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Abstract

In this paper, we introduce harmonic loss as an alternative supervisory signal for1

training neural networks and large language models (LLMs). Harmonic loss differs2

from standard cross-entropy loss by (a) replacing the usual SoftMax normalization3

with a scale-invariant HarMax function and (b) computing logits via Euclidean4

distance rather than a dot product. Harmonic loss enables improved interpretability5

and faster convergence, owing to its scale invariance and finite convergence point by6

design, which can be interpreted as a class center. We first validate the performance7

of harmonic models across algorithmic, vision, and language datasets. Through8

extensive experiments, we demonstrate that models trained with harmonic loss9

perform better than standard models by: (a) enhancing interpretability, (b) requiring10

less data for generalization, and (c) reducing grokking. Moreover, we compare a11

GPT-2 model trained with harmonic loss to the standard GPT-2, illustrating that12

the harmonic model develops more interpretable representations. Looking forward,13

we believe harmonic loss may become a valuable tool in domains with limited data14

availability or in high-stakes applications where interpretability and reliability are15

paramount, paving the way for more robust and efficient neural network models.16

1 Introduction17

As machine learning models become powerful, it has become increasingly important to thoroughly18

understand the behavior of neural networks. One particularly intriguing characteristic of neural19

networks is their ability to generalize—empirical evidence shows that neural networks can perform20

well on unseen data not explicitly encountered during training [1]. This remarkable ability stems21

from the networks’ capacity to learn generalizable representations and algorithms through training.22

However, current models face three key challenges when it comes to generalization:23

(1) Lack of interpretability: Neural networks often lack interpretability, which is a critical issue in24

high-stakes applications like healthcare, finance, and autonomous systems. While multiple research25

efforts have advanced our insight into inner workings of LLMs [2], we are still far from fully26

explaining their outputs. Ultimately, it is crucial to design systems that are interpretable by design.27

Otherwise, it is challenging to diagnose errors, ensure fairness, or build trust in a model’s decisions.28

(2) Low data efficiency: Generalization often requires vast and diverse training data. This raises a29

critical question: can models generalize effectively with less data? This issue is especially relevant in30

domains where data availability is scarce, such as rare disease diagnosis or specialized scientific fields.31

Previous approaches for improving neural network generalization include efficient data sampling [3]32

and modifications to the training procedure to accelerate training [4]. However, these methods focus33

on optimizing existing training procedures rather than addressing the core issues in model design.34

(3) Delayed generalization (grokking): Models sometimes experience a phenomenon known as35

“grokking,” [5, 6] where there is a noticeable delay between the convergence of the training loss and36

the convergence of the test loss. This gap is problematic because: (i) it complicates determining37
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Figure 1: Cross-entropy loss versus harmonic loss (ours). (a) Definitions. Cross-entropy loss leverages
the inner product as the similarity metric, whereas the harmonic loss uses Euclidean distance. (b) Toy
case 1 with two points (classes). Both the loss and l2 weight norm converge faster for the harmonic
loss. (c) Toy case 2 with five points (classes). Harmonic loss can pick out the red point in the middle.
By contrast, the cross-entropy loss cannot, since the red point is not linearly separable from other
points. Weight matrices are also more interpretable with harmonic loss than with cross-entropy loss.

the optimal point to stop training in order to achieve generalization, and (ii) it necessitates extended38

computation time and resources to continue training until grokking occurs.39

As the saying goes, “The devil is in the SoftMax.” We attribute these three challenges in part to40

the widespread use of the SoftMax function in cross-entropy loss (for classification) and propose41

harmonic loss as an alternative. Harmonic loss has two desirable mathematical properties that enable42

faster convergence and improved interpretability: (1) scale invariance, and (2) a finite convergence43

point, which can be interpreted as a class center. Through comprehensive experiments, we show that44

models trained with harmonic loss reduce grokking, require less data for generalization, and enhance45

interpretability compared to standard models. Furthermore, we compare a GPT-2 model trained with46

harmonic loss to the standard GPT-2 and show that the harmonic model develops more interpretable47

representations.48

The remainder of this paper is organized as follows: Section 2 introduces the principles underlying49

harmonic loss and explains why it is preferable to cross-entropy loss in terms of generalization50

and interpretability. Section 3 details a comprehensive set of experiments on algorithmic datasets,51

illustrating that models trained with harmonic loss have numerous desirable properties that are absent52

in standard models. In Section 4, we demonstrate the performance of harmonic models on the vision53

task of MNIST digit classification. In Section 5, we extend our analysis to large models, illustrating54

that the advantages of harmonic loss also hold at scale. We present ablation experiments in Section 6.55

We review the relevant literature in Section 7, and conclude the paper in Section 8.56

2 Harmonic Loss57

We first review cross-entropy loss and present the harmonic loss, visualized in Figure 1 (a). Denote58

the unembedding matrix as W ∈ RN×V (N is the embedding dimension, V is the vocabulary size),59

and the penultimate representation (the representation prior to the unembedding matrix) as x ∈ RN .60

Cross-entropy loss: Logits y are defined as the matrix-vector multiplication, i.e., y = W Tx ∈ RV61

(ignoring biases), or yi = wi · x, where wi is the ith column of W . Probability p can be obtained62

by applying SoftMax to y, i.e.,63

pi = SoftMax(y)i ≡
exp(yi)∑
j exp(yj)

. (1)

Suppose the real class label is c, then loss ℓ = −log pc. For notational simplicity, we call a linear64

layer combined with the cross-entropy loss a cross-entropy layer.65

Harmonic loss: The harmonic logit d is the l2 distance between wi and x, i.e., di = ||wi − x||2.66

We interpret wi as keys and x as a query, so smaller di means a higher probability of pi. We define67
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harmonic max (HarMax) as68

pi = HarMax(d)i ≡
1/dni∑
j 1/d

n
j

, (2)

where n (harmonic exponent) is a hyperparameter that controls the heavy-tailedness of the probability69

distribution. If the true class label is c, then loss ℓ = −log pc. For notational simplicity, we call a70

layer combined with the harmonic loss the harmonic layer. Since the last step of both losses is the71

same (ℓ = −log p), comparing their values is meaningful. They only differ in the ways of computing72

probabilities from representations 1.73

A reasonable choice of n is n ∼
√
D, where D represents the intrinsic dimensionality of the underly-74

ing data. In LLMs, D could be approximated as D ≈ dembed, where dembed is the embedding dimen-75

sion. This approximation arises from considering an embedding initialized from a D-dimensional76

Gaussian distribution. The squared distance between two points, normalized by the number of dimen-77

sions D, is on the order of 1±O(1/
√
D). To ensure that the harmonic distance

[
1±O(1/

√
D)
]n

78

remains constant as we scale D, we require n ∼
√
D, since limx→∞(1 + x−1)x = e. We also show79

the empirical impact of the exponent on the learned representations in Appendix E.80

Toy cases: To provide intuition about what advantages the harmonic loss has over the cross-entropy81

loss, we consider two toy cases in 2D, as shown in Figure 1 (b)(c). In each toy case, we train the82

cross-entropy layer and the harmonic layer with the Adam optimizer. Toy case 1: x1 = (1, 1) and83

x2 = (−1,−1) belong to two different classes. The harmonic layer produces a faster loss decrease,84

because the harmonic loss only requires di → 0 (converging point is finite) to get pi → 1. By85

contrast, cross-entropy loss requires yi → ∞ (converging point is infinite) to get pi → 1. The86

harmonic loss already produces a l2 weight norm that plateaus to a constant, while the cross-entropy87

loss leads to increasing l2, diverging towards infinity. Toy case 2: There are 5 points in 2D, each of88

which belong to a different class. In particular, the red point (0, 0) is surrounded by the other four89

points, i.e., cannot be linearly separated. The cross-entropy layer indeed cannot perform well on this90

task, manifested by a high loss plateau. By contrast, the harmonic layer can drive the loss down to91

machine precision. Similar to case 1, the harmonic layer has a plateauing l2 while the cross-entropy92

layer has an ever-growing l2. We also observe that the weights of the harmonic layer correspond to x,93

which is more interpretable than the weights of the cross-entropy layer.94

Benefits of harmonic loss: From these two toy cases, we understand the advantages of harmonic95

loss: (1) nonlinear separability: in case 2, the red dot can be classified correctly even though it96

is not linearly separable. (2) fast convergence: The fact that the converging point is finite leads97

both to faster loss decay, and plateauing (non-diverging) l2. (3) scale invariance: Harmonic loss is98

scale-invariant, i.e., di → αdi leaves pi (hence loss) invariant, whereas yi → αyi would produce a99

different cross-entropy loss. (4) interpretability: the weight vectors correspond to class centers. We100

present the formal proof of these properties in Appendix G.101

Notes on interpretability: Measuring interpretability is inherently challenging in the absence of102

ground-truth representations. Hence, we propose two principled indicators of interpretability through-103

out the paper: (1) Compression: Sparse, low-dimensional representations enhance interpretability104

by concentrating semantics. We measure this via cumulative explained variance in PCA projections.105

(2) Geometry: In general models, we hypothesize that parallelogram-like units with multiple one-106

dimensional semantic directions enable compositional reasoning; This enables vector arithmetic107

such as man – woman = king – queen, and supports faithful feature attribution. We measure this via108

parallelogram loss in Section 5.109

3 Algorithmic Experiments110

Algorithmic tasks are good benchmarks for interpretability since they are well-defined mathemat-111

ically. However, training neural networks on these tasks is non-trivial due to grokking (delayed112

generalization) [5] and the existence of multiple algorithms [7], etc. We will show that harmonic113

models learn better representations, are more data-efficient, and exhibit less grokking.114

1Note that when we say “cross-entropy loss,” we do not only refer to ℓ = −log p, but rather refer to the
whole pipeline including penultimate representation, logit, probability, and loss.
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Figure 2: Visualization of the top two principal components of the embeddings in synthetic experi-
ments. The title of each subplot shows the explained variance by the first two principal components.
Each row corresponds to a pair of a dataset and a model, while each column represents the embed-
dings from different training runs with varying seeds. Groups of consecutive two rows belong to the
same dataset, with models arranged in the order: {Standard MLP, Harmonic MLP}. The datasets
are ordered as follows: {In-Context Learning, Genealogy Learning, Equivalence Classes, Modular
Addition, and Permutation Groups}. X and Y axis spans are equal.

3.1 Models and Datasets115

Models: We compare four models:116

1. Standard MLP: Tokens are embedded into 16-dimensional embeddings, which are then117

concatenated and used as the input. The model consists of two hidden layers with widths of118

100 and 16, respectively. The SiLU activation function is used.119

2. Standard Transformer: Tokens are embedded into a 16-dimensional embedding, with a120

learnable positional embedding added. The input passes through two transformer decoder121

layers, each comprising two attention heads and an MLP with a hidden dimension of 64.122

3. Harmonic MLP: Standard MLP with an harmonic unembedding layer of exponent n = 1.123

4. Harmonic Transformer: Standard Transformer with an harmonic unembedding layer of124

exponent n = 1.125

We trained the MLP models for 7000 epochs and the transformers for 10000 epochs. For all four126

models, we used the AdamW optimizer with a learning rate of 2× 10−3, a weight decay of 10−2,127

and an L2 regularization on the embeddings with strength 0.01.128

Datasets: We trained the four models above using the following five datasets, and analyzed their129

performance as well as the resulting representations:130

1. In-Context Learning: In a 5×5 integer lattice, given three points on the lattice, the model is131

trained to predict the fourth point that would form a parallelogram with the others. This task132
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Figure 3: (a) Cumulative explained variance as a function of principal components (mean over 20
seeds). Harmonic representations are more compact than standard counterparts. (b) Test Accuracy as
a function of Train Fraction (mean over 3 seeds). Harmonic models generalize faster with less data
than standard counterparts. (c) Epochs to Test Accuracy > 0.9 vs Epochs to Train Accuracy > 0.9
for 20 consecutive epochs. y = x line represents no grokking, and points closer to the y-axis indicate
more grokking. Results from 20 different random seeds are plotted, and the runs that were not able to
achieve 90% accuracy were omitted. We present the plots for all tasks in Appendix F.

exemplifies in-context reasoning in LLMs, mirroring the classic man:woman::king:queen133

analogy by requiring the model to complete the relational pattern such as ‘man is to woman134

as king is to queen’ based on the given context.135

2. Modular Addition: Given two integers x, y, the model is trained to predict (x+ y) mod 31.136

3. Equivalence Classes: Given two integers 0 ≤ x, y < 40, the model is trained to predict if137

x ≡ y mod 5.138

4. Genealogy Learning: In a complete binary tree with 127 nodes, given a subject and a139

relation, the model is trained to predict the corresponding object. The relation can be one of140

the following: parent, grandparent, or sibling.141

5. Permutation Composition: Given two permutations x and y in S4, the model is trained to142

predict x ◦ y. On this dataset, we trained standard and harmonic transformers with an L2143

regularization of 0.005, as we found this configuration led to more complete training.144

3.2 Representation Faithfulness145

Figure 2 shows the plot of the top two principal components of the models’ embeddings for MLP146

tasks. We show the complete embedding visualization for all tasks in Appendix A. Overall, harmonic147

loss representations are cleaner and more organized than their cross-entropy counterparts. We found148

near-perfect circle representations for the modular addition task, a clear tower-like structure for tree149

learning, and neat clusters for permutation composition. We examine the representations task by task:150

1. In-context Learning: Standard models’ representations are either imperfect lattices or exhibit151

unexplained variance in higher dimensions, whereas harmonic models almost always perfectly (100%)152

recover the underlying 2D lattice structure across different random seeds.153

2. Modular Addition: Harmonic MLPs consistently recover a perfect 2D circular representation154

in almost all runs, whereas tstandard MLPs often fail to do so. Harmonic transformer has a similar155

success rate to the standard transformer in constructing circles, but the explained variance captured156

by the first two principal components is generally much higher, indicating that harmonic models157

discover more compact representations with fewer uninterpretable components.158

3. Equivalence Classes: While both standard and harmonic models are able to identify the underlying159

groups, standard models’ representation tends to be more “elongated", or not completely grouped,160

compared to its harmonic counterpart. This could be attributed to the fact that cross-entropy loss does161

not have an incentive to reduce irrelevant variations to zero.162

4. Genealogy Learning: Only Harmonic MLP recovers the underlying tree representation.163

5. Permutation Composition: Harmonic MLP generally produces better-separated clusters. A164

particularly clean representation that appears multiple times contains 6 clusters of 4 permutations,165
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Figure 4: Left: Case study on modular addition. Standard MLP trained for modular addition
without weight decay often fails to generalize. Generalization is only achieved with the addition of
strong weight decay; however, (a) significant grokking occurs, and (b) while the first two principal
components form an approximate circle, they explain far less than the total variance. In contrast, the
harmonic model trained for modular addition generalizes quickly without grokking. Moreover, the
embedding forms a perfect 2D circle. EV in the plot represents the explained variance by the first two
principal components of the embedding. Right: Visualization of model weights trained for MNIST.
Yellow cells show values less than 0.01. Both models achieved ≈ 92.5% test accuracy.

where each cluster is a coset of the subgroup ⟨e, (12)(34), (13)(24), (14)(23)⟩ or one of its conjugates.166

In the harmonic transformer, permutations commonly organize into 4 clusters that are cosets of167

⟨e, (13), (14), (34), (134), (143)⟩ or one of its conjugates, subgroups isomorphic to S3 (one element,168

in this case 2, never permutes).169

Figure 3(a) further demonstrates that harmonic representations tend to be more compact than standard170

models, with fewer uninterpretable components. In particular, harmonic models trained for in-context171

learning achieve 100% explained variance using only the first two principal components.172

3.3 Data Efficiency in Training173

Figure 3(b) shows the test accuracy as a function of train data fraction for our synthetic experiments,174

indicating how much data is necessary in order for the model to be generalizable. We observe that175

harmonic models require comparable or much less amount of data to generalize, compared to their176

cross-entropy counterparts. Such improvement is especially notable for in-context learning, where177

harmonic models generalize nearly immediately.178

3.4 Reduced Grokking179

Grokking refers to the phenomenon of delayed generalization [5]: for example, it takes 103 steps180

to reach perfect accuracy on the training data, but it takes 105 steps to generalize to the test data.181

Grokking is a pathological phenomenon that we want to avoid [8]. We find that harmonic loss overall182

reduces grokking, as seen in Figure 3(c). Points on the y = x line represent models which trained183

without grokking, with train and test accuracy improving together. This improvement is particularly184

evident in learning modular addition and permutation composition: while the standard MLP exhibits185

severe grokking, most data points for the harmonic MLP lie much closer to the y = x line.186

3.5 Case Study: Modular Addition187

In this section, we study modular addition as a case study and analyze why the harmonic MLP188

encourages more interpretable representations and better generalization compared to the standard189

MLP. The standard MLP trained for modular addition without weight decay often fails to generalize,190

as shown in Figure 4. Generalization is only achieved with the addition of strong weight decay;191
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Figure 5: GPT2 experiments: (Top left) loss curves. Harmonic GPT achieves a slightly lower loss
compared to standard GPT. (Top right) cumulative distribution function with respect to parallelogram
loss, for twelve function-vector tasks. Harmonic GPT consistently shows lower parallelogram losses
(i.e., better parallelograms). (Bottom) Parallelograms (1st and 2nd principal component) with quality
ranked in descending order from left to right. Harmonic GPT tends to produce parallelograms that
are more ‘rectangular’, while standard GPT produces flat ‘parallelograms’.

however, (a) significant grokking occurs, as depicted in Figure 4, and (b) while the first two principal192

components form an approximate circle, they explain far less than the total variance, leaving signifi-193

cant unexplained variance. In contrast, the harmonic model trained for modular addition generalizes194

quickly without grokking. Furthermore, the embedding forms a perfect circle, as shown in Figure 4.195

The better formation of a circle and improved generalization in harmonic MLP can be attributed196

to the properties of harmonic loss, as explained in Section 2. To drive the probability to 1, the197

standard cross-entropy loss requires driving the representation to infinity—i.e., making the logit198

infinite. In contrast, harmonic loss achieves this by driving the harmonic logit to zero, which is easily199

accomplished by learning wi = x in Equation 2. The existence of such a finite converging point200

results in (a) faster convergence, (b) better generalization, and (c) more interpretable representations.201

4 MNIST Experiments202

For vision tasks, convolutional neural networks are shown to be (at least somewhat) interpretable203

by demonstrating “edge detectors”, “wheel detectors”, etc. [9]. In this section, we show that the204

harmonic loss can lead to a more interpretable network for the MNIST dataset when it comes to205

training fully connected networks. As a proof of concept, we compare one-layer neural networks206

trained using cross-entropy loss and harmonic loss. The input images are first flattened and passed207

through a 784× 10 linear layer to obtain the logits. The models were trained with a batch size of 64,208

a learning rate of 0.001, and for 10 epochs, achieving a 92.50% test accuracy for cross-entropy loss209

and 92.49% test accuracy for harmonic loss.210

Figure 4 shows that the harmonic model’s weights are more interpretable than those of the standard211

model. Consistent with its core principle, the harmonic model’s weights almost perfectly align with212

class centers (images of each number). They also assign near-zero values to peripheral pixels, unlike213

the model trained with cross-entropy loss, which lacks an incentive to reduce irrelevant background214

weights to exactly zero.215
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5 GPT2 Experiments216

Many mechanistic interpretability works have been dedicated to understanding large language models.217

For example, probing and attribution methods are good post hoc analysis tools. Despite their (partial)218

success, these tools are not creating interpretable models in the first place but are trying to find219

needles in the haystack. We argue that it would be nicer if we could pre-train the language models to220

be more interpretable. By using harmonic loss in training, we can produce a language model that221

can “grow" crystal-like representations, while having comparable performance with a standard one222

(trained with the cross-entropy loss).223

We pre-train a GPT-2 small model (128M, based on NanoGPT) on OpenWebText. The embedding224

matrix and the unembedding matrix are tied (share the same weights). We use 8 V100 GPUs, choose225

block size 1024, batch size 480 blocks. We use the Adam Optimizer with β1 = 0.9, β2 = 0.95.226

For the harmonic loss, we choose n =
√
768 ≈ 28, following the discussion on harmonic exponent227

in Section 2. For standard (harmonic) GPT, we use a linear warmup learning rate schedule for 2k228

(1k) steps to maximum learning rate 6× 10−4 (6× 10−3), and a cosine decay schedule from 2k to229

10k, ending at lr 3× 10−5 (3× 10−4). As shown in Figure 5 top left, Harmonic GPT shows faster230

converging initially (partially due to larger learning rates), and converges to similar performance231

in the end (at 10k steps). The final validation losses are 3.159 (standard) and 3.146 (harmonic).232

From training loss curves, harmonic GPT also seems to have smaller fluctuations. This suggests the233

effectiveness of the harmonic loss on real-world models.234

To testify the interpretability of the learned embeddings, we take twelve function-vector tasks235

from [10]. Each dataset contains many input-output pairs that have a certain relation. For example, the236

“present-past" dataset contains pairs like: jump-jumped, fasten-fastened, win-won, etc. To construct237

parallelograms, we can draw two different pairs from the dataset, obtaining quadruples like (jump,238

jumped, fasten, fastened) which are expected to form parallelograms. Each word is tokenized into239

tokens; if multiple tokens are obtained, we use the last token. We project token embeddings onto the240

first two principal components. The quadruple (i, j,m, n) has 2D PC embeddings (Ei,Ej ,Em,En);241

we define the parallelogram loss lpara to be242

lpara = ∥Ei +En −Ej −Em∥/σ, (3)

where σ =
√

1
V

∑V
k=1 ∥Ek∥2 is a scale factor that normalizes the loss (Ek → aEk leaves lpara243

invariant). We obtain 10000 quadruples, measuring the parallelogram qualities by computing their244

parallelogram losses. We plot their cumulative distribution function in Figure 5 in the top right:245

for every task, the harmonic GPT produces lower parallelogram loss (better parallelograms) than246

standard GPT. We show the parallelograms obtained in the present-past task in Figure 5 bottom. The247

parallelograms are ranked with quality in descending order from left to right. The harmonic GPT248

tends to produce visually appealing parallelograms that are more ‘rectangular’, while standard GPT249

produces flat ‘parallelograms’. Discussion about internal representations is included in Appendix C.250

6 Ablation Experiments251

Harmonic loss makes two major modifications to the standard cross-entropy loss: (i) compute logits252

via ℓ2 distances, and (ii) use HarMax function as shown in Eq. (2). To tease apart their individual253

contributions, we perform a set of targeted ablations in which one component is replaced at a time254

while the remainder of the training pipeline is left unchanged. Specifically, we train MLP models on255

the in-context learning and modular addition tasks with the ablated loss functions.256

Results are shown in Figure 6. In in-context learning tasks, we observe that including either HarMax257

or ℓ2 logits alone is sufficient to replicate the full performance of Harmonic Loss. In contrast, for258

modular addition tasks, both HarMax and ℓ2 logits are essential to achieve the full performance.259

While incorporating only one component enhances the quality of the circular representation, the260

explained variance remains significantly below 100%. Overall, both HarMax and ℓ2 logits play261

critical roles in improving interpretability of the representations.262
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Figure 6: Learned embeddings on the lattice and modular addition tasks. Each pane shows the 5×5
class embeddings after training (numbers denote class IDs). Columns vary random seeds; the four
left columns are for in-context learning, and the four right columns are for modular addition task.
Rows correspond to loss functions: (top) full harmonic loss (ℓ2 logits + HarMax), (2nd) ℓ2 logits +
SoftMax, (3rd) dot-product logits + HarMax, (bottom) standard cross-entropy layer. Here, we see
that only ℓ2 distance paired with HarMax successfully recovers both the lattice and circular structure.

7 Related Works263

Representations and Mechanistic Interpretability: Numerous studies have shown that LLMs can264

form conceptual representations across spatial [11], temporal [12], and color domains [13]. The265

structure of such representations includes one-dimensional concepts [11, 14–16], as well as multi-266

dimensional representations such as lattices [17–19] and circles [6, 20]. While the structure of these267

representations correlates with certain geometric patterns, significant unexplained variance frequently268

remains, necessitating efforts to improve the interpretability of neural network representations.269

Loss Functions: Previous research has shown that loss functions can influence how a model learns to270

represent data, affecting its abilities in unique ways [21–27]. We refer readers to [28] and [29] for a271

comprehensive survey of different loss functions used in machine learning. Our harmonic loss offers272

an alternative supervisory signal in standard supervised learning by (a) replacing the usual SoftMax273

normalization with a scale-invariant HarMax function and (b) computing logits via Euclidean distance274

rather than a dot product. While it bears resemblance to contrastive loss—since both encourage275

maximal separation between different classes by using Euclidean distance as a metric—contrastive276

learning methods are not inherently supervised: they typically append a cross-entropy layer to277

generate logits, thus reintroducing SoftMax (and its drawbacks). We also show in Section 6 that using278

Euclidean distance alone is insufficient to fully replicate harmonic loss’s capabilities. Furthermore,279

directly leveraging Euclidean distance-based supervised learning has been relatively underexplored280

in language modeling outside of simple tasks like sentence sentiment classification [30]. We present281

a more comprehensive comparison of harmonic loss with other loss functions in Appendix D.282

8 Conclusions283

In this paper, we introduced harmonic loss as an alternative to the standard cross-entropy loss for284

training neural networks and large language models (LLMs). We found that models trained with285

harmonic loss perform better than standard models by: (a) reducing grokking, (b) requiring less data286

for generalization, and (c) improving interpretability. We also compared a GPT-2 model trained with287

harmonic loss to the standard GPT-2, illustrating that the harmonic loss-trained model develops more288

interpretable representations. Further study is needed to explore the scalability and applicability of289

our findings to even larger models.290
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A Full Representation Visualization392

Figure 7 shows the visualization of representations for all models and datasets.393
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Figure 7: Visualization of the top two principal components of the embeddings in synthetic experi-
ments. The title of each subplot shows the explained variance by the first two principal components.
Each row corresponds to a pair of a dataset and a model, while each column represents the embeddings
from different training runs with varying seeds. Groups of four rows belong to the same dataset, with
models arranged in the order: {Standard MLP, Harmonic MLP, Standard Transformer, Harmonic
Transformer}. The datasets are ordered as follows: {In-Context Learning, Genealogy Learning,
Equivalence Classes, Modular Addition, and Permutation Groups}.
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Figure 8: Harmonic loss (harmonic) and cross-entropy loss (standard) induce qualitatively different
representations in the intermediate layer 6 of GPT2. We show the distribution of parallelogram loss
for the parallelogram dataset. Harmonic loss has more perfect parallelograms (spike close to zero
loss) but demonstrates a heavier tail.

B Identifying Coset Structure in Permutation Representations394

To explore the coset structure in permutation representations of S4, we began by enumerating its395

subgroups. Using this enumeration, we computed all possible left and right cosets of each subgroup396

in S4, yielding 28 distinct left cosets and 28 distinct right cosets.397

Among these cosets, two pairs are equivalent, since we consider two of the four normal subgroups of398

S4: the alternating group A4 and the Klein-4 group. To focus on meaningful structures, the trivial399

subgroup and the entire group were excluded from further analysis.400

The coset partitions were then compared using the silhouette score, a metric for evaluating the401

quality of clustering. This comparison helped identify the partition with the most structured coset402

organization, which is likely the structure that the model has captured during training. We then color403

the representation according to the best-clustered partition, with each coset being a different color.404

C Analyzing GPT2 hidden representations405

In Section 5, we have shown that GPT2 trained with the harmonic loss has nicer structures in its406

embeddings (i.e., parallelograms) than that trained with the standard cross-entropy loss. We now407

show that intermediate representations (output of Block 6) induced by the harmonic loss are also408

qualitatively different from those of the cross-entropy loss. In Figure 8, the harmonic loss produces409

more perfect parallelograms (spike around zero parallelogram loss) but also displays a heavier tail410

for the parallelogram loss. The heavy tail is due to the heavy-tailedness of the harmonic loss (power411

law), as opposed to the cross-entropy loss (exponential). It remains to be understood if such heavy-412

tailedness is a feature or a bug for the harmonic loss, but the more perfect parallelograms are probably413

a good thing, or this at least suggests that imposing the harmonic loss at the end of the network can414

have noticeable influences in the intermediate representations. In Figure 9, we also notice that for415

the Captalize dataset, the lowercase and uppercase words tend to overlap in the first two PCs with416

the harmonic loss, but not with the cross-entropy loss. This again suggests the qualitative difference417

between the harmonic loss and the cross-entropy loss.418

D Comparison of Harmonic Loss to Alternative Loss Functions419

We briefly contrast the harmonic layer (ℓ2 logits + HarMax) with three popular loss families. Through-420

out, let x be an example embedding, wy the weight of the correct class y, and wi those of incorrect421

classes.422
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Figure 9: Visualization of layer 6 representations projected onto the first two principal components,
for the capitalize dataset. The harmonic loss (bottom) tends to collapse corresponding lower-case and
upper-case words, while the cross-entropy loss (top) places them at different locations.

Figure 10: Results for MLP models. Rows show harmonic, DotProd+HarMax, ℓ2 +SoftMax, and
standard losses (top to bottom). Harmonic loss achieves the best reconstruction across seeds.

(a) Contrastive / InfoNCE. A generic form is423

Lcontr=− log
exp
(
s(x,x+)/τ

)
exp
(
s(x,x+)/τ

)
+
∑

i exp
(
s(x,x−

i )/τ
) .

It enforces only relative ordering s(x,x+) > s(x,x−) + m, so entire constellations can drift or424

rotate. In contrast, harmonic loss pulls every example directly toward a fixed class anchor wy and425

repels it from all others, yielding a stable, globally referenced geometry.426

(b) Margin-based SoftMax. Large-margin variants add a fixed gap ∆ to every class boundary,427

s(x,wy) ≥ s(x,wi) + ∆. Because ∆ is global, semantically close classes (e.g. dog vs. cat) are428

forced as far apart as unrelated ones (dog vs. airplane). Harmonic loss adapts separation dynamically:429

pi ∝ ∥x−wi∥−n, so related concepts converge while unrelated ones diverge, yielding meaningful430

hierarchies (e.g. the FAMILY-TREE task).431

(c) Spherical / cosine losses. These constrain embeddings to the unit hypersphere and optimise432

angular margins: Lsph = − log es cos θy∑
i e

s cos θi
. While scale-invariant in angular space, they ignore433

absolute Euclidean proximity; our tasks (lattice, modular-add) benefit from the latter, explaining the434

poorer alignment of spherical loss.435

We also run some experiments contrasting harmonic loss with loss (a) contrastive loss and (c) spherical436

loss for the in-context learning and modular addition tasks. Results for MLP and Transformer models437

are in Figure 10 and Figure 11, respectively.438
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Figure 11: Results for Transformer models. Same ordering as Fig. 10.

Figure 12: Effect of the harmonic exponent n on lattice in-context learning. We sweep n ∈
{1, . . . , 10}. Columns 1–4: Harmonic–MLP, columns 5–8: Harmonic Transformer. The learned
5× 5 lattice is remarkably stable; n=1 already provides crisp and interpretable geometry.

E Sweeping HarMax Exponent Value439

We perform experiments sweeping the HarMax exponent value for the in-context learning and440

modular addition tasks. Results are displayed in Figure 12 and Figure 13. We note that varying n has441

minor impacts on lattice quality, with the default choice n=1 having the highest explained variances.442

Based on the modular addition task, our overall takeaway is that MLPs prefer the default n=1, while443

explained variance and circular structure for Transformer representations may improve with a slightly444

larger exponent.445
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Figure 13: Effect of the harmonic exponent n on modular addition. Columns 1–4: Harmonic–MLP,
columns 5–8: Harmonic Transformer. MLPs remain stable across seeds, whereas Transformers are
more sensitive yet form tighter circles at higher n; n=1 works well for MLPs, while a larger n may
benefit Transformers.

F Full Results on Algorithmic Datasets446

Fig. 14 shows the full results on algorithmic datasets.447

G Properties of Harmonic Loss: Proofs448

Theorem 1 (Finite Convergence of Harmonic Loss). Consider a classification model with K
classes and weight vectors w1, . . . , wK ∈ Rd (no bias). Let {(xi, yi)}ni=1 be the training set, with
yi ∈ {1, . . . ,K}. The cross-entropy loss is given by

LCE(W ) = −
n∑

i=1

ln
exp(wyi

· xi)∑K
j=1 exp(wj · xi)

.

The harmonic loss (with exponent β > 0) is given by

LH(W ) = −
n∑

i=1

ln
∥xi − wyi

∥−β∑K
j=1 ∥xi − wj∥−β

.

If the training data is linearly separable (i.e. there exists W such that for all i, wyi
· xi > wj · xi for449

j ̸= yi), then:450

• LCE(W ) has no finite minimum. In fact, for any weight matrix W that classifies all training451

points correctly, one can decrease LCE further by scaling W to larger norm. Thus the452

infimum of LCE is 0 but it is approached only as ∥W∥ → ∞.453
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Figure 14: (a) Cumulative explained variance vs. principal components (mean over 20 seeds).
Harmonic representations are more compact than standard counterparts. (b) Test Accuracy as a
function of Train Fraction (fixed seed). Harmonic models generalize faster with less data than
standard counterparts. (c) Epochs to Test Acc > 0.9 vs. Epochs to Train Acc > 0.9 for 20 consecutive
epochs. y = x line represents no grokking, where train and test accuracy improve simultaneously.
Points closer to the y-axis indicate a greater degree of grokking. Results from 20 different random
seeds are plotted, and the runs that were not able to achieve 90% accuracy were omitted.

• LH(W ) attains a (global) minimum at some finite W . Once the weights are large enough454

to classify all training points correctly (i.e. ∥xi − wyi∥ < minj ̸=yi ∥xi − wj∥ for all i),455

increasing the norm of W does not reduce LH. In particular, LH is scale-invariant: scaling456

all wk and all xi by a common factor leaves the loss unchanged. Consequently, LH has a457

finite global minimizer.458

Proof. For the cross-entropy loss LCE, suppose W classifies all training examples correctly. Then
for each i, wyi · xi > maxj ̸=yi wj · xi. Consider scaling W by a factor t > 1: replace each wk with
twk. Then wyi

· xi and wj · xi are both multiplied by t. The SoftMax probability of the true class yi
becomes

PW (yi|xi) =
exp(wyi

· xi)∑
j exp(wj · xi)

.

Under scaling tW , this becomes

PtW (yi|xi) =
exp(t wyi · xi)∑
j exp(t wj · xi)

.

18



Since wyi · xi is the largest logit for sample i, as t → ∞ we have PtW (yi|xi) → 1 and thus459

− lnPtW (yi|xi) → 0. This holds for all i, so LCE(tW ) → 0 as t → ∞. Therefore, no finite W460

minimizes LCE; the infimum 0 is approached only in the limit ∥W∥ → ∞.461

For LH, once W is such that each training point is correctly classified by its nearest prototype (i.e.
∥xi −wyi

∥ < ∥xi −wj∥ for all j ̸= yi), increasing the norms ∥wk∥ further will not improve the loss.
In fact, if every xi is closer to its correct wyi than to any other wj , then the harmonic probabilities

PW (yi|xi) =
∥xi − wyi

∥−β∑K
j=1 ∥xi − wj∥−β

remain unchanged under a uniform scaling: if we replace xi by cxi and wk by cwk, then ∥cxi −462

cwk∥ = c ∥xi − wk∥, so the scaling factors cancel. Therefore, once correct classification is achieved,463

no further reduction in loss is obtained by increasing ∥W∥, and LH achieves its minimum at finite464

W .465

Theorem 2 (PAC-Bayesian Generalization Bound of Harmonic Loss). Assume all training
examples lie within a ball of radius R in input space, i.e. ∥xi∥ ≤ R for all i. Suppose a weight matrix
W achieves a distance margin of γ > 0 on the training set, meaning that for every training sample
(xi, yi) and any other class j ̸= yi,

∥xi − wyi
∥+ γ ≤ ∥xi − wj∥.

Then, with probability at least 1− δ, the generalization (test) error of the harmonic classifier satisfies466

Pr
(x,y)∼D

[
hW (x) ̸= y

]
≤ O

(
R ∥W∥
γ
√
n

+

√
ln(1/δ)

n

)
,

where hW (x) denotes the predicted class and n is the number of training samples.467

In particular, ∥W∥ is finite for harmonic loss (by Theorem 1), and typically much smaller than the468

weight norm of the solution obtained with cross-entropy loss. Thus, the harmonic classifier has a469

tighter generalization bound.470

Proof. Applying the standard PAC-Bayes margin bounds (see e.g. [31]), one obtains that with
probability at least 1− δ,

Pr(hW (x) ̸= y) ≤ O

(
R ∥W∥
γ
√
n

+

√
ln(1/δ)

n

)
.

Since the harmonic loss yields a solution with finite ∥W∥, the bound is finite. In contrast, the471

cross-entropy solution would have ∥W∥ → ∞ even when achieving zero training error, rendering a472

similar bound meaningless.473

Theorem 3 (Interpretable Representations of Harmonic Loss). At a critical point (in particular, a
global minimum) of the harmonic loss, each weight vector wk becomes an interpretable class center
for class k. Specifically, the stationarity condition implies

wk =
∑

i:yi=k

αi xi with αi ≥ 0,
∑

i:yi=k

αi = 1,

i.e. wk is a convex combination of the training examples of class k. Consequently, wk represents the474

center point of its class, leading to more interpretable representations compared to cross-entropy475

loss.476

Proof. Differentiate the harmonic loss with respect to wk. For simplicity, denote

pki =
∥xi − wk∥−β∑K
j=1 ∥xi − wj∥−β

.

For samples xi with yi = k, the derivative takes the form

∂LH

∂wk
= −

∑
i:yi=k

β

∥xi − wk∥2
(wk − xi) p

k
i + terms from i with yi ̸= k.
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Table 1: Validation accuracy on ImageNet using different loss functions.
Loss Top-1 Val Acc Top-5 Val Acc
Cross-Entropy (Ours) 74.17% 91.88%
Harmonic Loss (Ours) 75.08% 92.12%
Cross-Entropy [34] 77.6% 95.3%
Supervised Contrastive Loss [34] 78.7% 94.3%

Table 2: Probing F1 score on SST-2 and CoLA datasets.
Model SST2 (Layer 0) CoLA (Layer 0) SST2 (Layer 6) CoLA (Layer 6)
Cross-Entropy 76.2 ± 1.5% 73.9 ±1.0 % 79.9 ± 1.3 % 78.2 ± 1.7%
Harmonic 77.9 ± 1.1% 74.3 ± 1.0 % 79.9 ± 1.7 % 77.1 ± 4.2%

At a critical point, the total derivative vanishes. Rearranging the stationarity conditions (and noting
that the repulsive forces from other classes tend to balance out overall on average due to long distance)
yields

wk =

∑
i:yi=k

1
∥xi−wk∥2xi +

∑
j:yj ̸=k

1
∥xj−wk∥2xj∑

i:yi=k
1

∥xi−wk∥2 +
∑

j:yj ̸=k
1

∥xj−wk∥2

.

Since wk is closer to class-k examples than to others, the weights 1
∥xi−wk∥2 for i with yi = k

dominate the sum. Define

αi =

1
∥xi−wk∥2∑

i:yi=k
1

∥xi−wk∥2 +
∑

j:yj ̸=k
1

∥xj−wk∥2

.

Then wk can be written as a convex combination

wk =
∑

i:yi=k

αi xi +
∑

j:yj ̸=k

αj xj .

In many practical settings, the contribution from xj with yj ̸= k is negligible, so wk is nearly a convex477

combination solely of class-k samples. By construction, αi ≥ 0 and the weights sum to 1. This shows478

that wk is an interpretable vector representing its class center. In contrast, for cross-entropy loss the479

stationary condition does not yield a similar expression for wk as a combination of data points.480

Remark: Under cross-entropy loss, the weight vectors usually end up pointing to the average481

direction of class elements, due to its use of the dot product. However, they do not have a closed-form482

formula like the harmonic loss above, and the weight vectors are not linear combinations of all class483

feature directions. We believe that enforcing such linear combination structure plays a crucial role in484

enhancing interpretability – it directly aligns with the Linear Representation Hypothesis [32], and485

natively supports compositional generalization.486

H Additional Benchmark Results487

H.1 ImageNet488

ImageNet [33] is a large-scale visual dataset commonly used in object recognition research. We489

compare the performance of standard cross entropy loss and harmonic loss on ImageNet. We trained490

ResNet-50 with AutoAugment data augmentation method for 90 epochs, starting with a learning491

rate of 0.1, which was reduced by a factor of 10 at epochs 10, 30, 60, and 80. The training results492

are presented in Table 1. We have also implemented our own cross-entropy training pipeline, and493

compared them with existing results in [34]. In our implementation, the harmonic model modestly494

outperformed the standard model.495
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H.2 SST2 and GLUE496

We also compare the standard GPT2 and harmonic GPT2 with the GLUE benchmark below. We497

evaluate two tasks, COLA (linguistic acceptibility) [35] and SST2 (sentence sentiment classification)498

[36]. We train a 1-layer MLP probe with hidden dimension 16 that takes the model’s residual stream499

representation as an input, and outputs the label. Table 2 shows the F1 score of the probe on validation500

dataset.501
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