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Abstract

In this work, we study the federated multi-armed bandit (FMAB) problem, where
a set of agents collaboratively aim to minimize cumulative regret. Unlike tradi-
tional centralized bandit models, agents in FMAB settings are connected via a
communication graph and cannot share data freely due to bandwidth limitations or
privacy constraints. This raises a fundamental challenge: how to achieve optimal
learning performance under stringent communication budgets. We propose a novel
communication-efficient algorithm containing two points: one for eliminating
suboptimal arms through early and frequent communication of key decisions, and
the other for refining global estimates using incremental epoch, quantized, and
differentially transmitted statistics. Incremental Epoch-based Successive Elimina-
tion Algorithm (EpoInc-SE) is presented by carefully balancing communication
frequency and precision of global estimates. Theoretically, we derive tight upper
bounds on both individual cumulative regret and group regret, and prove that our
method asymptotically matches the lower bound of regret in federated settings.
Experimental results on synthetic data validate the effectiveness of EpoInc-SE in
various settings and under heterogeneous feedback.

1 Introduction

The stochastic multi-armed bandit (MAB) problem is a classic and influential research topic in the
field of sequential decision-making [Bandits, Lattimore and Szepesvári, 2020]. In this model, a
decision-maker must select an arm from a set of actions at each time step to pull and receive a
random reward. The core objective is to maximize cumulative rewards, or equivalently, minimize
cumulative regret, which is defined as the reward lost compared to always selecting the optimal arm.
Due to its powerful modeling capabilities and wide applicability, the MAB framework has been
successfully applied in numerous domains, such as clinical trials [Wang, 1991], online advertising
recommendations [Tang et al., 2015] and resource allocation [Lattimore et al., 2015].

In recent years, with the development of distributed systems and increasing awareness of data privacy,
traditional single-agent MAB models have gradually extended to multi-agent collaborative scenarios,
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Table 1: Comparison of existing FMAB algorithms with our proposed method EpoInc-SE.

Algorithm Central
Server

Hete-/
Homo-

Individual
Regret

Group
Regret Bit-Com

Gossip_UCB
[Zhu et al., 2021] ✗ Hete- O(

∑
i:∆i>0 N∆−1

i log T ) O(
∑

i:∆i>0 N2∆−1
i log T ) O(T log T )

Dis_UCB
[Zhu and Liu, 2023] ✗ Hete- O(

∑
i:∆i>0 N−1

min∆
−1
i log T )1 O(

∑
i:∆i>0 NN−1

min∆
−1
i log T ) O(T log T )

UCB-TCOM
[Wang and Yang, 2023] ✗ Homo- O(

∑
i:∆i>0 N−1∆−1

i log T ) O(
∑

i:∆i>0 ∆−1
i log T ) Õ(log T )

Fed2-UCB
[Shi and Shen, 2021] ✓ Homo- O(

∑
i:∆i>0 N−1∆−1

i log T ) O(
∑

i:∆i>0 ∆−1
i log T ) O(T log T )

EpoInc-SE (our work) ✗ Hete- O(
∑

i:∆i>0 N−1∆−1
i log T ) O(

∑
i:∆i>0 ∆−1

i log T ) O(
√
log T )

Regret lower bound ✗ Hete- Ω(
∑

i:∆i>0 N−1∆−1
i log T ) Ω(

∑
i:∆i>0 ∆−1

i log T ) −
1 Nmin denotes the smallest number of neighbors for any agent, including the agent itself.

where the Federated Multi-Armed Bandit (FMAB) problem has garnered increasing attention [Li
et al., 2024, Boursier and Perchet, 2024]. In large-scale sensor networks, environmental constraints
and cost considerations often prevent full physical connectivity or the deployment of a central server,
naturally leading to the need for distributed information processing and computation [Xiao et al.,
2005, Golovin et al., 2010]. Moreover, online service platforms with many servers often store large
volumes of data locally. To protect user privacy, centralizing this data for computation and training
is impractical, where federated learning is a useful and crucial approach to complete the two tasks
Ellison and Fudenberg [1995], Sankararaman et al. [2019].

In FMAB problems, the primary objective is to minimize the total regret accumulated across all agents,
referred to as group regret in this paper. This metric has been widely studied in prior works [Kalathil
et al., 2014, Shi and Shen, 2021, Xu and Klabjan, 2024]. However, in many practical scenarios,
the performance of individual agents also plays a critical role, as it can become the bottleneck that
limits overall system effectiveness. In network optimization literature [Srikant and Ying, 2014], the
max-min fairness metric—maximize the minimal individual reward—is widely used to measure a
system’s fairness. Another important metric in FMAB problems is communication bit incurred by
all agents. In real-world scenarios, communication is often expensive and establishing peer-to-peer
(P2P) connectivity may be impractical. To evaluate this cost, the number of communication rounds is
a commonly used metric [Cho et al., 2020, Li and Song, 2022]. However, a single round may involve
transmitting multiple messages, which is misleading for evaluating an algorithm. Therefore, a more
precise and informative measure is the total number of communication bits, which has been adopted
in recent studies [Wang et al., 2020, Agarwal et al., 2022].

Related Works. The most relevant prior works on FMAB have been summarized in Table 1. Among
them, Gossip_UCB [Zhu et al., 2021] and Dis_UCB [Zhu and Liu, 2023] are the two works most
related to ours, which are all heterogeneous FMAB without a central server. However, they could not
obtain the optimal results compared with EpoInc-SE (our work). Fed2-UCB [Shi and Shen, 2021]
and UCB-TCOM [Wang and Yang, 2023] are two typical Homgeneous FMAB algorithms that use a
central server and fully distributed communication, respectively. Meanwhile, they all achieve the
optimal result and UCB-TCOM [Wang and Yang, 2023] also optimizes the communication rounds.
The two algorithms provide classic frameworks for bandit learning. Hence, we apply a consensus
estimator on them and take them as the baseline in Section 5. Several works have investigated
the regret lower bound in federated bandit settings [Xu and Klabjan, 2023, Wang et al., 2020].
Specifically, they establish group regret lower bounds for heterogeneous and homogeneous FMAB
problems, respectively. In addition, Xu and Klabjan [2023] shows that, in the absence of information
exchange with neighbors, an agent in a federated setting can suffer linear regret O(T ). For bit
communication techniques, there are not too many works on heterogeneous FMAB. But there are also
some interesting works about bit communication in other directions [McMahan et al., 2017, Casteigts
et al., 2019, Wang et al., 2019, Boursier and Perchet, 2019, Shi et al., 2021]. Wang et al. [2019] and
Shi et al. [2021] reduced the communication rounds of the algorithm under a homogeneous setting.
These works [McMahan et al., 2017, Boursier and Perchet, 2019] considered communication bits for
the first time in bandit problems. The truncation of messages is proposed in Casteigts et al. [2019],
Shi et al. [2021]. Our communication optimization method combines the advantages of works above.

Contribution. Addressing the aforementioned challenges, this paper proposes a novel federated
multi-armed bandit algorithm designed for fully distributed communication networks. It enables
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agents to effectively solve the global MAB problem and simultaneously optimize individual and
group regrets by communicating solely with their neighbors. Distinct from previous work, our main
contributions and innovations include:

(1) Optimization of Communication Efficiency: EpoInc-SE is the first work considering the com-
munication cost in heterogeneous federated bandit learning. By employing epoch-based exploration
to reduce communication rounds and designing an adaptive difference communication mechanism,
we significantly reduce the communication rounds and the number of effective information bits per
communication round. Additionally, we introduce a two-phase communication strategy to differen-
tiate the transmission priority of different types of information, thereby enhancing communication
efficiency while preserving regret performance.

(2) Near-Optimal Regret Performance: We propose the first lower bound of heterogeneous federated
bandit Ω(

∑N
i ∆−1

i N−1 log T ) with the dependence of the number of agent N , which matches the
upper bound of EpoInc-SE in terms of agent number N , reward gap ∆i and time horizon T , thereby
proving the optimality of our algorithm design and analysis.

(3) Efficient Online Consensus Estimator: We design and introduce an epoch-based consensus
estimation subroutine EBCES that allows each agent to unbiasedly estimate the global mean of arms
under the condition of fully distributed communication and buffering broadcast. This is crucial for
resolving heterogeneity and communication optimization.

The remainder of this paper is organized as follows: Section 2 details the problem model, including the
communication model, the federated multi-armed bandit model, and performance metrics. Section 3
introduces our proposed communication-efficient algorithm design, covering its core ideas, epoch-
based exploration strategy, arm elimination mechanism, adaptive difference communication scheme,
and consensus estimation policy. Section 4 provides the theoretical analysis of the algorithm,
including proofs for regret upper and lower bounds. Section 5 provides simulations to validate the
theoretical analysis. Finally, Section 6 concludes the paper.

2 Problem Formulation

Communication Model. Consider a fully distributed network, which works only via finite paths
among agents, i.e., without a central server. The data exchanged between agents, called a message,
is a string of binary numbers. The network is a (fully) connected graph, defined as G = (N , E ,A)
[Huang et al., 2022]. N is an agent set, where agents are labeled by {1, . . . , N}. The E ⊂ N ×N
denotes the set of edges in the network. A = [aa,b](a,b)∈N×N is an adjacency matrix, used to
determine whether two agents are connected. For agent j, define its neighborhood as Nj . To meet
computing needs, an additional matrix W = [ωa,b](a,b)∈N×N describes the weight of agents in
their neighborhoods. The definition of W is W = I − βL, where L is the Laplacian matrix and
β ∈ (0, 1/N ] is the coefficient that reflects whether this agent believes its neighbors. If β = 0, we
have W = I , which means that the agent itself occupies all the weight. If β = 1/N , it indicates that
the agent assigns equal trust to all of its neighbors.

System Model. There are N agents repeatedly making decisions from a fixed arm set K =
{1, . . . ,K} over a time horizon T . At each time step t, agent j selects an arm Aj(t) and re-
ceives a reward Xi,j(t) if Aj(t) = i. The reward Xi,j(t) is drawn from a 1

2 -sub-Gaussian distribution
with an unknown (local) mean µi,j ∈ [0, 1]. These rewards serve as real-time feedback to guide
agents in learning the expected rewards of the arms. In federated settings, the reward Xi,j is a local
observation that agent j samples from arm i. For arm Aj(t) = i, there also exists a global reward
Xi(t) that is contributed by all agents’ observations, i.e., XAj(t)(t) = Xi(t) :=

∑N
j=1 Xi,j(t). The

mean of Xi is denoted by the global mean µi :=
1
N

∑N
j=1 µi,j ∈ [0, 1]. Without loss of generality,

let i⋆ := argmaxi µi denote the unique optimal arm with the highest global mean among all arms.
Define the suboptimality gap for each arm i as ∆i := µi⋆ − µi. In this work, we consider a hetero-
geneous setting where the local reward mean of arm i may differ across agents, i.e., µi,j1 ̸= µi,j2 ,
for j1 ̸= j2. There is no collision in this setting, implying that all agents can obtain rewards without
degradation, even if they pull the same arm.

Individual regret. The individual regret of agent j is defined as the cumulative regret incurred if
all agents are to follow agent j’s decision. This metric is crucial in federated learning, where the
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Symbol/Term Definition
K The arm set
N The agent set

Aj(t) The decision of agent j at time slot t, Aj(t) ∈ K
Xi,j(t) The local reward of arm i sampled by agent j at time slot t, Xi,j(t) ∈ [0, 1]
µi,j The local mean of arm i for agent j, µi,j ∈ [0, 1]

Xi(t) The global reward of arm i, Xi(t) =
∑N

j=1 Xi,j(t)

µi The global mean of arm i, µi =
∑N

j=1 µi,j

i⋆ The optimal arm with the largest global mean, i⋆ ∈ argmaxi µi

∆i The gap between arm i and the optimal arm, ∆i = µi⋆ − µi

Table 2: Symbols of the multi-agent bandit problem

objective is to identify the arm with the highest global mean reward. Since relying solely on local
rewards can be misleading, individual regret provides a more meaningful measure of an agent’s
contribution to the global goal. The formal definition is given as follows,

E[Rj(T )] := Tµi⋆ −
T∑

t=1

E[XAj(t)(t)]. (1)

Group regret. The group regret is defined as the cumulative regret caused by all agents, which is
also seen as a main performance metric of the algorithm. The optimal performance of an algorithm is
that all agents pull the optimal arm during the time horizon T . Hence, for a distributed algorithm, the
expected group regret of the entire system is defined as

E[R(T )] :=

N∑
j=1

E[Rj(T )]. (2)

Communication cost. Besides two regrets, the communication cost is also an important performance
metric to evaluate a federated bandit algorithm. Two types of communication metrics are commonly
used in previous works: communication rounds and communication bits. While the communication
costs are primarily measured by the number of communication rounds, e.g., Tao et al. [2019], Yang
et al. [2024], the number of communication bits is a more practical and realistic metric that accurately
reflects the real-world cost of data transmission. In this paper, we define the communication cost in bit
level, denoted C(T ) as the total number of bits consumed from communicating all messages among
all agents. In this work, we assume that any message (a number of bits) can be broadcast within a
single time slot. For any messages, we do not consider the identifiers, and there is no limitation on
the message size.

3 EpoInc-SE: A Communication-Efficient Algorithm Design

3.1 Key Ideas and Algorithm Structure

To achieve optimal regret bounds under limited communication, the core challenge lies in ensuring
that the exchanged information is just sufficient to support accurate consensus estimation. Due
to the heterogeneity in rewards, these local estimates often deviate from the global mean, making
communication with neighbors necessary. This creates a fundamental trade-off: sharing highly
precise and real-time information provides limited improvement to the convergence of consensus
estimation but results in excessive communication overhead. In Boursier and Perchet [2019], Wang
et al. [2019], information quantization and epoch-based exploration techniques were proposed to
control the size of the message adaptively. However, these approaches are typically developed for
homogeneous bandits with centralized structures, such as having a leader agent directly connected to
all followers, and thus do not apply to settings with heterogeneity and fully distributed graphs.

In this work, we extend the classical successive elimination algorithm to a fully distributed setting,
achieving an improved regret bound of O(

∑
i:∆i>0 N

−1∆−1
i log T ). Building on this, we further

optimize the communication cost at the bit level, which comprises two key components: the number
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of communication rounds (optimized in Section 3.2) and the message size (optimized in Section 3.3).
The first component leverages a batched sampling strategy to reduce communication rounds. In
distributed bandit settings, each agent must sample arms sufficiently to ensure accurate local estimates.
Rather than communicating after every pull, agents accumulate multiple samples before sharing
with neighbors. This reduces communication frequency and ensures that shared information is more
reliable, particularly as early-stage observations tend to be noisy. Epoch-based exploration thus offers
a principled trade-off between statistical efficiency and communication cost, making the approach
scalable in large, decentralized systems. The second component for optimizing communication
complexity reduces the bit-width of the transmitted messages. Three kinds of statistics need to be
optimized, including the indices of arms, the sample count of each arm, and the global estimate. The
indexes of arms consume only O(logK) bits, which has no room for optimization. The sample count
is implicit information considering the algorithm’s synchronization. Hence, we improve the message
size of global estimates from O(log T ) to O(1) bits. To realize this task, we propose a differential
encoding approach where agents share only the quantized change between consecutive estimates
instead of the full values.

To further reduce communication costs while maintaining regret performance, we categorize shared
information into two types based on their impact on the algorithm’s efficiency. The first type includes
indexes of eliminated arms, which are broadcast immediately to accelerate arm elimination and
improve regret. The second type of shared information includes global estimates of arm means, which
are tightly coupled with the sampling process. Sharing them too frequently does not directly contribute
to faster convergence, but can significantly increase communication overhead. Therefore, this type
of information should be buffered and communicated less frequently. Based on this insight, our
algorithm divides communication into two distinct phases. Communication Phase I is responsible
for sharing the indexes of eliminated arms. This phase operates at a high frequency to ensure the
timely elimination of suboptimal arms across agents. In contrast, Communication Phase II handles
the exchange of global estimates. The frequency of this phase is intentionally kept low to limit
communication costs. This design is especially effective when updates are frequent but minor,
avoiding redundant communication.

Below, we introduce the details of the algorithm design. We start from the epoch-based exploration
paradigm in Section 3.2, and then introduce three key modules of the algorithm design: an adaptive
difference communication in Section 3.3, a consensus estimation policy in Section 3.4 and an arm
elimination policy in Section 3.5.

3.2 The Epoch-based Exploration

In this section, we primarily introduce the epoch-based exploration strategy. To reduce the number
of communication rounds overhead in federated learning, a buffering scheme that compresses
communication rounds by delaying broadcasts is proposed. The main challenge is that excessive
compression may cause newly collected local data to dominate the consensus estimation, which
affects the contribution of agents’ local observations in the global estimate (introduced in Section 3.4).
Therefore, we carefully make a trade-off between minimizing communication rounds and maintaining
the accuracy of the consensus estimation.

Next, we present an incremental epoch-based exploration where later epochs contain increasingly
more time slots. Without loss of generality, we concentrate the discussion on a specific agent j. The
time horizon T is partitioned into a series of subprocesses, labeled by rj = 1, 2, . . . . In epoch rj ,
agents maintain a candidate set Srj to decide which arm to pull. The initial set is S0j = K. In epoch
rj , all arms in the candidate set Srj will be sampled prj = a(rj + 1) times uniformly, where a is a
hyper-parameter that determines the size of each epoch. Therefore, the number of epochs is at most
O(
√
T ) for the time horizon T . The time slot at the beginning of the epoch rj is denoted by trj , and

the local empirical estimate on the arm i during epoch rj is defined as follows

X̄r
i,j :=

∑trj+1−1

trj
Xi,j(t)I {Aj(t) = i}
a(rj + 1)

. (3)
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Algorithm 1: Epoch-based Successive Elimination Algorithm (EpoInc-SE)(for agent j)
Input: Weight matrix of graph W , time horizon T , arm set K, diameter D and integer a
Output: t = 0, rj = 0, Ur

i,j = 1, Sj = K, X̄i,j = 0, Bj = ∅ for all arms i
1 Let agent j pull each arm a times and receive a sequence of rewards {Xi,j(t)}t=a

t=1 ;
2 µ̃r

i,j ← average(Xi,j), µ̃r
i,j ← X̄r

i,j ;
3 for rj = 1, 2, . . . do
4 imax ← argmaxi∈Sj

µ̃r
i,j ;

5 for prj ∈ {1, . . . , a(rj + 1)} do
6 for i ∈ Sj do
7 Pull arm i and obtain the reward Xi,j ;
8 X̄i,j ← (X̄i,j(p

rj − 1) +Xi,j)/p
rj ;

// Communication phase I
9 Receive Bj′ and r̂i from agent j’s neighborhood Nj ;

10 if Bj ≥ 1 then
11 Send Bj , r̂i to all agent j’s neighbors;

12 Update the new candidate set Bj ← Bj ∪

( ⋃
j′∈Nj

Bj′

)
;

// Communication phase II
13 Update the global estimates via the adaptive difference communication (Algorithm 2);
14 Update Ur

i,j via equation (6) ;
15 for i ∈ Sj do
16 if µ̃r−1

i,j ≤ µ̃r−1
imax,j − 2Ur−1

i,j then
17 r̂i ← rj +

⌈
|Sj |D

a(rj+1)

⌉
, Bj ← Bj ∪ {i};

18 for each arm i in Bj whose rj ≥ r̂i do
19 if |Sj | > 1 then Sj ← Sj\{i}, Bj ← Bj\{i}; else Sj ← Sj

3.3 Adaptive Difference Communication

In this section, we optimize the communication cost by minimizing the message size. As outlined in
Section 3.1, global estimates occupy the main channel resources and they consume O(log T ) bits per
message. Hence, we concentrate on optimizing the global estimate µ̃r

i,j (introduced in Section 3.4).

A native intuition is to send brief information instead of precise global estimates. In the early stages
of consensus estimation, high precision is unnecessary—initial rounds only require estimates accurate
to a single decimal place. This motivates the use of information quantization, where the quantized
global estimate at epoch rj is denoted as µ̄r

i,j . The quantization is adaptive: larger messages yield
higher accuracy. Specifically, the estimate in epoch rj is represented using ⌈1 + log2 rj⌉ bits.

To further reduce the message size, another approach is based on sharing differential information
rather than full local estimates. Instead of transmitting quantized statistics at each round, agents
communicate only the differences between their current and previous values, i.e., quantization error
δri,j := µ̄r

i,j − µ̄r−1
i,j . This technique leverages the temporal smoothness of learning processes,

significantly reducing the communication overhead while maintaining estimation accuracy.

Due to that µ̄r
i,j has ⌈1 + log2 rj⌉ bits and µ̄r

i,j is a quantization version of µ̃r
i,j , the error between

them is bounded by

|µ̄r
i,j − µ̃r

i,j | ≤
1

2⌈1+log2 rj⌉
≤ 1

2rj

rj≥2

≤ 1

rj + 2
(4)

Remark 1. Wang et al. [2019] has proved that O(log T ) bits are sufficient to distinguish the optimal
arm from the arm set K, considering that the gap ∆i may be small enough. The global estimates
contribute a large number of bits to the communication cost. By exploiting the quantized variable
µ̄r
i,j , we reduce the message size to O(

√
log T ). By using differential communication, we can only

6



Algorithm 2: Epoch-based consensus estimation subroutine (EBCES) (for agent j)
Input: The local reward Xi,j , the candidate set Sj′ , the epoch rj and the weight matrix

W = [ωj,j′ ]N×N

Output: The latest estimate µ̃i,j and elimination arm set Bj
1 if |Sj | > 1 then
2 Communicate the global error δr−1

i,j with its neighbors ; // Communication phase II
3 Receive the global estimate δr−1

i,j′ , j
′ ∈ Nj from agent j’s neighbors;

4 for j′ ∈ Nj do
5 µ̄r−1

i,j′ ← µ̄r−2
i,j′ + δr−1

i,j′ ;

6 Update the global estimate µr
i,j via equation (5);

7 µ̄r
i,j ← ceil(µ̃r

i,j);
8 δri,j ← µ̄r

i,j − µ̄r−1
i,j ;

use O(1) bits per message. It is also the first work that obtains optimal message size in heterogeneous
federated bandit learning.

3.4 Consensus Estimation Policy

The heterogeneous reward in this problem motivates agents to learn the global means of arms and
cooperate with their neighborhoods. Therefore, an epoch-based consensus estimation subroutine
(EBCES), exploiting epoch-based exploration (Section 3.2) and differential information quantization
(Section 3.3), is proposed to be integrated into EpoInc-SE.

The core idea of EBCES is to synchronize information exchange among neighbors and effectively
utilize their shared data to achieve an unbiased global estimate. As discussed in Section 3.3, agents
exchange δri,j instead of µ̃r

i,j and reduce the information bits to O(1) order. In the consensus
estimation process, agents combine differential information δri,j with the historical quantized variable
µ̄r−1
i,j to compute the latest global estimates from neighbors (Line 5, Algorithm 2). On the basis of

the information exchange above, a fair estimation mechanism is presented in which samples from all
agents are used equally to estimate the global mean.

To obtain global estimates, agent j combines its neighbors’ historical data and its own average
empirical reward X̄r

i,j . Up to the end of epoch rj , agent j collects µ̃r−1
i,j′ , j

′ ∈ Nj and updates its
global estimate as follows:

µ̃r
i,j = (1− σi(rj))

∑
j′∈Nj

ωj,j′ µ̃
r−1
i,j′ + σi(rj)X̄

r
i,j , (5)

where σi(·) is the weight that adjusts the contribution of the information in the global estimate µ̃r
i,j .

3.5 Arm Elimination Policy

In this section, we introduce an elimination arm set Brj that stores the indexes of arms identified as
suboptimal. At the beginning of each epoch, each agent compares the global estimates of all arms and
selects the one with the highest estimated reward as the baseline (Line 4, Algorithm 1). Then, each
arm will be compared with arm imax, which is considered sub-optimal and added to the elimination
set Bj if it falls below the baseline by a margin that is related to the confidence radius.

Denote the sample count of agent j on arm i until epoch rj by τ ri,j = a(rj + 1)(rj + 2)/2. The total
sample count on arm i is τ ri = Nτ ri,j because of synchronous sampling. Define µ̃r

i,j as the global
estimate of agent j on arm i. According to Hoeffding’s inequality, there exists a radius of confidence
interval Ur

i,j such that µ̃r
i,j ∈ [µi − Ur

i,j , µi + Ur
i,j ], with

Ur
i,j(δ) :=

√
log δ−1

aN(rj + 1)(rj + 2)︸ ︷︷ ︸
(a)

+
2C

(rj + 2)(1− λ2)︸ ︷︷ ︸
(b)

+
1

rj + 2︸ ︷︷ ︸
(c)

, (6)
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where δ specifies the violation probability. Terms (a) and (b) are from Lemmas 2 and 3. Term (c) is
caused by information quantization (introduced in Section 3.3). The detailed proof of the confidence
interval (6) is proposed in Appendix D.1. Arm i is identified as sub-optimal if it satisfies

µ̃r
i,j + Ur

i,j ≤ µ̃r
imax,j − Ur

i,j . (7)

To help agent j determine whether the information in Brj has been acknowledged by all agents, we
introduce epoch label r̂i, which denotes the latest epoch by which all agents are guaranteed to know
that arm i is suboptimal. Then, all agents agree to eliminate it from the candidate set at epoch r̂i,

r̂i ← rj +

⌈
D

a(rj + 1)

⌉
, (8)

where D is the diameter of the graph G. The elimination arm set Brj is constructed as
Brj = {i, i ∈ Srj : ∃i′ ∈ Srj \ {i} such that µ̃r

i,j ≤ µ̃r
i′,j − 2Ur

i,j}. (9)

The candidate set Sj is updated based on the information in Bj until only one arm remains, which is
identified as the optimal arm. Once an arm is eliminated from Sj , it is also removed from Bj to avoid
redundant communication (Line 19, Algorithm 1).

4 Analysis

In this section, we summarize the theoretical results concerning both regret and communication
cost. We begin by introducing Lemma 1, which provides a concentration bound for the global mean.
Unlike traditional concentration results based on real-time data, our approach leverages batched
information to perform consensus estimation, which obtains a similar performance. This key insight
allows us to establish upper bounds on both communication rounds and regret, which are detailed in
Section 4.1. Finally, Section 4.2 presents the corresponding lower bounds.
Lemma 1. Let i ∈ K be any arm, j ∈ N be any agent, and r ∈ {1, 2, . . . } be any epoch. Assume
reward Xi,j(t) is an i.i.d. process with unknown mean µi,j . Set σi(rj) =

2
rj+2 . Then, with probability

at least 1− 2δ, the gap between the global estimate µ̃r
i,j and the global mean µi satisfies∣∣µ̄r

i,j − µi

∣∣ ≤√ log δ−1

aN(rj + 1)(rj + 2)
+

2C

(1− λ2)(rj + 2)
+

1

rj + 2
, (10)

where λ2 is the second largest eigenvalue of the weight matrix W (characterizing network con-
nectivity), σi(rj) is the variance proxy of local means across agents, and C is a positive constant
determined by G, i.e., C = 1 when G is balanced; otherwise, C =

√
N .

Proof Sketch of Lemma 1. We decompose the estimation error into three parts: quantization
error |µ̄r

i,j − µ̃i,j |, consensus error |µ̃r
i,j − µ̂r

i |, and concentration error |µ̂r
i − µi|. The quantization

error arises from limited communication precision and is controlled by the quantization scheme.
The consensus error results from averaging over a network with imperfect information propagation
and is bounded using spectral properties of the communication matrix. Finally, the concentration
error comes from estimating the true mean using sub-Gaussian samples and is handled via standard
probabilistic bounds. Combining these yields a confidence interval for the global estimate.

4.1 Upper Bound
Theorem 1 (Upper regret bound). Let Ur

i,j in (6) with δ = T−2 be the radius of the confidence
interval of a random [0, 1]-valued i.i.d. process. Given any constant γ > 0 and σi(rj) = 2/(ri + 2),
Algorithm 1 could achieve the following results,

(i) For each agent j, individual regret:

E[Rj(T )] ≤ O

( ∑
i:∆i>0

N−1∆−1
i log T

)
,

(ii) Group regret:

E[R(T )] ≤ O

( ∑
i:∆i>0

∆−1
i log T

)
,
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Proof Sketch of Theorem 1. To bound both types of regret, we first establish an upper bound on
the sample counts of sub-optimal arms. From equation (7), we derive an instance-dependent bound,
then account for the additional samples required to synchronize agents under the communication
delay. This adjustment depends on the graph’s diameter and the theoretical result in equation (7).
Finally, combining the gap terms with these sample counts yields the overall regret bounds. Detailed
proofs are provided in Appendix D.2.
Theorem 2 (Upper communication cost). When all agents execute EpoInc-SE (Algorithm 1), the
total communication cost over the entire time horizon is at most O(

∑
i:∆i>0

√
N∆−1

i

√
log T ) bits,

in order to achieve the regret bounds stated in Theorem 1.

Proof Sketch of Theorem 2. To optimize communication cost, the key idea is to minimize both the
size of global estimates and the number of communication rounds. The message size is reduced to
O(1) through differential communication, while the epoch-based exploration policy decreases the
communication frequency to the order of O(

√
log T ). By combining these two strategies, we derive

the upper bound of the overall communication cost.
Remark 2. The lower bound of the communication cost is still an important problem for heteroge-
neous bandit problems. The previous work Wang et al. [2019] provides a constant level lower bound
for the homogeneous bandit. However, the heterogeneous bandit setting poses a more challenging
property, i.e., heterogeneous feedback, which implies that more essential communication is needed
for obtaining a near-optimal result. It is an interesting work that is worth learning.
Remark 3. In the worst case, the message in the communication phase I will consume at most O(NK)
bits. In the communication phase II, the message will consume at most K logK +K log log T bits.

4.2 Lower regret bound

Besides the upper bounds of regrets, we also present lower bounds for this problem. We investigate
the lower bounds of both individual and group regrets, where the elements in the upper bounds match
those in the lower bounds.
Theorem 3 (Regret lower bound). For FMAB problems with any number of agents, arms, and
stochastic rewards satisfying a 1-Gaussian distribution, if the graph G is connected, any federated
bandit algorithm must incur regrets at least:

(i) For each agent j, individual regret:

lim inf
T→∞

E[Rj(T )]

log T
≥

∑
i:∆i>0

2

N∆i
.

(ii) Group regret:

lim inf
T→∞

E[R(T )]

log T
≥

∑
i:∆i>0

2

∆i
.

Proof Sketch of Theorem 3. To derive the lower bound for federated heterogeneous bandit
problems, the main challenge lies in handling the randomness of decision-making across multiple
agents. To address this, we introduce an auxiliary “replica” subsystem that allows agent j to access
other agents’ observations on the same arm. This additional information does not tighten the lower
bound. We then show that it does not affect the consensus estimation, after which the regret lower
bound follows directly from the proof techniques in [Lattimore and Szepesvári, 2020].
Remark 4. The lower bound of the heterogeneous federated bandit problem is also discussed in
Theorem 3 in Xu and Klabjan [2023]. Different from the previous work, we prove the lower bound by
using a relaxed model. In this model, each agent obtains additional information (Details are given in
Section 3), and the result is obtained directly by using Theorem 1 in Garivier et al. [2019].

5 Experiments

In this section, we conduct a series of experiments on different algorithms. All experiments are
repeated for 50 trials, with means plotted as lines and standard deviations as shaded regions.
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Setups and Baselines. Unless otherwise stated, the experiment scenario involves a network of N = 8
agents and K = 10 arms, parameters C =

√
N , a = 5 and T = 106. To ensure a fair comparison,

we use a ring graph and all agents occupy the same weight in their neighborhoods, which is a
common undirected connected graph with the second largest eigenvalue λ2 = 0.5713. We consider
four baselines: Gossip_UCB [Zhu et al., 2021], Dis-UCB [Zhu and Liu, 2023], Fed2-UCB [Shi and
Shen, 2021] and UCB-TCOM [Wang and Yang, 2023]. The theoretical results of them are discussed in
Table 1. The individual regret is evaluated by the maximum individual regret among all agents. For
Fed2-UCB and UCB-TCOM, a consensus estimation module is attached to them to help them against
heterogeneity. The two algorithms communicate the historical reward at each time slot. Hence, the
consensus estimator is µ̂i(t) =

1
Nt

∑N
j=1

∑t
k=1 Xi,j(k).

Observations. From Figures 1a and 1b, both group and individual regrets of EpoInc-SE are only
slightly worse than that of Fed2-UCB, primarily because Fed2-UCB leverages a central server, which
enables faster convergence compared to a fully distributed graph. Figure 1c shows that EpoInc-SE
results in the lowest bit-level communication overhead among all compared methods, highlighting
the efficiency of our algorithm in minimizing communication costs. Figures 1d-1f indicate that
Epoinc-SE still has good performance when N,K, δ vary. We also make some experiments under
homogeneous settings in Section E and some experiments in large-scale multi-agent systems in
Section F.

(a) Individual regret (b) Group regret (c) Communication cost

(d) Vary reward gap (e) Vary arm number (f) Vary agent number

Figure 1: Performance comparison with different algorithms.

6 Conclusion

This paper proposed a communication-saving solution to address the challenges faced by FMAB
problems in environments with heterogeneous rewards and fully distributed communication networks.
We successfully tackled the shortcomings of existing research in areas such as information fusion,
regret performance, and communication efficiency, particularly in scenarios where there is no central
coordinator and agents can only communicate with their neighbors. The main contribution of this
paper lies in the design and introduction of an efficient federated learning algorithm EpoInc-SE,
which greatly reduces the communication cost and obtains O(1) bits. Besides, we first propose a lower
regret bound in this setting and prove that EpoInc-SE is near-optimal under limited communication.
Future work could explore applying this framework to more complex network dynamics or considering
more advanced privacy-preserving mechanisms.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract reflects our work and contributions greatly.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: by [Yes]

The limitations are written in Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13



Justification: The proof of each theorem and the first proposed lemma are given in Ap-
pendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental parameters are given in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: This work does not have any dataset, but we provide all code in the supple-
mental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are given in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The confidence interval is defined in Section 3.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our work is theoretical, and the experiment is not the core. Besides, our
experiment is a small simulation that could work on any computer with VS Code. Hence,
we think it is unnecessary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[Yes]
Justification: This paper is a theoretical work that has nothing to do with human morality.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper is a theoretical work that has nothing to do with human society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is not connected with models that have a high risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The codes in this paper are all from the authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
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guidelines for their institution.
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A Appendix / Symbol explanation

For all symbols in this article, we give explanations of them in Table 3.

Symbol/Term Definition
G(N , E ,A) A graph to describe a multi-agent system

N = {1, . . . , N} Set of agents in a multi-agent system
E ⊂ N ×N The edge set in graph G
A = [ai,j ]N×N The weight matrix to describe the relations between agents

Nj Neighborhood of agent j, excluding agent j
W = [ωa,b]N×N Communication matrix

D The diameter of graph G
λ2 The second largest eigenvalue of W
C A symbol to describe whether the graph is balance

K = {1, . . . ,K} Set of arms in a multi-armed bandit (MAB) problem
T Total number of time slots

Aj(t) Arm chosen by agent j at time slot t
XAj(t),j(t) Random reward received by agent j after pulling arm Aj(t) at time slot t
Xi,j(t) Random reward for arm i observed by agent j at time slot t
µi,j Mean reward for arm i observed by agent j, bounded in [0, 1]
Xi(t) Global reward for arm i at time slot t
a Constant that determines the size of an epoch
pr The sample count of any arm in Srj in epoch rj , pr = a(rj + 1)

X̄r
i,j The average local reward of Xi,j in epoch rj
µi Global mean reward for arm i

µ̃i,j(t) The global estimate of agent j on arm i at time slot t
i⋆ The unique optimal arm with the largest global mean reward

imax imax = argmaxi∈Sj µ̃i,j

Srj The candidate arm set of agent j at time slot t
Brj The elimination arm set of agent j at time slot t
r̂i The epoch label attached to arm i

∆i = µi⋆ − µi Reward gap between the optimal arm and arm i
τ ri,j The sample count of agent j on arm i until epoch rj
τ ri The global sample count on arm i until epoch rj
δ The violation probability of confidence interval

Ur
i,j(δ) The radius of confidence interval

E[R(T )] Expected group regret
E[RT

j (A)] Expected individual regret of agent j

Table 3: Summary of symbols and Definitions

B Appendix / some knowledge of graphs

Throughout this paper, we consider a FMAB problem with N agents operating in a time-invariant
network. The network is represented by a communication graph G(N , E ,A), which consists of three
components:

1. N = {1, . . . , N} is the set of agents in the network, corresponding to the number of agents
in the distributed system.

2. E ⊂ N ×N is the edge set, which determines the connectivity between agents.
3. A = [aj,j′ ]N×N is the adjacency matrix of the graph G, where aj,j′ denotes the weight of

the edge between agents j and j′.

Notably, the adjacency matrix represents the importance of one agent to its neighbors and encodes
neighborhood information in G. Specifically, aj,j′ is the weight from agent j′ to agent j. Since the
graph is directed, we have aj,j′ ̸= aj′,j .
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The graph has no self-loops, meaning that aj,j = 0 for all j ∈ N . An edge between agents j and j′

exists if and only if aj,j′ ̸= 0, i.e., (j, j′) ∈ E .

For each agent j, its neighborhood is denoted as Nj = {j′ | j′ ∈ N , aj,j′ ̸= 0, j′ ̸= j}. Finally,
we define the diameter of the graph G as D, which represents the longest distance between any two
agents in the network.

For graph G, its corresponding Laplacian matrix L is defined as follows

L =


− aj,j′ , j ̸= j′

N∑
j′=1

aj,j′ . j = j′

The maximum degree of graph G is defined as ϵ = maxi(
∑

j′ ̸=j aj,j′). Then, for any constant
β ∈ (0, 1/ϵ], the Perron matrix W = I − βL could be obtained. The Perron matrix W = [ωi,j ]N×N

is a doubly random matrix and both the sum of row elements and column elements in W is 1. In the
multi-agent bandit setting, it is widely used to solve the consensus problem Olfati-Saber et al. [2007].

C Appendix / Preliminaries of the problem

Lemma 2. [Yan et al., 2012] For a doubly random matrix W , it is an irreducible, doubly stochastic
matrix with strictly positive diagonal entries, then there exists a positive constant C such that

N∑
j=1

|ωk
i,j −

1

N
|< Cλk

2 , (11)

where ωk
i,j represents the element in the i-th row and j-th column of the matrix W k, k represents

the iteration step and λ2 is the second largest value of matrix W . C is equal to 1 if the graph G is
balanced, otherwise, C =

√
N .

Lemma 3. [Molloy and Reed, 2002] Assume that X(t)− µ is independent, σ sub-Gaussian random
variable. Then for any ϵ ≥ 0,

P(µ̂ ≥ µ+ ϵ) ≤ exp(−nϵ2

2σ2
),

P(µ̂ ≤ µ− ϵ) ≥ exp(−nϵ2

2σ2
),

where µ̂ = 1
n

∑n
t=1 X(t) and n is the sample count.

Lemma 4. [Lattimore and Szepesvári, 2020] Suppose that Xi is σ2
i sub-Gaussian and Xi are all

independent for i ∈ {1, . . . , N}. Then we have 1
N

∑N
i=1 Xi is

∑N
i σ2

i

N2 sub-Gaussian.
Lemma 5. [Dubhashi and Panconesi, 2009] If a random variable X has a finite mean and a ≤ X ≤ b
almost surely, then X is 1

4 (b− a)2 sub-Gaussian.

D Appendix / Missed proofs

D.1 Proof of Lemma 1

Proof. The goal is to obtain an unbiased estimation µ̄r
i,j of the global mean µi. To achieve the goal,

we could divide the problem into three parts: |µ̄r
i,j − µ̃i,j |, |µ̃r

i,j − µ̂i| and |µ̂i − µi|. According to
the triangle inequality, we have

|µ̄r
i,j − µi| ≤ |µ̄r

i,j − µ̃i,j |+ |µ̃r
i,j − µ̂r

i |+ |µ̂r
i − µi|. (12)

The first term |µ̄r
i,j − µ̃i,j | is bounded according to the definition of information quantization

introduced in Section 3.3. We have

|µ̄r
i,j − µ̃r

i,j | ≤
1

rj + 2
.

21



Since all agents make decisions synchronously, we remove the subscript j from the epoch number
rj . The consensus process mainly acts at the end of each epoch; therefore, we consider the average
reward X̄r

i,j during the total epoch instead of the real-time reward Xi,j(t) in each time slot t. To
facilitate matrix-based operations, we stack equation (5) as follows

µ̃r
i = (1− σi(r))Wµ̃r−1

i + σi(r)X̄
r
i , (13)

where µ̃r
i andX̄r

i are defined as

µ̃r
i = [µ̃r

i,1, . . . , µ̃
r
i,N ]T ,

X̄r
i = [X̄r

i,1, . . . , X̄
r
i,N ]T .

The coefficient σi(rj) represents the ratio of the total amount of data aggregated by variable X̄r
i,j to

the overall data volume. The iteration of (5) occurs at the end of each epoch rj , which implies that
the sample count could be connected to epoch r. Hence, we define σi(rj) =

2a(rj+1)
a(rj+1)(rj+2) =

2
rj+2 ,

where a is the pre-trained sample count at the beginning of the algorithm.

According to the state above, iterating (13) at each epoch r yields that

µ̃r
i =

r

r + 2
Wµ̃r−1

i +
2

r + 2
X̄r

i

=
2

a(r + 1)(r + 2)
W rµ̃0

i +
2

a(r + 2)(r + 1)

r∑
k=1

W r−ka(k + 1)X̄k
i

(a)
=

2

a(r + 2)(r + 1)

r∑
k=0

W r−ka(k + 1)X̄k
i ,

(14)

where equation (a) is obtained by setting µ̃0
i = X̄0

i .

Then, separate agent j’s global estimate from the vector µ̃r
i , we have

µ̃r
i,j =

2

a(r + 2)(r + 1)

r∑
k=0

N∑
j′=1

ωr−k
j,j′ a(k + 1)X̄k

i,j′ . (15)

For the fully connected graph, each agent can observe all other agents’ observations. Hence, their
global estimates µ̂r

i on arm i are the same, which is written as

µ̂r
i =

2

a(r + 2)(r + 1)

t∑
τ=0

1

N

N∑
j=1

Xi,j(τ)

(a)
=

2

a(r + 2)(r + 1)

r∑
k=0

1

N

N∑
j=1

a(k + 1)X̄k
i,j ,

(16)

where equation (a) is obtained because the concentration accrues at the end of each epoch, i.e.,
t = a(r + 1)(r + 2)/2.

The error between µ̃r
i,j and µ̂r

i is

|µ̃r
i,j − µ̂r

i | =
2

a(r + 1)(r + 2)

r∑
k=0

N∑
j′=1

(ωr−k
j,j′ −

1

N
)a(k + 1)X̄k

i,j′

(a)

≤ 2

(r + 1)(r + 2)

r∑
k=0

Cλr−k
2 (1 + k)

(b)

≤ 2C

(r + 1)(r + 2)
× λr+2

2 − λ2

(1− λ2)2
+

2C

(r + 2)(1− λ2)

≤ 2C

(1− λ2)(r + 2)
,

(17)
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where equation (a) yields from Lemma 2 and equation (b) is derived based on the properties of
arithmetic and geometric sequences.

For a federated setting with N agents, the global reward is defined as Xi(t) = 1
N

∑N
j=1 Xi,j(t),

where Xi,j(t) ∈ [0, 1] represents the local reward observed by agent j. According to Lemma 5,
each Xi,j(t) is 1

4 -sub-Gaussian. By applying Lemma 4, which addresses linear combinations of
sub-Gaussian variables, it follows that the global reward Xi(t) is 1

4N -sub-Gaussian.

By using Lemma 3 and setting ε =
√

log δ−1

2Nτ and σ2 = 1
4N , the probability that the estimate µ̂r

i

exceeds the confidence interval after round r is given by

P

(
µ̂i(t) ≥ µi +

√
log δ−1

aN(r + 1)(r + 2)

)
≤ δ,

P

(
µ̂i(t) ≤ µi −

√
log δ−1

aN(r + 1)(r + 2)

)
≤ δ,

(18)

i.e., with probability at least 1− 2δ, we have

|µ̂τ
i − µi| ≤

√
log δ−1

aN(r + 1)(r + 2)
. (19)

Combining the upper bounds of the three terms, we obtain the following result based on equation (12):∣∣µ̄r
i,j − µi

∣∣ ≤√ log δ−1

aN(r + 1)(r + 2)
+

2C

(1− λ2)(r + 2)
+

1

r + 2
.

which is the radius of the confidence interval.

D.2 Proof of Theorem 1

Proof. To establish bounds on both regret and communication cost, the key step is to characterize the
sample complexity of all agents. Hence, the proof is divided into three parts: (1) bounding the total
number of samples collected by each agent, (2) deriving the corresponding regret bounds, and (3)
analyzing the total communication cost.

Bound the sample counts: Since Algorithm 1 is embedded in each agent and executed in a similar
manner, we focus our analysis on a representative agent j. Agent j usually distinguishes whether an
arm is suboptimal at the end of each epoch. Recall that for all arms i ∈ K \ {i⋆}, ∆i > 0. Agents
learn the gap ∆i > 0 and continuously eliminate the arms i : ∆i > 0. To accelerate the update
of the candidate set Sj , detection is performed at the end of each epoch. Once suboptimal arm i is
identified through this detection, agent j will add it into the elimination arm set Brj and later initiate a
communication phase that broadcasts the elimination set Bj across the distributed system in waves.

Since that µ̃r
i,j is to estimate µi, the reward gap ∆i for each agent j ∈ N is related to Ur

i,j . The gap
between µ̃r

imax,j and µ̃r
i,j is

2Ur
i,j

(7)
≥ µ̃r

imax,j − µ̃r
i,j

(a)

≥ ∆i − 2Ur
i,j (20)

where inequality (a) is because µ̃r
imax,j ≥ µ̃r

i⋆,j ≥ µi⋆ − Ur
i,j and µ̃r

i,j ≤ µi + Ur
i,j .

Denote Ai,j,t as the event of agent j pulling arm i at the time slot t, then we have

P

⋂
i,j,t

Ai,j,t

 = 1− P

⋃
i,j,t

¬Ai,j,t

 ≥ 1−
∑
i,j,t

P (¬Ai,j,t) ≥ 1− 2tNKδ.

At the end of each epoch rj , we take a detection for each arm in the candidate set Srj . The
corresponding sample count is equal to τi,j = a(rj + 1)(rj + 2)/2. Equation (20) is written
as

∆i ≤ 4Ur
i,j ≤ 4

√
log δ−1

aN(r + 1)(r + 2)
+

8C
1−λ2

+ 4

rj + 2
,
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i.e.,

∆2
i −

8∆i(
2C

1−λ2
+ 1)

r + 2
+

16( 2C
1−λ2

+ 1)2

(r + 2)2
≤ 16 log δ−1

aN(r + 1)(r + 2)
,

(r + 1)(r + 2−
8( 2C

1−λ2
+ 1)

∆i
) ≤ 16 log δ−1

aN∆2
i

,

r ≤ 4
√
log δ−1

√
aN∆i

− 2+
8( 2C

1−λ2
+ 1)

∆i
.

According to the definition of the epoch label r̂i in equation (8), it follows that any suboptimal

arm i will be added into the elimination set Brj no later than
⌈

4
√

log δ−1

√
aN∆i

− 2 +
8( 2C

1−λ2
+1)

∆i

⌉
. In

the next epoch
⌈

4
√

log δ−1

√
aN∆i

− 2 +
8( 2C

1−λ2
+1)

∆i

⌉
+ 1, agent j will broadcast arm i to all neighbors

(Communication phase I).

As the number of time slots per epoch grows over time, the number of epochs needed for information
to propagate from a single agent to the entire network decreases accordingly. The maximum
communication epoch required is determined by

min
r̃

r̃∑
r=1

a(r + 1) ≥ D, (21)

where r̃ represents the most epoch number. From the optimization problem (21), the epoch number is

at most
⌈√

2D
a + 2

⌉
to broadcast the message to all agents. In Algorithm 1, the epoch for sampling

suboptimal arm i is donated by r̄i =

⌈
4
√

log δ−1

√
aN∆i

− 2 +
8( 2C

1−λ2
+1)

∆i

⌉
+
⌈√

2D
a + 2

⌉
.

Bound the regrets: According to the basic regret decomposition identity, the individual regret in
equation (1) of agent j could be written as

Rj(T ) = Tµi⋆ −
T∑

t=1

E[XAj(t)(t)] = Tµi⋆ −
T∑

t=1

µAj(t)

≤
∑

i:∆i>0

∆iτi,j(T ) =
∑

i:∆i>0

a∆i(r̄i + 1)(r̄i + 2)

2

≤
∑

i:∆i>0

a∆i

2

(
4
√

log δ−1

√
aN∆i

+ d̄i

)2

≤
∑

i:∆i>0

(
16 log T

N∆i
+

2d̄i
√
2a log T√
N

+
ad̄2i
2

)
,

where
d̄i =

16C + 8− 8λ2

∆i(1− λ2)
.

According to the definition of group regret and the individual regret bound, equation (2) is written as

R(T ) =

N∑
j=1

Rj(T ) ≤
∑

i:∆i>0

(
16 log T

∆i
+ 2d̄i

√
2aN log T +

aNd̄2i
2

)
.

D.3 Proof of Theorem 2

Proof. The communication in Algorithm 1 has two types, i.e., Communication phase I and II. In
Communication phase I, agents mainly share the indexes of sub-optimal arms and their corresponding
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epoch label r̂i. In Communication phase II, agents mainly share differential information δri,j about
the global estimates.

Consider the size of each message: There are three types of information that need to be communi-
cated in this setting: (a) the arm set Brj , (b) the epoch label r̂i, and (c) the global estimate δri,j . The
message size for type (a) requires only O(logK) bits. For type (b), the size depends on the epoch
label r̂i, which is upper bounded by r̄i and can be encoded using O(

√
log T ) bits, as shown in the

proof of Theorem 1. For type (c), the global estimate δri,j lies in [0, 1] and is adaptively quantized. It
is the most important part that needs to be optimized, as it dominates the total communication cost.
The key challenge is to transmit the order of the global estimate from O(log(T )) to O(1).

After agent j computes the global estimate µ̃r
i,j at the end of epoch rj , it will be transmitted into a more

concise version µ̄r
i,j with ⌈1+log2 rj⌉ bits. Then, the difference is calculated from δri,j = µ̄r

i,j−µ̄
r−1
i,j .

Hence, we could bound δri,j to reduce the total communication cost. The difference δri,j holds that

|δri,j | = |µ̄r
i,j − µ̄r−1

i,j | = |µ̄
r
i,j − µ̃r

i,j − µ̄r−1
i,j + µ̃r−1

i,j + µ̃r
i,j − µ̃r−1

i,j |

≤ |µ̄r
i,j − µ̃r

i,j |+ |µ̄r−1
i,j − µ̃r−1

i,j |+ |µ̃
r
i,j − µ̃r−1

i,j |
(a)

≤ 1

r
+

1

r − 1
+ |µ̃r

i,j − µ̃r−1
i,j |,

(22)

where equation (a) yields from the quantization process in Algorithm 2. Due to that µ̄r
i,j contains

⌈1 + log2 rj⌉ bits, which implies that there is a quantization error at most 1/rj compared with the
true estimate value µ̃r

i,j . For the term |µ̃r
i,j − µ̃r−1

i,j |, we have

|µ̃r
i,j − µ̃r−1

i,j | = |µ̃
r
i,j − µ̂r

i − µ̃r−1
i,j + µ̂r−1

i + µ̂r
i − µ̂r−1

i |
≤ |µ̃r

i,j − µ̂r
i |+ |µ̃r−1

i,j − µ̂r−1
i |+ |µ̂r

i − µ̂r−1
i |

≤ 2C

(1− λ2)(rj + 2)
+

2C

(1− λ2)(rj + 1)
+ |µ̂r

i − µ̂r−1
i |,

where

µ̂r
i − µ̂r−1

i =

∑ a(rj+1)(rj+2)

2
t=0 Xi(t)

a(rj + 1)(rj + 2)/2
−
∑ arj(rj+1)

2
t=0 Xi(t)

arj(rj + 1)/2
.

Due to that Xi(t) is 1
2
√
N

-sub-Gaussian random variable, µ̂r
i − µ̂r−1

i could be considered as√
1

2aN(rj+1)(rj+2) -sub-Gaussian random variable.

Thus, we can further derive that, for a dummy variable x ≥
√
ln 2,

P

(
|µ̂r

i − µ̂r−1
i | ≥

√
x2

2aN(rj + 1)(rj + 2)

)
≤ 2 exp

− a(rj+1)(rj+2)
2 × x2

2a(rj+1)(rj+2)

2× 1
4N


= 2 exp[−x2/2],

which implies that

P

(
|δri,j | ≥

1

rj
+

1

rj − 1
+

2C

(1− λ2)(rj + 2)
+

2C

(1− λ2)(rj + 1)
+

√
x2

2aN(rj + 2)2

)
≤ 2 exp[−x2/2]

⇒ P

(
|δri,j | ≥

2 + 4C
1−λ2

+ x√
2aN

rj + 2

)
≤ 2 exp[−x2/2]

(a)⇒ P

(
Lr
i,j ≥ 3 + log2 rj + log2

2 + 4C/(1− λ2) + x/
√
2aN

rj + 2

)
≤ 2 exp[−x2/2]

⇒ P
(
Lr
i,j ≥ 3 + log2(2 + 4C/(1− λ2) + x/

√
2aN)

)
≤ 2 exp[−x2/2]

(b)⇒ P
(
Lr
i,j ≤ 3 + log2(2 + 4C/(1− λ2) + x/

√
2aN)

)
≥ 1− 2 exp[−x2/2],
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where Lr
i,j in implication (a) represents the length of the truncated version |δri,j | and it is bounded by

Lr
i,j + ⌊log2(1/|δri,j |)⌋ ≤ ⌈1 + log2 rj⌉. (23)

Denote that l = 3+ log2(2 + 4C/(1− λ2) + x/
√
2aN , i.e., x =

√
2aN(2l−3 − 2− 4C

1−λ2
), and (b)

could be written as

P
(
Lr
i,j ≤ l

)
≥ 1− 2 exp[−x2/2] ≥ 1− 2 exp

[
−aN(2l−3 − 2− 4C

1− λ2
)2
]
. (24)

With the above results and viewing Lr
i,j as a random variable, we have that its cumulative distribution

function (CDF) FLr
i,j
(l) satisfies the following property:

∀l ≥ l̂ =

⌈
3 + log2(2 + 4C/(1− λ2) +

√
ln 2

2aN

⌉
,

FLr
i,j
(l) = 1− 2 exp

[
−aN

(
2l−3 − 2− 4C

1− λ2

)2
]
.

Using the property of CDF, we can bound the expectation of Lr
i,j as

E[Lr
i,j ] =

∞∑
l=0

(1− FLr
i,j
(l))

≤ 1 + l̂ +

∞∑
l=l̂

(1− FLr
i,j
(l))

≤ 1 + l̂ +

∫ ∞

l=l̂

2 exp

[
−aN

(
2l−3 − 2− 4C

1− λ2

)2
]
dl

≤ 2 + l̂.

(25)

Thus, we have that in expectation, the truncated version of |δri,j | has a length that is less than 2 + l̂
bits.

Consider the total number of communication rounds in communication phase I. Communi-
cation phase I is a novel phase, used to broadcast the indices of sub-optimal arms. When an arm is
identified as sub-optimal, the arm index will be exchanged at most

⌈
D

a(rj+1)

⌉
a(rj + 1) rounds. The

total communication rounds on the arm i is at most (K − 1)(N − 1)2
⌈

D
a(rj+1)

⌉
a(rj + 1) because

agent j1 may share the information with j2 even if the information is from j2 initially. Considering
N agents pulling K arms, the number broadcast round during the total horizon T in phase I is at
most (K − 1)(N − 1)2

⌈
D

a(rj+1)

⌉
a(rj + 1).

Consider the total number of communication rounds in communication phase II. According
to Theorem 1, each suboptimal arm is pulled for at most r̄i epochs. In the structure of Algorithm 1,
agents exchange their differential information δri,j at the end of each epoch. Therefore, the total
number of communication rounds in Communication Phase II is upper bounded by N

∑K
i=1 r̄i.

According to the discussion above, the total communication cost of the entire system is bounded by

C(T ) ≤ (2 + l̂)N

K∑
i=1

r̄i + (log2 r̂i + log2 K)(K − 1)(N − 1)2
⌈

D

a(rj + 1)

⌉
a(rj + 1)

≤ O(
∑

i:∆i>0

√
N∆−1

i

√
log T ).

(26)
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D.4 Proof of Theorem 3

Proof. We will present the proof of the lower bound in three parts.

Problem setting. First of all, we need to consider a more relaxed scenario. Consider a multi-
agent system with N agents, which is a fully connected graph. For each agent j, suppose that
there is an associated “replica” subsystem ĵ that can provide samples of agents {1, . . . , N} \ {j}.
When agent j samples arm i and obtains a reward Xi,j , replica subsystem ĵ provides rewards
Xi,k, k ∈ {1, . . . , N} \ {j}. This construction allows j to leverage peer observations without
requiring global synchronization. In this construction, all agents inN could make different decisions,
which means that the lower bound is compatible with all bandit algorithms.

Consensus estimation evaluation. Then, we need to ensure the convergence of consensus estimation
in this setting. In each round, the agents obtain not only the global estimates from their neighbors but
also information from their replica subsystems. From the replica subsystem, agent j could obtain a
global reward and denote it by X̄τ

i,j . The concentration function for the fully connected graph is

µ̂τ
i =

1

τ + 1

N∑
j=1

τ∑
k=0

1

N
X̄k

i,j .

Considering that Xi,j are all 1-sub-Gaussian variables, the linear combination reward µ̂i is a√∑N
j=1

∑N
i=1 σ2

N4 = 1
N -sub-Gaussian variable. By using Lemma 3, the relationship between µ̂τ

i
and µi in this setting is

P

(
µ̂τ
i ≥ µi +

√
log δ−1

8N2τ

)
≤ δ,

P

(
µ̂τ
i ≤ µi −

√
log δ−1

8N2τ

)
≤ δ.

The confidence interval
√

log δ−1

8N2τ processes better concentration performance than (6) because it has
an additional factor 1√

N
. Hence, the consensus estimation performance in this setting is better than

that of general federated bandit settings. Hence, we could derive more convincing lower bounds on
regrets.

Lower bound proof. LetM be a set of distributions with finite means, and let µ :M→ R be the
function that maps P ∈M to its mean. Let µi⋆ ∈ R and P ∈M have µ(P ) < µi⋆ and define

di = dinf(P, µi⋆ ,M) = inf
P ′∈M

{D(P, P ′) : µ(P ′) > µi⋆},

where D(P, P ′) is the relative entropy between P and P ′.

Define two reward distributions as follows
ν = (P1, . . . , Pi, . . . , PK),

ν′ = (P1, . . . , P
′
i , . . . , PK).

Let all arms except arm i be the same in the two distributions. For arm i, let ϵ > 0 be an arbitrary
small value such that D(Pi, P

′
i ) ≤ di + ϵ and µ(P ′

i ) > µi⋆ .

According to Lemma 15.1 in reference [Lattimore and Szepesvári, 2020], the divergence between ν
and ν′ is decomposed into

D(Pν ,Pν′) =

K∑
k=1

E[τk,j(T )]D(Pi, P
′
i )

(a)

≤ E[τi,j(T )](di + ϵ),

where equation (a) is obtained based on D(Pj , P
′
j) = 0 if j ̸= i.

According to Bretagnolle-Huber inequality (Theorem 14.2 in Lattimore and Szepesvári [2020]), for
any event A, we have

Pµ(A) + Pµ′(Ac) ≥ 1

2
exp(−D(Pν ,Pν′)) ≥ 1

2
exp(−E[τi,j(T )](di + ϵ))
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Choose A = {τi,j(T ) > T/2}, and let RT = RT (A, ν) and R′
T = R′

T (A, ν′). Then

RT +R′
T ≥

T

2
(Pµ(A)∆i + Pµ′(Ac)(µ′

i − µi⋆))

≥ T

2
min{∆i, µ

′
i − µi⋆}(Pµ(A)∆i + Pµ′(Ac))

≥ T

2
min{∆i, µ

′
i − µi⋆} exp(−E[τi,j(T )](di + ϵ)).

Rearranging and taking the limit inferior leads to

lim inf
T→∞

E[τi,j(T )]
log T

≥ 1

di + ϵ
lim inf
T→∞

log
T min{∆i,µ

′
i−µi⋆}

4(RT+R′
T )

log T

≥ 1

di + ϵ
(1− lim inf

T→∞

log(RT +R′
T )

log T
)

=
1

di + ϵ
,

where the last equality follows from the definition of consistency, which says that for any p > 0,
there exists a constant Cp such that for sufficiently large T , RT +R′

T ≤ CpT
p, which implies that

lim inf
T→∞

log(RT +R′
T )

log T
≤ p.

Considering p > 0 was arbitrary and ϵ > 0 is limited to zero, we have

lim inf
T→∞

E[τi,j(T )]
log T

≥ 1

di
.

In the proof of the lower bound regret, agents only use the information from their replica subsystems
and the reward mean is a 1√

N
-sub-Gaussian variable. According to Table 16.1 given in Lattimore and

Szepesvári [2020], we have di =
N∆2

i

2 . The individual regret of the problem is lower bounded by

lim inf
T→∞

Rj(T )

log T
≥ lim inf

T→∞

∑
i:∆i>0

∆iE[τi,j(T )]
log T

≥
∑

i:∆i>0

∆i

di
≥

∑
i:∆i>0

2

N∆i
.

The group lower regret is

lim inf
T→∞

R(T )

log T
= lim inf

T→∞

∑N
j=1 Rj(T )

log T
≥ lim inf

T→∞

N∑
j=1

∑
i:∆i>0

∆iE[τi,j(T )]
log T

≥
N∑
j=1

∑
i:∆i>0

∆i

di
≥

∑
i:∆i>0

2

∆i
.

E Appendix / Experiments on homogeneous settings

Under the conditions in Section 5, some experiments are conducted in this section. Our algorithm
(EpoInc-SE) can also obtain a similar result compared to the optimal homogeneous bandit algorithm
in Figure 2.

F Appendix / Experiments on large-scale multi-agent systems

For large-scale deployments, the agent number N would play an important role in communication
cost and regrets. In order to further verify the performance of our algorithm, we conducted an
experiment involving 100 agents. The main results are shown in Figure 3. The proposed algorithm
(EpoInc-SE) also processes the advantage in communication cost, while it can obtain a near-optimal
regret compared with other algorithms.
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(a) Individual regret (b) Group regret (c) Communication cost

Figure 2: Performance in homogeneous settings.

(a) Individual regret (b) Group regret (c) Communication cost

Figure 3: Performance in large-scale multi-agent systems.

G Appendix / Limitations

Although our algorithm has obtained a near-optimal result, it still has certain limitations as follows:

a The algorithm proposed in this work is the successive elimination algorithm, which relies
on round-robin sampling. A similar result can not be introduced to UCB-based algorithms,
which are the mainstream algorithms in bandit problems.

b For time-variant communication graphs, EpoInc-SE would be not work because the con-
sensus estimation part EBCES could not work in random graphs. This is because Lemma 2
relies on a Markov Decision process, which needs a fixed graph.

c In some practical distributed systems, information may be unavailable or costly to obtain.
For the first condition, the information is unavailable to some agents, which implies that
the graph G is disconnected with a clique-connected component. Then, agents cannot learn
global estimates without bias because agents lack other agents’ local observations. Thus,
the regret would be linear Ω(T ), which has been discussed in reference [Xu and Klabjan,
2023]. For the second condition, the communication cost cannot be upper-bounded because
the cost of each message is unknown.
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