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Abstract
Multi-physics inversion plays a critical role in
geophysics. It has been widely used to simultane-
ously infer various geophysical properties (such
as velocity and conductivity). Among those inver-
sion problems, some are explicitly governed by
partial differential equations (PDEs), while oth-
ers are not. Without explicit governing equations,
conventional physical-based inversion techniques
are not feasible and data-driven inversion requires
expensive full labels. To overcome this issue,
we proposed a new data-driven multi-physics in-
version technique with extremely weak supervi-
sion. Our key finding is that the pseudo labels can
be constructed by learning the local relationship
among geophysical properties at very sparse lo-
cations. We explore the multi-physics inversion
problem from two distinct measurements (seis-
mic and electromagnetic data) to three geophys-
ical properties (velocity, conductivity, and CO2

saturation) with synthetic data based on the Kim-
berlina storage reservoir in California. Our results
show that we are able to invert for properties with-
out explicit governing equations. Moreover, the
labeled data on three geophysical properties can
be significantly reduced by 50 times (from 100
down to only 2 locations).

1. Introduction
Geophysical inversion obtains the geophysical properties
(such as velocity, conductivity and CO2 saturation) from
surface-based geophysical measurements including seis-
mic (Yilmaz, 2001), electromagnetics (EM) (Zhdanov,
2009), gravity (Li & Oldenburg, 1998), etc. The ob-
tained properties provide structural and numerical infor-
mation for various geophysical applications, such as guid-
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Figure 1. Schematic illustration of our proposed method, which
generate the pseudo labels m̃ from the sparse sampling of the
target property m and the full labeling of the source property v.

ing the drilling of wells in oil and gas exploration activi-
ties (Barkved et al., 2010), monitoring the stored CO2 in the
reservoir (Queißer & Singh, 2013), determining the mecha-
nism of earthquake source (Duputel et al., 2012), identifying
mineral deposits (Oldenburg & Pratt, 2007) and so on.

These inversion problems have been studied separately (see
Fig. 2) along two directions: physics-driven and data-driven.
The physics-driven methods (Zhdanov et al., 2000; Virieux
& Operto, 2009; Feng & Schuster, 2019; Chen et al., 2020;
Feng et al., 2021a) are applicable for seismic→velocity and
EM→conductivity by leveraging the known PDE, which
is converted as a forward modeling operator such that the
input (seismic or EM) is a function of output (velocity or
conductivity). Based on the forward modeling, velocity and
conductivity can be iteratively optimized. The data-driven
methods apply to the inversion problems by leveraging deep
neural networks to learn a correspondence from geophys-
ical measurements to geophysical properties (Araya-Polo
et al., 2018; Wu & Lin, 2019; Feng et al., 2021b). This
type of works requires a large amount of paired geophys-
ical measurements and geophysical properties to train the
network.
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Figure 2. Schematic illustration of the Weakly Supervised Multiple
Geo-Physics Inversion (WS-MGI) and the comparison with the
prior works. The prior works are mainly achieved by physics-
driven and data-driven methods. The physics-driven methods
can invert the geophysical properties governed by PDEs, such
as velocity and conductivity (governed by wave and Maxwell
equations). The data-driven methods require fully-labeled data for
network training

The information from different geophysical methods is usu-
ally mutually complementary. Jointly inverting multiple
geophysical data simultaneously collected from the same
area can improve the estimation of geophysical properties
and reduce the uncertainty (Zhdanov et al., 2021). Joint
multi-physics inversion has been widely studied among
the physics-driven methods with the properties explicitly
governed by the PDEs (such as velocity and conductiv-
ity) (Hoversten et al., 2003; Lelièvre et al., 2012). But the
physics-driven methods are unable to invert properties with-
out explicit governing equations (such as CO2 saturation)
since the gradient in the iterative optimization can not be
solved.

Supervised data-driven methods can obtain properties with-
out explicit governing equations. Sun et al. (2020) presented
a joint inversion that reconstructs salt geometry by com-
bining seismic and electromagnetic data, it still relies on a
large amount of labeled data. However, the acquisition of
the labeled data is extremely expensive, only sparse labeled
data can be acquired in the field experiments.

In this work, we shift the data-driven inversion paradigm to
jointly address these three inversion problems with extremely
weak supervision (see Fig. 2). The three inversion problems

are as follows: (a) seismic→velocity to recover velocity
maps from seismic data, (b) EM→conductivity to recover
conductivity maps from EM data, and (c) seismic/EM→CO2
to recover CO2 saturation maps from seismic and EM data.
The first two are governed by PDEs (wave and Maxwell’s
equation), while the physics for the last one is unknown.
Only 1

50 samples in the maps are labeled. We propose a
two-stage solution for these problems. In the first step, a
single-physics inversion is performed in an unsupervised
way. In the second step, we construct the pseudo labels
by approximating the relationship between the geophysical
properties, which enable the inversion of the properties that
do not have explicit governing equations. The requirement
of the multi-physics labeled data is greatly reduced. We
name our multi-physics method Weakly Supervised Mul-
tiple Geo-Physics Inversion (WS-MGI) and evaluate our
methodology on the Kimberlina reservoir data (Alumbaugh
et al., 2021). These numerical results demonstrate that WS-
MGI can accurately reconstruct the subsurface structures
with sparsely labeled data.

2. Backgrounds and Related Works
A geophysical survey collects the multi-physics data to ex-
tract useful information about the geophysical properties.
Geophysical forward modeling can be formulated as

d = f(m), (1)

where d is the geophysical measurement, m is the geophys-
ical properties and f is the geophysical forward modeling
operator.

Some of the forward modeling operator f is governed by the
PDEs. For example, the velocity maps and seismic measure-
ments are correlated through the acoustic-wave equation as
follows (Schuster, 2017):

∇2p(r, t)− 1

v2(r)

∂2p(r, t)

∂t2
= s(r, t), (2)

where v(r) is the velocity at spatial location r, ∇2 =(
∂2

∂x2 + ∂2

∂z2

)
is the Laplacian operator in 2D Cartesian co-

ordinates, s(r, t) is the source term, p(r, t) is the pressure
data, and t represents time.

Similarly, the conductivity map and EM measurements
are correlated through the Maxwell’s equations as fol-
lows (Commer & Newman, 2008):

σE−∇×H = −J, (3)
∇×E+ iωµ0H = −M,

where H and E are the magnetic and electric fields, respec-
tively. J and M are the electric and magnetic sources. σ
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is the electrical conductivity and µ0 is the magnetic perme-
ability of free space that µ0 = 4π × 10−7 ohm-seconds per
meter.

Given the forward modeling operator f , the physics-driven
method invert the geophysical properties m by minimizing
the loss function:

Lgeo =
1

2
||f(m)− d||2. (4)

where d is the geophysical measurement.

However, some geophysical properties, such as CO2 satu-
ration, are not connected to the surface-based geophysical
measurements by PDEs and f is unknown. The physics-
driven methods are not feasible for such properties (see Fig.
2).

In the data-driven methods, convolutional neural networks
g(·) are trained to approximate the inverse mapping f−1(·)
from geophysical measurement d to geophysical properties
m whether f is known:

m = g(d) ≈ f−1(d). (5)

Such methods are able to invert all the geophysical prop-
erties with the requirement of paired geophysical measure-
ment d and labeled geophysical properties m for the train-
ing.

The accurate labeled geophysical properties can only be
obtained from well logs, which are collected by the instru-
ments lowered in a borehole that is penetrating the geologic
formations (Ellis & Singer, 2007). The borehole is drilled
vertically aiming at a target directly below the surface (Ma
et al., 2016). The drilling is very expensive and only a few
boreholes are drilled in the field experiments (Bassiouni
et al., 1994; Lukawski et al., 2014), so the labeled properties
are always sparse.

Pseudo Labels in Computer Vision vs. Geophysics

In this paper, we have used pseudo labels to enable the multi-
physics data-driven inversion of properties and overcome the
sparse sampling problem in geophysics. Notice that there
are differences between the pseudo labels in our problems
and those in Computer Vision.

Pseudo labels are used in semi-supervised learning in the
Computer Vision area (Lee et al., 2013). The network is
initially trained with a small set of labeled data. Then the
confidently predicted test data is added to the training data
as the pseudo label to fine-tune the network. The building
of the pseudo labels is based on the information from the
same type of momentum, which is the small set of labeled
data.

In our methods with geophysics, the building of pseudo
labels for CO2 saturation is based on its relationships with

the other geophysical properties, which are the other types of
momentum (e.g. velocity). Moreover, there are no existing
small set of labeled data sets for the initial training. Only
sparse labeled data are available.

3. Methods
Multiple Geo-physics Inversion of the properties (such as
CO2 saturation) without explicit governing equations can
only be achieved by supervised data-driven methods in the
previous works. These methods are not feasible in real
cases since the collection of the labeled data is too expen-
sive. Only sparse labeled data are available in the field, a
weakly supervised data-driven inversion method is required
for solving the multi-physics inversion.

3.1. Weakly Supervised Multiple Geo-physics Inversion

Here we proposed a Weakly Supervised Multiple Geo-
physics Inversion (WS-MGI) method to invert multi-physics
properties (source property v and target property m) with
sparse samples. The samples are well logs m(x = xk, z),
where xk is the drilling location and z is the depth. The
source property v is a property related to the geophysical
measurements with PDEs while the target property m is the
property without explicit governing equations. WS-MGI is
implemented in two stages:

Stage 1: Invert for source property v from the geophysical
measurements using an unsupervised method.

Stage 2: With the sparse sampling of target property m(x =
xk, z) and the inverted source property at the corresponding
location v(x = xk, z), we generate the pseudo labels m̃ and
train an end-to-end network with m̃ to learn the mapping
from geophysical measurement to m (Fig. 3). The trained
network is then applied to the measurement to invert m.

3.2. Two-stage Solution

Stage 1. Unsupervised Single Geophysical Inversion:
Stage 1 is an unsupervised inversion for single geophysical
property v, which had already been proposed by Jin et al.
(2021) as Unsupervised Physical-Informed Full Waveform
Inversion (UPFWI) for velocity maps as v. However, the
unsupervised learning methods are still unavailable for other
geophysical properties, such as conductivity and CO2 sat-
uration. UPFWI connects the PDE and neural network to
obtain the velocity map in an unsupervised way. The details
of the UPFWI are given in the Appendix.

Stage 2. Pseudo Labels Building and Training: To build
the pseudo labels in Stage 2, we construct a simple regres-
sion model R̃ using support vector regression (SVR) with a
Gaussian Kernel. The sparse sample m(x = xk, z) and v at
its corresponding location v(x = xk, z) are discretized into



Weakly Supervised Inversion of Multi-physics Data for Geophysical Properties

End-to-End Network

0 1 2 3 4 5 6
X (km)

Measurement

Loss
ℒ(#$%&', )#)

Predicted
Property #$%&'

Pseudo Labels )#

Sparse Sample

+

Dense 
Reconstruction

Figure 3. Schematic illustration of the encoder-decoder trained with the pseudo labels. The pseudo labels that consist of dense reconstruc-
tions and sparse samples are used in the loss function to train a end-to-end network for the prediction of geophysical properties.

N training samples:((
v(i)

z(i)

)
,m(i)

)
, (6)

where i = 1, 2, ..., N . The model R̃θ(·) is trained by mini-
mizing ∑

N

{
R̃θ(v

(i), z(i))−m(i)
}
, (7)

and applied on v(x, z) to obtain the dense reconstruc-
tion R̃θ(v(x, z), z). The dense reconstruction provides the
global information of m, but is inaccurate due to the sim-
plification of the rock-physics model. To account for the
inaccuracy, we add the well log data m(x = xk, z) as the
sparse sample and combine it with the dense reconstruction
to composite the pseudo label:

m̃(x, z) = λ1

dense reconstruction︷ ︸︸ ︷
R̃θ(v(x, z), z) +λ2

sparse sample︷ ︸︸ ︷
k∑

i=1

m(x, z) ∗ δ(xk)

(8)
where δ(·) is the delta function. λ1 and λ2 are the weight
for dense reconstruction and sparse sample. The dense re-
construction provides the global but inaccurate information
while the sparse sample provides the accurate but local in-
formation.

The end-to-end network takes the geophysical measure-
ments, such as seismic and EM data, as the inputs and
generates geophysical properties mpred (see Fig. 3). With
the pseudo labels m̃, the network g can be trained with
the loss function L(mpred, m̃) to approximate the inverse
mapping f−1(·) as in Eq. 5.

In this paper, we set the velocity map as the source property
v, which can be learned from the seismic data by UPFWI
without labeling. Although WS-MGI is designed for m as
the property without explicit governing equations, m can
also be a property explicitly governed by PDEs. We choose

m to be CO2 saturation and conductivity to validate the
effectiveness of this method.

4. Experiments
In this section, we apply the WS-MGI method to the Kimber-
lina reservoir dataset. The original geophysical properties
were developed under DOE’s National Risk Assessment
Program (NRAP) based on a potential CO2 storage site in
the Southern San Joaquin Basin of California (Alumbaugh
et al., 2021; Um et al., 2022). To the best of our knowledge,
it is the largest dataset for multi-physics study in the geo-
physics discipline. The dataset contains 780 samples. Each
sample contains a set of seismic and EM data as geophysical
measurements, velocity, conductivity, and CO2 saturation
maps as earth properties, and two well log records that pro-
vide CO2 saturation and conductivity. In our experiments,
750 samples are used for training and the rest are used for
validation.

4.1. Kimberlina Data

The saturation maps and velocity maps are with the size
of 59× 100 (H ×W ), where H and W are the depth and
the width of the maps. The grid is 60 m in all dimensions.
Two well logs are located at 2 km and 4 km. The size of
the seismic data is 5×1000×100 (S × T × R), where S
and R are the number of sources and receivers and T is
the time steps. EM data do not have a time axis, its size is
(2× 16× 100) (S × F ×R), where F is the number of the
frequencies. The examples of the geophysical measurement
are given in Appendix.

4.2. UPFWI

We implement UPFWI to obtain the velocity maps. The
details of the implementation are given in the Appendix.
The MSE, MAE, and SSIM between the input and predicted
seismic data and between the true and predicted velocity
maps are listed in Table 1, which shows that the predicted
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Figure 4. (a) Velocity maps given by UPFWI. (b) Conductivity dense reconstruction and true conductivity map. (c) CO2 saturation dense
reconstruction and true CO2 saturation map. The green and yellow boxes indicate inaccurate reconstruction in the reservoir areas of
conductivity and saturation maps. The first and second rows are different samples in the Kimberlina dataset.
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Figure 5. Examples of profiles: the velocity profile provided by
UPFWI, the sparse samples provided by well logs and the dense
reconstructions provided by SVR of conductivity and CO2 satura-
tion maps.

velocity maps given by UPFWI are accurate.

4.3. Workflow

Stage 1: The examples of the velocity maps provided by
UPFWI are shown in Fig. 4a. The resolution of the UP-
FWI velocity maps is lower than the true velocity maps due
to the limitation of the frequency in full waveform inver-
sion (Schuster, 2017).

Table 1. The MAE, MSE and SSIM losses with UPFWI results

Seismic Data Loss Velocity Map Loss
MAE MSE SSIM MAE MSE SSIM
0.0275 0.0009 0.8909 0.0131 0.0008 0.9130

Stage 2: We use two well logs at x = 2 km and x = 4
km as the sparse samples ( 1

50×full labels) and the UPFWI
velocity maps (see Fig. 5) at the corresponding location in
the training of SVR to predict the dense reconstructions.
The predicted dense reconstructions are shown in Figs. 4b
and 4c and their vertical profiles are shown in Fig. 5. We
can see the dense reconstruction is inaccurate, especially
the reservoir area in conductivity map (see Green boxes
in Fig. 4b) and the high saturation area in CO2 saturation
map (see Yellow boxes in Fig. 4c). Then we combine the
inaccurate dense reconstructions and the accurate sparse
samplings to construct pseudo labels with Eq. (8). The
pseudo labels are fed into an end-to-end network g to learn
the mapping from the seismic and EM data to conductivity
and CO2 saturation as in Eq. (5).

4.4. Implement Details

Training Details: The input seismic and EM data are nor-
malized into the range [-1,1]. We employ Adam optimizer
with momentum parameters β1 = 0.5 and β2 = 0.999. The
learning rate is set to be 1×10−4, and it gradually decreases
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Figure 6. Weakly Supervised Multiple Geo-physics Inversion (ours) vs. Supervised InversionNet (Wu & Lin, 2019). Our method
achieves better performance e.g. lower Mean Absolute Error (MAE) and higher Structural Similarity (SSIM).

.

with the increasing number of epochs. The size of the mini-
batch is set to be 10. The ℓ1 loss function is used in the
training. We implement our networks in Pytorch and train
them on a Tesla V100 GPU with 50 epochs. All networks
are randomly initialized.

Networks: The measurements (seismic and EM data) and
the properties (conductivity and CO2 saturation) are con-
nected by an encoder-decoder network. The encoder with
seismic data as the input has 7 convolutional layers (with
stride 2 every the other layer to reduce dimension) and the
encoder which uses EM data as its input has 5 convolutional
layers. The decoder is composed of 4 convolutional layers
expanded with nearest neighbor upsampling, followed by
center-cropping of the feature map and a convolution layer
to output the property map. If both seismic and EM data
are used as inputs, they are fed into two parallel encoders
and concatenated in the latent spaces. The concatenated
latent spaces are then fed into the decoder to give the output
properties.

Evaluation Metrics: The mean-square errors (MSE), mean-
absolute errors (MAE), and Structural Similarity (SSIM) are
used for evaluating the conductivity and saturation results.
MSE and MAE are widely used in the existing geophysi-
cal inversion methods (Araya-Polo et al., 2018; Wu & Lin,
2019). The high-level structure in the geological forma-
tion can be easily distinguished by human vision. SSIM

measures the similarity between two images based on the
computation of the luminance term, the contrast term and
the structural term (Jin et al., 2021). To better align with hu-
man vision, we use SSIM as one of our evaluation metrics.

Comparison: As there are no existing inversion methods
designed specifically for the inversion with sparse labeling,
we compare our methods with the supervised InversionNet
method (Wu & Lin, 2019; Zeng et al., 2021). The structure
of the end-to-end network in the InversionNet is the same
as our method, the only difference is the choice of label
data. There are totally 100 samples, which we gradually
decrease to evaluate the performance of the methods when
the sampling becomes more and more sparse.

4.5. Main Results

Fig. 6 compares the results with the supervised InversionNet
and our method on two scenarios:

Seismic+EM→CO2 Saturation: In this scenario, seismic
and EM data are set as the input measurement and the target
property m is CO2 saturation. The ratio between the weight
λ1 and λ2 is set as 1. When the sampling number is less
than 20 ( 15×full labels), the performance of InversionNet
quickly degrades. The MAE becomes higher than 0.2, MSE
increases to 0.03, and SSIM decreases to 0.2. Our method
maintains MAE less than 0.05, MSE less than 0.01, and
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Figure 7. Comparison of InversionNet and WS-MGI (ours) on inverted CO2 saturation and conductivity maps when sampling number
equal to 2. The green and yellow boxes indicate the improvements in the reservoir areas of conductivity and saturation maps. The first and
second rows are different samples in the Kimberlina dataset.

SSIM higher than 0.6. Examples of the results are shown in
Fig. 7. The saturation maps given by InversionNet contain
a large amount of artifacts in the background. The results
with our WS-MGI method are consistent with the ground
truth. Moreover, the high saturation zone in the yellow box
is inverted clearly.

Seismic+EM→Conductivity: In this scenario, seismic and
EM data are the input measurements, and the target property
m is conductivity. The ratio between the weight λ1 and λ2

is set as 10. The relationship between the conductivity and
EM data is governed by the PDE. When the sampling num-
ber decreases, the performance of InversionNet decreases
slower than the saturation. However, our methods still have
lower MAE, lower MSE, and higher SSIM than those of
InversionNet for all the sampling numbers. In Fig. 7, the
thin layers in the blue boxes are reconstructed much better
in our result than those obtained using InversionNet.

5. Ablation Study
In this section, we discuss different factors that affect the
performance of our method. Five tests are studied below
and more results are given in the Appendix.

5.1. The Inversion Scenarios

We have tested 5 different scenarios, in which conductivity
and saturation are inverted from EM and seismic data. For
each scenario, we compare the results with different labels

Table 2. Quantitative results with different label setting in different
inversion scenarios

MAE↓ MSE↓ SSIM↑

Seismic→Saturation
Sampling 0.1603 0.0520 0.2554

Reconstruction 0.0271 0.0037 0.6837
Pseudo 0.0175 0.0022 0.7911

EM→Saturation
Sampling 0.5318 0.1678 -0.0150

Reconstruction 0.0229 0.0028 0.7147
Pseudo 0.0222 0.0028 0.7273{

EM
Seismic

}
→Saturation

Sampling 0.2449 0.0771 0.1691
Reconstruction 0.0273 0.0037 0.6844

Pseudo 0.0193 0.0034 0.7388

EM→Conductivity
Sampling 0.0523 0.0031 0.7019

Reconstruction 0.0664 0.0029 0.5858
Pseudo 0.0450 0.0015 0.7126{

EM
Seismic

}
→Conductivity

Sampling 0.0519 0.0030 0.6921
Reconstruction 0.0691 0.0029 0.5792

Pseudo 0.0452 0.0024 0.7388

(sparse sample, dense reconstruction, and pseudo label in
Eq. (8)) as the training labels for the network. The inversion
with sparse sampling would be the same as the supervised
learning with sparse labeling. Their quantitative results are
listed in Table 2 and examples of the results are given in
the Appendix. For the inversion of conductivity, the sparse
sample can give a reasonable result while it can only provide
poor results for the inversion of CO2 saturation. Among
all the scenarios, the performance of the pseudo labels is
always the best.
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Table 3. The MAE, MSE and SSIM losses with Different Weight
Ratio λ1/λ2

{
EM

Seismic

}
→Saturation

Weight Ratio
λ1/λ2

MAE↓ MSE↓ SSIM↑

0.1 0.0251 0.0016 0.7327
0.2 0.0242 0.0014 0.7444
0.5 0.0243 0.0015 0.7416
1 0.0239 0.0014 0.7486
2 0.0249 0.0016 0.7182
5 0.0246 0.0016 0.7343
10 0.0255 0.0016 0.6980

{
EM

Seismic

}
→Conductivity

Weight Ratio
λ1/λ2

MAE↓ MSE↓ SSIM↑

0.1 0.0452 0.0024 0.7388
0.2 0.0578 0.0021 0.6362
0.5 0.0599 0.0024 0.6203
1 0.0610 0.0024 0.6162
2 0.0617 0.0023 0.6059
5 0.0616 0.0024 0.6095
10 0.0611 0.0024 0.6171

Table 4. The MAE, MSE and SSIM losses with Different
Smoothed Ground Truth as Dense Reconstruction

{
EM

Seismic

}
→Saturation

Gaussian Filter
σ

MAE↓ MSE↓ SSIM↑

0.5 0.0075 0.0006 0.9443
1 0.0121 0.0011 0.8778
3 0.0151 0.0011 0.8535
5 0.0173 0.0009 0.8412

{
EM

Seismic

}
→Conductivity

Gaussian Filter
σ

MAE↓ MSE↓ SSIM↑

0.5 0.0294 0.0013 0.8149
1 0.0326 0.0326 0.8081
3 0.0408 0.0008 0.7488
5 0.0517 0.0013 0.6968

5.2. The Weight Ratio Selection

The selection of the weight in Eq. (8) is important in the
construction of the pseudo label. We have tested our meth-
ods with different weight settings. The results are given in
Table. 3. For the inversion of conductivity, the sparse sam-
pling has a good regularization of the inversion result. It has
the best results when the sparse sample has a higher weight
λ1/λ2 = 0.1. For saturation, a balanced weight λ1/λ2 = 1
is the best option.

5.3. The Accuracy of Dense Reconstruction

The dense reconstruction in Eq. (8) is obtained by the Gaus-
sian Kernel Regression from the sparse sampling in WS-
MGI, and its accuracy affects the inversion results. To
study the influence of the dense reconstruction on the re-
sults, we apply different Gaussian filters on the ground truth
to approximate dense reconstructions of different accuracy.
Table 4 shows the results with the smoothed ground truth
as the dense reconstructions. With the increase of the σ
value in the filter, the accuracy of the dense reconstruction
decreases. As a result, the performance of the WS-MGI
would also decrease.

Table 5. The MAE, MSE and SSIM losses with Different Noise
Level

{
EM

Seismic

}
→Saturation

SNR MAE↓ MSE↓ SSIM↑
40 0.0249 0.0015 0.7317
30 0.0251 0.0015 0.7144
20 0.237 0.0014 0.7449
10 0.0256 0.0019 0.7227
0 0.0295 0.0023 0.6468

-10 0.0310 0.0024 0.6293
-20 0.0300 0.0024 0.6558
-30 0.0306 0.0024 0.6462

{
EM

Seismic

}
→Conductivity

SNR MAE↓ MSE↓ SSIM↑
40 0.0471 0.0026 0.7241
30 0.0471 0.0026 0.7243
20 0.0469 0.0026 0.7250
10 0.0414 0.0052 0.7798
0 0.0412 0.0052 0.7794

-10 0.0455 0.0064 0.7414
-20 0.0639 0.0113 0.6389
-30 0.1030 0.0210 0.5013

Table 6. The MAE, MSE and SSIM losses with Missing Traces in
the Measurements

{
EM

Seismic

}
→Saturation

Missing Traces (%) MAE↓ MSE↓ SSIM↑
30 0.0256 0.0017 0.7257
60 0.0267 0.0018 0.7186
90 0.0300 0.0040 0.6935{

EM
Seismic

}
→Conductivity

Missing Traces (%) MAE↓ MSE↓ SSIM↑
30 0.0475 0.0026 0.7178
60 0.0552 0.0030 0.6641
90 0.0678 0.108 0.6101

5.4. Robustness to Noise

The geophysical measurements, seismic data, and EM data
are collected in the field contain noise. To demonstrate
the robustness of the proposed WS-MGI methods against
noise, we impose random noise in the measurements and
test WS-MGI under different signal-to-noise ratios (SNR).
Table 5 shows the results of this experiment, from which it
can be observed that WS-MGI with conductivity maintains
competitive performance until SNR = −10 dB and WS-
MGI with CO2 saturation keeps good performance until
SNR = 0 dB. However, a real-world environment with a
constant negative SNR is rare. WS-MGI is therefore robust
to noise in typical application scenarios.

5.5. Missing Traces in the Measurements

In the geophysical field experiments, there are always traces
missing in acquired measurements because of existing ob-
stacles and economic restrictions (Wang et al., 2019). The
robustness of the network with the missing traces would be
crucial for practical application. We test our methodology
on data with missing traces as in Table 6. The performance
of the WS-MGI gradually decreases when the available data
becomes less.
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6. Conclusions
In this paper, we propose Weakly Supervised Multiple Geo-
Physics Inversion (WS-MGI) which solves multi-physics
inversion problem with sparse sampling. With pseudo labels
built from the sparse labeling of the geophysics properties,
we are able to train an end-to-end network that learns the
mapping from the measurement to the geophysical property.
This network enables the inversion of geophysical properties
that only have an implicit relationship with the measurement.
Moreover, solving the multi-physics inversion in a weakly
supervised way mitigates the high cost of label collection,
which is much more practical than the previously existing
supervised inversion methods.

We successfully implement this method with Kimberline
data on the inversion of CO2 saturation and conductivity.
Compared with the supervised inversion methods that re-
quire at least 20 samples ( 15×full labels), WS-MGI suc-
cessfully reconstructs the geological structures and CO2

saturation with only 2 well logs as the sparse samples
( 1
50×full labels).
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A. Appendix
A.1. Unsupervised Physical-Informed Full Waveform Inversion (UPFWI)

The illustration of UPFWI is shown in Figure 8. An encoder-decoder structure is connected with the forward modeling of
the seismic data to model the mapping from seismic data p ∈ RS×T×R to velocity map v ∈ RH×W . It is trained in an
unsupervised way by minimizing Lseis:

Lseis =
1

2

∑
||fseis(v)− p||, (9)

where p is the input seismic data, v is the predicted velocity map, fseis is the forward modeling operator is governed by the
wave equation using a finite-difference method (Moczo et al., 2007).

Training Details: The seismic data from different sources are aligned in different channels and normalized into a range of
[-1,1] as the input of neural network. We employ Adam optimizer with momentum parameters β1 = 0.5 and β2 = 0.999.
The learning rate is set to be 3× 10−5 and it gradually decreases with increasing epochs. The size of the mini-batch is set to
be 10. The ℓ2 loss function is used during training. We implement UPFWI in Pytorch and train the networks on a Tesla
V100 GPU with 250 epochs.

Networks: The encoder in UPFWI is primarily built with 7 convolutional layers (with a stride of 2 every the other layer to
reduce dimensions), which extract the high-dimensional features from the seismic data. The decoder projects the extracted
features into velocity maps through 4 convolutional layers with intermediate nearest neighbor upsampling. Finally, we
center-crop the feature maps and apply a convolution layer to output the velocity map.

Figure 8. Schematic illustration of UPFWI, where trains an encoder-decoder to learn the mapping from seismic data to velocity maps.

A.2. Geophysical Measurements

There are 5 seismic sources placed evenly on the 2D spatial grid over the surface with a shot interval of 1.2 km. Seismic
data are simulated using the finite-difference method (Moczo et al., 2007) with absorbing boundary conditions (Engquist &
Majda, 1977). EM data are simulated by finite-difference method (Commer & Newman, 2008) with two sources location at
x = 2.5 km, z = 3.025 km and x = 4.5 km, z = 2.5 km with 8 source frequencies from 0.1 to 8.0 Hz. Both the seismic
and EM data are collected by 100 receivers uniformly distributed over the 2D earth surface with a receiver interval of 60 m.
Each sensor captures seismic vibration signals as time-series data of length 1,000 with a time spacing of 0.005 s and EM
signals contains a real part and an imaginary part with each source frequency. The examples of geophysical measurements
are listed in Fig. 9.
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Figure 9. Examples of seismic and EM data.

A.3. Quantitative Results

Table 7 and 8 show the quantitative results corresponding to two scenarios (Seismic+EM→CO2 saturation and
Seismic+EM→Conductivity) in Fig. 6. Our WS-MGI method outperforms the InversionNet for all the cases.

A.4. Results with Different Inversion Scenarios

We have studied 5 different scenarios from seismic and EM data to CO2 saturation and conductivity in the ablation study.
Examples of the results are listed in Fig. 10 and 11. For the inversion of CO2 saturation, there is no constraint on the
background when we only use the sparse sampling as the labels. There are lots of artifacts in the background, especially
the input data is EM data only since the size of the EM data is much smaller than the seismic data. For the inversion of
conductivity, the artifacts in the background are eliminated because of the constraint from the PDE.
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Table 7. Comparison of WS-MGI (Ours) and InversionNet: the MAE, MSE and SSIM losses with Different Number of Sampling Labels
(EM+seismic→Saturation)

WS-MGI (Ours){
EM

Seismic

}
→Saturation

Sampling Labels
Numbers MAE↓ MSE↓ SSIM↑

100 0.0104 0.0008 0.9170
50 0.0108 0.0009 0.8963
20 0.015 0.0008 0.846
10 0.0243 0.0009 0.7363
5 0.0239 0.0013 0.7388
2 0.0246 0.0034 0.7389
1 0.0273 0.0015 0.6844

InversionNet{
EM

Seismic

}
→Saturation

Sampling Labels
Numbers MAE↓ MSE↓ SSIM↑

100 0.0104 0.0008 0.9078
50 0.0102 0.0007 0.9066
20 0.1901 0.0303 0.2422
10 0.2083 0.0321 0.154
5 0.2916 0.0452 0.1228
2 0.306 0.0486 0.0885
1 0.4661 0.0727 -0.0411

Table 8. Comparison of WS-MGI (Ours) and InversionNet: the MAE, MSE and SSIM losses with Different Number of Sampling Labels
(EM+seismic→Conductivity)

WS-MGI (Ours){
EM

Seismic

}
→Conductivity

Sampling Labels
Numbers MAE↓ MSE↓ SSIM↑

100 0.023 0.0008 0.878
50 0.0246 0.0009 0.8664
20 0.0231 0.0007 0.8701
10 0.0249 0.008 0.8553
5 0.0323 0.0015 0.816
2 0.0452 0.0014 0.7486
1 0.058 0.0019 0.6266

InversionNet{
EM

Seismic

}
→Conductivity

Sampling Labels
Numbers MAE↓ MSE↓ SSIM↑

100 0.0242 0.0008 0.8658
50 0.0231 0.0008 0.8669
20 0.0234 0.0014 0.8657
10 0.0414 0.0024 0.7546
5 0.0445 0.0027 0.7245
2 0.0674 0.0035 0.631
1 0.0703 0.0041 0.599
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Figure 10. The comparison of inverted CO2 saturation maps with different labels (sparse sample only, dense reconstruction only and
pseudo labels) and the ground truth from different scenarios.
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Figure 11. The comparison of inverted conductivity maps with different labels (sparse sample only, dense reconstruction only and pseudo
labels) and the ground truth from different scenarios.


