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ABSTRACT

Although early text-to-speech (TTS) models such as Tacotron 2 have succeeded
in generating human-like speech, their autoregressive architectures have several
limitations: (1) They require a lot of time to generate a mel-spectrogram con-
sisting of hundreds of steps. (2) The autoregressive speech generation lacks ro-
bustness due to its error propagation property. In this paper, we propose a novel
non-autoregressive TTS model called BVAE-TTS, which eliminates the architec-
tural limitations and generates a mel-spectrogram in parallel. BVAE-TTS adopts
a bidirectional-inference variational autoencoder (BVAE) that learns hierarchical
latent representations using both bottom-up and top-down paths to increase its
expressiveness. To apply BVAE to TTS, we design our model to utilize text infor-
mation via an attention mechanism. By using attention maps that BVAE-TTS gen-
erates, we train a duration predictor so that the model uses the predicted duration
of each phoneme at inference. In experiments conducted on LJSpeech dataset, we
show that our model generates a mel-spectrogram 27 times faster than Tacotron
2 with similar speech quality. Furthermore, our BVAE-TTS outperforms Glow-
TTS, which is one of the state-of-the-art non-autoregressive TTS models, in terms
of both speech quality and inference speed while having 58% fewer parameters.

1 INTRODUCTION

End-to-end text-to-speech (TTS) systems have recently attracted much attention, as neural TTS
models began to generate high-quality speech that is very similar to the human voice (Sotelo et al.,
2017; Wang et al., 2017; Shen et al., 2018; Ping et al., 2018; Li et al., 2019). Typically, those
TTS systems first generate a mel-spectrogram from a text using a sequence-to-sequence (seq2seq)
model (Sutskever et al., 2014) and then synthesize speech from the mel-spectrogram using a neural
vocoder like WaveGlow (Prenger et al., 2019).

Early neural TTS systems have used an autoregressive (AR) architecture to generate a mel-
spectrogram mainly because of its two benefits. First, the AR generation eases the difficulty of
modeling mel-spectrogram distribution by factorizing the distribution into the product of homoge-
neous conditional factors in sequential order. Second, the seq2seq based AR architecture helps the
model predict the length of the target mel-spectrogram from an input text, which is a non-trivial task
because there are no pre-defined rules between the lengths of text and mel-spectrogram.

Although they facilitate high-quality speech synthesis, AR TTS models have several shortcomings.
First, they cannot generate a mel-spectrogram in parallel, so the inference time increases linearly
with mel-spectrogram time steps. Second, the AR-based generation suffers from accumulated pre-
diction error, resulting in being vulnerable to the out-of-domain data, e.g. very long input text, or
text patterns not existing in the training dataset.

In this work, we present a novel non-AR TTS model called BVAE-TTS that achieves fast and ro-
bust high-quality speech synthesis. BVAE-TTS generates a mel-spectrogram in parallel by adopting
a bidirectional-inference variational autoencoder (BVAE) (Sønderby et al., 2016; Kingma et al.,
2016; Maaløe et al., 2019; Vahdat & Kautz, 2020) consisting of 1-D convolutional networks. For
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the high-quality speech synthesis, BVAE-TTS learns mel-spectrogram distribution jointly with hier-
archical latent variables in a bidirectional manner, where BVAE uses both bottom-up and top-down
paths. Furthermore, to match the length of the target mel-spectrogram at inference, BVAE-TTS has
an additional module called duration predictor, which predicts how many steps of a mel-spectrogram
will be generated from each phoneme. To train the duration predictor, we employ an attention mech-
anism in BVAE-TTS to make BVAE-TTS utilize the text while learning attention maps between the
text and the mel-spectrogram, where the mapping information is used for duration labels.

Our BVAE-TTS has advantages over the previous non-AR TTS models as follows:

• It has a simpler training process compared to the previous non-AR TTS models such as
ParaNet (Peng et al., 2020) and FastSpeech (Ren et al., 2019). In the previous TTS models,
well-trained AR teacher models are needed for duration labels or knowledge-distillation.
Although FastSpeech 2 (Ren et al., 2020) removes the dependency on the teacher model,
it still requires additional duration labels and acoustic features prepared in advance using
other speech analysis methods. In contrast, BVAE-TTS requires only the text-speech paired
dataset without any helps from the teacher model.

• It is more flexible in designing its architecture compared to the previous flow-based non-AR
TTS models such as Flow-TTS (Miao et al., 2020) and Glow-TTS (Kim et al., 2020). The
flow-based models have architectural constraints caused by their bijective transformation
property, which leads to deeper models with a lot of parameters. On the contrary, the
VAE-based model is free from the architectural constraints.

In experiments, we compare our BVAE-TTS with Tacotron 2 and Glow-TTS in terms of speech
quality, inference speed, and model size. The results show that our model achieves 27 times speed
improvement over Tacotron 2 in generating a mel-spectrogram with similar speech quality. Further-
more, BVAE-TTS outperforms the state-of-the-art non-AR TTS model, Glow-TTS, in both speech
quality and inference time, while having 58% fewer model parameters. Additionally, we analyze
how the latent representations are learned by BVAE-TTS. In this analysis, we confirm that the bot-
tom part of BVAE-TTS captures the variation of mel-spectrograms that can occur from a text.

Related work: In the meantime, several TTS systems have utilized VAE to relax the one-to-many
mapping nature in TTS, so improve the naturalness and the controllability of the systems. For
example, (Hsu et al., 2018) and (Zhang et al., 2019) incorporate VAE to Tacotron 2 to learn the style
or prosody of the input speech. However, previous uses of VAE have been limited to an auxiliary
network in TTS based on the main AR TTS model. To the best of our knowledge, our BVAE-TTS
is the first parallel TTS model that directly uses the VAE architecture to the task of TTS.

More discussions about other related works on the previous non-AR TTS models are in Section 5.

2 BACKGROUND

2.1 BIDIRECTIONAL-INFERENCE VARIATIONAL AUTOENCODER
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Figure 1: A Schematic diagram of the
bidirectional-inference variational au-
toencoder. Samplings of latent vari-
ables occur in the layers expressed as
circles.

Variational autoencoder (VAE) is a neural network genera-
tive model pθ(x, z) parameterized by θ, where x is an ob-
served data and z is a latent vector. In practice, since we
only have a dataset X = {x1, ...,xN} without the knowl-
edge about z, θ is typically optimized by maximizing the
likelihood:

max
θ

logpθ(X) = max
θ

N∑
i=1

log

∫
z

pθ(xi, z)dz. (1)

However, the integral over z is intractable to compute.
Therefore, the VAE introduces an approximate posterior
qφ(z|x) and does variational inference while maximizing
the evidence lower bound (ELBO):
logpθ(x) ≥ Eqφ(z|x) [logpθ(x|z)]−DKL [qφ(z|x)||p(z)] .

(2)
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In practice, for easy sampling and easy computation of the KL-divergence, each of the prior p(z)
and the approximate posterior qφ(z|x) is usually modeled as a multivariate normal distribution with
a diagonal covariance matrix.

For a more expressive model, the latent vector z can be factorized into {z1, ..., zK}with hierarchical
dependency, where K is the number of hierarchies. Then, each of the prior and the approximate
posterior is represented as pθ(z) = Πkpθ(zk|z<k) and qφ(z|x) = Πkqφ(zk|z<k,x), respectively.
In (Sønderby et al., 2016; Kingma et al., 2016; Vahdat & Kautz, 2020), the variational inference
is designed in a bidirectional way based on bottom-up path and top-down path, while letting the
inference network (left) and generative network (right) share their parameters as shown in Figure 1.
First, along the bottom-up path, BVAE extracts hierarchical features from x and stores them inside
of it. Then, along the top-down path, BVAE does the variational inference and reconstructs the
input data considering the stored hierarchical features together. This architecture helps the model
effectively learn the hierarchies between the latent variables, and equation (2) is changed as follows:

logpθ(x) ≥ Eqφ(z|x) [logpθ(x|z)]−
K∑
k=1

Eqφ(z<k|x)[DKL [qφ(zk|x, z<k)||p(zk|z<k)]]. (3)

2.2 DURATION PREDICTOR IN NON-AUTOREGRESSIVE TEXT-TO-SPEECH

To achieve the non-autoregressive (non-AR) text-to-speech (TTS) model, the model needs to predict
the length of the target mel-spectrogram from a text. This is because there is no way to access to the
length of the target mel-spectrogram at inference. However, this is a challenging task considering
that there are no pre-defined rules between the lengths of text and mel-spectrogram. Recently,
several non-AR TTS models (Ren et al., 2019; Zeng et al., 2020; Kim et al., 2020) resolved the issue
by introducing a module called duration predictor. The duration predictor is a module that predicts
how many mel-spectrogram steps will be generated from each phoneme.

First, using the duration predictor, the non-AR TTS models compute durations D̂ = {d̂1, ..., d̂S}
corresponding to each phoneme based on phoneme representations H = {h1, ...,hS}, where each
d̂i is a positive integer that is rounded off from a positive real number, and S is the number of
phonemes. Then, H is expanded to the length of the target mel-spectrogram T , by repeating each
hi as many steps as d̂i. Finally, the non-AR TTS models generate a mel-spectrogram in parallel by
decoding the expanded phoneme representations.

In practice, since there are no ground-truth duration labels for the training of the duration predictor,
the non-AR models obtain the duration labels using various methods, and we adopt a method used
in FastSpeech (Ren et al., 2019). From well-aligned attention maps, the duration labels are obtained
according to di =

∑t=T
t=1 [argmaxs as,t == i], where as,t represents an attention weight given from

the t-th mel-spectrogram step to the s-th phoneme.

3 METHODOLOGY

In this section, we explain a novel non-autoregressive (non-AR) TTS model, BVAE-TTS, which
is based on the bidirectional-inference variational autoencoder (BVAE). As shown in Figure 2-(a),
during training, BVAE-TTS is given a mel-spectrogram with a phoneme sequence, and it is trained
to reconstruct the mel-spectrogram while maximizing the ELBO. Here, the duration predictor is
jointly trained using the attention maps that BVAE-TTS generates during training. As shown in
Figure 2-(c), at inference BVAE-TTS generates a mel-spectrogram from a phoneme sequence using
the duration predictor as described in Section 2.2, while using its top-down path for decoding the
expanded phoneme representations. In Appendix A.1, pseudo-codes for the training and inference of
BVAE-TTS are contained for detailed descriptions. The other aspects of BVAE-TTS are described
in the following sub-sections in more detail.

3.1 USING BVAE FOR TEXT-TO-SPEECH

Unlike the previous BVAE models (Sønderby et al., 2016; Kingma et al., 2016; Vahdat & Kautz,
2020) are trained to generate natural images, our model should learn to generate a mel-spectrogram
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Figure 2: (a) The training procedure of BVAE-TTS. The scissors represent to detach the signal from
the computational graph to block the gradient signal in backpropagation. The Downsample and
Upsample layers are included in even-numbered BVAE blocks. Vexp represents the expanded V
to fit the length of the top-down path input. The f(·) represents the Straight-Through argmax with
jitter, and OL represents the gradient signal. (b) BVAE Layer. The dotted arrow represents sampling.
The red lines indicate the parameters of prior and approximate posterior normal distributions. (c)
The inference procedure of BVAE-TTS that uses the top-down path only.

that is not only natural but also corresponding to the input text. To this end, we add a dot-product
attention network (Bahdanau et al., 2015) on top of the BVAE, which is a channel for BVAE-TTS to
learn how to utilize the text properly. First, using a text encoder, key (K) and value (V) are obtained
from a phoneme sequence, and from the bottom-up path, query (Q) is obtained. Here, obtaining Q is
different from the bottom-up paths of the previous BVAE studies used in the image domain, where
only the parameters for posterior approximation are obtained. Second, based on the dot-product
attention with Q, K, and V, the V are expanded to Vexp to fit the length of the top-down path,
and then the Vexp is inputted into the top-down path of BVAE-TTS. Lastly, the BVAE-TTS does
both the variational inference and mel-spectrogram reconstruction along the top-down path using
the expanded text representations with the following objectives:

Lrecon = −Eqφ(z|x,y) [logpθ(x|z,y)] , (4)

LKL =

K∑
k=1

Eqφ(z<k|x,y)[DKL [qφ(zk|x, z<k,y)||p(zk|z<k,y)]] , (5)

where x represents mel-spectrogram, y represents text, z represents latent representation, and mean
absolute error (MAE) loss is used for the Lrecon.

In addition to that, a duration predictor is jointly trained to predict durations corresponding to each
phoneme in the logarithmic domain using mean square error (MSE) loss, Ldur = E[(log di −
log d̂i)

2], where di and d̂i are obtained as described in Section 2.2. The duration predictor takes as
input the V obtained from the text encoder, and here the V is detached from the computational graph
to prevent it from affecting the BVAE training.

3.2 ARCHITECTURE OF BVAE-TTS

In this section, we describe the architecture of BVAE-TTS that hierarchically learns the latent rep-
resentations based on BVAE blocks consisting of BVAE layers.
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BVAE block: As shown in Figure 2-(a), the main part of BVAE-TTS is the stacked BVAE blocks,
each consisting of BVAE layers. To guide the multi-scale fine-to-coarse latent features to be con-
tained in the latent hierarchies, the time dimension of input mel-spectrogram is downsampled using
bilinear downsampling operations (Zhang, 2019) in even-numbered BVAE blocks along the bottom-
up path. Here, the numbering of BVAE blocks starts with one and increases from bottom to top. On
the contrary, its time dimension is upsampled again along the top-down path, by repeating the sig-
nals in the BVAE blocks where the downsamplings have occurred. In odd-numbered BVAE-blocks,
the channel dimension is decreased along the bottom-up path and is increased along the top-down
path. It is done at the pre- or post-convolutional network of the first BVAE layer in the BVAE blocks
shown in Figure 2-(b).

BVAE layer: The main element of the BVAE block is the BVAE layer. As shown in Figure 2-(b),
at each bottom-up and top-down path, the parameters of the prior and the approximate posterior
distributions {µk,Σk}, {∆µk1 ,∆Σk1}, {∆µk2 ,∆Σk2} are obtained from 1-D convolutional
networks. Then, the prior distribution pθ(zk|z<k,y), and the approximate posterior distribution
qφ(zk|z<k,x,y) are defined as follow:

pθ(zk|z<k,y) := N (µk, Σk), (6)
qφ(zk|z<k,x,y) := N (µk + ∆µk1 + ∆µk2 , Σk ·∆Σk1 ·∆Σk2), (7)

where diagonal covariance matrices Σ are used after applying a softplus function to guarantee that
they are positive. This parameterization follows (Vahdat & Kautz, 2020), where the approximate
posterior qφ(zk|z<k,x,y) is relative to the prior pθ(zk|z<k,y). With this parameterization, when
the prior moves, the approximate posterior moves accordingly while making the BVAE training eas-
ier and more stable. During training, the latent representation zk is sampled from qφ(zk|z<k,x,y),
and sampled from pθ(zk|z<k,y) at inference. Other details on the BVAE-TTS architecture such as
text encoder or duration predictor are in Appendix A.2.

3.3 BRIDGE THE GAP BETWEEN TRAINING AND INFERENCE

When BVAE-TTS reconstructs a mel-spectrogram during training, text representations are expanded
via the attention network. In contrast, text representations are expanded via the duration predictor
at inference. Therefore, to bridge the gap between the attention-based mel-spectrogram generation
and the duration-based mel-spectrogram generation, we use the following techniques in this work.

Straight-Through argmax: In the duration-based generation, the predicted duration of each
phoneme is used after it is rounded to the nearest integer. It means that there is a corresponding
phoneme for every time step of a mel-spectrogram. Therefore, during training, we use a trick called
Straight-Through (ST) argmax, where the phoneme representation given the largest attention weight
from each query time step, which is computed using arg max operation, is passed to the top-down
path instead of the weighted sum in the attention mechanism. However, during backpropagation, the
parameter update is conducted as if the signal was a result of the weighted sum.

Jitter: To make the model more robust to the errors of the duration predictor, we apply jitter to
the text representations, where each of the text representations obtained from the ST-argmax is
replaced with a text representation attended by one of the neighboring queries with each probability
of 25% during training. We also experimentally observe that applying jitter makes the learning of
the attention maps more stable, so the attention maps are not defused throughout the training and
stay diagonal.

Positional encoding biasing & Guided attention: In order to reduce the gap between the attention-
based generation and the duration-based generation, it is important for the learned attention maps to
have diagonal shapes. Therefore, we use two additional techniques to directly help BVAE-TTS learn
the diagonal attention maps. First, we add positional encoding vectors with different angular speeds
to query and key as an inductive bias following (Ping et al., 2018). Second, we use an additional
guided attention loss Lguide that gives penalties for attention weights deviating from the diagonal
following (Tachibana et al., 2018). For more details on the techniques in this section, see Appendix
A.3.

With the above techniques, BVAE-TTS is trained with the following objective:

Ltotal = Lrecon + α ∗ LKL + Ldur + Lguide, (8)
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where the α is a warm-up constant that linearly increases from 0 to 1 over the first 20% of training.
This technique is proposed in (Sønderby et al., 2016) to weaken the variational regularization in the
early stages of training.

4 EXPERIMENTS

In this section, we describe the experimental setup and the results obtained from the quantitative and
qualitative experiments that are conducted to evaluate our BVAE-TTS1. For comparison, we use two
state-of-the-art TTS models: Tacotron 22 for an AR TTS model and Glow-TTS3 for a non-AR TTS
model. Here, we use the pre-trained weights of the models that are publicly available.

4.1 EXPERIMENTAL SETUP

In the experiments, we mainly use the LJSpeech dataset (Ito & Johnson, 2017) consisting of 12500 /
100 / 500 samples for training / validation / test splits, respectively. For speech data, we convert raw
waveforms into log-mel-spectrograms with 1024 window length and 256 hop length and use them
as target sequences of our BVAE-TTS model. For text data, we convert raw texts into phoneme
sequences using grapheme-to-phoneme library (Park, 2019) and use them as input sequences of
BVAE-TTS.

We train the BVAE-TTS consisting of 4 BVAE blocks for 300K iterations with a batch size of 128.
For an optimizer, we use the Adamax Optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999
using the learning rate scheduling used in (Vaswani et al., 2017), where initial learning rate of 1e-
3 and warm-up step of 4000 are used. Training of BVAE-TTS takes about 48 hours on Intel(R)
Xeon(R) Gold 5120 CPU (2.2GHz) and NVIDIA V100 GPU on the Pytorch 1.16.0 library with
Python 3.6.10 over the Ubuntu 16.04 LTS. For more details on the hyperparameters, see Appendix
A.4.

4.2 EXPERIMENTAL RESULTS

In this section, we compare BVAE-TTS with Tacotron 2 and Glow-TTS in terms of speech quality,
inference time, and model size. For the quality evaluation, we use pre-trained WaveGlow4 as a
vocoder that converts mel-spectrograms to waveforms. When we sample latent representations in
Glow-TTS and BVAE-TTS, we use the temperature of 0.333 for the models for better speech quality.
(Kingma & Dhariwal, 2018)

Table 1: Experimental results. The MOS-ID and MOS-OOD are written with 95% confidence
intervals. The number in parentheses represents the number of parameters of BVAE-TTS that are
used at inference.

Method MOS-ID MOS-OOD Inference Time (ms) # of Parameters

GT Audio 4.68 ± 0.06 - - -
GT Mel-spectrogram 4.41 ± 0.07 - - -

Tacotron 2 4.35 ± 0.07 4.16 ± 0.07 658.5 28.2M
Glow-TTS 3.96 ± 0.08 3.89 ± 0.10 43.07 28.6M
BVAE-TTS 4.14 ± 0.07 4.21 ± 0.07 24.20 16.0M (12.0M)

Speech quality: In this experiment, we measure the Mean-Opinion-Score (MOS) for audio samples
generated by each TTS model using fifty sentences randomly sampled from the in-domain LJSpeech
test set (MOS-ID). In addition, we measure another MOS on fifty sentences randomly sampled from
the test-clean set of LibriTTS (Zen et al., 2019) to see the generalization ability on the out-of-domain

1https://github.com/LEEYOONHYUNG/BVAE-TTS
2https://github.com/NVIDIA/tacotron2
3https://github.com/jaywalnut310/glow-tts
4http://github.com/NVIDIA/waveglow
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text data (MOS-OOD). Via Amazon Mechanical Turk (AMT), we assign five testers living in the
United States to each audio sample, and ask them to listen to the audio sample and give a score
between 1 to 5 in 9-scale based on its naturalness.

The MOS results shown in Table 1 demonstrate the superiority of our BVAE-TTS, where it out-
performs the state-of-the-art non-AR TTS model, Glow-TTS, on both MOS-ID and MOS-OOD.
Although BVAE-TTS does not surpass Tacotron 2 in MOS-ID, our model achieves better results on
MOS-OOD. It shows its robustness to the out-of-domain text over the autoregressive TTS model
which suffers from the accumulated prediction error. For a better understanding of the speech qual-
ity generated by the models, we strongly encourage the readers to listen to the audio samples in the
supplementary material5 or on the demo page6.

Inference time: We measure inference times taken to generate a mel-spectrogram from a text on
the 500 sentences of LJSpeech test set in GPU environment. The average inference time of each
TTS model is shown in Table 1. As can be seen in the table, our BVAE-TTS shows 27.2 times faster
inference speed on average compared with Tacotron 2, and it is also 1.78 times faster than Glow-
TTS. Besides, due to the sequential generation property of the AR TTS model, the gap between the
inference speed of BVAE-TTS and Tacotron 2 increases with a longer length of an input text. See
Appendix B for more details.

Model size: As can be seen in the last column of Table 1, BVAE-TTS has the smallest number of
parameters of 16.0M while maintaining high-quality speech synthesis. Furthermore, BVAE-TTS
gets smaller (to 12.0M) at inference because the layers belonging to the bottom-up path are not used
to generate a mel-spectrogram, where the number of parameters is 58% fewer parameters compared
to Glow-TTS. This shows that the training principle of BVAE-TTS that hierarchically learns the
latent features while adjusting hidden dimensions enables our model to have small parameters. It is
contrary to the flow-based TTS models such as Flow-TTS (Miao et al., 2020) and Glow-TTS (Kim
et al., 2020), where many parameters are used due to its architectural constraint.

4.3 MODEL ANALYSIS

As our BVAE-TTS is the first VAE-based parallel TTS model, we conduct several analyses on it.
First, we analyze BVAE-TTS to see how the hierarchies are contained in the latent representations
and how the variance in mel-spectrograms is learned. Then, we verify the effectiveness of the
techniques used in BVAE-TTS such as Straight-Through (ST) argmax and jitter through ablation
studies.

4.3.1 ANALYSIS ON HIERARCHY

Target Block

Figure 3: Averages of pixel-by-pixel standard de-
viations measured on randomly sampled 100 mel-
spectrograms.

In this experiment, we conduct an analysis
on the hierarchical latent representation learn-
ing of BVAE-TTS. To see how the latent fea-
tures of the mel-spectrograms are learned in
the hierarchies, we observe the variations of
the mel-spectrograms sampled from the same
text, while using different temperatures for dif-
ferent BVAE blocks. Specifically, we set a tar-
get BVAE block among the four BVAE blocks
and increase the variance of the target BVAE
block, by using a temperature of 1.0 or 2.0 or
5.0 for the samplings occured in the BVAE lay-
ers belonging to the target BVAE block. On
the contrary, we lower the variance of the non-
target BVAE blocks using a temperature of
0.333. Then, we sample 100 different mel-
spectrograms each from the same text, while
varying the target BVAE block and its tempera-
ture.

5https://openreview.net/forum?id=o3iritJHLfO
6https://leeyoonhyung.github.io/BVAE-TTS
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Figure 3 shows the averages of pixel-by-pixel standard deviations measured on the randomly sam-
pled 100 mel-spectrograms from the same text. The block numbers in the figure are given from one
to four starting from the BVAE block at the bottom. In this experiment, we observe that the variance
of the speech is mostly contained in the latent representations of BVAE blocks 1, 2, which are close
to the mel-spectrogram. However, there is not much variance in the generated mel-spectrograms
when we increase the temperature of BVAE blocks 3, 4, which are close to the text representations.
Therefore, we can conclude that the global content is mostly contained in the expanded text rep-
resentations obtained using the text encoder and the duration predictor, and the BVAE blocks 3, 4
focus on building the content rather than its style. Note that while Figure 3 shows standard deviations
measured using one examplar sentence, “One, Two, Three.”, the tendency is consistent regardless of
the input sentence. Mel-spectrogram samples obtained in this experiment are in Appendix C.

4.3.2 ABLATION STUDY

(a) BVAE-TTS

, _

(b) No jitter
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(c) No ST-argmax
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Figure 4: Examples of ablations. Each row represents (1) learned attention map, (2) reconstructed
mel-spectrogram, (3) diagonally stacked predicted durations, (4) generated mel-spectrogram from
a text. (1), (2) are obtained during training, and (3),(4) are obtained at inference. The red lines
represent the section of the durations corresponding to a ‘comma’ and a ‘whitespace’ in text.

We conduct ablation studies to see the effects of applying jitter and Straight-Through (ST) argmax to
the soft attention mechanism in BVAE-TTS, and the results are shown in Figure 4. Here, since jitter
is included in ST-argmax (jitter is applied to the output of the arg max), the ablation study of not
using ST-argmax represents when BVAE-TTS is trained using a normal soft attention mechanism.

The most noticeable differences appear in the attention maps that they learn. As shown in the first
row of Figure 4-(a), (b), applying jitter shows the effectiveness for BVAE-TTS to learn well-aligned
attention maps. It results in using more accurate duration labels to train the duration predictor, which
leads to more natural speech. We observe that BVAE-TTS without applying jitter still generates a
clear speech even though it is a little unnatural, where it obtains a 3.68 MOS on the LJSpeech
dataset. As shown in the bottom mel-spectrogram of Figure 4-(c), the BVAE-TTS without ST-
argmax technique just generates a stuttering sound.

As shown in Figure 4-(a), although the BVAE-TTS also does not learn the perfect attention map,
BVAE-TTS successfully generates a mel-spectrogram at inference. Since the text is forced to be
used monotonically in the duration-based generation, it makes the model more robust to the attention
errors while making fewer pronouncing mistakes. In addition, when using the duration predictor,
it is also possible to locally control the speed of speech by adjusting the predicted durations. The
experiment on the speed control is included in Appendix D.
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5 DISCUSSION

To overcome the limitations that the autoregressive (AR) TTS models have, various non-AR archi-
tectures have been recently proposed. On one hand, there have been feed-forward neural networks
such as ParaNet (Peng et al., 2020), and FastSpeech 1, 2 (Ren et al., 2019; 2020), which use knowl-
edge distillation or additional duration labels and acoustic features. Although they succeeded in
enabling their models to predict the lengths of the target mel-spectrograms, the feed-forward archi-
tectures did not fit the one-to-many mapping problems in TTS. Therefore, FastSpeech (Ren et al.,
2019) uses as targets mel-spectrograms that the AR teacher model generates. This is because much
of the diversity in original mel-spectrograms has been eliminated in the mel-spectrograms generated
by the AR teacher model. Besides, FastSpeech 2 (Ren et al., 2020) even directly uses additional
pre-obtained acoustic features such as pitch and energy to relax the one-to-many mapping nature in
TTS. In contrast to the models, it can be seen that BVAE-TTS is asked to solve one-to-one map-
ping problems during training because there is only one possible target for the reconstruction task.
As a result, BVAE-TTS can generate natural and diverse samples while learning latent features in
mel-spectrograms.

On the other hand, there have been generative flow-based non-AR TTS models such as Flow-TTS
(Miao et al., 2020) and Glow-TTS (Kim et al., 2020). While their speech quality is comparable to
that of AR TTS models, flow-based generative models usually have a problem that they require a
lot of model parameters. In the models, the dimensions of the hidden representations in the flow
networks should be the same through the whole network, and their bipartite flow requires many
layers and larger hidden size because of its lack of expressiveness (Ping et al., 2019; Lee et al.,
2020). Contrary to flow-based TTS models, our BVAE-TTS is free from the above issue. In this
work, by designing BVAE-TTS in hierarchical architecture with varying hidden dimensions, we can
outperform the flow-based TTS model, Glow-TTS in both speech quality and speed, while having a
much smaller model size.

6 CONCLUSION

In this work, we propose BVAE-TTS, which is the first VAE-based non-AR TTS model that gen-
erates a mel-spectrogram from a text in parallel. To use the BVAE architecture in text-to-speech,
we combine BVAE with an attention mechanism to utilize a text, and to extract duration labels for
the training of the duration predictor. In experiments, BVAE-TTS achieves to generate speech 27x
faster than Tacotron 2 with similar speech quality, and also outperforms Glow-TTS in terms of both
speech quality and inference time with 58% fewer parameters. Since our VAE-based TTS model
shows competitive performance and has many advantages over the previous non-AR TTS models,
we hope it becomes a good starting point for future VAE-based TTS research.
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Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep hierarchy of
latent variables for generative modeling. In Advances in neural information processing systems,
pp. 6551–6562, 2019.

Chenfeng Miao, Shuang Liang, Minchuan Chen, Jun Ma, Shaojun Wang, and Jing Xiao. Flow-
tts: A non-autoregressive network for text to speech based on flow. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7209–7213.
IEEE, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=B1QRgziT-.

Jongseok Park, Kyubyong & Kim. g2pe. https://github.com/Kyubyong/g2p, 2019.

Kainan Peng, Wei Ping, Zhao Song, and Kexin Zhao. Non-autoregressive neural text-to-speech.
In Proceedings of the 37th International Conference on Machine Learning, pp. 10192–10204.
PMLR, 2020.

Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O Arik, Ajay Kannan, Sharan Narang, Jonathan
Raiman, and John Miller. Deep voice 3: 2000-speaker neural text-to-speech. Proc. ICLR, pp.
214–217, 2018.

Wei Ping, Kainan Peng, Kexin Zhao, and Zhao Song. Waveflow: A compact flow-based model for
raw audio. arXiv preprint arXiv:1912.01219, 2019.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network
for speech synthesis. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 3617–3621. IEEE, 2019.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech:
Fast, robust and controllable text to speech. In Advances in Neural Information Processing Sys-
tems, pp. 3171–3180, 2019.

Yi Ren, Chenxu Hu, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2: Fast and
high-quality end-to-end text-to-speech. arXiv preprint arXiv:2006.04558, 2020.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al. Natural tts synthesis by con-
ditioning wavenet on mel spectrogram predictions. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4779–4783. IEEE, 2018.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. In Advances in neural information processing systems, pp. 3738–3746,
2016.

10

http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=B1QRgziT-
https://github.com/Kyubyong/g2p


Published as a conference paper at ICLR 2021

Jose Sotelo, Soroush Mehri, Kundan Kumar, João Felipe Santos, Kyle Kastner, Aaron C. Courville,
and Yoshua Bengio. Char2wav: End-to-end speech synthesis. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
B1VWyySKx.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Hideyuki Tachibana, Katsuya Uenoyama, and Shunsuke Aihara. Efficiently trainable text-to-speech
system based on deep convolutional networks with guided attention. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4784–4788. IEEE, 2018.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. arXiv preprint
arXiv:2007.03898, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Yuxuan Wang, R.J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yannis Agiomyrgian-
nakis, Rob Clark, and Rif A. Saurous. Tacotron: Towards end-to-end speech synthesis. In
Proc. Interspeech 2017, pp. 4006–4010, 2017. doi: 10.21437/Interspeech.2017-1452. URL
http://dx.doi.org/10.21437/Interspeech.2017-1452.

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.
LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech. In Proc. Interspeech 2019,
pp. 1526–1530, 2019. doi: 10.21437/Interspeech.2019-2441. URL http://dx.doi.org/
10.21437/Interspeech.2019-2441.

Zhen Zeng, Jianzong Wang, Ning Cheng, Tian Xia, and Jing Xiao. Aligntts: Efficient feed-forward
text-to-speech system without explicit alignment. In ICASSP 2020-2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6714–6718. IEEE, 2020.

Richard Zhang. Making convolutional networks shift-invariant again. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pp. 7324–7334. PMLR,
2019. URL http://proceedings.mlr.press/v97/zhang19a.html.

Ya-Jie Zhang, Shifeng Pan, Lei He, and Zhen-Hua Ling. Learning latent representations for style
control and transfer in end-to-end speech synthesis. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6945–6949. IEEE, 2019.

11

https://openreview.net/forum?id=B1VWyySKx
https://openreview.net/forum?id=B1VWyySKx
http://dx.doi.org/10.21437/Interspeech.2017-1452
http://dx.doi.org/10.21437/Interspeech.2019-2441
http://dx.doi.org/10.21437/Interspeech.2019-2441
http://proceedings.mlr.press/v97/zhang19a.html


Published as a conference paper at ICLR 2021

A DETAILS ON BVAE-TTS

A.1 ALGORITHMS

Algorithm 1: Pseudo-code of BVAE-TTS training
Data:

x, y: a mel-spectrogram, a phoneme sequence
Q, K, V,Vexp: query, key, value, and expanded value matrices
h, hexp: hidden representations, expanded hidden representations
BVAE-TTS[b, l]: an l-th BVAE layer in b-th BVAE block.
PEquery, PEkey: positional encoding vectors for query and key
A: a soft attention map obtained before applying the ST-argmax technique
D: phoneme durations extracted from the attention map
D̂: phoneme durations predicted by the duration predictor
α: a warm-up constant

Result:
x̂: a reconstructed mel-spectrogram
Ltotal,Lrecon,LKL,Ldur,Lguide: total loss, and losses that make up the total loss

K, V← TextEncoder(y);
h← PreNet(x)

for b← 0 to B − 1 do
if b%2 == 1 then

h← Downsample(h);
end
for l← 0 to L− 1 do

h,∆µk1 ,∆Σk1 ← BVAE-TTS[b, l].BottomUp(h);
BVAE-TTS[b, l].∆µk1 ← ∆µk1 ;
BVAE-TTS[b, l].∆Σk1 ← Softplus(∆Σk1);

end
end

Q←IncreaseDimension(h);
Vexp,A← Attention(Q + PEquery, K + PEkey, V);
hexp ←DecreaseDimension(Vexp);

LKL ← 0;
for b← B − 1 to 0 do

for l← L− 1 to 0 do
hexp, kl loss← BVAE-TTS[b, l].TopDown(hexp);
LKL ← LKL + kl loss

end
if b%2 == 1 then

hexp ← Upsample(hexp);
end

end

x̂← Projection(hexp);
D ← ExtractDurations(A);
D̂ ← DurationPredictor(V);

Lrecon ← MAE(x, x̂);
Ldur ← MSE(log(D), log(D̂));
Lguide ← GuidedAttentionLoss(A);

Ltotal ← Lrecon + α · LKL + Ldur + Lguide;
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Algorithm 2: Pseudo-code of BVAE-TTS inference
Data:

x, y: a mel-spectrogram, a phoneme sequence
K, V,Vexp: key, value, and expanded value matrices
hexp: expanded hidden representations
BVAE-TTS[b, l]: an l-th BVAE layer in b-th BVAE block.
D̂: phoneme durations predicted by the duration predictor

Result:
x̂: a reconstructed mel-spectrogram

K, V← TextEncoder(y);
D̂ ← DurationPredictor(V);
Vexp ← ExpandRepresentations(V, D̂);
hexp ←DecreaseDimension(Vexp);

for b← B − 1 to 0 do
for l← L− 1 to 0 do

hexp, ← BVAE-TTS[b, l].TopDown(hexp);
end
if b%2 == 1 then

hexp ← Upsample(hexp);
end

end

x̂← Projection(hexp);

A.2 ARCHITECTURE DETAILS

Text encoder: To obtain key (K) and value (V) used in the attention mechanism, we use a text
encoder used in DeepVoice 3 (Ping et al., 2018), which consists of a series of 1-D convolutional
network with a gated linear unit and a residual connection; y =

√
0.5(x+conv1(x)∗σ(conv2(x))).

The last hidden representations of the text encoder are used as K, and V is computed according to
V =

√
0.5(K + E), where E represents phoneme embedding vectors.

Duration predictor: We use a duration predictor used in FastSpeech (Ren et al., 2019), which
consists of two Conv1d-ELU-LayerNorm-Dropout blocks, followed by a linear projection layer.
Then, we take exponential of the output values and add ones to them to guarantee that the predicted
durations are larger than one.

Pre-net & Projection layer & Dimension matching layers: To adjust dimensions properly, there
are four additional layers; Pre-net, Projection layer, and two additional dimension matching layers.
Pre-net consists of two Conv1d-Dropout-ELU blocks, and Projection layer consists of two Conv1d-
ELU-LayerNorm-Dropout blocks followed by a Conv1d layer with a sigmoid activation. For the
dimension matching layers, we use a Conv1d layer with kernel width 5 to increase the dimension,
and use a linear layer to decrease the dimension.

BVAE block & layer: To increase the receptive field of the model, the pre- & post- convolutional
networks use dilated convolution with the dilation factors 1, 2, 4 for each BVAE layer in each BVAE
block. Every convolutional network except for the networks that output the parameters of the prior
and approximate posterior distributions are followed by an ELU layer. When the residual path is
merged with the original path, we combine the signals according to y =

√
0.5(x+f(x)) to stabilize

training. Following (Vahdat & Kautz, 2020), we apply the spectral normalization (Miyato et al.,
2018) to the convolutional networks located on the residual path to stabilize training.

A.3 ADDITIONAL TECHNIQUES

Straight-Through argmax: Let A = {as,t} be the attention matrix obtained from the dot-product
operation in the attention mechanism. Then, the original attention mechanism expands the value V

13
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to Vexp according to Vexp = Aᵀ · V. However, with the ST-argmax, another one-hot attention
matrix Aonehot = {a′s,t} is firstly obtained, where for s and t, a′s,t = 1 if as,t == maxi(ai,t) else
0. Then Vexp is obtained as follow:

Vexp = (A + (Aonehot −A).detach())ᵀV, (9)

where by using the detach function, we let the gradient flow to A instead of Aonehot during back-
propagation.

Jitter: To apply jitter to the hidden states, we apply jitter to Aonehot obtained from ST-argmax, of
which example is shown in Figure 5. By using a function ‘random.choices’ that returns an element
chosen from a list according to probabilities p, applying jitter to Aonehot can be implemented
according to a′s,t = random.choices([a′s,t−1, a′s,t, a′s,t+1], p = [0.25, 0.5, 0.25]).
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Figure 5: An example of applying jitter to ideal diagonal attention matrix Aonehot

Positional encoding biasing: We add positional encoding vectors with different angular speed ws
to query Q and key K to introduce inductive bias of diagonal attention:

PE(pos,2i) = sin(
ws ∗ pos
100002i/d

), (10)

PE(pos,2i+1) = cos(
ws ∗ pos
100002i/d

), (11)

where pos is the position, i is the dimension, and d is the dimension of Q and K.

For Q, ws = 1, and for K, ws = T/S, where T and S are the numbers of time steps of Q and K.
Then, the attention matrix A is obtained according to A = (K + PEkey) · (Q+ PEquery)ᵀ.

Guided attention: To directly lead the attention map to be formed in diagonal, we additionally
introduce Lguide as follow:

Lguide = E[as,t ∗ (1− exp(−(s/S − t/T )2)/2g2)],

where g is set to 0.2.
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A.4 HYPER PARAMETERS

Table 2: Hyperparameters of BVAE-TTS.

Hyperparameter BVAE-TTS
Phoneme Embedding Dimension 256
Text Encoder Layers 7
Text Encoder Hidden Dimension 256
Text Encoder Conv1D Kernel Width 5
Text Encoder Conv1D Filter Size 256
Text Encoder Dropout 0.1
Pre-net Layers 2
Pre-net Dropout 0.5
Pre-net Hidden Dimension 256
Downsampling Conv 1D kernel [0.25, 0.5, 0.25]
Projection Layers 3
Projection Dropout 0.5
Projection Conv1D Kernel Width 5
Projection Conv1D Filter Size 256
Duration Predictor Conv1D Kernel Width 3
Duration Predictor Conv1D Filter Size 256
Duration Predictor Dropout 0.1
BVAE Blocks 4
BVAE Layers per block 3
BVAE Conv1D Kernel Width 5
Hidden Dimensions of BVAE blocks 128, 128, 64, 64
Total Number of Parameters 16.0M (12.0M)

B PARALLEL SYNTHESIS
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Figure 6: Inference time measured on 500 sentences of LJSpeech test set.

To see the benefit of parallel mel-spectrogram synthesis, we measure the inference time of Tacotron
2, Glow-TTS, and BVAE-TTS on the 500 sentences of LJSpeech test set in GPU environment.
Figure 6 shows that the inference times of the non-AR TTS models are almost constant even if
the length of the input text gets longer. On the contrary, the inference time of Tacotron2 linearly
increases.
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C ANALYSIS ON HIERARCHY

While changing the target BVAE block and its temperature as described in 4.3.1, we observe the
generated mel-spectrogram samples. As shown in Figure 7-9, the variance of the mel-spectrograms
is clear when we increase the temperature of the two bottom BVAE blocks. On the contrary, the mel-
spectrograms are almost the same when we increase the temperature of the top two BVAE blocks.
Especially, when we set the temperature of ‘BVAE block 2’ to 5.0, the mel-spectrograms are the
most diverse with good speech quality.
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Figure 7: Mel-spectrograms generated from the same text, “One, Two, Three.”.
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Figure 8: Mel-spectrograms generated from the same text, “Hello, my friends.”.
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Figure 9: Mel-spectrograms generated from the same text, “Trick or treat!”.
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D SPEED CONTROL
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Figure 10: Speed controlled mel-spectrograms generated from the same text “One, Two, Three.”

While AR TTS models generally suffer from the lack of controllability, BVAE-TTS can control
the fine-grained speed of speech by multiplying a positive constant to the durations predicted by
the duration predictor. Figure 10 shows three mel-spectrograms produced by BVAE-TTS using
the same sentence, “One, Two, Three.”. While changing the target word from “One” to “Three”,
we multiply 2.0 to the durations of phonemes belonging to the target word, and multiply 0.7 to
the durations of phonemes belonging to the non-target words. In this experiment, we observe that
BVAE-TTS successfully generates speech while varying the pronouncing speed of each word in a
single sentence. Interestingly, we observe that our model intensifies the pronunciation of the target
word, showing the capability of appropriately adjusting the prosody according to the speed.
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