(f,,u)
=K, z(LH7". (47)
Hence, using Eq. (31), we have that:
p(fel, %, v, Z) = N(fa;m, + K, z(L;H) v, K, — K, 2(L;) L, 'Kz,), (48)
(i |, %, v, Z) = N(fo;m, + K, 2(L,)Tv, K, — K, zK,'Kz,). (49)

Alternatively, we can simply obtain this result by replacing u with u = mz + LV in the conditional distribution. Here we
note that this is consistent with the GP definition in that if we were to integrate out the variables v from the joint model
p(f4, v) we would obtain the exact GP prior p(f,).

D.1. Posterior Marginal

With the whitened join model p(f,, v), Gaussian approximate posterior ¢(v) and a variationally sparse GP model we have:

p(fe|v) =N(fom, +K, z(L, HTv K, — K, 2K KZ*) (50)
a(v) =N(vipy, Bv), (61
q(f.,v) = q(v)p(f. | V). (52)
It is easy to show that the posterior marginal ¢(f,) = [ ¢(f,,v)dv is:
¢u(f2) = N(fsm, + K, 2(L ) 0y Ke + Ko 2(L7) T (B — T L7 Kz,). (53)

E. Free-Form Posterior Estimation By Bounding the Log Marginal Likelihood Directly

Computing the log marginal:
T-1
log p(Yo.r—1,Xor—1,u| Z) = log |p(u| Z)p(x0)p(yo | x0) [ [ (e %:) | + L(x0r-1, 1, Z), (54)
t=1
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where

L(xo:r-1,u,Z) llog prt|ft) (Fe[f1:—1,%0:-1, 0, Z) dfrr—1 | (55)

fi.r—1 14

which we note is a log of an expectation, which we can bounded using Jensen’s inequality:

T-1

,C(XO T—1, W Z) z EHT 1 p(fe | f1:e—1,%0:¢—1,u,2) log H p(xt ‘ ft) (56)
t=1
T—1
= Z Epe, |x0_1,u,2) log p(x¢ [ £1), (57)

t=1

where p(f; | x;—1,u, Z) is the GP predictive distribution over f; at x;_; given the (pseudo observations) inducing variables
u at inducing inputs Z:

p(ft |xt_1,u,Z) :N(ft;At_lu,Bt_l) with (58)
A=K, 1 7K, (59)
B 1=K K sK;'Kz; ;. (60)

Hence, the expectations in Eq. (57) can be computed in closed-form:

1 _
Epe, | xi—1,u,2z) logp(x¢ | £;) = log N (x4 Ay—1u, Q) — 3 Tr(Q 'Bi_1). (61)

Thus, we have that:

log p(yo.7—1,X0:7—1, u| Z) > log [p(u | Z)p(x0)p(yo | %0)] +
T—1

1
Z [logp Vel %) +log N (xe: Aru, Q) — 5 Tr(Q B, 1>] . (62)
Then setting the latent variables ¥ := {u, Xxo.7—1}, we can obtain the approximate log unnormalized posterior:

log g(¥) := log p(u| Z) + log p(xo) + log p(y, | X0) +
T—1

> [logp(yt | x¢) + log V(x5 Ay—1u, Q) — ;TF(Q_lBt—ﬂ] . (63)

t=1

where ¢(¥) x ¢(¥) ~ p(¥ |y,.1_1). Thus, we can draw samples from our approximate posterior using SGHMC and the
energy function U(¥) = —log p(¥,yo.r—1) = —logp(¥ [yo.r—1) + C = —log ¢(¥) + C.

E.1. Whitened Version
In the whitened version, v = Lgl (u—my)oru=my + Lyzv and the effective prior is
p(v) = N(v;0,1). (64)

Letting . = (u, Z,0),v = (v, Z, ), the determinant of the Jacobian can be calculated as:

~ d(mz+Lzv) Od(mz+Lzv) I(mz+Lzv)
on | S T
v 1] % %
ov 0Z 06
LZ a(mzangv) O(mZansz) LZ 0 0 )
= 0 I 0 = 0 I 0= |Lzl = |Kz|5 (65)
0 0 I 0 0 I
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Thus, we can re-write the approximate log unnormalized posterior as:

N 1 1 1
log §(v,xp.;7—1) = log |[Kz|2 —log |[Kz|2 — §VTV + log p(xo) + log p(yo | X0)+

T-1

5~ [foun(y, x0) + Tou Vi Koy 2(151) 7%, @) - 3 THQ By

t=1
= logp( ) +log p(x0) + log p(y | x0)+

- 1
Z [logp v %) +log N (x; Ki—1,2(L;) v, Q) — 2Tr(Q1Bt_1)] . (66)

F. Collapsed Method

We can integrate out u in Eq. (21) to obtain the marginal distribution of x1.7.

q" (x17) = / q"(u,xy.7)du :/ (u|Z)p H [ p(ye | xe) eXP(—TT(Q_lBtﬂ)N(Xt;Nzt,Q)} du (67

u —

H[ (3¢ x) exp(— 5 THQ B, n} / p<u>1i1fv<xt;uzt,@>du. (68)

In the case of using our prior re-parameterization, i.e., whitened inducing variables, v and for multidimensional states and,
therefore, multi-output GPS, we can write the integral above for dimension d as:

T

/ HN gd) mt 1+AE v, Qy)dv®
V(d) pale
T 1 1
=TI, Quyenp | (&) () 16| (der(a1®))” (69
t=1
where
T -1 T
1 (d) ~1,x (D) —1x (@
g = <I+ Z(AHFQd%AH)) (Z(»«Ef” -m?)'Q, A, ) : (70)
t=1 t
T -1
~ (d) “1,5 (D)
HY = (I +y (AD)TQg 1(At—1)>
t=1
< (d) d d _
Ay =KE )12((L(Z))T) L (1)
Thus, our optimal log variational posterior marginal over state trajectories Xq.r is
T
log ¢* (xo.1) = log p(x0) + Y _ log p(y, | x¢) + log N (x1; m; 1, Q)]
t=1
1 &
-5 > ZTr (Q;'BY) + log det(HD) ! — (x(D)THD (x@)| | (73)
d=1 Lt=1

(d) d
where x(¢ Zt (A )TQd ( X _mg—)1>-
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Algorithm 1 Particle MCMC for inferring latent states x¢.r

Require: Number of particles .S, observations y;.p, samples of x/.,- in the previous iteration, likelihood parameters
¢ = {Cv d, R}’
Initialize state xq, weights Wt(i) =1fori=1,...,85.
Fix the last particle as setting xiST) =X\
fort=1,...,7T do
Generate xgi) from Eq. (22) for: =1,...,5 — 1.
Calculate weight W/ = p¢(yt|x£i)) fori=1,...,8

Normalize the weights as ng) = Wt(i) /> Wt(i)

if t < T then
Fori =1,...,5 — 1, re-sample the index j;; from the categorical distribution, with the event probabilities being
7(1) 7i7(5)
(W, . W), ) ‘
Fori' =1,...,8 — 1 letx{") := x{¥") and set Wj' = 1/

else
Re-sample the index 7* from the categorical distribution, with the event probabilities being (Wil), e ,WES)).
Return xq.p :== XEJT)

end if

end for

G. Closed-Form Optimal Variational Conditional Distribution over Inducing Variables

Given a trajectory, the optimal variational conditional over the whitened inducing variables given a state trajectory is given
by:
da
q(v|xo.1) = H N g@ H(d))7 (74)
d=1

where g and H are given in Egs. (70) and (71), respectively. A similar expression can be obtained for the original
(non-whitened) inducing variables u. Of importance here is that our formulation has allowed us to obtain an optimal
conditional variational distribution, given the state trajectories, over the inducing variables in closed form. We see then that,
in effect, our approximate posterior is grryp (X0.7, u) = ¢(X0.7)g(u | Xo.7). In order to make predictions, we run SGHMC

to obtain samples {xés)T} from the marginal p(xo.7) and then use the closed-form expression for the conditional to obtain

{u®] xésgp} Running SGHMC over the much lower-dimensional space of state trajectories (instead of the joint space of
trajectories and inducing variables) should generally converge faster. Or experiments with both versions of the algorithm
confirm this.

G.1. Optimal Closed-Form Conditional vs Assumed Parametric Factorizations

We contrast our variational distribution with that of the variational Gaussian process state space model (VGPSSM; Frigola
etal., 2014) and the variationally coupled dynamic trajectories (VCDT; lalongo et al., 2019). While, implicitly, our variational
distribution is ggryp (X0.7, 1) := ¢(x0.7)q(u | X0.7) the VGPSSM and VCDT assume gygpssm(Xo.7, 1) := ¢(Xo.7)q(1)
and gvcpr (X071, u) := q(xo.7 | u)g(u), respectively. Although the former (VGPSSM) obtained an “optimal” posterior
(given the factorization assumption), it is a mean-field approximation and ignores the dependencies between state trajectories
and inducing variables. The latter (VCDT), does not make a mean-field assumption but its factorization forces parametric
constraints over the individual distributions. In fact, Ialongo et al. (2019) assume Gaussian posteriors for both the marginal
¢(u) and each of the time-dependent conditionals in ¢(xo.7 | u). Our proposal is the only variational distribution that is
theoretically optimal while yielding a closed-form conditional.

H. Particle Markov chain Monte Carlo (MCMC)

We can use the sequential structure of the latent states x.7 for efficient inference. More specifically, using the transition in
Eq. (22). The details of this are given in Algorithm 1.
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I. Experiment Details

Regarding the variational Gaussian process state space model (VGPSSM), probabilistic recurrent state space model (PRSSM),
and VCDT, we download the authors’ implementations from their websites. For a fair comparison, we try to follow the same
treatment for hyper-parameters across all methods. We note, however, that the Matlab implementation of VGPSSM does not
provide inference for GP hyper-parameters 6, conditional likelihood parameters ¢, inducing inputs Z, process variance () or
observation variance R.

L.1. Settings for synthetic data

In generating the synthetic data, we set the kernel’s signal variance o = 2.0 and lengthscale [ = 0.5 in the sparse GPSSM.
we reduce the impact of observational error and set the observation variance as small as o2 = 0.01, i.e., each observation
would be generated as y; ~ N (x4, 0.01). We also set the process variance Q = 0.01. The number of inducing points is set
to 20, and these 20 inducing points are evenly spread in the interval [—2, 2]. We set the length of the training trajectory as
120, the number of iterations as 50 000, and the number of posterior samples as 50.

I1.1.1. TESTING THE MARGINALS FOR GAUSSIANITY

We conduct a hypothesis test for each individual trajectory state and inducing variable. Given the 50 posterior samples
for x; (or Uy,), which we denote them as {x\*1%% | (or {u's)}32 ), we use the implementation of scipy.stats.normaltest
from Python’s scipy package to test whether we have sufficient evidence to reject the hypothesis that x; (or u,,) follows a
Gaussian distribution. scipy.stats.normaltest is based on the work of D’agostino & Pearson (1973).

L.2. Settings for Real-world Data

We adopt similar settings as in Ialongo et al. (2019) to initialize the hyper-parameters for all the models, which first uses a
factorized nonlinear model to optimize 8, x¢.7, u, Z, C,d, R, Q. We use the identity function as the mean function and the
squared exponential function with automatic relevance determination (ARD) in GPSSM. When dealing with more than
1 latent dimension, which requires a multi-output GP, we use a different set of kernel hyper-parameters for each output.
We set the number of inducing points to M = 100 and the number of dimensions for latent states xq.7 to d,, = 4. We set
standard diagonal Gaussian priors for the initial latent state xy and (where applicable) for likelihood parameters C, d, the
logarithm of observation standard deviation log(R)/2 and process variance log(Q).

For optimizing these hyper-parameters, we use Adam, with default settings for the optimizer parameters except for a decayed
learning rate. We run our FFVD algorithm for 50 000 iterations and VCDT for 200 000. We set the learning rate as 0.01 and
the decay parameter as 0.05 during SGHMC sampling. We used S = 10° posterior samples for VCDT (as in the results in
the original paper) and .S = 100 for ours. Following the evaluation in Ialongo et al. (2019), we use the root mean square
error (RMSE) between the models’ predictions and the ground truth in the future 30 time steps (not seen in training) as the
comparison criterion for all the methods.

Regarding the benchmarks, we have 1 024 observations for Actuator, 1 000 observations for Ballbeam, 500 observations
for Drive, 1000 observations for Dryer, 1024 for Flutter, and 296 observations for Furnace. Training lengths are:
Tirain = 500, 500, 250, 500, 500, 150, respectively, and test lengths are the rest of the sequences. All these observations are
1-dimensional but, as in previous work, we consider d, = 4-dimensional latent states. Each benchmark also contains a
1-dimensional control input vector a € RT*1,

1.3. Details of Performance Metrics

We use the test RMSE and the negative mean log likelihood (NMLL).

Given samples from the predictive distribution {yts)} we can compute the RMSE as:

1 o )2
RMSE = 2= > (v, ~ E(3("}) 75)
t=1

N

where E{ygs)} is estimated as the empirical mean.
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If the corresponding method gives us {xgs)}, then we can estimate the NMLL as:

s T
NMLL = — ZZ log N ( yt,Cxt +d,R). (76)

’ﬂ \

If the method only provides us with {ygs)} then a reasonable estimate is:

T
1 ~(s ~ (s
NMLL = —— " log Ny {917}, V{y17)), (77)
t=1

where E{y,ﬁs)}, V{yﬁs)} are the empirical mean and variance of the predicted samples.

For FFVD, we simply use:

NMLLgpyp = —

ﬂ \

S T
ZZ logN(y,;Cul® +d,c29cT +R), (78)

(s)

where [L)(ES) and X, are given by Eq. (23).

I.3.1. DATA NORMALIZATION
The normalization (i.e., standardization) of observations is given by the transformation:

~ Yt — My
Y= ———
Oy

5 (79)

where m,, and o, are the mean and standard deviation of the training data. Let us denote the RMSE and NMLL as the error
metrics in the normalized space. It is easy to show we can obtain the metrics in the original space as:

RMSE = 0,RMSE (80)
NMLL = log o, + NMLL. (81)

I.4. Reproducibility

As mentioned in the main paper, our code is publicly available at https://github.com/xuhuifan/FFVD.

J. Additional Results

J.1. Training and Test Performance on All Benchmarks

Fig. 5 shows the training and testing regimes and predictions for the six system identification benchmarks considered.

J.2. Traceplot of Log-Likelihood on Training data for FFVD-M and FFVD-C-M

Figure 6 shows the convergence trace plots for all benchmarks.

K. Extended Related Work

Here we give more details about the differences between our method and closely related approaches for inference in the
GPSSM. The VGPSSM of Frigola et al. (2014) is the first developing variational approaches to inference in GPSSMs, and
it uses mean-field assumptions to factorize the variational distribution of inducing variables u and latent state trajectories
Xo.7 as gvapssm (W, Xo.7) = g(u)q(Xp.7). This assumption clearly overlooks the complex dependencies between u and
xg.7. Doerr et al. (2018) model these dependencies with their PRSSM algorithm, but make the unrealistic assumption
of the posterior dynamics over the latent state trajectories being the same as the prior. Ialongo et al. (2019) show that
this assumption can have critical consequences on the posterior and predictive distributions and propose a more general
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Figure 5. Training and test performance on benchmarks. Row 1 (left to right): Actuator, Ballbeam, Drive; row 2 (left to right): Dryer,
Flutter, Furnace.
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Figure 6. Traceplot of log-likelihood on training data for FFVD-M and FFVD-C-M. Row 1 (left to right): Actuator, Ballbeam, Drive; row
2 (left to right): Dryer, Flutter, Furnace.

algorithm called VCDT. Although a significant improvement over previous methods, VCDT assumes posterior Gaussian
distributions. When considering our main object of interest, i.e., the posterior over the state trajectories, under the standard
and most commonly used GP setting with non-linear kernels, a Gaussian posterior assumption never holds, as the latent
states are inputs to the kernel. Hence, our approach is theoretically superior to VCDT and provides a new baseline with
broad practical applicability.

As mentioned in the main paper, Frigola et al. (2013) also proposed a PMCMC algorithm for inference over state trajectories.
However, the algorithm is based on the fully-independent conditional approximation (FIC; Quinonero-Candela & Rasmussen,
2005). As reported in Frigola et al. (2013), a naive implementation of their algorithm has a time complexity of O(M?T?),
which is significantly higher than ours. A much more efficient implementation with O(M?2T) time complexity that requires
significant tracking of intermediate data structures and factorizations is hinted at in the original paper. Unfortunately, the
corresponding code has not been made publicly available. Furthermore, model approximations such as those in FIC can
have surprising consequences, such as incorrectly estimating the noise variance to be almost zero or ignoring additional
inducing inputs, see, e.g., Bauer et al. (2016) for a thorough discussion. Consequently, we see our variational approach as
more principled.

K.1. Reduced-Rank Approaches

Here we discuss the related approach of Svensson et al. (2016), which we will refer to as reduced rank (RRANK). As with
random feature approximations, RRANK exploits the covariance function-spectral density duality via the Wiener-Khinchin
theorem to approximate the underlying GPs with a linear-in-the-parameters model, where the feature maps can be obtained
analytically for specific kernels.
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While these types of approaches have their own weaknesses and strengths with respect to inducing variable approximations,
one crucial difference with our method is that their approximation is only applicable to stationary kernels. Therefore our
method is, by definition, much more general. Furthermore, as noted by Wilson et al. (2020), those types of approximations
to the covariance function based on finite-dimensional feature maps are known to exhibit undesirable pathologies at test time.
In particular, the feature maps used by Svensson et al. (2016) can become increasingly ill-behaved in high-data regimes.
Consequently, we believe the advantages of our approach (that avoids the stationarity assumption and its corresponding
practical deficiencies) justify its use as an additional tool for practitioners and researchers.

Nevertheless, here we briefly report some results using the Matlab code provided by Svensson et al. (2016). The RMSE
values obtained on Actuator, Ballbeam, Drive, Dryer, Flutter, and Furnace are 0.33, 0.11, 0.73, 1.35, 1.86, and 9.66,
respectively. While these results are generally competitive with our approach and other baselines, they are inferior to the
results reported with our algorithm.
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