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ABSTRACT

The depth separation theory is nowadays widely accepted as an effective explana-
tion for the power of depth, which consists of two parts: i) there exists a function
representable by a deep network; ii) such a function cannot be represented by
a shallow network whose width is lower than a threshold. Here, we report that
adding intra-layer links can greatly improve a network’s representation capability
through the bound estimation, explicit construction, and functional space analysis.
Then, we modify the depth separation theory by showing that a shallow network
with intra-layer links does not need to go as wide as before to express some hard
functions constructed by a deep network. Such functions include the renowned
”sawtooth” functions. Our results supplement the existing depth separation the-
ory by examining its limit in a broader domain. Also, our results suggest that once
configured with an appropriate structure, a shallow and wide network may have
expressive power on a par with a deep network.

1 INTRODUCTION

Due to the widespread applications of deep networks in many important fields (LeCun et al., 2015),
mathematically understanding the power of deep networks has been a central problem in deep learn-
ing theory (Poggio et al., 2020). The key issue is figuring out how expressive a deep network is or
how increasing depth promotes the expressivity of a neural network better than increasing width. In
this regard, there have been a plethora of studies on the expressivity of deep networks, which are
collectively referred to as the depth separation theory.

A popular idea to demonstrate the expressivity of depth is the complexity characterization that intro-
duces appropriate complexity measures for functions represented by neural networks (Pascanu et al.,
2013; Montufar et al., 2014; Telgarsky, 2015; Montúfar, 2017; Serra et al., 2018; Hu & Zhang, 2018;
Xiong et al., 2020; Bianchini & Scarselli, 2014; Raghu et al., 2017), and then reports that increasing
depth can greatly boost such a complexity measure. In contrast, a more concrete way to show the
power of depth is to construct functions that can be expressed by a small network of a given depth,
but cannot be approximated by shallower networks, unless its width is sufficiently large (Telgarsky,
2015; 2016; Arora et al., 2016; Eldan & Shamir, 2016; Safran & Shamir, 2017; Venturi et al., 2021).
For example, Eldan & Shamir (2016) constructed a radial function and used Fourier spectrum anal-
ysis to show that a two-hidden-layer network can represent it with a polynomial number of neurons,
but a one-hidden-layer network needs an exponential number of neurons to achieve the same level of
error. Telgarsky (2015) employed a ReLU network to build a one-dimensional ”sawtooth” function
whose number of pieces scales exponentially over the depth. As such, a deep network can construct
a sawtooth function with many pieces, while a shallow network cannot unless it is very wide. Arora
et al. (2016) derived the upper bound of the maximal number of pieces for a univariate ReLU net-
work, and used this bound to elaborate the separation between a deep and a shallow network. In a
broad sense, we summarize the elements of establishing a depth separation theorem as the following:
i) there exists a function representable by a deep network; ii) such a function cannot be represented
by a shallow network whose width is lower than a threshold.

The depth separation theory is nowadays widely accepted as an effective explanation for the power
of depth. However, we argue that depth separation does not hold when we slightly adjust the struc-
ture of the shallow networks. Our investigation is on ReLU networks. As shown in Figure 1(c),
inspired by ResNet that adds residual connections across layers, we add residual connections within
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a layer, which forces a neuron to take the outputs of its neighboring neuron. Then, we find that insert-
ing intra-layer links can greatly increase the maximum number of pieces represented by a shallow
network. As such, we can modify the statement of depth separation: without the need of going as
wide as before, a shallow network can express as a complicated function as a deep network could.

…

(a) feedforward (c) intra-linked

…

(b) residual

… … … …

feedforward

…

intra-linked

…O O

Figure 1: (a) feedforward, (b) residual, and (c) intra-linked.

Our result is valuable in two aspects. On
the one hand, it non-trivially supplements
the depth separation theory. In reality, a
neural network often is not feedforward but
uses shortcuts to link distant layers to fa-
cilitate feature reuse and easy training. Ex-
ploring the depth separation in the shortcut
paradigm reveals the limit of the existing
theory and motivates us to rethink the gen-
uine power of depth. On the other hand, the
superiority of depth over width nowadays
seems to become a doctrine for most deep
learning practitioners. However, studies such as width-depth equivalence (Fan et al., 2020) and rep-
resentation ability of wide networks (Lu et al., 2017; Levine et al., 2020) show the essential role
of width. In the same vein, our work suggests the potential of wide networks in expressivity. Once
configured with an appropriate structure, a shallow and wide network may have expressive power on
a par with a deep network. Note that adding intra-layer links is not equivalent to increasing depth.
The common understanding of increasing depth is to increase the number of layers, while intra-layer
links are just to connect neurons in the same layer, which is a slight change to the original network.

Specifically, our roadmap to the modification of depth separation theorems includes two milestones.
1) Through bound analysis (Theorems 4, 6, and 8), explicit construction (Propositions 1, 2, and 3),
and functional space analysis (Theorem 10), we substantiate that a network with intra-layer links
can produce much more pieces than a feedforward network, and the gain is at most exponential, i.e.,
( 32 )

k, where k is the number of hidden layers. 2) Since intra-layer links can yield more pieces, they
can be used to modify depth separation theorems by empowering a shallow network to represent a
function constructed by a deep network, even if the width of this shallow network is lower than the
prescribed threshold. The modification is done in the cases of k2 vs 3 (Theorem 12) and k2 vs k
(Theorem 13, the famous sawtooth function (Telgarsky, 2015)). Also, we point out that the depth
separation cannot be fully accomplished based on the bound analysis, unless the bound is proved to
be tight. Thus, Arora et al. (2016)’s depth separation theorem might need to be re-examined.

To summarize, our contributions are threefold. 1) We point out the limitation of the depth separation
and propose to consider inserting intra-layer links in shallow networks. 2) We show via bound
estimation, explicit construction, and functional space analysis that intra-layer links can make a
ReLU network produce more pieces. 3) We modify the depth separation result including the famous
Telgarsky (2015)’s theorem by demonstrating that a shallow network with intra-layer links does not
need to go as wide as before to represent a function constructed by a deep network.

2 RELATED WORK

Recently, a plethora of depth separation studies have shown the superiority of deep networks over
shallow ones from the points of view of complexity analysis and constructive analysis.

The complexity analysis is to characterize the complexity of the function represented by a neu-
ral network, thereby demonstrating that increasing depth can greatly maximize such a complexity
measure. Currently, one of the most popular complexity measures is the number of linear regions
because it conforms to the functional structure of the widely-used ReLU networks. For example,
Pascanu et al. (2013); Montufar et al. (2014); Montúfar (2017); Serra et al. (2018); Hu & Zhang
(2018); Hanin & Rolnick (2019) estimated the bound of the number of linear regions generated by
a fully-connected ReLU network by applying Zaslavsky’s Theorem (Zaslavsky, 1997). Xiong et al.
(2020) offered the first upper and lower bounds of the number of linear regions for convolutional
networks. Other complexity measures include classification capabilities (Malach & Shalev-Shwartz,
2019), Betti numbers (Bianchini & Scarselli, 2014), trajectory lengths (Raghu et al., 2017), global
curvature (Poole et al., 2016), and topological entropy (Bu et al., 2020). Please note that using
complexity measures to justify the power of depth demands a tight bound estimation. Otherwise,
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it is insufficient to say that shallow networks cannot be as powerful as deep networks, since deep
networks cannot reach the upper bound.

The construction analysis is to find a family of functions that are hard to approximate by a shallow
network, but can be efficiently approximated by a deep network. Eldan & Shamir (2016) built a
special radial function that is expressible by a 3-layer neural network with a polynomial number
of neurons, but a 2-layer network can do the same level approximation only with an exponential
number of neurons. Later, Safran & Shamir (2017) extended this result to a ball function, which is
a more natural separation result. Venturi et al. (2021) generalized the construction of this type to a
non-radial function. Telgarsky (2015; 2016) used an O(k2)-layer network to construct a sawtooth
function. Given that such a function has an exponential number of pieces, it cannot be expressed by
an O(k)-layer network, unless the width is O(exp(k)). Arora et al. (2016) estimated the maximal
number of pieces a network can produce, and established the size-piece relation to advance the depth
separation results from (k2, k) to (k, k′), where k′ < k. Other smart constructions include poly-
nomials (Rolnick & Tegmark, 2017), functions of a compositional structure (Poggio et al., 2017),
Gaussian mixture models (Jalali et al., 2019), and so on. Our work also highlights the construction,
and we use an intra-linked network to more efficiently build a sawtooth function.

3 NOTATION AND DEFINITION

Notation 1 (Feedforward networks). For an Rw0 → R ReLU DNN with widths w1, . . . , wk of k
hidden layers, we use f0 =

[
f
(1)
0 , . . . , f

(w0)
0

]
= x ∈ Rw0 to denote the input of the network. Let

fi =
[
f
(1)
i , . . . , f

(wi)
i

]
∈ Rwi , i = 1, · · · , k, be the vector composed of outputs of all neurons in

the i-th layer, for i = 1, . . . , k, j = 1, . . . , wi, we use g
(j)
i =

〈
a
(j)
i , fi−1

〉
+ b

(j)
i to denote the

pre-activation of the j-th neuron of the i-th layer, where a
(j)
i ∈ Rwi−1 , b

(j)
i ∈ R are parameters.

Then f
(j)
i = σ

(
g
(j)
i

)
, where σ(·) is the ReLU activation. The output of this network is gk+1 =

⟨ak, fk⟩+ bk, where ak ∈ Rwk , bk ∈ R are parameters.

Notation 2 (Intra-linked networks). For an Rw0 → R ReLU DNN with every 2 paired neu-
rons linked in each hidden layer and widths w1, . . . , wk of k hidden layers, we use f̃0 =[
f̃
(1)
0 , . . . , f̃

(w0)
0

]
= x ∈ Rw0 to denote the input of the network. Let f̃i =

[
f̃
(1)
i , . . . , f̃

(wi)
i

]
∈ Rwi

be the vector composed of the neurons in the i-th layer, then for i = 1, . . . , k, j = 1, . . . , wi, we
use g̃(j)i =

〈
ã
(j)
i , f̃i−1

〉
+ b̃

(j)
i to denote the pre-activation of the j-th neuron in the i-th layer, where

ã
(j)
i ∈ Rwi−1 , b̃(j)i ∈ R are some parameters. In an intra-linked network, the j-th and (j+1)-th neu-

rons are linked, and the (j + 2)-th and (j + 3)-th neurons are linked, we prescribe f̃
(j)
i = σ

(
g
(j)
i

)
,

f̃
(j+1)
i = σ

(
g̃
(j+1)
i − f̃

(j)
i

)
, f̃ (j+2)

i = σ
(
g̃
(j+2)
i

)
, f̃ (j+3)

i = σ
(
g̃
(j+3)
i − f̃

(j+2)
i

)
. Similar with

the classical network, the output of the network is g̃k+1 =
〈
ãk, f̃k

〉
+ b̃k, where ãk ∈ Rwk , b̃k ∈ R

are parameters.

Notation 3 (Sawtooth function). A piecewise linear (PWL) function g : [a, b] → R is of ”N -
sawtooth” shape, if g = (−1)n−1

(
x− (n− 1) · b−a

N

)
, x ∈

[
(n− 1) · b−a

N , n · b−a
N

]
, for n ∈ [N ].

Definition 1 (Width and depth of a feedforward network (Arora et al., 2016)). For any number of
hidden layers k ∈ N, input and output dimensions w0, wk+1 ∈ N, an Rw0 → Rwk+1 feedforward
network is given by specifying a sequence of k natural numbers w1, w2, . . . , wk representing widths
of the hidden layers. The depth of the network is defined as k + 1. The width of the network is
max {w1, . . . , wk}.

Definition 2 (Width and depth of a shortcut network (Fan et al., 2020)). Given a shortcut network
Π, we delete the minimum number of links to make the resultant network Π′ a feedforward network
without isolated neurons. Then, we define the width and depth of Π as the width and depth of Π′.

Admittedly, defining the width and depth of a network embedded with shortcuts is tricky. A rea-
sonably good definition should conform to the customary understanding of depth and width. For
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example, the ResNet (He et al., 2016) shall not be taken as a wide network in the light of the pro-
posed definition; otherwise, it conflicts with practitioners’ common sense. Our definition for width
and depth can fit the common sense for the network that is formed by slightly modifying a feed-
forward network, e.g., ResNet, DenseNet (Huang et al., 2017), and S3Net (Fan et al., 2018). Per
our definition, the width and depth of intra-linked networks are also max {w1, . . . , wk} and k + 1,
respectively, the same as the width and depth of the corresponding feedforward network.

4 RETHINK THE DEPTH SEPARATION WITH INTRA-LAYER LINKS

Since our focus is the network using ReLU activation and related estimation of the number of pieces,
the seminal depth separation theorems closest to us are the following:
Theorem 1 (Depth separation k2 vs k (Telgarsky, 2015; 2016)). For a natural number k ≥ 1,
there exists a sawtooth function representable by an R → R (2k2 + 1)-layer feedforward ReLU
DNN of width 2 such that if it is also representable by a (k + 1)-layer feedforward ReLU DNN, this
(k + 1)-layer feedforward ReLU DNN should at least have the width of 2k − 1.
Theorem 2 (Depth separation k vs k′ (Arora et al., 2016)). For every pair of natural numbers
k ≥ 1, w ≥ 2, there exists a function representable by an R → R (k + 1)-layer feedforward ReLU
DNN of width w such that if it is also representable by a (k′ + 1)-layer feedforward ReLU DNN for
any k′ ≤ k, this (k′ + 1)-layer feedforward ReLU DNN has width at least 1

2w
k
k′ .

Despite being one-dimensional, the above results convincingly reveal that increasing depth can make
a ReLU network express a much more complicated function, which is the heart of depth separation.
Here, we shed new light on the depth separation problem with intra-layer links. Our primary ar-
gument is that if intra-layer links shown in Figure 1(c) are inserted, there exist shallow networks
that previously cannot express some hard functions constructed by deep networks now can do the
job. Our investigation consists of two parts. First, we substantiate that adding intra-layer links can
greatly increase the number of pieces via bound estimation, explicit construction, and functional
space analysis. Then, adding intra-layer links can empower the shallow networks to represent com-
plicated functions such as sawtooth functions, without the need of going as wide as before.

4.1 INTRA-LAYER LINKS CAN INCREASE THE NUMBER OF PIECES

4.1.1 UPPER BOUND ESTIMATION

Lemma 3. Let g : R → R be a PWL function with w + 1 pieces, then the breakpoints of f := σ(g)
consists of two parts: some old breakpoints of g and at most w + 1 newly produced breakpoints.
Furthermore, f has w + 1 new breakpoints if and only if g has w + 1 distinct zero points.

Proof. A direct calculus.

Theorem 4 (Upper bound of feedforward networks). Let f : R → R be a PWL function represented
by an R → R ReLU DNN with depth k + 1 and widths w1, . . . , wk of k hidden layers. Then f has
at most

∏k
i=1 (wi + 1) number of pieces.

This bound is the univariate case of the bound:
∏k

i=1

∑n
j=0

(
wi

j

)
, derived in Montúfar (2017) for

n-dimensional inputs. In Appendix B, we offer constructions to show that this bound is achievable
in a depth-bounded but width-unbounded network (depth=3) (Proposition 4) and a width-bounded
(width=3) but depth-unbounded network (Proposition 5) in one-dimensional space. Previously many
bounds Pascanu et al. (2013); Montufar et al. (2014); Montúfar (2017); Xiong et al. (2020) on linear
regions were derived, however, it is unknown that these bounds are vacuous or tight, particularly
for networks with more than one hidden layer. What makes Propositions 4 and 5 special is that
they for the first time substantiate that Montúfar (2017)’s bound is tight over three-layer and deeper
networks, although these results are for the one-dimensional case.

Remark 1 (Sharpening the bound in (Arora et al., 2016)). Previously, Arora et al. (2016) computed
the number of pieces produced by a network of depth k+ 1 and widths w1, . . . , wk as 2k+1 · (w1 +
1)w2 · · ·wk. The reason why their bound has an exponential term is that when considering how
ReLU activation increases the number of pieces, they repetitively computed the old breakpoints
generated in the previous layer. Our Lemma 3 implies that the ReLU activation in fact cannot
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generate as many as double pieces. Since Arora et al. (2016)’s bound is loose, their depth separation
theorem needs to be re-examined.
Lemma 5. Let g1, g2 : R → R be two PWL functions with totally w breakpoints. Set f1 := σ (g1)
and f2 := σ (g2 − f1). Then the breakpoints of f2 consist of three parts: some breakpoints of g2,
some breakpoints of f1, and at most 2w + 2 newly produced breakpoints. Furthermore, f2 has
2w + 2 newly produced breakpoints if and only if g2 − f1 has 2w + 2 distinct zero points.

Proof. A direct corollary of Lemma 3.

Let us illustrate why the intra-linked architecture can produce more pieces. Given two PWL func-
tions g1 and g2 which has totally w breakpoints, in the feedforward architecture, σ (g1) and σ (g2)
have totally at most 3w + 2 breakpoints, which contains at most w old breakpoints of g1, g2 and at
most 2w+2 newly produced breakpoints. However, in the intra-linked architecture, σ (g2 − σ (g1))
can produce more breakpoints because σ(g1) has two states: activated or deactivated. Then, σ(g1)
and σ (g2 − σ (g1)) consist of at most w old breakpoints of g1, g2 and (w+1)+(2w+2) = 3w+3
newly produced breakpoints.
Theorem 6 (Upper bound of intra-linked networks). Let f : R → R be a PWL function represented
by a ReLU DNN with depth k + 1, widths w1, . . . , wk, and every two neurons linked in each hidden
layer as Figure 1(c). Assuming that w1, . . . , wk are even, f has at most

∏k
i=1

(
3
2wi + 1

)
pieces.

Proof. We prove by induction on k. For the base case k = 1, we assume for every odd j, the neurons
f̃
(j)
1 and f̃

(j+1)
2 are linked. The number of breakpoints of f̃ (j)

1 , j = 1, . . . , w1, is at most 2+ (−1)j .
Hence, the first layer yields at most 3

2w1 + 1 pieces. For the induction step, we assume that for
some k ≥ 1, any R → R ReLU DNN with every two neurons linked in each hidden layer, depth
k + 1 and widths w1, . . . , wk of k hidden layers produces at most

∏k
i=1

(
3
2wi + 1

)
pieces. Now

we consider any R → R ReLU DNN with every two neurons linked in each hidden layer, depth
k + 2 and widths w1, . . . , wk+1 of k + 1 hidden layers. By the induction hypothesis, each g̃

(j)
k+1

has at most
∏k

i=1

(
3
2wi + 1

)
− 1 breakpoints. Then the breakpoints of σ(g̃(j)k+1) consist of some

breakpoints of g̃(j)k+1 and at most
∏k

i=1

(
3
2wi + 1

)
newly generated breakpoints. Then g̃

(j+1)
k+1 − f̃

(j)
k+1

has at most 2 ·
∏k

i=1

(
3
2wi + 1

)
− 1 breakpoints, based on Lemma 5. The breakpoints of f̃ (j+1)

k+1 =

σ(g̃
(j+1)
k+1 − f̃

(j)
k+1) consist of some breakpoints of g̃(j+1)

k+1 − f̃
(j)
k+1 and at most 2 ·

∏k
i=1

(
3
2wi + 1

)
newly generated breakpoints. Note that g̃(1)k+1, . . . , g̃

(wk+1)
k+1 have totally at most

∏k
i=1

(
3
2wi + 1

)
− 1

breakpoints. In all, the number of pieces we can therefore get is at most

1 +
wk+1

2
·

(
k∏

i=1

(
3

2
wi + 1

)
+ 2 ·

k∏
i=1

(
3

2
wi + 1

))
+

k∏
i=1

(
3

2
wi + 1

)
− 1 =

k+1∏
i=1

(
3

2
wi + 1

)
.

In the following theorems, we offer the bound estimation for high-dimensional cases. The detailed
proof for Theorem 8 is put into Appendix A.
Theorem 7 (Upper Bound of Feedforward Networks (Montúfar, 2017)). Let f : Rn → R be a PWL
function represented by an Rn → R ReLU DNN with depth k+1 and widths w1, . . . , wk of k hidden
layers. Then f has at most

∏k
i=1

∑n
j=0

(
wi

j

)
linear regions.

Theorem 8 (Upper Bound of Intra-linked Networks). Let f : Rn → R be a PWL function rep-
resented by an Rn → R ReLU DNN with every two neurons linked in each hidden layer, depth
k + 1 and widths w1, . . . , wk of k hidden layers. We assume each wi is even. Then f has at most∏k

i=1

∑n
j=0

( 3wi
2 +1
j

)
linear regions.

Remark 2. Although both adding a new layer (going deep) and adding intra-layer links involve
composition, their mechanisms of producing pieces are fundamentally different. While the mech-
anism of going deep is the repetition effect (multiplication), i.e., the function value of the function
being composed is oscillating, and each oscillation can generate corresponding pieces. The mech-
anism of intra-layer links is the gating effect (addition). The neuron being embedded have two
activation states, and each state is leveraged by the neuron being linked to produce a breakpoint.
Such a mechanism essentially conforms to the parallelism, which is of width paradigm.
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4.1.2 EXPLICIT CONSTRUCTION.

Despite that the bound estimation offers some light, to convincingly illustrate that intra-layer links
can increase the number of pieces, we need to supply the explicit construction for the intra-linked
networks. The number of pieces in the construction should be bigger than either the upper bound of
feedforward networks or the maximal number a feedforward network can achieve. Specifically, the
constructions for intra-linked networks in Propositions 1 and 2 have a number of pieces larger than
the upper bounds of feedforward networks. In Proposition 3, by enumerating all possible cases, we
present a construction for an intra-linked network of width 2 and arbitrary depth whose number of
pieces is larger than what a feedforward network of width 2 and arbitrary depth possibly achieves.

Proposition 1 (The bound
∏k

i=1

(
3wi

2 + 1
)

is tight for a two-hidden-layer intra-linked network).
Given an R → R two-hidden-layer ReLU network, with every two neurons linked in each hidden
layer, for any even w1 ≥ 6, w2 ≥ 4, there exists a PWL function represented by such a network,
whose number of pieces is

(
3w1

2 + 1
) (

3w2

2 + 1
)
.

Proof. To guarantee the bound
∏k

i=1

(
3wi

2 + 1
)

is tight, the following two conditions should be
satisfied: (i) g̃

(j)
i and g̃

(j+1)
i − f̃

(j)
i have as many zero points as possible so that σ(g̃

(j)
i ) and

σ(g̃
(j+1)
i − f̃

(j)
i ) can produce the maximal number of breakpoints; (ii) all old breakpoints of{

g̃
(1)
i , . . . , g̃

(wi)
i

}
are reserved by g̃

(j)
i+1, an affine transform of

{
f̃
(1)
i , . . . , f̃

(wi)
i

}
.

We first consider the first hidden layer. Let

f̃
(1)
1 (x) = σ

(
9
2x− 27

)
, f̃

(2)
1 (x) = σ

(
3
2x− f̃

(1)
1 (x)

)
f̃
(3)
1 (x) = σ(−2x+ 2), f̃

(4)
1 (x) = σ

(
−x+ 2− f̃

(3)
1 (x)

)
f̃
(5)
1 (x) = σ

(
− 7

2x− 7
4

)
, f̃

(6)
1 (x) = σ

(
−2x+ 8− f̃

(5)
1 (x)

)
.

When w1 = 6, we set g̃ = − 2
9 f̃

(1)
1 − f̃

(2)
1 + 1

2 f̃
(3)
1 + f̃

(4)
1 − 4

7 f̃
(5)
1 − f̃

(6)
1 .

When w1 > 6, for each odd j > 6, let f̃
(j)
1 = σ (−5 (x− aj + 3)) , f̃

(j+1)
1 =

σ
(
−2 (x− aj)− f̃

(j)
1

)
, where aj = − 19

2 − 9
(
j−1
2 − 3

)
, then the output of the first layer is

expressed as the following:

g̃ = −2

9
f̃
(1)
1 − f̃

(2)
1 +

1

2
f̃
(3)
1 + f̃

(4)
1 − 4

7
f̃
(5)
1 − f̃

(6)
1 +

w2∑
j=7,j is odd

(−1)
j+1
2

(
2

5
f
(j)
1 + f

(j+1)
1

)
,

which has 3
2w1 + 1 pieces and whose adjacent pieces have slopes of opposite signs. Note

that any line y = b, where b ∈ (−13/2,−6), can cross all pieces of g̃ + b. Thus, g ful-
fills the conditions of Lemma 5. We divide the breakpoints of g̃ into two parts: Bupper =
{x : x is a breakpoint of g̃ and g̃(x) > b} and Blower = {x : x is a breakpoint of g̃ and g̃(x) ≤ b}.
We refer to their counts as #Bupper and #Blower, respectively.
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Figure 2: The PWL functions that reach the bound of Proposition 1 when w1 = 6, w2 = 4.

Next, we construct the second hidden layer. f̃
(1)
2 := σ (g̃ + b1), where b1 ∈ (−13/2,−6), has

3
2w1 + 1 new breakpoints. Then by choosing some scaling parameter a ∈ (0, 1) bias b2 to fulfill
Lemma 5, we can also make ag̃+ b2 − f̃

(1)
2 has 3w1 +2 distinct zero-points, which implies f̃ (2)

2 :=
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σ
(
ag̃ + b2 − f̃

(1)
2

)
has 3w1 + 2 newly produced breakpoints. Therefore, the affine combination

of f̃ (1)
2 and f̃

(2)
2 contains all breakpoints of Bupper, and has #Bupper +

(
3
2w1 + 1

)
+ (3w1 + 2)

breakpoints. To reserve all the breakpoints of g̃, we do the similar thing for −g̃ to gain f̃
(3)
2 and

f̃
(4)
2 , whose affine combination has #Blower +

(
3
2w1 + 1

)
+(3w1 + 2) breakpoints, which contains

all breakpoints in Blower, and shares no breakpoints with the affine combination of
{
f̃
(1)
2 , f̃

(2)
2

}
.

Hence, the affine combination of
{
f̃
(1)
2 , f̃

(2)
2 , f̃

(3)
2 , f̃

(4)
2

}
has #Bupper+ # Blower +2 ·

(
3w1

2 + 1
)
+

2 · (3w1 + 2) =
(
3w1

2

)
+ 6 ·

(
3w1

2 + 1
)

breaking points, which contains all the breakpoints of g̃.{
f̃
(1)
2 , f̃

(2)
2 , f̃

(3)
2 , f̃

(4)
2

}
are visualized in Figure 2. Repeating this procedure by selecting different

b1, a, b2, we can construct the remaining {f̃ (i)
2 }w2

i=5 such that the affine transformation of {f̃ (i)
2 }w2

i=1
has pieces of

3

2
w1 +

3w2

2
·
(
3

2
w1 + 1

)
+ 1 =

(
3w1

2
+ 1

)(
3w2

2
+ 1

)
.

Proposition 2 (Use intra-linked networks to achieve a sawtooth function with
∏k

i=1

(
3wi

2

)
pieces).

There exists a [0, 1] → R function represented by an intra-linked ReLU DNN with depth k + 1 and
width w1, . . . , wk of k hidden layers, whose number of pieces is at least 3w1

2 · . . . · 3wk

2 .

Proof. Let ϕ(x) = x defined over [0,∆]. The core of the proof is to use a one-hidden-layer network
of w ≥ 2 neurons to create 3w

2 pieces from ϕ(x).

1

3
ሚ𝑓(1) = 𝜎(𝑥 − 𝛿)

Δ𝛿

ሚ𝑓(2) = 𝜎(𝑥 − ሚ𝑓 1 + 𝛿)

2𝛿

2𝛿

1

3
ሚ𝑓(1) + ሚ𝑓(2)

1

2
ሚ𝑓(3) = 𝜎(2𝑥 − 8𝛿) ሚ𝑓(4) = 𝜎(2𝑥 − 6𝛿 − ሚ𝑓 3 )

3𝛿 4𝛿 5𝛿 6𝛿Δ𝛿 2𝛿

2𝛿

3𝛿 4𝛿 5𝛿 6𝛿

𝑂 Δ𝛿 2𝛿 3𝛿 4𝛿 5𝛿 6𝛿

𝛿 2𝛿 3𝛿 4𝛿 5𝛿 6𝛿 Δ

2𝛿

𝛿 2𝛿 3𝛿 4𝛿 5𝛿 6𝛿 Δ

2𝛿

2𝛿

𝛿

𝛿

1

3
ሚ𝑓(1) + ሚ𝑓(2) −

1

2
ሚ𝑓 3 − ሚ𝑓(4)

𝑂 Δ𝛿 2𝛿 3𝛿 4𝛿 5𝛿 6𝛿

2𝛿

𝛿

Figure 3: A schematic illustration of how to use an intra-linked network to generate a sawtooth function.

Let δ = 2∆
3w . Set g̃(1) = 3ϕ − 3δ, f̃ (1) = σ

(
g̃(1)

)
, g̃(2) = ϕ, f̃ (2) = σ

(
g̃(2) − f̃ (1) + δ

)
,

and g̃(2j+1) = 4ϕ − 4(3j + 1)δ, f (2j+1) = σ
(
g̃(2j+1)

)
, g̃(2j+2) = 2ϕ − 6jδ, f̃ (2j+2) =

σ
(
g̃(2j+2) − f̃ (2j+1)

)
, for all j = 1, . . . , w/2− 1. The output of this one-hidden-layer network is

ξ∆,w(x) =
1

3
f̃ (1) + f̃ (2) − δ +

w
2 −1∑
j=1

(−1)j
(
1

2
f̃ (2j+1) + f̃ (2j+2)

)
,

which has 3w
2 pieces on [0,∆]. ξ∆,w(x) is of slope (−1)j on [jδ, (j + 1)δ], j = 0, . . . , 3w/2 − 1,

and ranges from 0 to δ on each piece. Figure 3 shows how the affine transformation of
{f̃ (1), f̃ (2), f̃ (3), f̃ (4)} constructs a sawtooth function of 6 pieces. Please note that flipping ϕ(x)
or translating ϕ(x) will not prevent ξ∆,w(ϕ(x)) from generating 3w

2 pieces.

The targeted intra-linked ReLU network with depth k + 1 and width w1, . . . , wk of k hidden layers
is designed as

ξ∆k,wk
◦ ξ∆k−1,wk−1

◦ · · · ◦ ξ∆1,w1(x), (1)

7
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where ∆i = 1/
(∏i−1

j=1
3wi

2

)
.

Proposition 3 (Intra-layer links can greatly increase the number of pieces in an R → R ReLU
network with width 2 and arbitrary depth). Let f : R → R be a PWL function represented by an
R → R (k + 1)-layer ReLU DNN with widths 2 of all k hidden layers. Then number of pieces of f
is at most { √

7
k
, if k is even,

3 ·
√
7
k−1

, if k is odd.

There exists an R → R (k + 1)-layer 2-wide ReLU DNN, with neurons linked in each hidden layer,
which can produce at least 7 · 3k−2 + 2 pieces.

Proof. The proof is put in Appendix C.

4.1.3 FUNCTIONAL SPACE ANALYSIS

The above constructive analyses demonstrate that in the maximal sense, intra-layer links can em-
power a feedforward network to represent a function with more pieces. Now, we move one step
forward by showing that intra-layer links can surprisingly expand the functional space of a feed-
forward network. The reason why this result is surprising is that one tends to think an intra-linked
network produces an exclusively different function from a feedforward network. However, here
we report that an intra-linked one-hidden-layer network of two neurons can express a feedforward
one-hidden-layer network of two neurons (Lemma 9), and the opposite doesn’t hold true. Further-
more, given an arbitrary feedforward ReLU network, adding intra-layer links in the first layer can
definitely expand its functional space (Theorem 10).

Lemma 9. Let f (1) = σ
(
a(1)x+ b(1)

)
, f (2) = σ

(
a(2)x+ b(2)

)
, f = c(1)f (1) + c(2)f (2) + d,

where a(1)a(2) > 0, b(1), b(2), c(1), c(2), and d ∈ R, there exists some ã(1), ã(2), b̃(1), b̃(2), c̃(1), c̃(2),
and d̃ ∈ R such that f = c̃(1)f̃ (1) + c̃(2)f̃ (2) + d̃, where f̃ (1) = σ

(
ã(1)x+ b̃(1)

)
, f̃ (2) =

σ
(
ã(2)x+ b̃(2) − f̃ (1)

)
.

Proof. Without loss of generality, we assume a(1), a(2) > 0 and − b(2)

a(2) < − b(1)

a(1) . Then f is of slope

0, c(2)a(2), and c(1)a(1)+ c(2)a(2) on
(
−∞,− b(2)

a(2)

]
,
[
− b(2)

a(2) ,− b(1)

a(1)

]
and

[
− b(1)

a(1) ,∞
)

, respectively.

Now we choose ã(1), ã(2) satisfying 0 < ã(1) < ã(2), and set b̃(i) = b(i)

a(i) . ã(i), i = 1, 2. Then

f̃ (1) is of slope 0 and ã(1) on
(
−∞,− b(1)

a(1)

]
and

[
− b(1)

a(1) ,∞
)

, respectively, while f̃ (2) is of slope

0, ã(2), and ã(2) − ã(1) on
(
−∞,− b(2)

a(2)

)
,
[
− b(2)

a(2) ,− b(1)

a(1)

]
, and

(
− b(1)

a(1) ,∞
)

, respectively. Hence,

let c̃(2) = c(2)a(2)/ã(2), c̃(1) =
(
c(1)a(1) + c(2)a(2)− c̃(2)

(
ã(2) − ã(1)

))
/ã(1), and d̃ = d, we have

f = c̃(1)f̃ (1) + c̃(2)f̃ (2) + d̃.

Theorem 10. Let f be any R → R PWL representable by a classical (k + 1)-layer ReLU DNN
with widths w1 > 2, . . . , wk of k hidden layers. Then, f can also be represented by a (k + 1)-layer
ReLU DNN with widths w1, . . . , wk of k hidden layers, with neurons in the first layer linked.

Proof. Let the output of the j-th neuron of the first layer in the feedforward network be f
(j)
1 (x) =

σ
(
a
(j)
1 x+ b

(j)
1

)
, j = 1, . . . , w1. Since the feedforward network is invariant to permutating neu-

rons, we can link the arbitrary j-th and j′-th neuron if a(j)1 a
(j′)
1 > 0, which directly concludes the

proof according to Lemma 9.

4.2 MODIFY THE DEPTH SEPARATION THEOREM WITH INTRA-LAYER LINKS

In a broad sense, the depth separation theorem consists of two elements: i) there exists a function
representable by a deep network; ii) such a function cannot be represented by a shallow network
whose width is lower than a threshold. Since adding intra-layer links can generally improve the
capability of a network, if one adds intra-layer links to a shallow network, the function constructed

8
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by a deep network can be represented by a shallow network, even if the width of this shallow network
is still lower than the threshold. Theorems 12 and 13 modify the depth separation k2 vs 3 and k2 vs
k, respectively, by presenting that a shallow network with intra-layer links only needs to go 2

3 times
as wide as before to express the same function.
Lemma 11 (A network with width=2 can approximate any univariate PWL function (Fan et al.,
2018)). Given a univariate PWL function with n pieces p(x), there exists a (n + 1)-layer network
D(x) with two neurons in each layer such that f(x) = D(x).
Theorem 12 (Modify the depth separation k2 vs 3). For every k ≥ 2, there exists a function p(x)
that can be represented by a (k2 + 1)-layer ReLU DNN with 2 nodes in each layer, such that it
cannot be represented by a classical 3-layer ReLU DNN W3(x) with width less than k− 1, but can
be represented by a 3-layer, 2(k−1)

3 -wide intra-linked ReLU DNN W̃3(x).

Proof. Combining Theorem 4, Proposition 1, and Lemma 11 straightly concludes the proof.

Theorem 13 (Modify the depth separation k2 vs k). For every k ≥ 1, there is a [0, 1] → R PWL
function p(x) represented by a feedforward (2k2+1)-layer ReLU DNN with at most 6 nodes in each
layer, such that it cannot be represented by a classical (k + 1)-layer ReLU DNN Wk(x) with width
less than 6k, but can be represented by a (k + 1)-layer intra-linked ReLU DNN W̃k(x) with width
no more than 4 · 6k−1.

Proof. Per (Telgarsky, 2016)’s construction, a feedforward (2k2 + 1)-layer ReLU DNN with at
most 2 nodes in each layer can produce a sawtooth function of 2k

2

pieces. Similarly, a feedforward
(2k2+1)-layer ReLU DNN with at most 6 nodes in each layer can have 6k

2

pieces. Thus, it follows
Theorem 4 that any classical (k + 1)-layer ReLU DNN Wk(x) with width less than 6k − 1 cannot
generate 6k

2

pieces. However, according to the construction in Proposition 2, let w1 = w2 = · · · =
wk = 4 ·6k−1, an intra-linked network can exactly express a sawtooth function with 6k

2

pieces.

Remark 3. Theorems 12 and 13 implicate that intra-layer links can reduce the bar of the width
by 1/3. Although it is not an exponential reduction, our highlight is the existence of such shallow
networks that can be transformed by intra-layer links to have the representation power on a par
with a deep network. Such shallow networks go against the predictions of depth separation theory.
Furthermore, suppose every ni neurons are intra-linked in the i-th layer, the upper bound of the
number of pieces by a network of k hidden layers with widths w1, . . . , wk is

∏k
i=1

(
(ni+1)wi

2 + 1
)

.
Therefore, by intra-linking more neurons, the bar of the width can be substantially reduced, and
more shallow networks will become counterexamples of the depth separation theory.

5 DISCUSSION AND CONCLUSION

Please note that intra-layer links are an extension of residual connections. The former is to link the
neurons inside a layer, while the latter is to connect neurons across layers. We take the intra-layer
links as vertical residual connections, while the shortcuts of ResNet (He et al., 2016) are horizon-
tal residual connections. It is widely recognized that horizontal residual connections can facilitate
networks in the dimension of depth, e.g., the residual connection solves the training issues of deep
networks and allows the network to go very deep. In contrast, our theoretical results show that ver-
tical residual connections can promote the representation capability of networks in the dimension
of width, e.g., the network with intra-layer links does not need to go as wide as before to represent
the same function. By leveraging the capabilities of a network in both width and depth domains,
we believe that the synergy of horizontal and vertical links in a network will further contribute to
more powerful networks. More favorably, both horizontal and vertical links do not incorporate new
parameters; therefore, their synergy is likely to enhance model efficiency.

In this draft, via bound estimation, dedicated construction, and functional space analysis, we have
shown that a network with intra-layer links is much more expressive than a feedforward one. Then,
we have modified the depth separation results to that a shallow network that previously cannot
express some functions constructed by deep networks now can do the job with intra-layer links.
Our results supplement the existing depth separation theory, and suggest that the potential of wide
networks can be released by an appropriate structure. Future endeavors can be put into training wide
networks using intra-layer links to achieve comparable performance with deep networks.

9
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A PROOF OF THEOREM 8

Lemma 14 (Zaslavsky’s Theorem Zaslavsky (1975); Stanley (2004)). Let A = {Hi ⊂ V : 1 ≤ i ≤
m} be an arrangement in Rn. Then, the number of regions for the arrangement A satisfies

r(A) ≤
n∑

i=0

(
m

i

)
. (2)

Proof. We prove by induction on k. For the base case k = 1, f̃
(2i−1)
1 = σ

(
g̃
(2i−1)
1

)
pro-

duces one hyperplane in the input space Rn. Furthermore, f̃
(2i)
1 = σ

(
g̃
(2i)
1 − f̃

(2i−1)
1

)
=

σ
(
g̃
(2i)
1 − σ

(
g̃
(2i−1)
1

))
produces at most two hyperplanes in the input space Rn. Therefore, in to-

tal, the w1 neurons in the first layer produces (1+2) · w1

2 = 3w1

2 hyperplanes in the input space Rn.
Then by Zaslavsky’s Theorem, it will produce at most

∑n
j=0

(
w1+1

j

)
linear regions in the input space

Rn. For the induction step, we assume that for some k ≥ 1, any Rn → R ReLU DNN with every two
neurons linked in each hidden layer, depth k+1 and widths w1, . . . , wk of k hidden layers produces
at most

∏k
i=1

∑n
j=0

( 3wi
2 +1
j

)
linear regions. Now we consider any Rn → R ReLU DNN with every

two neurons linked in each hidden layer, depth k+2 and widths w1, . . . , wk+1 of k+1 hidden layers.
Then for each linear region S produced by the first k + 1 layers, again, f̃ (2i−1)

k+1 = σ
(
g̃
(2i−1)
k+1

)
pro-

duces one hyperplane in S. Furthermore, f̃ (2i)
k+1 = σ

(
g̃
(2i)
k+1 − f̃

(2i−1)
k+1

)
= σ

(
g̃
(2i)
k+1 − σ

(
g̃
(2i−1)
k+1

))
produces at most two hyperplanes in the S. Therefore, in total, the wk+1 neurons in the k + 1 layer
produces (1 + 2) · wk+1

2 = 3wk+1

2 hyperplanes in S. Then by Zaslavsky’s Theorem, it will pro-

duce at most
∑n

j=0

(
wk+1+1

j

)
linear regions in S. Thus f has at most

∏k
i=1

∑n
j=0

( 3wi
2 +1
j

)
linear

regions.

B SUPPLEMENTARY RESULTS FOR THE TIGHTNESS OF THEOREM 4

Proposition 4 (The bound
∏k

i=1 (wi + 1) is tight for a depth-bounded but width-unbounded net-
work). Given an R → R two-hidden-layer ReLU network, for any width w1 ≥ 3, w2 ≥ 2 in the
first and second hidden layers, there exists a PWL function represented by such a network, whose
number of pieces is (w1 + 1) (w2 + 1).
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Figure 4: Construction of PWL functions to reach the bound of Proposition 4 when w1 = 3, w2 = 2.

Proof. To guarantee the bound
∏k

i=1 (wi + 1) is tight, the following two requirements should be
met: (i) each g

(j)
i , i = 0, 1, 2, j = 1, . . . , wi, has distinct zero points that are as much as its number

of pieces, so that the activation step can produce the most new breakpoints; (ii) the breakpoints of
each g

(j)
(i+1), i = 0, 1, 2, j = 1, . . . , wi+1, as the affine combination of

{
f
(1)
i , . . . , f

(wi)
i

}
, contains

all the breakpoints of
{
g
(1)
i , . . . , g

(wi)
i

}
, so that all the old breakpoints are reserved.

Now we give the proof in detail. Let f
(1)
1 (x) = σ(3x), f

(2)
1 (x) = σ(−x + 3), f

(3)
1 (x) =

σ
(
3
2x− 3

2

)
. When w1 = 3, we set

12
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g
(1)
2 = −

(
f
(1)
1 + f

(2)
1 − f

(3)
1 − 3− 1

w2+1

)
,

g
(j)
2 = f

(1)
1 + f

(2)
1 − f

(3)
1 − 3− j

w2+1 , j = 2, . . . , w2.

When w1 > 3, we let f (j)
1 = σ(−2x− 2(j − 3)) and

g
(1)
2 = −

(
f
(1)
1 + f

(2)
1 − f

(3)
1 +

∑w1

j=4(−1)j−1f
(j)
1 − 3− 1

w2+1

)
g
(j)
2 = f

(1)
1 + f

(2)
1 − f

(3)
1 +

∑w1

r=4(−1)r−1f
(r)
1 − 3− j

w2+1 , j = 2, . . . , w2.

Then g
(j)
2 has w1 + 1 distinct zero points. Hence for j = 1, . . . , w2, the breakpoints of f (j)

2 =

σ
(
g
(j)
2

)
keeps all breakpoints of g(j)2 and yields w1+1 new breakpoints. Note that f (j)

2 and f
(j)
2 do

not share new breakpoints, and f
(1)
2 and f

(2)
2 covers all the breakpoints of

{
g
(j)
2

}w2

j=1
. Therefore, the

total number of pieces via an affine combination of f (1)
2 , . . . , f

(w2)
2 is (w1 + 1) (w2 + 1) pieces.

Proposition 5 (The bound
∏k

i=1 (wi + 1) is tight for a width-bounded but depth-unbounded net-
work). Given an R → R ReLU network with width w for the first layer and 3 for the other layers,
for any depth k ≥ 2, there exists a PWL function represented by such a network, whose number of
pieces is (w + 1) · 4k−1.

Proof. Let f (1)
1 , . . . f

(w)
1 be the same as in Proposition 4. Let

g̃2 =

{
f
(1)
1 + f

(2)
1 − f

(3)
1 − 3, if w = 3,

f
(1)
1 + f

(2)
1 − f

(3)
1 +

∑w
j=4(−1)j−1f

(j)
1 − 3, if w > 3.

We set
f
(1)
2 = σ

(
2g̃2 − 1

3

)
,

f
(2)
2 = σ

(
−g̃2 +

2
3

)
,

f
(3)
2 = σ

(
3
2 g̃2 −

1
2

)
.

Now we continue our proof by induction. Assume we have constructed f
(1)
i , f (2)

i and f
(3)
i , i ≥ 2.

Then we set

g̃i+1 = f
(1)
i + f

(2)
i − f

(3)
i − 3

6i

and
f
(1)
i+1 = σ

(
2g̃i+1 − 2

6i

)
,

f
(2)
i+1 = σ

(
−g̃i+1 − 4

6i

)
,

f
(3)
i+1 = σ

(
g̃i+1 +

3
6i

)
.

Through a direct calculus, we know g̃i+1 has (w + 1) · 4i−1 pieces with opposite slope in every
two adjoint pieces and ranges from 0 to 3/6i in each piece except the leftmost and rightmost piece,
which implied we can totally obtain (w + 1) · 4k−1 pieces.

C PROOF OF PROPOSITION 3

Proof. For the first assertion, we claim that each pre-activation g
(j)
i , 2 ≤ i ≤ k, j = 1, 2, cannot

have its every two adjacent pieces of slope with different sign, which implies the activation cannot
produce the most breakpoints as in Lemma 3. In fact, g(j)2 , j = 1, 2, has at most 3 pieces. If some
g
(j)
2 has 3 pieces, then by exhaustion , we know either it has a 0-slope, or it has two adjacent pieces

with slopes of the same sign (see Figure 5). Hence, f (j)
2 , j = 1, 2, has at most 2 newly produced

breakpoints. Then the output of the 2-nd layer has at most 2 + 2× 2 = 6 breakpoints, i.e., 7 pieces.
Applying the similar method to each piece, we can get our result via a simple induction step.
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(a)

(b)

(c)

(e)

(f)

(g)

(h)

(i)

Figure 5: Exhaustion of all possible shapes of g(j)2 ,j = 1, 2 in Proposition 3.

Now we come to the second assertion. For convenience, we say an R → R PWL function f is of
”triangle-trapezoid-triangle” shape on [a, b] ⊂ R, if there exists a partition of [a, b] : a < x1 < x2 <
· · · < x6 < b and a positive constant c, such that

f |[a,b] (x) =


c , if x = a, x2, x5, b
−c , if x = x1, x6

−3c , if x ∈ [x3, x4]
linear connection , otherwise.

Given a PWL function f : R → R of ”triangle-trapezoid-triangle” shape on [a, b], with correspond-
ing partition a < x1 < x2 < · · · < x6 < b and f(a) = c > 0, if we set

g(1) = 4f
g(2) = 2f − 3c

2

f (1) = σ
(
g(1)

)
f (2) = σ

(
g(2) − f (1)

)
,

then g = − 1
4f

(1) + f (2) + c
8 is of ”triangle-trapezoid-triangle” shape on [a, x2] , [x2, x5] and [x5, b]

respectively.

Using this fact, we can construct a PWL function represented by a (k+1)-layer 2-wide intra-linked
ReLU DNN, which has 7 · 3k−2 + 2 pieces. Actually, set

f̃
(1)
1 = σ(2x),

f̃
(2)
1 = σ

(
x− f̃

(1)
1 + 1

)
,

g̃
(1)
2 = −4f̃

(2)
1 + 2,

g̃
(2)
2 = −2f̃

(2)
1 + 3

2 ,

then through a direct calculus, 1
4 f̃

(1)
2 + f̃

(2)
2 − 3

8 is of ”triangle-trapezoid-triangle” shape on [−1, 1].
Using the fact above repeatedly, we can construct a PWL function represented by a R → R (k+1)-
layer, 2-wide, intra-linked ReLU DNN, which is constant on (−∞,−1] ∪ [1,∞) and of ”triangle-
trapezoid-triangle” shape on

[
−1 + 2n

3k−2 ,−1 + 2(n+1)
3k−2

]
, n = 0, . . . , 3k−2 − 1.

D VALIDATING THE REPRESENTATION POWER OF INTRA-LINKED LINKS

Inspired by the encouraging theoretical analyses, we validate whether or not the intra-layer links can
assist a network to deliver superior performance in real-world tasks. The task is to predict if a credit
card holder will get churned so that the bank can provide better service to turn holders’ decisions.
This prediction task has 10,000 raw samples, and each has 18 customers’ portfolio features including
age, salary, marital status, credit card limit, credit card category, etc. The labels are ’get churned’ or
’stay’. The detailed description of data and this task can be referred to in Kaggle1.

The data are preprocessed as follows: The discrete value is assigned to different education levels
based on the mapping { ’Uneducated’: 0, ’High School’: 1, ’College’: 2, ’Graduate’: 3, ’Post-
Graduate’: 4, ’Doctorate’: 5 }. The income situation is assigned with values based on the mapping:
{ ’Less than $40K’: 0, ’$40K - $60K’: 1, ’$60K - $80K’: 2, ’$80K - $120K’: 3, ’$120K +’: 4 }.

1https://www.kaggle.com/datasets/whenamancodes/credit-card-customers-prediction
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The female and male are mapped to 0 and 1, respectively. All samples with missing attributions are
deleted. Finally, the processed data have 7,081 data points. Then, the data are randomly split into
training and testing sets with a ratio of 0.8:0.2.

We build networks with intra-layer links and compare them with the corresponding feedforward
networks without intra-layer links. The optimizer is Adam Kingma & Ba (2014) with a learning
rate of 0.1. The loss function is the binary cross-entropy function. The evaluation metric is the
widely used micro-F1 score. The prediction results by feedforward and intra-linked networks are
summarized in Table 1, from which we draw two highlights. First, when the same structure is used,
the intra-linked network consistently outperforms the feedforward network. More favorably, the
intra-linked network takes the lead by a large margin: the minimum gain is 1.68% for the network
structure 2-32-2, while the maximum gain is 2.66% for the network structure 2-16-16-2. Such a
superiority corroborates our theoretical analysis that adding intra-layer links can boost the network’s
representation power. Second, the one-hidden-layer intra-linked network can sometimes perform
superbly over the two-hidden-layer feedforward network (22-16-2 vs 22-8-8-2, 22-32-2 vs 22-16-
16-2, 22-64-2 vs 22-32-32-2), when their parameters are comparable. This phenomenon suggests
that the representation power of an intra-linked network is different from that of a feedforward
network with more layers.

Table 1: Credit card customers prediction by feedforward and intra-linked networks.

Feedforward #Parameters Micro-F1(%) Intra-linked #Parameters Micro-F1(%)
22-8-2 202 78.24±0.23% 22-8-2 202 80.13±0.37%
22-16-2 402 78.93±0.19% 22-16-2 402 80.83±0.41%
22-32-2 802 80.53±0.18% 22-32-2 802 82.21±0.27%
22-64-2 1602 82.03±0.23% 22-64-2 1602 83.52±0.34%
22-8-8-2 274 80.21±0.32% 22-8-8-2 274 82.11±0.42%

22-16-16-2 674 81.14±0.34% 22-16-16-2 674 83.80±0.37%
22-32-32-2 1858 83.14±0.28% 22-32-32-2 1858 84.79±0.45%
22-64-64-2 5762 84.35±0.24% 22-64-64-2 5762 85.44±0.25%

E INSERTING INTRA-LAYER LINKS VS STACKING LAYERS

Here, we argue that adding intra-layer links is not equivalent to increasing a new layer in the follow-
ing three aspects:

Adding Layers

The Mechanism of Generating More Pieces

Adding Intra Links

… … …
𝜙 ∘ 𝜓𝜓

𝜎(𝑓)

𝜎(𝑓 + 𝑔)

𝜎(𝑓 + 𝜎 𝑔 )

Adding Layers

Adding Intra Links

#(Affine Transform, Activation)

𝜎 𝑊1𝜎 𝑊2𝑥 + 𝑏2 + 𝑏2 #(Affine Transform, Activation)=2

𝜎 𝑊1𝑥 + 𝑏1 + 𝜎 𝑊2𝑥 + 𝑏2

𝜎 𝑊1𝑥 + 𝑏1

𝜎 (𝑊1+𝑊2)𝑥 + 𝑏1 + 𝑏2

#(Affine Transform, Activation)=1

#(Affine Transform, Activation)=1

𝑔 < 0

𝑔 > 0

+

Figure 6: Adding intra-layer links is not equivalent to increasing depth in terms of the mechanism of generating
more pieces, the number of (affine transform, activation), and function classes.

• As Figure 6 shows, their mechanisms of producing pieces are fundamentally different.
While the mechanism of adding a new layer is the repetition effect (multiplication), i.e.,
the function value of the function being composed is oscillating, and each oscillation can
generate more pieces. The mechanism of intra-layer links is the gating effect (addition).
The neuron being embedded have two activation states, and each state is leveraged by the
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neuron being linked to produce a breakpoint. Two states are integrated to generate more
pieces.

• Although both stacking a new layer and adding intra-layer links involve composition, they
involve different numbers of (affine transform, activation). In a feedforward network,
adding a new layer means the depth increases by 1, and the characteristic of stacking a
new layer is doing the affine transformation followed by activation. As Figure 6 illustrates,
a feedforward network with two layers involves two times of (affine transformation, ac-
tivation). In contrast, adding intra-layer links in a fully-connected layer actually exerts a
gating effect. When σ(W2x + b2) > 0, the output is σ((W1 + W2)x + b1 + b2); when
σ(W2x + b2) = 0, the output is σ(W1x + b1). The number of (affine transformation,
activation) is still one for both cases.

• The function classes (the set of functions represented by some given neural network archi-
tecture) of our intra-linked network and the deeper feedforward network are not the same,
and this will make a big difference. In some sense, the deeper feedforward network has a
larger function class, and the function class of our intra-linked network is just a subset of
it. However, our intra-linked network has more expressive power (i.e., number of pieces,
VC dimension) per parameter. Also, the experiments showed that intra-linked networks
can achieve better accuracy in solving real-world problems. This phenomenon can be seen
as an analog to the comparison between CNNs and fully-connected NNs. The function
classes of CNNs are just subsets of the function classes of fully-connected NNs with some
further restrictions on the weights. However, CNNs usually have more expressive power
per parameter and achieve better results in practice.

Topologically, one can define the depth of a network as the length of the longest path from the input
to the output, by regarding a neural network as a directed acyclic graph. With this definition, adding
the intra-layer links certainly increases the depth by roughly a factor of two. However, if we examine
the operations along the longest path, based on the above second observation, the number of (affine
transformation, activation) remains to be the same with the number of layers. Thus, if the depth is
defined as the number of (affine transformation, activation) that are actually executed, the depth of
the intra-linked network is the same as that of the feedforward network. Since topologically one
can make any shallow network deep by making a series of reducible identity layers, we argue that
the intrinsic computational operation is more important than the extrinsic topology for the depth
separation theory.

F EXTENSION TO MORE INTRA-LAYER LINKS

For an Rw0 → Rwk+1 ReLU DNN with depth k + 1, widths w1, . . . , wk of k hidden layers, We
now assume that every ni neurons are intra-layer linked, where ni can divide wi without remain-
der. We use f̃0 =

[
f̃
(1)
0 , . . . , f̃

(w0)
0

]
= x ∈ Rw0 to denote the input of the network. Let f̃i =[

f̃
(1)
i , . . . , f̃

(wi)
i

]
∈ Rwi , then for i = 1, . . . , k, j = 1, . . . , wi, we use g̃(j)i =

〈
ã
(j)
i , f̃i−1

〉
+ b̃

(j)
i to

denote the j-th pre-activation in the i-th layer respectively, where a
(j)
i ∈ Rwi−1 ,b(j)i ∈ R are some

parameters. In an intra-linked network, the j -th, . . ., (j + ni − 1)-th neurons in the i-th layer are
linked, and the (j + ni)-th, · · · , (j + 2ni − 1)-th neurons in the i-th layer are linked. We prescribe
f̃
(j)
i = σ

(
g
(j)
i

)
and f̃

(j+l)
i = σ

(
g
(j+l)
i − f̃

(j+l−1)
i

)
, for l = 1, . . . , n − 1. The output of the

network is g̃(j)k+1 =
〈
ã
(j)
k , f̃k

〉
+ b̃

(j)
k , j = 1, . . . , wk+1, where ã(j)k ∈ Rwk , b̃

(j)
k ∈ R are parameters.

Theorem 15. Let f : R → R be a PWL function represented by a R → R ReLU DNN with depth
k+1, widths w1, . . . , wk of k hidden layers and every ni neurons linked in the i-th hidden layer for
some positive integer ni that divides wi without remainder. Then f has at most

∏k
i=1

(
ni+1

2 wi + 1
)

pieces.

Proof. For convenience, we assume in the i-th layer, the j-th, · · · , (j + ni − 1)-th neurons are
linked, for i = 1, . . . , k, j = 1, . . . , w̄i − 1. For the first layer, f̃ (1)

1 has one breakpoint and each
f̃
(j)
1 has at most j newly produced breakpoints and some old breakpoints of g̃(j)1 and f̃

(j−1)
1 , for
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j = 2, . . . , n1. Hence, the first layer gives at most ni+1
2 wi + 1 pieces. Then the rest of the proof is

similar to Theorem 6.

Corollary 15.1. Let f : R → R be a PWL function represented by a R → R ReLU DNN with all the
neurons linked in each hidden layer, depth k+1, and widths w1, . . . , wk of k hidden layers. Then f

has at most
∏k

i=1

(
wi+1

2 wi + 1
)

pieces.

Theorem 16 (The bound
∏k

i=1

(
(wi+1)wi

2 + 1
)

is tight for a one-hidden-layer intra-linked net-
work). Given an R → R one-hidden-layer ReLU network with all neurons linked in the hidden layer,
there exists a PWL function represented by such a network, whose number of pieces is (w1+1)w1

2 +1.

ሚ𝑓(1)

x

ሚ𝑓(2) = 𝜎(𝑤 2 𝑥 + 𝑏(2) − ሚ𝑓(1)) 𝑤 2 𝑥 + 𝑏(2)

ሚ𝑓(1)
ሚ𝑓(2)x x

ሚ𝑓(2)
𝑤 3 𝑥 + 𝑏(3)

ሚ𝑓(3)

x x x

ሚ𝑓(3)

𝑤 4 𝑥 + 𝑏(4) ሚ𝑓(4)

x x x x

ሚ𝑓(1) = 𝜎(𝑤 1 𝑥 + 𝑏(1))

ሚ𝑓(3) = 𝜎(𝑤 3 𝑥 + 𝑏(3) − ሚ𝑓(2))

ሚ𝑓(4) = 𝜎(𝑤 4 𝑥 + 𝑏(4) − ሚ𝑓(3))

Figure 7: The construction demonstrating that the bound
∏k

i=1

(
(wi+1)wi

2
+ 1

)
is tight for a one-hidden-layer

intra-linked network.

Proof. Without loss of generality, a one-hidden-layer network with all neurons intra-linked is math-
ematically formulated as the following:{

f̃ (1) = σ(w(1)x+ b(1))

f̃ (j+1) = σ(w(j)x+ b(j) − f̃ (j))
. (3)

To prove that the bound
∏k

i=1

(
(wi+1)wi

2 + 1
)

is tight for a one-hidden-layer network, the key is

to make each f̃ (j) produce j new breakpoints and have j non-zero pieces that share a point with
y = 0. We use mathematical induction to derive our construction. Figure 7 schematically illustrates
our construction idea.

First, let f̃ (1) = σ(x+ 1) and f̃ (2) = σ(0.5× (x+ 2)− f̃ (1)). Note that f̃ (1) has 1 non-zero piece
that shares a point with y = 0, and f̃ (2) has 2 non-zero pieces that share a common point with y = 0.

Then, given f̃ (j), j ≥ 2, we suppose f̃ (j) has j non-zero pieces that share a point with y = 0. Since
f̃ (j) is continuous, we select its peaks {(xpi , f̃

(j)(xpi))} by the following conditions: i) f̃ (j) is not
differentiable at xpi

; ii) f̃ (j)(xpi
) ̸= 0. Next, let (x∗, f̃ (j)(x∗)) be the lowest peak of f̃ (j). As long

as the slope w(j+1) and the bias b(j+1) satisfy{
w(j+1) <

f̃
(j)
1 (x∗)

x∗+j+1

b(j+1) = wj+1 × (j + 1)
, (4)
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w(j+1)x+b(j+1) crosses and only crosses j pieces of f̃ (j). These pieces are exactly non-zero pieces
that share a point with y = 0. Thus, plus the breakpoint − b(j+1)

w(j+1) , f̃ (j+1) generates a total of j + 1

new breakpoints. At the same time, f̃ (j+1) has j + 1 non-zero pieces that share a point with y = 0.
Figure 7 illustrates the process of induction.

Finally, the total number of breakpoints is
∑w1

j=1 j =
(w1+1)w1

2 , which concludes our proof.

Theorem 17 (An arbitrarily deep network of width=4 and with all neurons in each layer intra-linked
can achieve at least 9k pieces). There exists an R → R function represented by an intra-linked ReLU
DNN with depth k, width 4 in each layer, and all neurons in each layer intra-linked, whose number
of pieces is at least 9k.

Proof. The core of the proof is to use a one-hidden-layer all-neuron-intra-linked network of width
4 to create a quasi-sawtooth function with as many pieces as possible. We construct four neurons as
follows: 

f̃ (1) = σ(2x)

f̃ (2) = σ(x+ 1− σ(f̃ (1)))

f̃ (3) = σ( 13 (x+ 2)− f̃ (2))

f̃ (4) = σ( 19 (x+ 3)− f̃ (3))

. (5)

The profiles of f̃ (1), f̃ (2), f̃ (3), f̃ (4) are shown in Figure 8(a).
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Figure 8: A schematic illustration of how to use an intra-linked network to generate a sawtooth function.

By combining f̃ (1), f̃ (2), f̃ (3), f̃ (4) with carefully calibrated coefficients, we have the following
quasi-sawtooth function that has 9 pieces are

η(x) = f̃ (4) +
5

84
× f̃ (3) − 1

3
× f̃ (2) + 0× f̃ (1). (6)

As shown in Figure 8(b), we have marked all breakpoints of η(x) to validate its correctness.

Next, we just need to let each layer of the intra-linked network represent a stretched and down-pulled
variant of η(x), e.g., the k-th layer ηk(x) = Mk ·η(x)−Bk, where Mk is a sufficiently large number
and Bk > 5

504Mk + 3 to ensure that [−3, 0] is within the function range of ηk(x).

Finally, the constructed network is

ηk ◦ ηk−1 ◦ · · · ◦ η1(x). (7)
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Theorem 18 (An arbitrarily deep network of width=3 and with all neurons in each layer intra-linked
can achieve at least 5k pieces). There exists an R → R function represented by an intra-linked ReLU
DNN with depth k, width 3 in each layer, and all neurons intra-linked in each layer, whose number
of pieces is at least 5k.

Proof. Following the same spirit in proof of Theorem 17, we construct three neurons as follows:
f̃ (1) = σ(2x)

f̃ (2) = σ(x+ 1− σ(f̃ (1)))

f̃ (3) = σ( 13 (x+ 2)− f̃ (2))

. (8)

The target function that returns us 5 pieces is

ξ(x) =
1

100
× f̃ (3) − 1

3
× f̃ (2) + 0× f̃ (1). (9)

Next, we just need to let each layer of the intra-linked network represent a stretched and down-pulled
variant of ξ(x), e.g., the k-th layer ξk(x) = Tk · ηk(x)−Ck, where Tk is a sufficiently large number
and Ck > 1

200Tk + 2 to ensure that [−2, 0] is within the function range of ξk(x).

Finally, the constructed network is
ξk ◦ ξk−1 ◦ · · · ◦ ξ1(x). (10)

Remark 4. Suppose each layer has w neurons: w1 = w2 = · · · = wk = w, and n = w, the upper
bound of the intra-layer linked network is ( (w+1)w

2 + 1)k, which approximately equals to that of a
feedforward network with width w1 = w2 = · · · = wk = (w+1)w

2 . At this time, the improvement
of representation power by intra-links is O(w) instead of a constant-level improvement. Thus, the
separation is still valid if one allows increasing the width of feedforward networks by a constant
factor.

(a) 2 neurons intra-linked 

… …

(b) 3 neurons intra-linked 

… …

(b) all neurons intra-linked 

… …

Figure 9: The improvement of representation power by intra-links is O(w) when all neurons in a layer are
intra-linked.
Proposition 6 (Modify the depth separation k2 vs 2). For every k ≥ 2, there exists a function p(x)
that can be represented by a (k2 + 1)-layer ReLU DNN with 2 nodes in each layer, such that it
cannot be represented by a classical 2-layer ReLU DNN W2(x) with width less than k2 − 1, but
can be represented by a 2-layer, (2k)-wide intra-linked ReLU DNN W̃2(x).

Proof. Combining Theorem 4, Theorem 16, and Lemma 11 straightly concludes the proof.

G ANALYSIS EXTENDED TO ONE-NEURON-WIDE RESNET

Our analysis can be extended to ResNet to show the power of residual connections. Let us use a
one-neuron-wide ResNet to demonstrate this point. It is straightforward to see that a one-neuron-
wide ReLU DNN can represent PWL functions with at most three pieces, no matter how deep the
network is. However, if we add residual connections to the network, which gives a ResNet, it can
represent PWL functions with much more pieces.
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Theorem 19. Let f : R → R be a PWL function represented by a one-neuron-wide ResNet. Mathe-
matically, f = ck+1fk + gk, where g1(x) = x, fi = σ (aigi + bi) , gi+1 = cifi + gi, ck+1, ai, bi, ci
are parameters, for i = 1, . . . , k. Then f has at most 2k + 2 pieces.

Proof. The first claim follows from Lemma 3 and a simple induction step. Following the idea of
the construction in Propositions 1 and 2, we set ci = −2 and ai = 1 for all i and set b1 = 0,
bi = 2− 2−i+2 for i = 2, . . . , k .

Theorem 19 confirms that adding simple links can greatly improve the representation ability of
a network. Actually, both ResNet and intra-layer linked networks do not increase the number of
parameters, but they can represent more complicated functions than the feedforward of the same
neurons used in each layer. Hence, the linked structure can improve the efficiency of parameters.
Besides, we can see from the proof of Theorem 19 that the idea and construction in analyzing intra-
linked networks can indeed be utilized to analyze other architecture of networks.
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