
Solver-Guided Optimization of Large Language Models
for Logic Puzzle Reasoning with Answer Set Programming

Anonymous ACL submission

Abstract001

The rise of large language models (LLMs) has002
sparked interest in neuro-symbolic systems that003
leverage logic reasoners to overcome LLM004
shortcomings. Answer set programming (ASP)005
is a particularly effective approach to finding006
solutions to combinatorial search problems,007
which LLMs often fail to solve. However, the008
effectiveness of LLMs in ASP code generation009
is hindered by the limited number of examples010
seen during their initial pre-training phase.011

In this paper, we introduce a novel approach012
for solver-guided instruction-tuning of LLMs013
for addressing the highly complex semantic014
parsing task inherent in ASP code generation.015
We sample ASP statements for program con-016
tinuations proposed by LLMs for unriddling017
logic puzzles and categorize them into chosen018
and rejected instances based on solver feed-019
back. We then apply supervised fine-tuning020
to train LLMs on the curated data, and further021
improve robustness using best-of-N test-time022
sampling. Our experiments demonstrate con-023
sistent improvements across four datasets.024

1 Introduction025

Current large language models (LLMs) often fail026

at solving problems that require extensive reason-027

ing capabilities (Huang and Chang, 2023; Yang028

et al., 2023; Tyagi et al., 2024; Ahn et al., 2024).029

An increasingly popular countermeasure is test-030

time compute, e.g., by generating longer reason-031

ing chains or sampling multiple outputs for the032

same input as done in reasoning language models033

(RLMs, Muennighoff et al., 2025; DeepSeek-AI,034

2025; Cobbe et al., 2021). However, these RLMs035

are slower during inference due to long reason-036

ing chains and suffer from increased hallucinations037

(Hashemi et al., 2025).038

Alternatively, combining LLMs with symbolic039

reasoning engines has demonstrated promising re-040

sults for problems such as logical reasoning (Olaus-041

son et al., 2023), mathematical reasoning (Gao042

Figure 1: We use the feedback from an ASP solver to
assess LLM-generated ASP statements. From that, we
derive preference pairs that we can use both for SFT
and DPO fine-tuning. Furthermore, we use the feedback
to filter out erroneous generations during inference.

et al., 2023) and Bayesian reasoning (Schrader 043

et al., 2024). The neuro-symbolic approaches fuse 044

LLMs with logic programming (Robinson, 1983; 045

Gochet et al., 1988), which represents domain 046

knowledge and problem specifications using formal 047

logic and applies a solver to obtain solutions. 048

Many real-life problems, such as scheduling or 049

assignment problems as shown in Figure 1, are 050

solvable using answer set programming (ASP, Gel- 051

fond and Lifschitz, 1988; Marek and Truszczyński, 052

1999). Translating problems specified in natural 053

language into ASP requires extensive training even 054

for humans. With the rise of LLMs, research on 055

automatic code generation has recently gained mo- 056

mentum (Jiang et al., 2024; Gu, 2023; Ugare et al., 057

2024). However, generating ASP code with LLMs 058

remains understudied and suffers from limited pres- 059

ence of ASP code in pre-training data. First explo- 060

rations find mixed results for question answering 061

tasks (Yang et al., 2023), provide ASP statements 062

only in isolation without a problem context (Cop- 063

polillo et al., 2024), or over-engineer a prompt 064

pipeline for a particular dataset (Ishay et al., 2023). 065

In this paper, we combine neuro-symbolic meth- 066

ods with test-time compute. First, we introduce 067

a novel solver-guided method for generating ASP 068

preference pairs for instruction tuning of LLMs 069

on logic puzzles (Mitra and Baral, 2015). The 070

1

LLM-generated ASP encodings are automatically071

evaluated by the solver and classified as chosen and072

rejected. Then, we build preference pairs to train073

open-weight LLMs from two families using di-074

rect preference optimization (DPO, Rafailov et al.,075

2024) and supervised fine-tuning (SFT) via causal076

language modeling.077

We improve our parsing models during infer-078

ence by leveraging best-of-N sampling with a novel079

solver-based reward function that is able to select080

the best ASP encodings from a set of alternatives.081

Our experiments demonstrate the effectiveness082

of our novel training and inference methods: We083

observe large and consistent improvements on084

three logic puzzle datasets and one math dataset.085

Instruction-tuning increases accuracy by up to al-086

most 30pp. when using a single prompt to gener-087

ate the code. Our solver-based test-time compute088

boosts the performance further by up to 15pp. com-089

pared to the already trained models.090

To summarize, our contributions are as follows:091

(1) We present a fully automated method for092

generating training data for self-supervised ASP093

preference-tuning that requires no manual annota-094

tion. Using this method, we generate thousands of095

pairs of chosen and rejected ASP instances.096

(2) We show that self-supervised preference align-097

ment on these ASP preference pairs greatly im-098

proves the performance of open-weight LLMs gen-099

erating ASP encodings for grid-based puzzles, in100

particular, for problems of higher complexity.101

(3) We demonstrate that feedback from an ASP102

solver can be incorporated during inference to ef-103

fectively filter unreliable and erroneous ASP en-104

codings generated by the LLM.105

We publicly release code, preference pairs from106

three distinct LLMs, and all results on Github.1107

2 Related Work108

We review related work on reasoning tasks, neuro-109

symbolic systems, ASP code generation, prefer-110

ence data generation and test-time methods. Our111

use of the term neuro-symbolic refers to systems112

in which language models generate structured rep-113

resentations and solvers compute solutions (Kautz,114

2022).115

Reasoning tasks. Reasoning is a complex pro-116

cess with various facets (Qiao et al., 2023). Rea-117

soning capabilities of natural language processing118

1will-be-added-after-review For review purposes,
we added samples in OpenReview.

(NLP) models have commonly been tested using 119

sentence-pair entailment tasks (Bos and Markert, 120

2005; Bowman et al., 2015). More recently, Han 121

et al. (2024) predict whether logic statements entail 122

or contradict a query statement. Most relevant for 123

this work are grid-based logic puzzles like Log- 124

icPuzzles (Mitra and Baral, 2015), GridPuzzles 125

(Tyagi et al., 2024), and ZebraLogic (Lin et al., 126

2025). Other datasets cover clue-based question 127

answering (Zhong et al., 2021) or solving algebraic 128

equations (He-Yueya et al., 2023). 129

Semantic parsing in neuro-symbolic systems. In- 130

ducing explicit representations of meaning from 131

text relates to the task of semantic parsing (Hen- 132

drix et al., 1978; Delmonte, 1990; Baud et al., 133

1998). Recently, LLMs have been used for se- 134

mantic parsing into logic programming languages. 135

LINC (Olausson et al., 2023) translates natural lan- 136

guage premises and conclusions into symbolic rep- 137

resentations for a theorem prover. Schrader et al. 138

(2024) and Nafar et al. (2024) extend this idea to 139

probabilistic reasoning with numeric probabilities 140

and uncertainty. Pan et al. (2023) create symbolic 141

representations and fine-tune LLMs based on error 142

messages from the solver. 143

ASP code generation with LLMs. Early ap- 144

praoches combining NLP methods with ASP pro- 145

pose ideas for solving question answering and 146

reasoning tasks (Baral et al., 2004; Nouioua and 147

Nicolas, 2006). The LOGICIA system (Mitra and 148

Baral, 2015) combines a pairwise Markov net- 149

work for entity extraction with a maximum entropy 150

model for relation classification on the LogicPuz- 151

zles dataset. Coppolillo et al. (2024) introduce the 152

LLASP dataset with single-line building blocks of 153

ASP code. We focus on deriving preference pairs 154

for solving entire complex puzzles. Ishay et al. 155

(2023) create a detailed prompting pipeline for 156

GPT models for solving the LogicPuzzles dataset 157

(Brown et al., 2020; OpenAI et al., 2024). Com- 158

bining it with our ASP-tuned models outperforms 159

prior work on GridPuzzles as well. 160

Preference data from feedback. Labeling prefer- 161

ence datasets can be done manually or automated 162

(Xiao et al., 2024). The HelpSteer dataset (Wang 163

et al., 2023; Dong et al., 2023) is an example 164

for human annotations, while Li et al. (2023) em- 165

ploy GPT-4V to automatically judge the outputs 166

of vision-language models. Lai et al. (2024) uti- 167

lize GPT-4 to automatically identify faulty steps in 168

mathematical reasoning chains. We are not aware 169

of any prior work generating ASP preference data. 170

2

will-be-added-after-review

Test-time methods. Recent test-time methods fall171

into three categories (Dong et al., 2024). Indepen-172

dent self-improvement refers to intervening in the173

generation process of frozen-parameter LLMs (Lu174

et al., 2022; Ning et al., 2024). Context-aware175

self-improvement describes adaptions to prompts176

by enriching the input to the model, e.g., chain-177

of-thought prompting (Wei et al., 2022). Methods178

using feedback from additional expert (Zeng et al.,179

2024) or reward models (Deng and Raffel, 2023)180

are called model-aided self-improvement methods.181

Our approach belongs to the third category.182

3 Answer Set Programming183

ASP, a form of declarative programming focusing184

on difficult, primarily NP-hard search problems,185

is based on the stable model semantics proposed186

by Gelfond and Lifschitz (1988). We now give187

a short introduction into ASP following Lifschitz188

(2008).2 The purpose of ASP is to find answer189

sets consisting of sets of instantiated first-order190

atoms (e.g., walk(beagle, eva, 8)) that satisfy191

all given rules and constraints. We now exemplify192

ASP with the puzzle of matching dogs with their193

walkers and times for walking (cf. Figure 1).194

Rules define if-then statements written in Prolog-195

style syntax using n-ary predicates. The right-hand196

side (rule body) is the premise and the left-hand197

side the conclusion (rule head), e.g., “If the beagle198

is walked by Tom, then the golden retriever will be199

walked by Eva at 9am.” is encoded as:200

walk(golden, eva, 9) :- walk(beagle, tom, _).

Constraints eliminate undesired solutions by dis-201

allowing certain combinations of atoms to be true202

simultaneously. They only have a rule body, i.e.,203

no head. A constraint requires at least 1 atom to204

evaluate to false. For example, “Anna walks her205

dog later than Eva.” is encoded as:206

:- walk(_, anna, T1), walk(_, eva, T2),
not T1 > T2.

Unlike constraints, choice rules generate answer207

set candidates instead of filtering. Assuming that208

the ASP program already contains atoms specify-209

ing a set of entities (here dogs, persons, and times),210

the following choice rule states “For each time T,211

some dog D is walked by some person P.” The212

statement dog(beagle;golden;bernese) is an213

2We provide a step-by-step ASP example explaining all rel-
evant concepts for a grid-based puzzle instance in Appendix A.

ASP shorthand for dog(beagle). dog(golden). 214

dog(bernese). 215

person(tom;eva;anna).
dog(beagle;golden;bernese).
time(8;9;10).

1 { walk(D, P, T) : dog(D), person(P) } 1
:- time(T).

Solutions in ASP. An ASP solver calculates all an- 216

swer sets, corresponding to minimal sets of deriv- 217

able atoms that are valid interpretations of all rules. 218

More technically, the solution of an ASP program 219

Π is a set of possible assignments, i.e., stable mod- 220

els, and the effect of adding a constraint to a pro- 221

gram can lead to their elimination, i.e., constraints 222

reduce the set of solutions monotonically. 223

4 Instruction Tuning for ASP 224

We present a novel instruction-tuning method for 225

ASP code generation in LLMs. We prompt a non- 226

adapted LLM MS to generate ASP code and clas- 227

sify the results into “chosen” and “rejected” sam- 228

ples using an ASP solver. The resulting data can 229

be used for DPO or SFT to train an ASP-specific 230

model MASP based on the reference model MS . 231

4.1 Task Definition 232

The problems addressed in this paper are instances 233

of the form I = {D, E ,H,S}. D refers to the 234

natural language problem description, E to a set of 235

entities and their types (dogs, persons, and times), 236

H to a set of natural language hints (or clues) that 237

constrain the answer space (“Clue: The beagle 238

is walked one hour before the poodle.”), and S 239

to the correct solution assignment. To solve this, 240

the LLM MASP has to parse the input problem 241

{D, E ,H} specified as natural language text into 242

a valid ASP encoding Π that contains ASP encod- 243

ings for entities, (choice) rules, and constraints. A 244

solver will then compute the solution S given Π. In 245

the following, we stick to the notations of Lifschitz 246

(2008), using Γ to denote a partial ASP encoding 247

that contains a true subset of the ASP code in Π, 248

i.e., solution(Π = (Γ1 . . .Γn)) = S. 249

4.2 Sampling Trajectories 250

We define a trajectory T to be an alternating se- 251

quence of language inputs and ASP statements. 252

A trajectory T starts with a prompt PD,E com- 253

3

prising general information on ASP,3 the textual254

problem description D and the set of entities E255

(provided within as text). We feed PD,E into256

the LLM MS to obtain ASP code ΓC,E , where257

C refers to the choice rule that initially generates258

all potential solutions representing the problem259

instance, which is then appended to the trajec-260

tory. Next, a natural language hint Hi ∈ H is261

appended to this trajectory and MS is prompted262

again. This results in trajectories of form T =263

{PD,E ,ΓC,E ,H1,Γ1,H2,Γ2, . . . ,Hn,Γn} with n264

being the number of hints of the problem.265

4.3 Classification of ASP Encodings266

After processing k of the n hints, we obtain a tra-267

jectory Tk which contains k+1 ASP encodings (one268

for entities + choice rule and k for hints). We now269

combine all k+1 ASP encodings into the partial en-270

coding ΓC,EΓ1, ..Γk and use the solver to compute271

its solution. Since DPO relies on preference pairs,272

i.e., a chosen and a rejected response to an input273

prompt, we sample 5 completions from MASP for274

each step k.4 We then use an ASP solver to evaluate275

if the partial encoding Πk generates a solution that276

comprises the ground truth answer set S. Recall277

that when adding constraints, possible solutions are278

removed (see Section 3), i.e., if the partial program279

ΓC,EΓ1, ..Γk is correct, the ground truth answer280

should be one of the solutions that can be derived281

from it. We consider Γk as a chosen response to282

input Tk = {PD,E ,ΓC,E ,H1,Γ1,H2,Γ2, . . . ,Hk}283

if the solution of the partial program ΓC,EΓ1, ..Γk284

comprises the ground truth solution. If it produces285

only wrong answer sets, no answer sets (i.e., it is286

unsatisfiable), or errors and warnings are returned287

by the solver, we consider Γk as rejected.288

4.4 Preference Pair Generation289

We generate trajectories using depth-first search.290

At each step k, we consider at most two chosen291

responses. For each of them, we continue at292

step k+1 recursively until there are no hints left.293

To form pairs from both chosen and rejected294

responses at each step k, we take the Cartesian295

product between both sets. If we have a mix of296

chosen and rejected responses, we obtain either297

1×4 or 2×3 preference pairs in each step. If there298

3This includes an instruction of how XOR works in ASP,
a high-level explanation of the steps required to solve a grid-
based puzzle in ASP as well as a basic choice rule

4Preliminary experiments showed that a temperature t =
0.8 for sampling provides a good balance between chosen and
rejected responses.

are only chosen or only rejected responses, the 299

trajectory generation is continued at the next step 300

without creating preferences pairs. If all responses 301

are rejected, the input to the next step becomes 302

{PD,E ,ΓC,E ,H1,Γ1, . . . ,Hk−1,Γk−1,Hk+1}, 303

i.e., the rejected response and the hint prompt 304

causing it are removed. This is possible because 305

the hints in LogicPuzzles do not refer to each other. 306

4.5 Model Preference Alignment 307

The preference pairs can be used to instruction- 308

tune LLMs for the task of generating ASP code 309

using either DPO or SFT. DPO requires prefer- 310

ence pairs to be sample from the original model’s 311

distribution, hence, our algorithm for generating 312

preference pairs must be performed for each LLM 313

in our study separately. As an alternative to DPO, 314

we use SFT by training using causal language mod- 315

eling. To allow for a fair comparison, we train on 316

the same number of instances as in the DPO setting 317

by taking all preference pairs and only train on the 318

chosen subpart. DPO and SFT can be combined 319

by first performing SFT on the base LLM and then 320

sampling new preference data from MSFT (since 321

the DPO data should always come from exactly the 322

model to be trained). We then apply DPO using 323

these additional preference pairs. 324

5 Test-Time Sampling for ASP 325

In this section, we explain our best-of-N sampling 326

method that can be used during test-time on trained 327

and untrained LLMs. It is based on a novel solver- 328

grounded reward function for LLMs that helps to 329

generate correct ASP encodings more reliably. 330

5.1 Reward Function 331

The reward function fr maps an encoding Γ and the 332

number M ∈ N of produced answer sets produced 333

by Γ to a floating point reward r ∈ R that aims to 334

judge the quality of Γ: 335

fr(Γ,M) =
1

M
− 1E(Γ)− 1U (Γ)− 1NE(Γ) 336

M is the number of produced answer sets. Usu- 337

ally, every hint in logic puzzles reduces the number 338

of possible answers or keep it as it is. Therefore, fr 339

rewards stricter generations. 1 are binary indicator 340

variables checking Γ for undesired properties. All 341

three contribute negatively to the reward: 342

1E indicates whether there are any errors or 343

warnings when trying to solve Γ. 344

4

1U refers to unsatifiability, i.e., there is no warn-345

ing or error, but also no answer set.346

1NE indicates that a manually specified maxi-347

mum number of answer sets is exceeded.348

5.2 Sampling Procedure349

Our test-time method is based on greedy search, i.e.,350

it aims at maximizing the current reward and does351

not perform trade-offs in favor of future rewards352

(cf. Sutton et al. (1998)).353

Similar to creating preference pairs (cf. Sec-354

tion 4), we first instruct MASP to generate N alter-355

natives for the partial encoding ΓC,E that encodes356

entities and choice rule. We then select and keep357

the alternative receiving the highest reward accord-358

ing to fr.359

We use a special version of fr for evaluating360

the ΓC,E encodings, by replacing the reciprocal361

factor 1
M with a check whether the output contains362

(n!)m−1 answer sets for an m×n grid puzzle. This363

corresponds to the number of all theoretically pos-364

sibly answer combinations when disregarding the365

constraints (see Appendix H).366

Next, for every hint hj ∈ H in sequential or-367

der, we generate N alternatives and append them368

to the partial encoding that contains all previously369

selected encodings and judge all N partial encod-370

ings again by fr. At each step, we select the partial371

encoding with the highest score and continue until372

we arrive at the full encoding Π.373

Furthermore, we add two recovery mechanisms374

when all new generations have negative rewards:375

Regeneration. We let MASP generate 2 × N376

additional alternatives if all initial N alternatives377

for the current input were judged negative by fr.378

Backtracking. We jump back to the previous379

hint with maximum reward that had more than one380

alternative and continue with this as our new partial381

encoding. We then restart to generate all succes-382

sive hints. To keep it computationally feasible, we383

limit the amount of backtracking steps to six for384

LogicPuzzles and two on the other datasets.385

6 Experimental Setup386

We now describe the datasets and models used in387

our experiments.388

6.1 Evaluation Metrics and Datasets389

We report the accuracy of the models based on390

how often their output exactly matches the correct391

answer. ASP encodings that provide more than one392

solution in the end are considered wrong in our 393

strict evaluation setup. 5 394

We mainly work with LogicPuzzles (Mitra and 395

Baral, 2015) and GridPuzzles (Tyagi et al., 2024). 396

LogicPuzzles is a collection of 150 grid-based puz- 397

zles (50 train and 100 test). All puzzles are of size 398

3×4, i.e., there are 3 entity types, each with 4 in- 399

stances (e.g., 4 dogs, 4 owners, 4 countries) where 400

each entity must be assigned once. This results in 401

4 triples representing a unique solution (e.g., each 402

dog is assigned to a different owner from a different 403

country). GridPuzzles introduces different puzzle 404

sizes (3×4, 3×5, 4×4, 4×5, 4×6) and difficulty 405

levels (easy, medium, hard). 406

To test the generalizability of our models, we 407

also experiment with ZebraLogic (Lin et al., 2025; 408

Dziri et al., 2024), which contains 1.000 puzzles 409

with the task of matching different entities ex- 410

clusively to their house number. Moreover, we 411

conduct a small out-of-domain study on GSM- 412

Algebra (He-Yueya et al., 2023). This datasets 413

does not contain puzzles, but algebraic questions. 414

More details are provided in appendix I. 415

6.2 Models 416

We evaluate four open-weight instruction-tuned 417

LLMs: three general-purpose models, Llama-3.1 418

70B & 8B (Grattafiori et al., 2024) and Qwen-2.5 419

72B, and one model specifically tuned to program- 420

ming, Qwen-2.5-Coder 32B (Qwen-Team, 2024; 421

Yang et al., 2024). We train the two larger models 422

in three settings: SFT, DPO and a combination of 423

first SFT and then DPO. For Qwen-Coder, we fo- 424

cus on DPO. We train the Llama 8B model with 425

combined SFT on the LLASP dataset (Coppolillo 426

et al., 2024) and training data sampled from the 427

70B model for the LogicPuzzles dataset. 428

We test GPT-4o 6 to see if our test-time method 429

can also improve standard closed API-based mod- 430

els. As further baselines, we study reasoning LMs 431

(RLMs) with the distilled variants of DeepSeek-R1 432

(DeepSeek-AI, 2025). We use the prompt setup of 433

Tyagi et al. (2024) to perform reasoning without an 434

ASP solver. 435

5One issue when converting the problem into ASP is the
ambiguity of string representation in the answer sets and the
evaluation with accuracy comparing to the ground truth so-
lution (e.g., spaces, underscores and other ambiguities). To
automatically evaluate the predicted answer sets, we imple-
ment a Levenshtein heuristic that acts as fallback for fuzzy
matching if the answer set does not exactly match the ground
truth representation (see Appendix B)

6version 2024-08-06

5

LogicP. GridP.

Baselines GPT-4-Turbo 7.0∗ 5.1
w/o ASP Llama-3.1 70B 9.0 3.6

Deepseek-R1 Llama-70B 52.0 21.9
Distilled Qwen-32B 54.0 18.2
w/o ASP Llama-8B 20.0 4.4

Llama-3.1 70B Base 16.0 2.6
DPO 37.0 11.3
SFT 39.0 12.0
SFT+DPO 43.0 10.9

+ TT (seq.) 55.6 21.2

Llama-3.1 8B Base 0.0 0.0
SFT+LLASP 17.0 6.9

+ TT (seq.) 47.2 13.9

Qwen-2.5 72B Base 14.0 3.3
DPO 25.0 12.8
SFT 30.0 6.9

+ TT (seq.) 45.4 16.4
SFT+DPO 16.0 7.7

Qwen-2.5 Base 6.0 2.9
-Coder 32B DPO 12.0 8.4

+ TT (seq.) 25.6 13.1

GPT-4o Base 49.0 -
+ TT (seq.) 61.0 -

Table 1: Accuracy for 2-shot prompting with a single
prompt for LLM variants on grid-based puzzles. All
test-time methods are averaged across five runs. ∗taken
from Tyagi et al. (2024).

We use 2 to 4 Nvidia H200 cards for training436

with model sharding. We use clingo (Gebser et al.,437

2017) as ASP solver. We set N = 5 with a temper-438

ature of T = 1.0 for the test-time experiments to439

get a higher variety of outputs. Due to the higher440

variety of outputs, we average test-time runs over441

5 distinct runs in the case of LogicPuzzles.442

More hyperparameters and GPU details are443

listed in Appendix C.444

6.3 Preference Pair Statistics445

We use the train split of LogicPuzzles to generate446

ASP preference pairs, i.e., the ASP training data447

used for SFT and DPO training of all open-weight448

models. This split contains 50 grid-based puzzles449

with unique solutions. As DPO assumes that the450

preference data is part of the original model’s dis-451

tribution, we run our algorithm on all three LLMs.452

Llama 70B produces most chosen responses, with453

an average of 3 out of 5 drawn responses, followed454

by the almost equally sized Qwen 72B with 1.9455

and 1.3 for Qwen-Coder. Conversely, Qwen-Coder456

and Qwen 72B produce significantly more rejected457

instances (3.7 and 3.1, versus 2.0 for Llama 70B).458

This is also reflected in the number of pairs, as459

a more balanced number of chosen and rejected 460

responses leads to the creation of more pairs by 461

taking the Cartesian product between both. Sam- 462

pling preference data from the Llama 8B model 463

did not yield sufficient results as it initially lacks 464

ASP knowledge and hence does not generate useful 465

responses. 466

6.4 Settings 467

To test the impact of injecting ASP coding knowl- 468

edge into LLMs, we compare two settings: 469

(1) We use a single two-shot prompt with limited 470

engineering effort to generate the ASP program 471

hint-wise as during preference pair generation. For 472

this, we provide two dataset-specific examples7 and 473

explain choice rules and XOR in ASP. 474

(2) Alternatively, we plug our models into an 475

existing PromptPipeline (PP, Ishay et al., 2023) 476

consisting of 6 distinct prompts, specifically tai- 477

lored to LogicPuzzles.8 This resembles a major 478

prompt engineering effort for tailored ASP pro- 479

gram generation to a particular dataset. 480

7 Results and Analysis 481

7.1 Two-Shot Parsing 482

Table 1 displays our main results on LogicPuzzles 483

and GridPuzzles in the single-prompt parsing setup. 484

The base variants, i.e., the untrained models, are 485

strongly outperformed by all our training settings 486

(DPO, SFT and SFT+DPO) on the task of ASP gen- 487

eration, emphasizing the necessity of fine-tuning 488

current LLMs on under-represented programming 489

languages like ASP. Furthermore, we see that Qwen 490

72B shows the best results after SFT-based training, 491

while Llama 70B further profits from DPO on top 492

of SFT, indicating that different models respond 493

differently to the different training methods on the 494

same task. 495

The relative improvements of the various models 496

are influenced by their ratios of chosen and rejected 497

responses generated by the models for the self- 498

training and to their overall number of training 499

instances (cf. Section 6.3). 500

Similar performance improvements can also be 501

observed for the harder GridPuzzles dataset on 502

which the models were not trained. The training 503

on LogicPuzzles seems to improve ASP generation 504

7We randomly select parts of two instances for GridPuzzles
as there is no training split available.

8We slightly adapt the pipeline with instructions not to
generate explanatory comments since non-GPT models tend
to create more verbose output on these exact prompts.

6

N LogicPuzzles

Llama-3.1 70B 1 16.0
+SFT+DPO 43.0

+Seq
5

49.0
+Seq+Reg 51.6
+Seq+Back 53.2

+Seq+Both 5 55.6
10 59.6
25 63.8
50 65.4
100 64.4

Table 2: Study of different test-time extensions and
values for N using Llama 70B on LogicPuzzles.

ZebraLogic GSM A.

Llama-3.1 70B w/o ASP∗ 24.9 64.7
Base 19.0 60.3

SFT+DPO 30.8 64.1
+ TT (seq.) 49.3 68.6

Table 3: Accuracy comparison on ZebraLogic between
base LLM, fine-tuned LLM with ASP and test-time
enriched inference. ∗Results were taken from the public
leaderboard on May 16th, 2025.

abilities of LLMs on other datasets as well. We505

provide a more detailed analysis on GridPuzzles506

based on instance size and difficulty in Appendix J.507

Notably, the Qwen-Coder model lags far behind508

its general-purpose 72B counterpart on this code509

generation task. While this might be attributed510

to the smaller model size, it could also be caused511

by inferior language understanding. The latter is512

particularly relevant to correctly parse the complex513

text hints of logic puzzles.514

Effect of Test-time Inference. Next, we apply515

our test-time method (see Section 5) to the best-516

performing systems on LogicPuzzles.517

We observe great improvements for all models518

over greedy sampling with T = 0.0. Moreover,519

our test-time method lead to competetive perfor-520

mance compared to the RLMs. We observe similar521

absolute improvements on GridPuzzles.522

Sampling multiple alternatives with a higher tem-523

perature and judging them independently using our524

reward function fr greatly reduces the number of525

wrong and erroneous partial ASP encodings as seen526

by the increased accuracy. This leads to a better527

overall performance compared to the standard de-528

coding process with N = 1, i.e., only a single529

produced ASP statement per input.530

A detailed study on the different components531

used in our test-time methods is shown in Table 2.532

Both error fallbacks (backtracking and regenera-533

LogicP. GridP.

GPT-4-Turbo Base 72.0 43.1

Llama-3.1 70B Base 27.0 21.5
DPO 78.0 54.4
SFT 79.0 51.8

SFT+DPO 77.0 54.0

Llama-3.1 8B Base 0.0 0.0
SFT+LLASP 0.0 0.0

Qwen-2.5 72B Base 79.0 43.4
DPO 64.0 46.7
SFT 68.0 43.8

SFT+DPO 72.0 45.3

Qwen-2.5-Coder 32B Base 43.0 24.1
DPO 52.0 31.0

Table 4: Performance comparison of LLM variants us-
ing the PromptPipeline from Ishay et al. (2023).

tion) are shown to be effective and further improve 534

the model by up to 4pp. The table also shows 535

a study on how the number of generations N in- 536

fluences our best-of-N sampling method. We ob- 537

serve bigger improvements up to N = 50 until 538

it plateaus. This implies that there is a trade-off 539

between additional compute for higher values of 540

N and the performance gain. 541

For larger values like N = 100, the likelihood of 542

generating semantically incorrect alternatives that 543

yield fewer answer sets increases. However, these 544

would be chosen by fr due to the reciprocal factor 545
1
M , indicating that it is important to find the “sweet 546

spot” of ASP code that restricts the answer space 547

just enough. 548

Transfer to other Datasets. Table 3 shows the 549

results of different methods based on Llama 70B 550

on ZebraLogic and GSM-Algebra. On ZebraLogic, 551

our neuro-symbolic model with best-of-N sampling 552

gets twice as many answers correct compared to 553

the base Llama without logic solvers, and improves 554

even more on the base Llama with ASP. The effects 555

on GSM-Algebra are similar. In summary, we ob- 556

serve a great positive effect by combining training 557

methods and test-time inference. 558

7.2 ASP-tuned Backbones for PromptPipeline 559

In Table 4, we plug our ASP models into the 6- 560

step PromptPipeline of (Ishay et al., 2023) to test 561

instruction-following capabilities. We replicate the 562

pipeline with GPT-4-Turbo as backbone and eval- 563

uate the results using the same strict evaluation 564

metrics as for our models.9 565

Fine-tuning Llama 70B and Qwen-Coder in a 566

9Ishay et al. (2023) only check for answer set uniqueness.

7

few-shot setting also improves their ASP gener-567

ations in an instruction-following setting. This568

shows that combined training and prompt engineer-569

ing is able to achieve strong results. However, we570

argue that over-engineering prompt pipelines to par-571

ticular datasets is not the right path for improving572

neuro-symbolic models for general problems.573

We observe a slight drop for Qwen 72B after574

fine-tuning. We identify the root cause to be that575

the model starts to solely copy an example from576

the input prompts into the output. When system-577

atically removing this same code block from the578

erroneous instances, we can recover an accuracy of579

82% in the case of the SFT-based model, thereby580

outperforming the untrained model by 3pp.581

The smaller Llama 8B is not able to get any582

answer correct when using the PP, likely due to583

missing instruction-following capabilities of both584

the base and trained 8B model.585

7.3 Quantitative and Qualitative Analysis586

After manually checking error instances of the mod-587

els, we found one of the main issues to be complex588

combinations of XOR. So-called exhaustive enu-589

merations (that is, One is A, one is B, one is C, and590

one is D) are often over-simplified by the parsing591

models, leading to wrong constraints and there-592

fore to either no solution (if it is too restrictive) or593

too many solutions (if it is not restrictive enough).594

We provide further analysis by error categories in595

Appendix E.596

We also find evidence for LLMs leveraging597

their common-sense knowledge when generat-598

ing ASP encodings. For example, to enable599

arithmetic on months, both the base and trained600

models start to generate helper predicates such601

as month_ordering(Month, Num) to translate602

month strings to ordinal numbers. Similarly, we603

found an LLM output defining five clock times in a604

numeric ordering from 1 to 5 to perform arithmetic605

operations on clock times. However, sometimes606

the LLMs do not introduce this numeric conver-607

sion, which ultimately leads to errors when trying608

to perform arithmetic operations.609

7.4 Discussion610

One important strength of our method is that it611

requires no additional human annotations as it sam-612

ples ASP statements from LLMs and automatically613

computes a reward or categorizes them into cho-614

sen and rejected. Yet, this also implies that even615

the chosen instances might not be perfect. We616

have shown that recent LLMs, despite possessing 617

limited ASP coding skills, are able to produce ini- 618

tial ASP encodings that facilitate our successful 619

self-supervised preference generation method. Our 620

experiments also reveal very different base perfor- 621

mance and reactions to DPO and SFT for ASP cod- 622

ing between Llama, Qwen 72B, and Qwen-Coder, 623

which suggests interesting future explorations. 624

Our experiments clearly demonstrate that 625

DPO/SFT finetuning injects relevant knowledge 626

on ASP coding into LLMs. We observe notable im- 627

provements on all tasks when training on a single 628

grid puzzles dataset. We believe that given more 629

diverse training data, our approach can help to sup- 630

port natural language understanding for problem 631

solving more broadly. 632

Furthermore, our experiments show that best-of- 633

N sampling mitigates stability issues of the ASP 634

generation process with LLMs by filtering erro- 635

neous ASP encodings from a set of N alternatives 636

during inference time. 637

8 Conclusion and Outlook 638

In this paper, we have presented a method for 639

increasing the performance of LLMs on the task 640

of ASP code generation. We have shown that an 641

external ASP solver can be used to generate mean- 642

ingful training data for instruction tuning in a fully 643

automated fashion as well as to provide guidance 644

during inference to filter out ASP encodings of bad 645

quality. We observe consistent improvements on 646

four datasets for several trained models in both two- 647

shot settings and when using a highly engineered 648

prompt pipeline. This shows that our training 649

methods based on solver feedback scale well and 650

consistently to a wider range of problem cases. 651

Outlook. Potential next steps involve investigat- 652

ing further training setups. The usage of reinforce- 653

ment learning-based (RL) training of LLMs has be- 654

come popular due to its promising training results 655

(Ouyang et al., 2022), including RL with our solver 656

feedback as a training signal (Jha et al., 2024). We 657

propose to extend our reward function fr by intro- 658

ducing weights that rank each error type by its im- 659

portance. It can be further extended to also include 660

signals during training that indicate the correctness 661

based on the ground truth solution (similar to our 662

preference sampling). This could then be used for 663

instance with GRPO-based training (Shao et al., 664

2024). We leave this for future research. 665

8

Limitations666

We had to fix experimental settings throughout all667

stages in this paper, i.e., data generation prompts,668

dataset sizes, hyperparameters for model training,669

and evaluation. However, one could use a different670

instruction prompt to sample data, e.g., by provid-671

ing more dataset-specific information. The amount672

of training data is also variable. Hence, future re-673

search could address this limitation by testing more674

settings.675

Furthermore, evaluating the output of neuro-676

symbolic systems is an involved task which re-677

quires a solver to process massive amounts encod-678

ings sequentially. However, especially for long679

encodings, LLMs can produce broken encodings680

that lead to the solver computing a huge answer681

space. This could lead to out-of-memory errors and682

non-terminating behavior. Therefore, we empha-683

size that finding good timeout values for the solver684

is crucial for such systems.685

Evaluating neuro-symbolic output and compar-686

ing it to the ground truth is not trivial as exact string687

comparison is often not possible to ambiguity in688

the naming of constants and variables. Therefore,689

we need to apply heuristics as a fallback to still690

find all correct answers. Though, these heuristics691

are not perfect, leaving room for further improve-692

ment to avoid instances being falsely classified as693

wrong. Our manual evaluations on the LogicPuz-694

zles dataset revealed a false negative rate of ~2%695

for our evaluation method in this setup.696

Finally, our test-time method requires a carefully697

crafted value for N . In the case of sequential pars-698

ing, an instance I with K hints and one choice699

rule requires generating at least O((K + 1)×N)700

partial encodings. As a result, our test-time method701

requires a thorough consideration of runtime and702

compute trade-off between even further improving703

performance and requiring more compute.704

Ethical Statement705

All datasets that we use to evaluate our models only706

contain fictional stories without any connection to707

real-world events. Therefore, no personal or sensi-708

tive data is involved in any step of our research.709

References710

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui711
Zhang, and Wenpeng Yin. 2024. Large language712
models for mathematical reasoning: Progresses and713

challenges. In Proceedings of the 18th Conference 714
of the European Chapter of the Association for Com- 715
putational Linguistics: Student Research Workshop, 716
pages 225–237, St. Julian’s, Malta. Association for 717
Computational Linguistics. 718

Chitta Baral, Michael Gelfond, and Richard Scherl. 719
2004. Using answer set programming to answer 720
complex queries. In Proceedings of the Workshop on 721
Pragmatics of Question Answering at HLT-NAACL 722
2004, pages 17–22, Boston, Massachusetts, USA. 723
Association for Computational Linguistics. 724

Robert H Baud, Christian Lovis, Anne-Marie Rassinoux, 725
and Jean-Raoul Scherrer. 1998. Morpho-semantic 726
parsing of medical expressions. In Proceedings of 727
the AMIA Symposium, page 760. American Medical 728
Informatics Association. 729

Johan Bos and Katja Markert. 2005. Recognising tex- 730
tual entailment with logical inference. In Proceed- 731
ings of Human Language Technology Conference 732
and Conference on Empirical Methods in Natural 733
Language Processing, pages 628–635, Vancouver, 734
British Columbia, Canada. Association for Computa- 735
tional Linguistics. 736

Samuel R. Bowman, Gabor Angeli, Christopher Potts, 737
and Christopher D. Manning. 2015. A large anno- 738
tated corpus for learning natural language inference. 739
In Proceedings of the 2015 Conference on Empiri- 740
cal Methods in Natural Language Processing, pages 741
632–642, Lisbon, Portugal. Association for Compu- 742
tational Linguistics. 743

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 744
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 745
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 746
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 747
Gretchen Krueger, Tom Henighan, Rewon Child, 748
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 749
Clemens Winter, Christopher Hesse, Mark Chen, 750
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin 751
Chess, Jack Clark, Christopher Berner, Sam Mc- 752
Candlish, Alec Radford, Ilya Sutskever, and Dario 753
Amodei. 2020. Language models are few-shot learn- 754
ers. Preprint, arXiv:2005.14165. 755

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 756
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 757
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 758
Nakano, Christopher Hesse, and John Schulman. 759
2021. Training verifiers to solve math word prob- 760
lems. Preprint, arXiv:2110.14168. 761

Erica Coppolillo, Francesco Calimeri, Giuseppe Manco, 762
Simona Perri, and Francesco Ricca. 2024. Llasp: 763
Fine-tuning large language models for answer set 764
programming. In Proceedings of the International 765
Conference on Principles of Knowledge Representa- 766
tion and Reasoning, volume 21, pages 834–844. 767

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 768
soning capability in llms via reinforcement learning. 769
Preprint, arXiv:2501.12948. 770

9

https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/W04-2503/
https://aclanthology.org/W04-2503/
https://aclanthology.org/W04-2503/
https://pubmed.ncbi.nlm.nih.gov/9929321/
https://pubmed.ncbi.nlm.nih.gov/9929321/
https://pubmed.ncbi.nlm.nih.gov/9929321/
https://aclanthology.org/H05-1079/
https://aclanthology.org/H05-1079/
https://aclanthology.org/H05-1079/
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2407.18723
https://arxiv.org/abs/2407.18723
https://arxiv.org/abs/2407.18723
https://arxiv.org/abs/2407.18723
https://arxiv.org/abs/2407.18723
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Rodolfo Delmonte. 1990. Semantic parsing with lfg771
and conceptual representations. Computers and the772
Humanities, 24:461–488.773

Haikang Deng and Colin Raffel. 2023. Reward-774
augmented decoding: Efficient controlled text gener-775
ation with a unidirectional reward model. In Proceed-776
ings of the 2023 Conference on Empirical Methods in777
Natural Language Processing, pages 11781–11791,778
Singapore. Association for Computational Linguis-779
tics.780

Xiangjue Dong, Maria Teleki, and James Caver-781
lee. 2024. A survey on llm inference-time self-782
improvement. arXiv preprint arXiv:2412.14352.783

Yi Dong, Zhilin Wang, Makesh Narsimhan Sreedhar,784
Xianchao Wu, and Oleksii Kuchaiev. 2023. Steerlm:785
Attribute conditioned sft as an (user-steerable) alter-786
native to rlhf. Preprint, arXiv:2310.05344.787

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine788
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chan-789
dra Bhagavatula, Ronan Le Bras, Jena D. Hwang,790
Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson791
Ettinger, Zaïd Harchaoui, and Yejin Choi. 2024.792
Faith and fate: Limits of transformers on compo-793
sitionality. Advances in Neural Information Process-794
ing Systems, 36.795

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,796
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-797
ham Neubig. 2023. PAL: Program-aided language798
models. In Proceedings of the 40th International799
Conference on Machine Learning, volume 202 of800
Proceedings of Machine Learning Research, pages801
10764–10799. PMLR.802

Martin Gebser, Roland Kaminski, Benjamin Kaufmann,803
and Torsten Schaub. 2017. Multi-shot ASP solving804
with clingo. CoRR, abs/1705.09811.805

Michael Gelfond and Vladimir Lifschitz. 1988. The806
stable model semantics for logic programming. In807
ICLP/SLP, volume 88, pages 1070–1080. Cambridge,808
MA.809

Paul Gochet, Eric Gregoire, Pascal Gribomont, Georges810
Louis, Eduardo Sanchez, Dominique Snyers, and811
Pierre Wodon. 1988. From standard logic to logic812
programming: introducing a logic based approach813
to artificial intelligence. John Wiley & Sons, Inc.814

Aaron Grattafiori et al. 2024. The llama 3 herd of mod-815
els. Preprint, arXiv:2407.21783.816

Qiuhan Gu. 2023. Llm-based code generation method817
for golang compiler testing. In Proceedings of the818
31st ACM Joint European Software Engineering Con-819
ference and Symposium on the Foundations of Soft-820
ware Engineering, pages 2201–2203.821

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-822
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,823
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,824

Alexander Wardle-Solano, Hannah Szabó, Ekate- 825
rina Zubova, Matthew Burtell, Jonathan Fan, Yixin 826
Liu, Brian Wong, Malcolm Sailor, Ansong Ni, Liny- 827
ong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexan- 828
der Fabbri, Wojciech Maciej Kryscinski, Semih 829
Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo 830
Zhou, Caiming Xiong, Rex Ying, Arman Cohan, and 831
Dragomir Radev. 2024. FOLIO: Natural language 832
reasoning with first-order logic. In Proceedings of 833
the 2024 Conference on Empirical Methods in Natu- 834
ral Language Processing, pages 22017–22031, Mi- 835
ami, Florida, USA. Association for Computational 836
Linguistics. 837

Masoud Hashemi, Oluwanifemi Bamgbose, Sathwik Te- 838
jaswi Madhusudhan, Jishnu Sethumadhavan Nair, 839
Aman Tiwari, and Vikas Yadav. 2025. Dnr bench: 840
Benchmarking over-reasoning in reasoning llms. 841
arXiv preprint arXiv:2503.15793. 842

Joy He-Yueya, Gabriel Poesia, Rose Wang, and Noah 843
Goodman. 2023. Solving math word problems by 844
combining language models with symbolic solvers. 845
In The 3rd Workshop on Mathematical Reasoning 846
and AI at NeurIPS’23. 847

Gary G Hendrix, Earl D Sacerdoti, Daniel Sagalowicz, 848
and Jonathan Slocum. 1978. Developing a natural 849
language interface to complex data. ACM Transac- 850
tions on Database Systems (TODS), 3(2):105–147. 851

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, 852
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 853
et al. 2022. Lora: Low-rank adaptation of large lan- 854
guage models. In International Conference on Learn- 855
ing Representations. 856

Jie Huang and Kevin Chen-Chuan Chang. 2023. To- 857
wards reasoning in large language models: A survey. 858
In Findings of the Association for Computational 859
Linguistics: ACL 2023, pages 1049–1065, Toronto, 860
Canada. Association for Computational Linguistics. 861

Adam Ishay, Zhun Yang, and Joohyung Lee. 2023. 862
Leveraging large language models to generate answer 863
set programs. In Proceedings of the International 864
Conference on Principles of Knowledge Representa- 865
tion and Reasoning, volume 19, pages 374–383. 866

Piyush Jha, Prithwish Jana, Pranavkrishna Suresh, Ar- 867
nav Arora, and Vijay Ganesh. 2024. Rlsf: Reinforce- 868
ment learning via symbolic feedback. arXiv preprint 869
arXiv:2405.16661. 870

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 871
and Sunghun Kim. 2024. A survey on large 872
language models for code generation. Preprint, 873
arXiv:2406.00515. 874

Henry Kautz. 2022. The third ai summer: Aaai 875
robert s. engelmore memorial lecture. Ai magazine, 876
43(1):105–125. 877

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi- 878
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise 879
preference optimization for long-chain reasoning of 880
llms. Preprint, arXiv:2406.18629. 881

10

https://link.springer.com/article/10.1007/BF00186491
https://link.springer.com/article/10.1007/BF00186491
https://link.springer.com/article/10.1007/BF00186491
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://arxiv.org/abs/2412.14352
https://arxiv.org/abs/2412.14352
https://arxiv.org/abs/2412.14352
https://arxiv.org/abs/2310.05344
https://arxiv.org/abs/2310.05344
https://arxiv.org/abs/2310.05344
https://arxiv.org/abs/2310.05344
https://arxiv.org/abs/2310.05344
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2305.18654
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://arxiv.org/abs/1705.09811
https://arxiv.org/abs/1705.09811
https://arxiv.org/abs/1705.09811
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://guqiuhan.github.io/assets/pdf/conference-paper.pdf
https://guqiuhan.github.io/assets/pdf/conference-paper.pdf
https://guqiuhan.github.io/assets/pdf/conference-paper.pdf
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://www.arxiv.org/abs/2503.15793
https://www.arxiv.org/abs/2503.15793
https://www.arxiv.org/abs/2503.15793
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://apps.dtic.mil/sti/tr/pdf/ADA157892.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA157892.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA157892.pdf
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://arxiv.org/abs/2307.07699
https://arxiv.org/abs/2307.07699
https://arxiv.org/abs/2307.07699
https://arxiv.org/pdf/2405.16661
https://arxiv.org/pdf/2405.16661
https://arxiv.org/pdf/2405.16661
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629

Vladimir Iosifovich Levenshtein. 1965. Binary codes882
capable of correcting deletions, insertions, and rever-883
sals.884

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi885
Wang, Liang Chen, Yazheng Yang, Benyou Wang,886
and Lingpeng Kong. 2023. Silkie: Preference distil-887
lation for large visual language models.888

Vladimir Lifschitz. 2008. What is answer set program-889
ming? In Proceedings of the 23rd national con-890
ference on Artificial intelligence-Volume 3, pages891
1594–1597.892

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,893
Ashish Sabharwal, Radha Poovendran, Peter Clark,894
and Yejin Choi. 2025. Zebralogic: On the scal-895
ing limits of llms for logical reasoning. Preprint,896
arXiv:2502.01100.897

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,898
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-899
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,900
and Yejin Choi. 2022. NeuroLogic a*esque decoding:901
Constrained text generation with lookahead heuris-902
tics. In Proceedings of the 2022 Conference of the903
North American Chapter of the Association for Com-904
putational Linguistics: Human Language Technolo-905
gies, pages 780–799, Seattle, United States. Associa-906
tion for Computational Linguistics.907

Victor W Marek and Miroslaw Truszczyński. 1999. Sta-908
ble models and an alternative logic programming909
paradigm. In The logic programming paradigm: A910
25-year perspective, pages 375–398. Springer.911

Arindam Mitra and Chitta Baral. 2015. Learning to au-912
tomatically solve logic grid puzzles. In Proceedings913
of the 2015 Conference on Empirical Methods in Nat-914
ural Language Processing, pages 1023–1033, Lisbon,915
Portugal. Association for Computational Linguistics.916

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-917
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke918
Zettlemoyer, Percy Liang, Emmanuel Candès, and919
Tatsunori Hashimoto. 2025. s1: Simple test-time920
scaling. arXiv preprint arXiv:2501.19393.921

Aliakbar Nafar, Kristen Brent Venable, and Parisa Kord-922
jamshidi. 2024. Probabilistic reasoning in generative923
large language models. Preprint, arXiv:2402.09614.924

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang,925
Huazhong Yang, and Yu Wang. 2024. Skeleton-of-926
thought: Prompting llms for efficient parallel genera-927
tion. In Proceedings 12th international conference928
on learning representations-ICLR 2024.929

Farid Nouioua and Pascal Nicolas. 2006. Using answer930
set programming in an inference-based approach to931
natural language semantics. In Proceedings of the932
Fifth International Workshop on Inference in Compu-933
tational Semantics (ICoS-5).934

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, 935
Armando Solar-Lezama, Joshua Tenenbaum, and 936
Roger Levy. 2023. LINC: A neurosymbolic approach 937
for logical reasoning by combining language models 938
with first-order logic provers. In Proceedings of the 939
2023 Conference on Empirical Methods in Natural 940
Language Processing, pages 5153–5176, Singapore. 941
Association for Computational Linguistics. 942

OpenAI et al. 2024. Gpt-4 technical report. Preprint, 943
arXiv:2303.08774. 944

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car- 945
roll L. Wainwright, Pamela Mishkin, Chong Zhang, 946
Sandhini Agarwal, Katarina Slama, Alex Ray, John 947
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 948
Maddie Simens, Amanda Askell, Peter Welinder, 949
Paul Christiano, Jan Leike, and Ryan Lowe. 2022. 950
Training language models to follow instructions with 951
human feedback. Preprint, arXiv:2203.02155. 952

Liangming Pan, Alon Albalak, Xinyi Wang, and 953
William Wang. 2023. Logic-lm: Empowering large 954
language models with symbolic solvers for faithful 955
logical reasoning. In Findings of the Association 956
for Computational Linguistics: EMNLP 2023, pages 957
3806–3824. 958

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, 959
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, 960
and Huajun Chen. 2023. Reasoning with language 961
model prompting: A survey. In Proceedings of the 962
61st Annual Meeting of the Association for Compu- 963
tational Linguistics (Volume 1: Long Papers), pages 964
5368–5393, Toronto, Canada. Association for Com- 965
putational Linguistics. 966

Qwen-Team. 2024. Qwen2.5: A party of foundation 967
models. 968

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 969
pher D Manning, Stefano Ermon, and Chelsea Finn. 970
2024. Direct preference optimization: Your language 971
model is secretly a reward model. Advances in Neu- 972
ral Information Processing Systems, 36. 973

John Alan Robinson. 1983. Logic programming—past, 974
present and future—. New Generation Computing, 975
1(2):107–124. 976

Timo Pierre Schrader, Lukas Lange, Simon Razniewski, 977
and Annemarie Friedrich. 2024. QUITE: Quantify- 978
ing uncertainty in natural language text in Bayesian 979
reasoning scenarios. In Proceedings of the 2024 Con- 980
ference on Empirical Methods in Natural Language 981
Processing, pages 2634–2652, Miami, Florida, USA. 982
Association for Computational Linguistics. 983

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 984
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan 985
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024. 986
Deepseekmath: Pushing the limits of mathemati- 987
cal reasoning in open language models. Preprint, 988
arXiv:2402.03300. 989

11

https://arxiv.org/pdf/2312.10665
https://arxiv.org/pdf/2312.10665
https://arxiv.org/pdf/2312.10665
https://www.cs.utexas.edu/~vl/papers/wiasp.pdf
https://www.cs.utexas.edu/~vl/papers/wiasp.pdf
https://www.cs.utexas.edu/~vl/papers/wiasp.pdf
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2502.01100
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://arxiv.org/abs/cs/9809032
https://arxiv.org/abs/cs/9809032
https://arxiv.org/abs/cs/9809032
https://arxiv.org/abs/cs/9809032
https://arxiv.org/abs/cs/9809032
https://doi.org/10.18653/v1/D15-1118
https://doi.org/10.18653/v1/D15-1118
https://doi.org/10.18653/v1/D15-1118
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2402.09614
https://arxiv.org/abs/2402.09614
https://arxiv.org/abs/2402.09614
https://arxiv.org/abs/2307.15337
https://arxiv.org/abs/2307.15337
https://arxiv.org/abs/2307.15337
https://arxiv.org/abs/2307.15337
https://arxiv.org/abs/2307.15337
https://aclanthology.org/W06-3908/
https://aclanthology.org/W06-3908/
https://aclanthology.org/W06-3908/
https://aclanthology.org/W06-3908/
https://aclanthology.org/W06-3908/
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://doi.org/10.18653/v1/2024.emnlp-main.153
https://doi.org/10.18653/v1/2024.emnlp-main.153
https://doi.org/10.18653/v1/2024.emnlp-main.153
https://doi.org/10.18653/v1/2024.emnlp-main.153
https://doi.org/10.18653/v1/2024.emnlp-main.153
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

Richard S Sutton, Andrew G Barto, et al. 1998. Rein-990
forcement learning: An introduction, volume 1. MIT991
press Cambridge.992

Lewis Tunstall, Edward Beeching, Nathan Lambert,993
Nazneen Rajani, Shengyi Huang, Kashif Rasul,994
Alexander M. Rush, and Thomas Wolf. 2023.995
The alignment handbook. https://github.com/996
huggingface/alignment-handbook.997

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin998
Rrv, Nisarg Patel, Mutsumi Nakamura, Arindam Mi-999
tra, and Chitta Baral. 2024. Step-by-step reason-1000
ing to solve grid puzzles: Where do LLMs falter?1001
In Proceedings of the 2024 Conference on Empiri-1002
cal Methods in Natural Language Processing, pages1003
19898–19915, Miami, Florida, USA. Association for1004
Computational Linguistics.1005

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Mi-1006
sailovic, and Gagandeep Singh. 2024. Improving llm1007
code generation with grammar augmentation. arXiv1008
preprint arXiv:2403.01632.1009

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams,1010
Makesh Narsimhan Sreedhar, Daniel Egert, Olivier1011
Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan1012
Swope, and Oleksii Kuchaiev. 2023. Help-1013
steer: Multi-attribute helpfulness dataset for steerlm.1014
Preprint, arXiv:2311.09528.1015

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten1016
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,1017
and Denny Zhou. 2022. Chain-of-thought prompt-1018
ing elicits reasoning in large language models. In1019
Advances in Neural Information Processing Systems,1020
volume 35, pages 24824–24837. Curran Associates,1021
Inc.1022

Wenyi Xiao, Zechuan Wang, Leilei Gan, Shuai Zhao,1023
Wanggui He, Luu Anh Tuan, Long Chen, Hao1024
Jiang, Zhou Zhao, and Fei Wu. 2024. A com-1025
prehensive survey of direct preference optimiza-1026
tion: Datasets, theories, variants, and applications.1027
Preprint, arXiv:2410.15595.1028

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,1029
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan1030
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-1031
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian1032
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin1033
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang1034
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,1035
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng1036
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,1037
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,1038
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,1039
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin1040
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang1041
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu1042
Cui, Zhenru Zhang, and Zhihao Fan. 2024. Qwen21043
technical report. arXiv preprint arXiv:2407.10671.1044

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023. Cou-1045
pling large language models with logic programming1046

for robust and general reasoning from text. In Find- 1047
ings of the Association for Computational Linguis- 1048
tics: ACL 2023, pages 5186–5219, Toronto, Canada. 1049
Association for Computational Linguistics. 1050

Jiali Zeng, Fandong Meng, Yongjing Yin, and Jie Zhou. 1051
2024. Improving machine translation with large lan- 1052
guage models: A preliminary study with cooperative 1053
decoding. In Findings of the Association for Compu- 1054
tational Linguistics: ACL 2024, pages 13275–13288, 1055
Bangkok, Thailand. Association for Computational 1056
Linguistics. 1057

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, 1058
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and 1059
Nan Duan. 2021. Ar-lsat: Investigating analytical 1060
reasoning of text. Preprint, arXiv:2104.06598. 1061

A Explanatory ASP Encoding 1062

In this section, we provide a full step-by-step ex- 1063

planatory ASP encoding for one test instance of 1064

LogicPuzzles. 1065

We take instance 17 from the test split: 1066

Problem Description:
MVP Events prides itself on planning large-
scale parties for 50 or more people, anywhere
in the United States. This month the company
has several different events to plan. Using
only the clues below, match each event to its
number of attendees and the state in which
it will be held, and determine which MVP
employee is handling the logistics.
Entities:
people: 50, 75, 100, 125.
planners: Herbert, Joel, Susan, Teresa.
events: Anniversary, Birthday, Graduation,
Wedding.
Clues:
1. Of the anniversary event and the event with
100 attendees, one will be handled by Joel and
the other will be handled by Susan.
2. Herbert’s assignment will involve 25 fewer
people than Susan’s assignment.
3. Of the assignment with 75 attendees and
the assignment with 100 attendees, one will be
handled by Susan and the other is the birthday.
4. Herbert’s event is either the event with 50
attendees or the graduation job.

1067

There are three entity types (people, planners, 1068

events) with four subjects each. Hence, it is a 3×4 1069

grid puzzle. 1070

We begin each ASP encoding by defining all en- 1071

tities and constants that are involved in the search 1072

problem. This is, we start by defining the three 1073

12

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://doi.org/10.18653/v1/2024.emnlp-main.1111
https://doi.org/10.18653/v1/2024.emnlp-main.1111
https://doi.org/10.18653/v1/2024.emnlp-main.1111
https://arxiv.org/html/2403.01632v1
https://arxiv.org/html/2403.01632v1
https://arxiv.org/html/2403.01632v1
https://arxiv.org/abs/2311.09528
https://arxiv.org/abs/2311.09528
https://arxiv.org/abs/2311.09528
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2410.15595
https://arxiv.org/abs/2410.15595
https://arxiv.org/abs/2410.15595
https://arxiv.org/abs/2410.15595
https://arxiv.org/abs/2410.15595
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2024.findings-acl.786
https://doi.org/10.18653/v1/2024.findings-acl.786
https://doi.org/10.18653/v1/2024.findings-acl.786
https://doi.org/10.18653/v1/2024.findings-acl.786
https://doi.org/10.18653/v1/2024.findings-acl.786
https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598

predicates people, planners/1, and events/11074

and assign the 12 entities to each category respec-1075

tively:1076

people(50;75;100;125).
planners(herbert;joel;susan;teresa).
events(anniversary;birthday;

graduation;wedding).

We could also encode 4 times people/1 with a1077

different person inside, but using semi-colons is a1078

much shorter approach.1079

These 12 entities are now hard facts in the en-1080

coding, resulting in them being part of every single1081

possible answer set.1082

Next, the problem asks for matching each event1083

to its planner and number of attendees. In ASP,1084

this is called generate, i.e., generating potential1085

solutions. This is achieved by the so-called choice1086

rule:1087

1 {assignment(Event, Planner, Attendees) :
planners(Planner), people(Attendees)} 1
:- events(Event).

The choice rule generates instances of1088

assignment/3 with triples (event, planner, atten-1089

dees). The syntax m ... n says that at least m and1090

at most n grounded instances of assignment/31091

must be generated. The semantics of this particular1092

choice rule reads as follows: “For every event/11093

that is part of the answer set, generate exactly one1094

assignment/3 that contains a single event, a single1095

planner and a single number of attendees.” Since1096

we defined four distinct events above, the choice1097

rule will generate four grounded assignment/3 in-1098

stances. However, so far, it does not exclude that1099

planner Herbert for example is assigned to two dif-1100

ferent events, only that every assignment/3 will1101

refer to a different event/1. Therefore, an addition1102

to the choice rule is required, which is formulated1103

as rule:1104

{E1 = E2; P1 = P2; A1 = A2} = 0
:- assignment(E1, P1, A1),

assignment(E2, P2, A2),
(E1, P1, A1) != (E2, P2, A2).

It reads as follows: “For two assignment/3 that1105

are part of the answer set, and the triples (event,1106

planner, attendees) are not exactly the same, there1107

must be zero overlap in any of the three entities1108

event, planner, and number of attendees.” As we1109

have seen above, there are four assignment/3 that1110

are part of the answer set. This addition now ex- 1111

cludes that two distinct events are for example as- 1112

signed the same planner Herbert. 1113

Next, we add all rules and constraints based on 1114

the hints provided by the problem instance. 1115

The first clue is 1. Of the anniversary event and 1116

the event with 100 attendees, one will be handled 1117

by Joel and the other will be handled by Susan. 1118

It carries multiple implications: The anniversary 1119

event does not have 100 attendees and Joel and 1120

Susan must plan one each of out of the anniversary 1121

event and the event with 100 attendees. In ASP, 1122

this is achieved by the following encoding: 1123

{E = anniversary; A = 100} = 1
:- assignment(E, joel, A).

This rule says that if there is an assignment/3 1124

with Joel, it can only either have the anniversary 1125

event or the event with 100 attendees. 1126

Likewise for Susan: 1127

{E = anniversary; A = 100} = 1
:- assignment(E, susan, A).

The case that both Susan and Joel get the event 1128

with 100 attendees assigned is already excluded 1129

by the addition to the choice rule described above. 1130

Same holds for the anniversary event. 1131

The next clue (2. Herbert’s assignment will in- 1132

volve 25 fewer people than Susan’s assignment.) is 1133

a constraint that excludes a specific condition (as 1134

opposed to rules that model if-else statements). In 1135

ASP, this is written as follows: 1136

:- assignment(_, herbert, A1),
assignment(_, susan, A2),
not A1 == A2 - 25.

This is a constraint that requires at least one 1137

atom to evaluate to false. This constraint reads 1138

as follows: “Every answer set that contains one 1139

assignment/1 for Herbert and one for Susan must 1140

not allow for Herbert’s number of attendees being 1141

anything else than the number of Susan’s subtracted 1142

by 25.” 1143

The third clue (3. Of the assignment with 75 1144

attendees and the assignment with 100 attendees, 1145

one will be handled by Susan and the other is the 1146

birthday.) is modeled in the same way as clue 1: 1147

{E = birthday; P = susan} = 1
:- assignment(E, P, 75).

{E = birthday; P = susan} = 1
:- assignment(E, P, 100).

13

Finally, the fourth clue (4. Herbert’s event is1148

either the event with 50 attendees or the graduation1149

job.) is an exclusive-OR (XOR) that is modeled1150

similar to clues 1 and 3:1151

{E = graduation; A = 50} = 1
:- assignment(E, herbert, A).

The entire encoding looks as follows:1152

people(50;75;100;125).
planners(herbert;joel;susan;teresa).
events(anniversary;birthday;

graduation;wedding).

1 {assignment(Event, Planner, Attendees) :
planners(Planner), people(Attendees)} 1
:- events(Event).

{E1 = E2; P1 = P2; A1 = A2} = 0
:- assignment(E1, P1, A1),

assignment(E2, P2, A2),
(E1, P1, A1) != (E2, P2, A2).

{E = anniversary; A = 100} = 1
:- assignment(E, joel, A).

{E = anniversary; A = 100} = 1
:- assignment(E, susan, A).

:- assignment(_, susan, A2),
not A1 == A2 - 25.

{E = birthday; P = susan} = 1
:- assignment(E, P, 75).

{E = birthday; P = susan} = 1
:- assignment(E, P, 100).

{E = graduation; A = 50} = 1
:- assignment(E, herbert, A).

Running clingo on this encoding returns the fol-1153

lowing uniquely determined answer set:1154

planners(herbert) planners(joel)
planners(susan) planners(teresa)
people(50) people(75)
people(100) people(125)
events(anniversary) events(birthday)
events(graduation) events(wedding)
assignment(anniversary,susan,75)
assignment(wedding,herbert,50)
assignment(birthday,joel,100)
assignment(graduation,teresa,125)

By comparing all four instances of1155

assignment/3 to the clues, we can see that1156

this answer set is indeed a stable model of the1157

problem that fulfills all constraints.1158

B Levenshtein Heuristics 1159

Since exact string matching to compare ground 1160

truth and ASP output is often not possible, we im- 1161

plement a Levenshtein heuristics that automatically 1162

detects whether an ASP output corresponds to the 1163

ground truth or not. To achieve that, we use the Lev- 1164

enshtein string edit distance (Levenshtein, 1965) 1165

that measures how many atomic string edit opera- 1166

tions on a character-level (insert, delete, replace) 1167

are necessary to transform one string into another. 1168

We want to explain this using an example first. 1169

Consider the following solution of instance with 1170

ID 2 from the test_HA split, i.e., the split without 1171

explanations of how to arrive at the correct solution, 1172

of LogicPuzzles: 1173

(2016, ISON-X42, Dr. Golden) 1174
(2017, Egert Facility, Dr. Owens) 1175
(2018, Zynga Complex, Dr. Weber) 1176
(2019, Bale-Hahn SSC, Dr. Farley) 1177

1178

Running clingo on the ASP encoding parsed by 1179

Llama-3.1 70B yields the following answer sets: 1180

assignment(ison_x42,golden,2016) 1181
assignment(bale_hahn_ssc,farley,2019) 1182
assignment(egert_facility,owens,2017) 1183
assignment(zynga_complex,weber,2018) 1184

1185

We can see that the main differences are dashes 1186

and spaces being converted into underscores, as 1187

well as some shortenings such as the prefix “Dr.” 1188

being removed. These differences make it impos- 1189

sible to perform direct string comparisons. There- 1190

fore, for comparing computed output and ground 1191

truth, we first transform the ground truth into a rep- 1192

resentation as it could be used in ASP encodings. 1193

However, if comparison still fails, we apply our 1194

Levenshtein heuristics to compare both sets. This 1195

heuristic applies the following steps: 1196

1. For each computed set of assignments, iterate 1197

over each ground truth tuple and every item 1198

contained in it and compare it to every single 1199

item in the computed answer sets. In this 1200

example, we compare every item out of the 12 1201

ground truth entities to all 12 computed items. 1202

This results in a runtime complexity of O(n2), 1203

with n = 12 in this running example. For 1204

example, taking ison_x42 and comparing it 1205

to (2016, ISON-X42, Dr. Golden) results 1206

in the following three edit distances computed 1207

by NLTK’s implementation of Levenshtein: 1208

edit_distance("ison_x42", 1209

14

"2016") = 81210
edit_distance("ison_x42",1211

"ISON-X42") = 61212
edit_distance("ison_x42",1213

"Dr. Golden") = 101214

After each comparison, we store the index tu-1215

ple (i, j), i, j ∈ [1, . . . , 4] where i and j refer1216

to the two row indices where the edit distance1217

was the lowest for i. In the case above, we1218

would have (1, 1) unless there is another row1219

where ison_x42 needs less edits. However, if1220

there are minimum edit distances, we perform1221

an additional step that checks whether two1222

strings are contained in each other or not. If1223

so, this match will be preferred over the match1224

without overlapping strings.1225

2. To judge whether a computed solution1226

matches its ground truth counterpart, we1227

check if for every item in ground truth row1228

i the matching row j is the same. Furthermore1229

we require j to be assigned to only one row i.1230

For example, the following Levenshtein ma-1231

trix indicates a valid solution for the running1232

example:1233

[[(1,1), (1,1), (1,1)],1234
[(2,3), (2,3), (2,3)],1235
[(3,4), (3,4), (3,4)],1236
[(4,2), (4,2), (4,2)]]1237

1238

C Fine-Tuning Hyperparameters1239

To perform fine-tuning of large LLMs, we use1240

LoRA fine-tuning (Hu et al., 2022, Low-Rank Adap-1241

tation), which adds trainable adapters to the base1242

model. These adapters carry only a small percent-1243

age of trainable parameters relatively compared1244

to the original base model (e.g., a LoRA rank of1245

128 for Llama-3.1 70B results in 1.6B trainable1246

parameters).1247

We aim at finding the best hyperparameter set-1248

tings by evaluating the trained models on the Log-1249

icPuzzles test split in the zero-shot setting. We find1250

that the default SFT and DPO fine-tuning param-1251

eters of the Hugging Face alignment-handbook101252

(Tunstall et al., 2023) for their own Zephyr model1253

are already very good parameters to start with.1254

We perform DPO and SFT training on 2-41255

Nvidia H200 GPUs with model sharding enabled,1256

10https://github.com/huggingface/
alignment-handbook/blob/
95dc47218cf109659b74466d74be950525c53e67/
recipes/zephyr-7b-beta/

i.e., the LLM parameters and optimizers are split 1257

across the 4 GPUs, which allows for bigger models 1258

to be trained. We use DeepSpeed ZeRO Stage 311 1259

to perform sharding. 1260

Table 5 lists the hyperparameters to fine-tune 1261

the three different open-weight models using the 1262

different training approaches. We find that higher 1263

LoRA ranks r seem to be important for capturing 1264

the nuances of ASP programming during DPO and 1265

SFT training. Moreover, it becomes clear that only 1266

single or very few training epochs are already suf- 1267

ficient to achieve good results. We also find that 1268

conducting too many DPO training epochs leads 1269

to a strong model degeneration, hence we do not 1270

recommend to train for too many epochs. 1271

To mitigate for the fewer preference pairs sam- 1272

pled from the Qwen models compared to Llama-3.1 1273

70B, we perform DPO for 3 epochs instead of 1 as 1274

we do with Llama-3.1 70B. 1275

The SFT+DPO training setting uses for both 1276

steps the corresponding config from SFT and DPO. 1277

The batch size is always equal to the number of 1278

GPUs used for training. 1279

D Detailed Overview on each Evaluation 1280

Dataset 1281

D.1 GridPuzzles Example 1282

GridPuzzles (Tyagi et al., 2024) is very similar in 1283

its structure to LogicPuzzles. The main difference 1284

is that it goes beyond grid sizes of 3×4 by addition- 1285

ally providing problems of sizes 3×5, 4×4, 4×5, 1286

and 4×6. 1287

The following instance with ID 8526 (note that 1288

there are still 274 instances) is an example for a 1289

4×4 puzzle: 1290

11https://github.com/microsoft/DeepSpeed

15

https://github.com/huggingface/alignment-handbook/blob/95dc47218cf109659b74466d74be950525c53e67/recipes/zephyr-7b-beta/
https://github.com/huggingface/alignment-handbook/blob/95dc47218cf109659b74466d74be950525c53e67/recipes/zephyr-7b-beta/
https://github.com/huggingface/alignment-handbook/blob/95dc47218cf109659b74466d74be950525c53e67/recipes/zephyr-7b-beta/
https://github.com/huggingface/alignment-handbook/blob/95dc47218cf109659b74466d74be950525c53e67/recipes/zephyr-7b-beta/
https://github.com/microsoft/DeepSpeed

LoRA Rank r LoRA α DPO β Learning Rate Train Epochs # GPUs

DPO
Llama-3.1 70B 128 128 0.9 5e− 6 1 4
Qwen-2.5 72B 128 128 0.1 5e− 6 3 4
Qwen-2.5-Coder 32B 128 128 0.1 5e− 6 3 4

SFT
Llama-3.1 70B 128 128 – 5e− 5 10 2
Qwen-2.5 72B 128 128 – 5e− 5 10 2

Table 5: The hyperparameters used for training all LLMs.

Problem Description:
Maurice had several customers in his tattoo
parlor today, each of which requested a simple
tattoo of their astrological sign. Using only
the clues below, match the prices to the op-
tions from customers, colors, and zodiac signs.
Remember, as with all grid-based logic puz-
zles, no option in any category will ever be
used more than once.
Entities:
prices: $35, $40, $45, $50.
customers: Bonita, Carole, Kendra, Neil.
colors: black, pink, red, violet.
zodiac signs: Pisces, Sagittarius, Taurus,
Virgo.
Clues: 1. Bonita was the Taurus.
2. Of the person who paid $50 and the Virgo,
one got the pink tattoo and the other got the
violet tattoo.
3. The Taurus was either the customer who
got the red tattoo or the customer who got the
violet tattoo.
4. Kendra was either the person who paid $50
or the Pisces.
5. Of the customer who paid $35 and Neil,
one got the red tattoo and the other was the
Pisces.
6. Neil paid 10 dollars more than the customer
who got the black tattoo.

1291

We approach this dataset in the same way as1292

LogicPuzzles, i.e., we start by defining all the con-1293

stants:1294

price(35;40;45;50).
customer(bonita;carole;kendra;neil).
color(black;pink;red;violet).
zodiac_sign(pisces;sagittarius;taurus;virgo).

Next, we formulate the choice rule. However, we1295

need to slightly modify it to fit to the 4×4 instance1296

instead of the 3×4 ones from LogicPuzzles:1297

1 {assignment(P, C, CO, Z) :
price(P), customer(C), color(CO)} 1

:- zodiac_sign(Z).

{ P1 = P2; C1 = C2; CO1 = CO2; Z1 = Z2 } = 0
:- assignment(P1, C1, CO1, Z1),
assignment(P2, C2, CO2, Z2),
(P1, C1, CO1, Z1) != (P2, C2, CO2, Z2).

The main difference to the choice rule of Log- 1298

icPuzzles is that we now have 4 entity types in the 1299

choice rule. 1300

Next, we look at the first hint: 1. Bonita was the 1301

Taurus. This is a hard fact. However, in ASP, we 1302

cannot add facts with unknown arguments. How- 1303

ever, we only know Bonita being the Taurus, but 1304

not how much was paid or what tattoo color there 1305

is. Hence, we need to formulate it as a constraint, 1306

thereby filtering out all answer sets generated by 1307

the choice rule that do not fulfill this constraint: 1308

:- assignment(_, bonita, _, Z), Z != taurus.

The second hint (2. Of the person who paid $50 1309

and the Virgo, one got the pink tattoo and the other 1310

got the violet tattoo.) enforces an XOR across two 1311

assignments: 1312

{ Co1 = pink; Co2 = pink} = 1
:- assignment(50, _, Co1, _),

assignment(_, _, Co2, virgo).
{ Co1 = violet; Co2 = violet } = 1

:- assignment(50, _, Co1, _),
assignment(_, _, Co2, virgo).

These two statements enforce pink being as- 1313

signed to exactly one of both (the $50 person and 1314

the Virgo), as well as violet being assigned to only 1315

one of both. It is not possible that one gets both 1316

red and violet in the answer set as this is forbidden 1317

by the second statement of the choice rule block 1318

above. 1319

The third clue (3. The Taurus was either the cus- 1320

tomer who got the red tattoo or the customer who 1321

got the violet tattoo.) is an XOR for one assign- 1322

ment, allowing for only one of two (Taurus being 1323

16

the customer with red tattoo or violet tattoo) to be1324

true:1325

{ Co = red; Co = violet } = 1
:- assignment(_, _, Co, taurus).

Hint 4 (4. Kendra was either the person who1326

paid $50 or the Pisces.) is modeled the same way1327

as hint 3:1328

{ P = 50; Z = pisces } = 1
:- assignment(P, kendra, _, Z).

Hint 5 (5. Of the customer who paid $35 and1329

Neil, one got the red tattoo and the other was the1330

Pisces.) is similar to hint 2:1331

{ Co1 = red; Co2 = red} = 1
:- assignment(35, _, Co1, _),

assignment(_, neil, Co2, _).

{ Z1 = pisces; Z2 = pisces } = 1
:- assignment(35, _, _, Z1),

assignment(_, neil, _, Z2).

Finally, the last hint (6. Neil paid 10 dollars1332

more than the customer who got the black tattoo.)1333

is again an ASP constraints that filters all answer1334

sets that do not adhere to this constraint:1335

:- assignment(P1, neil, _, _),
assignment(P2, _, black, _),
P1 != P2 + 10.

To summarize, this is the full ASP encoding for1336

this GridPuzzles instance:1337

price(35;40;45;50).
customer(bonita;carole;kendra;neil).
color(black;pink;red;violet).
zodiac_sign(pisces;sagittarius;taurus;virgo).

1 {assignment(P, C, CO, Z) :
price(P), customer(C), color(CO)} 1
:- zodiac_sign(Z).

{ P1 = P2; C1 = C2; CO1 = CO2; Z1 = Z2 } = 0
:- assignment(P1, C1, CO1, Z1),

assignment(P2, C2, CO2, Z2),
(P1, C1, CO1, Z1) != (P2, C2, CO2, Z2).

:- assignment(_, bonita, _, Z), Z != taurus.

{ Co1 = pink; Co2 = pink} = 1
:- assignment(50, _, Co1, _),
assignment(_, _, Co2, virgo).

{ Co1 = violet; Co2 = violet } = 1
:- assignment(50, _, Co1, _),
assignment(_, _, Co2, virgo).

{ Co = red; Co = violet } = 1
:- assignment(_, _, Co, taurus).

{ P = 50; Z = pisces } = 1

:- assignment(P, kendra, _, Z).

{ Co1 = red; Co2 = red} = 1
:- assignment(35, _, Co1, _),
assignment(_, neil, Co2, _).

{ Z1 = pisces; Z2 = pisces } = 1
:- assignment(35, _, _, Z1),
assignment(_, neil, _, Z2).

:- assignment(P1, neil, _, _),
assignment(P2, _, black, _),
P1 != P2 + 10.

D.2 GSM-Algebra Example 1338

GSM-Algebra (He-Yueya et al., 2023) is funda- 1339

mentally different to the other three datasets as it 1340

requires solving an algebraic question instead of a 1341

grid-based matching problem. 1342

We restrict the search space from −15k to 15k 1343

as the solving time grows exponentially with size. 1344

We evaluate integer-based instances only (70.3% of 1345

all instances) since ASP does not support floating 1346

point arithmetic. 1347

For example, the instance with ID 163 looks as 1348

follows: 1349

Problem Description:
Dolores bought a crib on sale for $350. The
sale price was 40% of the original price. What
was the original price of the crib?

1350

To model this problem in ASP, we start in the ex- 1351

act same way as with all the other problems, which 1352

is to define constants. However, there are no ex- 1353

plicit entities such as countries or people. Instead, 1354

the algebraic group of integers Z is of relevance. 1355

Therefore, we first define a search space s.t. the 1356

solver can use this number space for grounding 1357

later: 1358

number(-15000..15000).

This defines a search space of a total of 30.001 1359

numbers. Note that with increasing search space, 1360

the computation time increases. 1361

Next, we define the price of the crib as a hard 1362

fact in the ASP encoding: 1363

price_of_crib(350).

Finally, we formulate the equation that computes 1364

the answer Z by checking all possible combinations 1365

produced by the answer space number: 1366

result(Z) :- number(Z), price_of_crib(X),
Z = 10 * X / 4.

17

Correct - Unique

Correct

Wrong

Unsatisfiable

Warnings & Errors

0
20

40
60

Base
DPO
SFT

Figure 2: Result type comparison between the base
Llama-3.1 70B and its DPO and SFT trained counter-
parts on LogicPuzzles in the two-shot setting.

This equation starts by defining Z as a number. If1367

it was without this statement, clingo would return1368

an error as the type of Z has never been defined1369

before. Next, X can only be grounded to 350 as1370

this is a hard fact stated above. Finally, the original1371

price is calculated by using Z = 10
4 ∗X , equaling1372

to 875.1373

The entire ASP encoding looks as follows:1374

number(-15000..15000).
price_of_crib(350).
result(Z) :- number(Z), price_of_crib(X),

Z = 10 * X / 4.

E Further Analysis1375

Figure 2 visualizes the distribution of the different1376

evaluation categories for Llama-3.1 70B on Log-1377

icPuzzles in the two-shot setting. It displays the1378

distribution for the base Llama-3.1 as well as the1379

SFT and DPO counterparts.1380

We can see that both SFT and DPO lead to simi-1381

lar, positive shifts towards more correctly solvable1382

instances. The base Llama-3.1 produces many er-1383

roneous and unsatisfiable instances, whereas the1384

trained variants are able to produce much more1385

correct ASP encodings. This underlines that our1386

solver-guided training method is able to adapt the1387

models to better ASP coders. Furthermore, both1388

DPO and SFT lead to very similar results, show-1389

ing solver-guided training is very valuable for both1390

training approaches.1391

Status Description

Correct Single and correct answer set re-
turned.

Partially correct Multiple answer sets including the
single correct one.

Wrong None of the answer sets are correct
solutions.

Unsatisfiable Contradicting constraints; no an-
swer set exists.

Warnings & errors Incorrect encoding leads to warn-
ings/errors, preventing outputs.

Table 6: Evaluation categories for ASP encodings.

F DPO Loss Function 1392

During DPO fine-tuning, a model is shown both a 1393

chosen and rejected response for a given input and 1394

optimized for the following loss function: 1395

LDPO(πθ;πref) = −E(x,yw,yl)∼D 1396[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
. 1397

πref is the reference model, in our case MS from 1398

which the preference data was sampled. πθ is 1399

the LLM to be optimized. Initially, it holds that 1400

πref = πθ. Intuitively, the loss objectives increases 1401

the likelihood margin between the chosen and the 1402

rejected response. Hence, the overall goal is to 1403

make the chosen responses more likely relative to 1404

the rejected ones. 1405

G Evaluation Taxonomy 1406

Table 6 shows the five distinct categories which we 1407

use to evaluate LLM-generated ASP encodings. 1408

H Number of Possible Solutions for 1409

Grid-based Puzzles 1410

In this section, we want to provide a visual expla- 1411

nation for why the number of possible solutions of 1412

an m× n assignment equals to (n!)(m−1), i.e., for 1413

a puzzle with m entity categories with n entities in 1414

each category. 1415

Exemplarily, we use a 3 × 4 grid puzzle. That 1416

could be matching four dogs with four owners and 1417

four houses. 1418

We approach this combinatorial problem as 1419

graph as shown in figure 3. We start by match- 1420

ing the first 4 entities with another 4 entities and 1421

only allow for 1 : 1 matchings. When selecting 1422

the first entity of category 1, there are 4 opportu- 1423

nities to match it with an entity of category two. 1424

18

Figure 3: Matching two types of entities with four sub-
jects each. There are 4× 3× 2× 1 = 4! possibilities to
find exclusive matchings.

Figure 4: Visualization of an 3 × 4 grid puzzles that
requires 2 = 3− 1 independent matchings with 4! pos-
sibilities in each subgraph.

Afterwards, when matching the second entity of1425

category 1, there are only 3 entities left from cate-1426

gory 3, resulting in only 3 opportunities. Likewise,1427

the third entity of category 1 has only 2 opportu-1428

nities left for a matching, while the final one from1429

category 1 has only a single matching possibility.1430

This results in 4 × 3 × 2 × 1 = 4! opportunities.1431

The general number for n entities per category is1432

therefore n!.1433

The same holds for the second matching between1434

entities from category 2 and category 3. Hence, we1435

get 2 = 3 − 1 independent matching problems1436

as shown in figure 4. The general formula hence1437

is m− 1. Putting all together results in (n!)(m−1)1438

possible solutions for an unconstrained grid puzzle.1439

I Evaluation on GSM-Algebra1440

To show that our method also improves LLMs on1441

generating ASP encodings for different use-cases,1442

we conduct a small experiment in which we run our1443

trained models on GSM-Algebra (He-Yueya et al.,1444

2023), which requires solving algebraic problems.1445

Table 7 shows the accuracy of each model. As ASP1446

does not support floating points, we only focus on1447

instances that work with integers.1448

With the exception of the coding-specialized1449

Qwen, we can see improvements for each model1450

GSM-Alg.

Llama-3.1 70B Base 60.3
DPO 68.6
SFT 64.7

SFT+DPO 64.1

Qwen-2.5 72B Base 60.9
DPO 60.9
SFT 64.1

SFT+DPO 65.4

Qwen-2.5-Coder Base 76.3
32B DPO 73.1

Table 7: Percentage of correct solutions (↑) on GSM-
Algebra.

Correct Wrong Error

3x4 3x5 4x4 4x5 4x6
0
25
50
75

100

Pe
rc

en
ta

ge
(%

)

Grid Size

easy medium hard
0
25
50
75

100

Pe
rc

en
ta

ge
(%

)

Difficulty Level

Figure 5: Llama-3.1 70B SFT+DPO combined with
best-of-N sampling results on GridPuzzles, categorized
by grid sizes (top) and difficulty levels (bottom). We
can see that our neuro-symbolic approach has almost
equal performance on medium and hard puzzles, but
degrades with increasing puzzles size.

over its untrained counterpart. The performance in- 1451

crease is especially large for the 70B Llama model 1452

with about 8 pp. This indicates that our method 1453

of training models on ASP for grid-based puzzles 1454

also generalizes to other domains. We interpret 1455

the very good performance of the Qwen Coder 1456

model as a natural implication of the fact that it 1457

was trained specifically for code generation. Since 1458

algebraic questions are much closer to traditional 1459

coding questions than semantic parsing, we believe 1460

that this is where the coding knowledge excels. 1461

However, our method also brings the non-coding 1462

models much closer to the performance of the coder 1463

model. 1464

J Performance Analysis on GridPuzzles 1465

Figure 5 breaks down the results of Llama-3.1 70B 1466

SFT+DPO combined with best-of-N sampling on 1467

19

GridPuzzles by grid size (top) and by problem dif-1468

ficulty (bottom).1469

First, increasing puzzles size leads to decreasing1470

performance. There are mainly two reasons for1471

that: the LLM-based generation degrades due to1472

the increasing context and puzzles of very large1473

sizes might not be solvable due to a huge potential1474

solution space that could lead to out-of-memory1475

issues. Second, the human-judged difficulty does1476

not seem to have the same big influence as the1477

puzzle size since there is almost equal performance1478

between puzzles of medium and hard difficulty.1479

However, we still observe a drop compared to the1480

easy puzzles, mainly because medium and hard1481

puzzles contain more XOR-based constraints.1482

20

	Introduction
	Related Work
	Answer Set Programming
	Instruction Tuning for ASP
	Task Definition
	Sampling Trajectories
	Classification of ASP Encodings
	Preference Pair Generation
	Model Preference Alignment

	Test-Time Sampling for ASP
	Reward Function
	Sampling Procedure

	Experimental Setup
	Evaluation Metrics and Datasets
	Models
	Preference Pair Statistics
	Settings

	Results and Analysis
	Two-Shot Parsing
	ASP-tuned Backbones for PromptPipeline
	Quantitative and Qualitative Analysis
	Discussion

	Conclusion and Outlook
	Explanatory ASP Encoding
	Levenshtein Heuristics
	Fine-Tuning Hyperparameters
	Detailed Overview on each Evaluation Dataset
	GridPuzzles Example
	GSM-Algebra Example

	Further Analysis
	DPO Loss Function
	Evaluation Taxonomy
	Number of Possible Solutions for Grid-based Puzzles
	Evaluation on GSM-Algebra
	Performance Analysis on GridPuzzles

