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ABSTRACT

Mixture of Experts models have quickly grown in popularity
due to their faster inference and training than dense models
of similar capability. Parameter compression and offloading
allows the users to run these model on smaller GPU memory
(leading to cost savings). However, unpredictability in expert
activation results in slower inference for offloaded experts. In
this work, we profile and study the expert activation patterns
when running large MoE models. Based on insights from
activation patterns, we propose a new way of expert selection,
which takes the expert residency into account. We introduce
MoE-ERAS, Expert Residency Aware Selection to select the
most suitable experts considering both performance and
accuracy. We show substantial gains in decoding latency
and expert swaps, and present analysis to show pre-fetching
opportunities for future work. MoE-ERAS allows users to
choose an acceptable point on the speedup-quality trade-off.

I. INTRODUCTION

Numerous recent advancements in natural language process-
ing hinge on large pre-trained language models, exemplified
by entities like GPT-3 and 4 [1], [4], Palm & Gemini [5],
[7], among others. However, the swift strides in this domain
owe much to openly accessible LLMs like LLaMA [17],
Mixtral [12], OPT [21], and many more. The primary boon of
these open-access LLMs lies in researchers’ ability to deploy
and tailor them locally - a feat infeasible with proprietary
APIs. With LLM models growing at an unprecedented scale, a
Mixture of expert(MoE) models is one of the most promising
directions that help us scale models to larger dimensions. The
scale of a model is one of the most important axes for better
model quality. Given a fixed computing budget, it is generally
considered better to train a larger model for fewer steps, than
to train a smaller model for more steps.

Despite the openly available range of LLMs, their sizes
poses a challenge to utilization. Cutting-edge open-access
language models demand multiple high-end GPUs even
for rudimentary inference tasks. To make these LLMs
feasible on more economical hardware setups, practitioners
must either reduce model parameters or transfer parameters to
less expensive but slower storage mediums, whether RAM or
SSD [2], [14].

When moving the parameters to slower storage, the chal-
lenge of unreliable expert activation during the inference stage
has emerged as a crucial issue in the development and opti-
mization of MoE models. The gating mechanism determines
which expert to activate for a given input just before the

expert layer. This leads to sub-optimal model throughput as
the appropriate weights would have to be brought from the
host to the device, if not already on-chip.

We aim to increase the reuseblity of experts that are already
present on the HBM rather than bring new experts each
time from host memory. Our key insight is that activating
good enough experts can help in running the models
faster and could also help us gain significant throughput
improvements. Building on this insight we introduce, MoE-
ERAS, Expert Residency Aware Selection. MoE-ERAS is an
expert selection method that takes the expert residency factor
into consideration when selecting experts for each token. We
propose 2 techniques, thresholding and biasing to tweak the
router (gating network) for selecting throughput favourable
experts.

Our approach is orthogonal to past works which aim to
speedup MoE inference through quantization, prefetching and
cacheing. To prove this, we implement MoE-ERAS on top
of techniques like quantization and caching, and still show
significant speedups with minimal accuracy degradation.

Our contributions in this work are :
• Profile and analyze the expert activation patterns for

Mixtral-8x7B and Switch Transformer-32E. We collect
over 500k token samples and provide insights for expert
activation profiles.

• We introduce MoE-ERAS, Expert Residency Aware Se-
lection, a smarter expert selection technique which factors
in the locality (HBM or host) of expert during expert ac-
tivation. Using MoE-ERAS, we see upto 21.2% reduction
in the inference latency on top of other techniques like
LRU caching and quantization.

• We present a speedup-quality trade-off with different
techniques of MoE-ERAS. We evaluated the accuracy of
different techniques on Wikitext2, C4 and MMLU.

II. MOTIVATION AND BACKGROUND

Mixture-of-experts models have emerged as a powerful
approach for scaling up deep learning models to handle
complex tasks with high-dimensional data. By dividing the
computational workload among multiple expert sub-networks,
each specializing in a different aspect of the input, MoE
models can achieve high representational capacity while main-
taining computational efficiency during training and inference.
However, despite their promising performance, MoE models
still face challenges regarding inference time, which can
significantly impact their practical deployment, especially in
latency-sensitive applications.
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A. Gating in Mixture-of-Experts

Fig. 1: The gating network of a mixture-of-experts model.

In mixture-of-experts models, the gating mechanism is
crucial in selectively activating the appropriate expert sub-
networks for a given input. The gating network is a separate
component that takes the input data and produces a set of soft
assignment scores or gating values, one for each expert. An
example of gating is shown in 1. These gating values represent
each expert’s relative importance or suitability in handling
the input data. The gating network is typically a single, fully
connected network trained jointly with the experts during the
model’s training phase.

The gating values are then used to compute a weighted com-
bination of the outputs from the individual selected experts,
effectively creating a mixture of expert predictions. The gating
mechanism allows the MoE model to dynamically allocate
computational resources to the most relevant experts, enabling
efficient processing of diverse input data while maintaining
high predictive performance.

B. Serving mixture of expert models

MoE serving can be divided into 2 baskets: either we can
have enough devices (GPUs, TPUs, etc) to store all parameters
(weights+KV Cache) inside on-chip HBM memory, or we
have fewer devices and offload some of the unused param-
eters to the slower host memory(CPU DRAM). For the first
approach, more devices are required; thus, we would have a
higher cost of serving.

The second approach and main use case, which our work
targets, is to use fewer devices and offload some parameters
to the host memory, resulting in cheaper inference. However,
offloading the experts to the host device comes at the cost
of slower inference than the previous approach. Techniques
like parameter compression [3], [6], [9], [11], [20], expert
activation prediction [18], [20], and caching [6] are used to
mitigate runtime degradations.

While these techniques can help speed up the MoE in-
ference, these alone are insufficient solutions. We profile the
time of reading experts from the host CPU vs from the H100
GPU. 2 compares the read time GPU and CPU for different
expert sizes. We can clearly see the CPU read time is orders

of magnitude greater than the GPU read time. This would
mean prefetching experts with 1-2 layers would not result in
any meaningful speedup of modern GPUs. Hence, we aim
to increase the use of experts already present in the HBM
memory.
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Fig. 2: Expert read time from CPU vs H100 GPU.

III. MOE:ERAS

In this section, we first present the analysis of the expert
activation patterns in Mixtral-8x7b and Switch Transformer-32
MoE models during inference. By examining the predictability
and disparity in the activation patterns in this model, we
present an analysis that motivates the design of MoE-ERAS.
We then describe two routing schemes proposed and tested in
this work - Thresholding and Biasing.

A. Expert Activations Prediction

Mixtral-8x7b contains 32 hidden layers, with each contain-
ing 8 experts. During the generation of each token, k of these
experts (default k = 2) are selected by the gating network (or
router) immediately prior to the layer. These experts are said
to be activated. We hypothesize that:

• (a) despite the use of a load balancing loss during
training, the activation of experts will be uneven within
each layer, creating ”hot” and ”cold” experts that are
often and rarely activated, respectively.

• (b) There exist expert-expert activation correlations be-
tween the different layers in the model, mainly between
the early and late layers.

• (c) given the experts activated in earlier layers, it is
possible to predict with reasonable accuracy the experts
activated in later layers.

To test these hypotheses, we profile the text generation task
on a corpus [16]. Inherently, the support for these hypotheses
shows opportunities for optimizing the inference latency and
throughput of MoE models. The support we find for these
hypotheses helps us design the interventions described in Sec-
tion 3.2 to the gating mechanism to speed up inference. While
our work focuses on running state-of-the-art MoE models on
commodity hardware where batch size = 1 is acceptable, we
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also examine how expert activation varies with batch size in
Switch Transformer-32.

B. Expert Residency Aware Routing

The behavior of the gating network in standard Mixtral-
8x7b is shown below. The output of self-attention is passed
through a dense network, which gives logit values for each
expert. Softmax function is applied to these logits to convert
them into probabilities. The Top-K method is used to select
the experts to activate, where k is a parameter derived from the
model configuration. In Mixtral-8x7b, this defaults to k = 2.

Logits = Hi ∗Wexp (1)
Weights = Softmax(Logits) (2)

ExpertsActivated = SelectTopK(Weights) (3)

Our motivation results from section II show that offloading
experts to the host can significantly affect inference latency.
MoE Offloading [6] selects experts to cache and offload, mak-
ing it possible to run Mixtral-8x7b on a Tesla T4 with 16GB
VRAM. Our examination of the gating network’s outputs
shows that there are two key ways in which we can make our
gating flexible -selecting ”good-enough” experts and ”biasing”
towards those already on-chip.

1) Thresholding: Early analysis of the gating network’s
output logits showed us that there might not always be
”clear winners” when selecting experts. Sometimes, an expert
is selected because it is marginally better than other close
competitors. If it so happens that the top expert is off-chip,
this represents an opportunity to loosen the bottleneck in a
memory-bound decoding process.

The thresholding approach aims to select good-enough ex-
perts by boosting the activation probability of on-chip experts
artificially by α, a user-defined hyper-parameter. This has the
effect of tipping the balance in favor of the experts on-chip in
cases where a close competitor to the top expert is on-chip.
The equation below describes how the probability is adjusted
for an expert Ei, in a residency-aware manner.

Weightsi =

{
Weightsi + α if Ei is in fast mem
Weightsi if Ei is in slow mem

2) Biasing: Using the profiling defined in subsection III-A,
we estimate the normalized activation frequencies freq, as
shown in Figure 3a. We then define a more expressive penalty
for off-chip experts that penalizes the choice of experts by both
the frequency of its activation and scales it by the user-defined
hyper-parameter β. The key idea in the biasing method is that
bringing a rarely used expert on-chip will likely result in it
being swapped out again in a later token, creating two swaps
between HBM and host memory in an already memory-bound
process. Instead, settling for a competitor that is likely to
be reused improves latency. This is an accuracy-performance
trade-off controlled by the user through β, but it also considers
the fact that the frequently used experts are likely to be the

top choice for later tokens, which presents a second advantage
of biasing over thresholding.

The equation below describes the use of the penalty to
adjust the logit for expert Ei in cases where it is on or off-
chip. Note that in contrast to thresholding, we adjust the raw
logits and then apply the softmax function to obtain the final
probabilities.

Logitsi =

{
Logitsi if Ei is in fast mem
Logitsi − β(1− freq(Ei)) if Ei is in slow mem

IV. EVALUATION

In this section, we verify our earlier hypotheses about
MoE behavior and benchmark the inference latency with
different configurations. We focus our quality evaluations on
Mixtral-8x7B models since they represent the current state
of the art among open-access MoE models. We organize this
section as follows: subsection IV-A presents the key insights
for expert activations based on the hypothesis presented in
subsection III-A. subsection IV-B compares the real system
speedups when using MoE-ERAS. Finally, subsection IV-C
measures the quality implications of using the resident expert.

A. Expert Activation Patterns

We examined the hypotheses in subsection III-A by running
a large inference workload on a text summarization task
using Mixtral-8x7b, and Switch-T-32E on the CNN DailyMail
Dataset [16]. It is a summarization dataset that contains long
text articles and condensed summaries of the article called
highlights. This allows the collection of the activations in both
the pre-fill and decode stages, but we focus on the sequential
decode phase for analysis. We collect output logits from the
gating networks and infer the k selected experts and the
softmax distribution in each stage. For Mixtral, given h = 32
hidden layers, each containing E = 8 experts, we obtain a
32× 8 tensor containing the logits from gating networks. For
Switch Transformer, this is instead h = 6 and E = 32, giving
a 6× 32 activation tensor.

We collect activation data over 139k tokens for Mixtral
and 500k tokens for Switch Transformer. The analysis of
the router activations presents support for our hypotheses.
Figure 3a and Figure 3b present distributions normalized along
each layer. The dark and light spots in these visualizations
represent experts that are rarely and frequently activated,
respectively, where activation is defined as being in the top
k = 2 experts within the layer. This supports our hypothesis
(a). For Mixtral, a perfectly equitable distribution of tokens
would give 0.125 for all experts, and the visualization confirms
that many experts are above that threshold. Likewise, for the
Switch Transformer, many experts are activated well in excess
of 0.03 (1/32).

In order to study expert-expert activations, we obtain the
output logits from each gating network (32 for Mixtral, 6 for
Switch Transformer), apply the softmax function, and build
a correlation matrix. The correlation matrix shows both cells
with high positive and negative correlations. Considering that
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(a) Mixtral-8x7b

(b) Switch Transformer-32E

Fig. 3: Activation patterns for different MoE models.The
lighter cells indicate high activation frequency, while the
darker cells correspond to rarely activated experts.

Fig. 4: Correlation coefficient between gating network outputs
logits across all layers for Switch Transformer (left) and
Mixtral-8x7b (right). The plot shows dark-red and dark-blue
spots, representing high positive and negative correlations.
These represent opportunities to potentially pre-fetch experts
based on these probabilities.

this was collected over 500k tokens, this supports the idea
that expert-expert correlations of reasonable strength exist
regardless of the input tokens.

This leads us to the idea that we might be able to see greater
predictability by considering the first few layers together. If it
is possible to predict the expert activations of layers deep in
the network, then it can support scheduling expert pre-fetching
for requests ahead of time. Predicting expert activation based
on the first few layers is particularly meaningful since this
can lend itself to efficient pre-fetching. We use the activation
probabilities of each expert in the first 4 layers as the input
features to the regression model. We predict the activated
experts for k = 2 in layers 8 - 32, and the prediction accuracy
scores are shown in Figure 5a. For the Switch Transformer,
Figure 5b shows an attempt to predict softmax values instead
of activations. The promising results show that we consistently
beat random chance significantly. With Mixtral, we are able
to predict the activated experts in first and second place with
¿50% accuracy in all experts, with some surpassing 70%.
These beat the random chance of 12.5% substantially.

There are three important factors to weigh while considering
these results. First, this may be an underestimation of the
accuracy since we individually predict the first and second
experts. If the regression selects the same two experts in
inverse order, it diminishes the accuracy but has no effect
for the purpose of pre-fetching. Second, this is simple linear
regression, and the intention is to show that they are correlated
simply. In implementing this in a scheduler, it may be replaced
with a few fully connected layers with non-linearity to improve
prediction accuracy. Finally, the pattern is borne out over
our workload of 500k tokens, and while we believe this to
be a general pattern, distribution shifts may be addressed
by periodically re-calibrating the regression as done in other
works such as MoE-Infinity [?].

Similar interpretations are borne out for the Switch Trans-
former. There, we try to predict the softmax values of the
experts directly - a harder problem. We see that we still beat
random chance consistently, as shown in Figure 5b.

However, key challenges remain to be explored in this
direction. This paper focuses on cases where batch size = 1
is applicable, such as commodity and edge settings. However,
we also analyze the growth of the number of activated experts
with batch size (without thresholding/biasing) to understand
the applicability of this work to resource-constrained settings
where larger batch sizes are desired. Figure 6 shows this anal-
ysis for Switch Transformer-32E, and the number of distinct
experts grows to about E/2 at batch size 16. The later layers
also consistently show more diversity than the earlier layers,
which is an interesting perspective. This supports the idea that
pre-fetching the later layers using the predictions presented
above can present substantial gains in future improvements of
this work.

B. ERAS - Speedups

In this section, we profile the speed-ups we are able to
achieve with biasing and thresholding. We examine the se-
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(a) Mixtral 8x7B (b) Switch Transformer-32E

Fig. 5: Accuracies of predicting later layer expert activations using early layer’s logit values.

Fig. 6: Number of distinct experts activated as the batch
size grows for switch-T-32E. Unique experts are growing
sublinearly compared to 2×Batch
.
quential decoding to count the number of expert loads saved,
and the overall impact on latency. We compare against the
baseline implemented in dvmazur/mixtral-offloading, which
includes quantization and expert caching. Our optimizations
are orthogonal to these and can be applied with or with-
out other techniques. We consider our top-K routing with
quantization and LRU caching as proposed in Moe-offload
as our baseline. We generate sequences with l = 100 tokens,
niter = 50 times, and collect the mean latency (wall clock
time) and throughput. We see substantial gains using these
approaches as seen in Figure Figure 7.

We see two insights from this result:
First, the threshold determines the savings. In all offload

settings, thresholding requires selecting α, which we test at
0.05, 0.15, 0.25. We find that as the threshold increases, the
performance improves owing to saving more expert offloads.
Together with the quality metrics in subsection IV-C, a thresh-
old can be selected for the desired performance. These perfor-
mance metrics should only be compared between approaches
in this paper, as latency, throughput, and tokens/second metrics
are hardware-dependent. While the ordering should be the
same on other hardware, the actual numbers will likely differ.

Second, as offload per layer grows, the savings become
more significant. As more experts are offloaded when less
VRAM is available, it becomes more likely that an off-chip
expert is activated, causing performance degradation while the
decoding waits for experts to be brought into memory. This
shows that as the environment gets more and more resource-
constrained, our approach becomes more important.

In summary, depending on the number of experts offloaded,
we find that we can achieve 10% - 13% reduction in latency
using thresholding at α = 0.15, and 8.0% to 9.7% reduction
using biasing with β = 1. At higher α, we achieve even more
savings as shown in Figure 7. Since this work represents a
performance-accuracy trade-off, subsection IV-C examines the
quality of the generation with these performance gains.

C. ERAS - Quality

Next, we test how different residency-aware routing
schemes affect MoE inference quality. We only perform the
quality experiments with Mixtral-8x7B as that is the SOTA
MoE open-source model. We measure perplexity for Wiki-
Text2 [13] and C4 [15]. We also measure 5-shot MMLU
[8] accuracy. For WikiText2 and C4, we use the test set and
validation sets, respectively. We use a sliding-window strategy
with a stride of 512 and a max generation length of 2048. For
MMLU, we ran the test over the complete dataset.

As shown in Table I, our expert activation technique
presents minimal quality degradation at low threshold values.
As we increase the threshold β, the quality goes down. This
result and speedup seen in the previous section present a
quality-speedup trade-off for MoE model inference.

V. RELATED WORKS

Several prior efforts have a similar goal of reducing the
inference latency of mixture-of-experts models.

EdgeMoE [20] aims to reduce the latency of inference of
MoEs on edge systems. It uses quantization and 1-2 layer early
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Fig. 7: Speedup provided by various offloading algorithms over top-k routing. Our baseline top-K routing already has
implemented different optimizations like parameter quantization and LRU caching. Varying α and offload per layer shown.

Method C4-PPL WikiText2-PPL MMLU-Acc.
Top-K 8.044 4.497 66.1

THRES-0.05 8.062 4.512 66.1
THRES-0.10 8.133 4.560 66.1
THRES-0.15 8.221 4.625 66.1

BAISING 8.300 4.679 66.1
THRES-0.25 8.522 4.813 66.1

TABLE I: Quality results of different expert activation tech-
niques on different datasets.

expert prediction to fetch which experts would be activated
appropriately. All non-expert weights are kept on the chip.
However, this work is aimed at edge devices like Raspberry
Pi and might not work on GPUs. Pre-gated MoE [10] changed
the model architecture to predict the experts one layer early.
Expert Affinity [19] provides a solution for a multi-GPU setup
with expert parallelism. They propose method to reduce cross-
GPU communication using KV cache duplication. Using this
technique, they propose having 1 A2A + 1 AG instead of 2
A2As during inference. MoE-Infinity [18] performs activation-
aware prefetching and caching of experts. They use a sample
workload (e.g., validation) to form Expert Activation Matrices
(EAMs) that they store in a collection. They rely on temporal
locality (repeated activation of an expert in a sequence) and
sparse activation (only a few activated) assumptions to select
the expert to cache and prioritize the prefetch. MoE-offload
[6] propose quantization along with LRU caching and hidden
state-based expert prediction for MoE inference on commodity
hardware. While all these works are focused on expert pre-
fetching and/or quantization, our work focuses on taking
expert residency into account. Thus our work is orthogonal
to all the related works and can be implemented along with
any other proposed quantization or prefetching technique.

VI. CONCLUSION

In this paper, we have shown that Expert Residency Aware
Selection (ERAS) shows considerable performance gain for
those running Mixtral-8x7b in resource constrained envi-
ronments requiring expert offloading to host memory. We
provide parameters the user can tune navigate the accuracy-
performance trade-off, and show that the impact of ERAS

on perplexity or accuracy is minimal compared to the per-
formance benefit it offers. This can be applied on top of, or
instead of other approaches like parameter compression for
performance gains.

However, this work comes with limitations. While our
profiling and analysis include Switch Transformer as well, our
implementation is limited to Mixtral at the moment. While we
show both downstream tasks and text generation accuracy, a
larger validation on all available benchmarks is required to
establish the accuracy retained on other tasks. In addition,
since both thresholding and biasing are inference time changes,
they may redirect tokens to experts that have seen few such
training examples, leading to increased risk of hallucinations.

In our next steps, we aim to establish test it on more
comprehensive evaluation benchmarks, implement it for other
MoE models, and study the effect of biasing/thresholding
without aggressive quantization to compare the trade-offs.
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