
Under review as a conference paper at ICLR 2024

HARNESSING DISCRETE REPRESENTATIONS FOR
CONTINUAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) agents make decisions using nothing but observa-
tions from the environment, and consequently, heavily rely on the representations
of those observations. Though some recent breakthroughs have used vector-based
categorical representations of observations, often referred to as discrete represen-
tations, there is little work explicitly assessing the significance of such a choice.
In this work, we provide a thorough empirical investigation of the advantages of
representing observations as vectors of categorical values within the context of
reinforcement learning. We perform evaluations on world-model learning, model-
free RL, and ultimately continual RL problems, where the benefits best align with
the needs of the problem setting. We find that, when compared to traditional con-
tinuous representations, world models learned over discrete representations accu-
rately model more of the world with less capacity, and that agents trained with
discrete representations learn better policies with less data. In the context of con-
tinual RL, these benefits translate into faster adapting agents. Additionally, our
analysis suggests that the observed performance improvements can be attributed
to the information contained within the latent vectors and potentially the encoding
of the discrete representation itself.

1 INTRODUCTION

This work is motivated by the quest to design autonomous agents that can learn to achieve goals
in their environments solely from their stream of experience. The field of reinforcement learning
(RL) models this problem as an agent that takes actions based on observations of the environment in
order to maximize a scalar reward. Given that observations are the agent’s sole input when choosing
an action (unless one counts the history of reward-influenced policy updates), the representation of
observations plays an indisputably important role in RL.

The importance of observations becomes even more apparent when viewing proposed models of
autonomous agents like the Common Model, identified by Sutton (2022), or JEPA, proposed by
LeCun (2022). Nearly all of the components of these models, like the policy, value function, and
world model, intake representations that originate from observations. Changes to observations are
the most wide-reaching in the sense that they affect every part of the agent. Perhaps for this reason,
both the Common Model and JEPA share a “perception” module that transforms observations into
alternative representations before they are used by other components of the agent.

In this work, we examine the understudied yet highly effective technique of representing observa-
tions as vectors of categorical values, referred to in the literature as discrete representations (van den
Oord et al., 2017; Hafner et al., 2021; Friede et al., 2023) — a method that stands in stark contrast to
the conventional deep learning paradigm that operates on learning continuous representations. De-
spite the numerous uses of learned, discrete representations (Robine et al., 2021; Hafner et al., 2023;
Micheli et al., 2023), the mechanisms by which they improve performance are not well understood.
To our knowledge, the only direct comparison to continuous representations in RL comes from a
single result from Hafner et al. (2021) in a subfigure in their paper. In this work, we dive deeper into
the subject and investigate the effects of discrete representations in RL.

The successes of discrete representations in RL date back to at least as early as tile coding methods,
which map observations to multiple one-hot vectors via a hand-engineered representation function

1

Under review as a conference paper at ICLR 2024

(Sutton & Barto, 2018, p. 217-222). Tile coding was popular prior to the proliferation of deep neu-
ral networks as a way to construct representations that generalize well, and has more recently been
adopted to reduce interference between hidden units in neural networks (Ghiassian et al., 2020).
Continuous alternatives exist — notably, radial basis functions (RBFs) could be viewed as a gener-
alization of tile coding that produce values in the interval [0, 1]. Despite the superior representational
capacity of RBFs, however, they have tended to under perform in complex environment with many
input dimensions (An et al., 1991; Lane et al., 1992).

A similar comparison can be seen between the work of Mnih et al. (2015) and Liang et al. (2016).
Mnih et al. train a deep neural network (DNN) to play Atari games, relying on the neural network
to learn its own useful representation, or features, from pixels. In contrast, Liang et al. construct
a function for producing binary feature vectors that represent the presence of various patterns of
pixels, invariant to position and translation. From this representation, a linear function approximator
is able to perform as well as a DNN trained from pixels.

Recent approaches to producing discrete representations have moved away from hand-engineering
representations, and towards learning representations. Van den Oord et al. (2017), for example, pro-
pose the vector quantized variational autoencoder (VQ-VAE), a self-supervised method for learning
discrete representations. VQ-VAEs perform comparably to their continuous counterparts, variational
autoencoders (Kingma & Welling, 2014), and do so while representing observations at a fraction of
the size. When applied to DeepMind Lab (Beattie et al., 2016), VQ-VAEs are able to learn repre-
sentations that capture the salient features of observations, like the placement and structure of walls,
with as little as 27 bits.

Similar representation learning techniques have also been successfully applied in the domain of RL.
Hafner et al. (2021) train an agent on Atari games (Bellemare et al., 2013; Machado et al., 2018),
testing both discrete and continuous representations. They find that agents learning from discrete
representations achieve a higher average reward, and carry on the technique to a follow-up work
(Hafner et al., 2023) where they find success in a wider variety of domains, including the Proprio
Control Suite (Tassa et al., 2018), Crafter (Hafner, 2022), and Minecraft (Guss et al., 2019). Works
like those from Robine et al. (2021) and Micheli et al. (2023) further build on these successes, using
discrete representations to learn world models and policies. Work from Wang et al. (2022) find
that representations that are more successful in transfer learning are often sparse and orthogonal,
suggesting that these properties may underpin such successes of discrete representations.

The goal of this work is to better understand how discrete representations help RL agents. We use
vanilla autoencoders (Ballard, 1987) to learn dense, continuous representations, FTA autoencoders
(Pan et al., 2021) to learn sparse, continuous representations, and VQ-VAEs to learn fully discrete,
binary representations. Inspired by the success of the Dreamer architecture (Hafner et al., 2021;
2023), we first examine how these different representations help in two distinct parts of a model-
based agent: world-model learning and (model-free) policy learning. Observing that discrete and
sparse representations specifically help when an agent’s resources are limited with respect to the
environment, we turn to the continual RL setting, where an agent must continually adapt in response
to its constrained resources (Kumar et al., 2023). We particularly emphasize the benefits of discrete
and sparse representations in continual RL, as the most large and complex environments are impos-
sible to perfectly model and require continual adaptation to achieve the best performance possible
(Sutton et al., 2007; 2022).

The primary contributions of our work include:
• Elucidating multiple ways in which discrete representations have likely played a key role

in successful works in model-based RL.
• Demonstrating that the successes of discrete representations are likely attributable to the

choice of one-hot encoding rather than the “discreetness” of the representations themselves.
• Identifying and demonstrating that discrete and sparse representations can help continual

RL agents adapt faster.

2 BACKGROUND

This work primarily focuses on how to train agents that learn to achieve some goal by interacting
with the environment. This problem is formulated as learning to select actions from states St ∈ S ,

2

Under review as a conference paper at ICLR 2024

that best maximize a given reward signal, Rt+1 ∈ R. We are specifically concerned with how
to learn the parameters, θ, of a policy, πθ(At|St), that maps from states to a distribution over
actions. The goal is to maximize the discounted return from the current state, which is given by
Gt
·=
∑T
k=0 γ

kRt+k+1, where T is the terminal time step, and γ ∈ [0, 1] is the discount factor.

We use proximal policy optimization (PPO) (Schulman et al., 2017) to learn policies, which collects
transitions through environment interaction, and then applies multiple epochs of stochastic gradient
descent to weights that directly parameterize the policy. Training on the same data for multiple
epochs results in a highly sample efficient algorithm. The sample efficiency of model-free RL algo-
rithms like PPO can sometimes be further improved with the additional use of a world model (Sutton
et al., 2008; Janner et al., 2019; Atkeson & Santamarı́a, 1997; Jin et al., 2018). Dyna (Sutton, 1991)
is one such example of a framework for model-based RL that improves sample efficiency by learning
from data generated by the model in a step called planning. In our work, we split model-based RL
into its two components—world-model learning and (model-free) policy learning—and examine
both components separately for a fine-grained view of how our solutions affect complex RL agents.

Both policy and world model architectures are split into two components in our work: a representa-
tion network (or encoder) that extracts a representation, and a problem-specific network that learns a
policy or world model atop the learned representations. This decoupling can be beneficial in multiple
ways (Lan et al., 2022; Barreto et al., 2017; Bellemare et al., 2019; Dabney et al., 2021), but we use it
primarily as a means to carefully investigate how different representations affect learning. It allows
us to swap out the encoder (both architecture and objective), while keeping the problem-specific
model unchanged (aside from the input layer, which may vary in size).

With the exception of an end-to-end baseline, each of the encoders we use are trained with an
observation reconstruction objective as part of a larger autoencoder model (Ballard, 1987). The
autoencoder architecture compresses an observation into a bottleneck state before attempting to
reconstruct it, forcing it to learn a representation that captures salient aspects of the observation.
Each of the three types of learned representations we use in our work are produced by different
autoencoder variants. We also evaluate the standard approach of end-to-end learning, where the
representations are learned as a byproduct of the optimization process.

Dense, continuous representations are produced by a vanilla autoencoder.1 Sparse, continuous rep-
resentations also use a vanilla autoencoder, but the bottleneck layer outputs are passed through a
Fuzzy Tiling Activation (FTA) (Pan et al., 2021). FTA is a function that produces sparse outputs
by converting scalars to “fuzzy” one-hot vectors. The FTA representations act as a bridge between
dense, continuous representations and discrete representations, and they have been established as
a strong baseline known to yield strong results in RL (Miahi, 2022; Wang et al., 2022). Discrete
representations are produced by a vector quantized-variational autoencoder (VQ-VAE) (van den
Oord et al., 2017), which quantize the multiple outputs of the encoder to produce a vector of dis-
crete values, also referred to as the codebook. The discrete representation we refer to in our work are
comprised of multiple one-hot vectors, each representing a single, discrete value from the codebook.
The details of these autoencoders are explained in more depth in Section A.1.

3 WORLD-MODEL LEARNING WITH DISCRETE REPRESENTATIONS

We begin our experiments by examining the benefits of using discrete representations when learning
a sample-based world model.

3.1 ENVIRONMENTS

Throughout this work, we use the empty, crossing, and door key Minigrid environments (Chevalier-
Boisvert et al., 2023), as displayed in Figure 1. In each environment, the agent receives pixel obser-
vations, and controls a red arrow that navigates through the map with left, right, and forward
actions. The agent in the door key environment additionally has access to pickup and use actions
to pickup the key and open the door. The crossing and door key environments are stochastic, with

1We also tested variational autoencoders (Kingma & Welling, 2014) in early model learning experiments,
but were unable to find hyperparameters to made the method competitive. Future work may be able to improve
upon this baseline with other variations like β-VAEs or VAEs with Gaussian mixture model priors.

3

Under review as a conference paper at ICLR 2024

each action having a 10% chance to enact a random, different action. The stochasticity increases the
difficulty of learning a world model by increasing the effective number of transitions possible in the
environments. The increase in difficulty widens the performance gap between different methods,
which makes the results easier to interpret.

(a) Empty (b) Crossing (c) Door Key

Figure 1: Minigrid environments used in our ex-
periments. We refer to these as the (a) empty, (b)
crossing, and (c) door key environments. The
agent receives lower-resolution RGB arrays rep-
resenting pixels as observations.

The environments are episodic, terminating when
the the agent reaches the green square, or when
the episode reaches a maximum length. The for-
mer yields a reward Rt ∈ [0.1, 1] depending on
the length of the episode (shorter episodes yield
higher rewards), and the latter yields no reward.
The reward is calculated with the standard Mini-
grid formula, 1−0.9 tT , where t is the current step
and T is the maximum episode length (dependent
on the experiment). Though the environment is
partially observable because the agent does not
observe the current time step, this detail should
not stop the agent from learning an optimal pol-
icy. Further environment details are displayed in
Table 3 in the Appendix.

3.2 LEARNING WORLD MODELS

We train autoencoders and world models on a static dataset, D, of one million transition tuples,
(s, a, s′), collected with random walks. In each episode, the environment terminates when the agent
reaches the green square or after 10,000 steps. Training occurs in two phases: first the autoencoder
is trained, and then a transition model is trained over the fixed representations.

Observations are 3-dimensional RGB arrays, so we use convolutional and deconvolutional neural
networks (LeCun et al., 1989) for the encoder and decoder architectures. The encoder architecture is
similar to the IMPALA network (Espeholt et al., 2018), but the size of the bottleneck layer is chosen
with a hyperparameter sweep. Architectural details are given in Section A.3. All of the autoencoders
are trained with a mean square error reconstruction loss, and the VQ-VAE with additional loss terms
as detailed in Section A.1. Training for both autoencoders and world models use the Adam optimizer
(Kingma & Ba, 2015) with hyperparameter values of β1 = 0.9, β2 = 0.999, and a step size of
2 × 10−4. Training continues for a fixed number of epochs, until near-convergence, at which point
the model weights are frozen and world model learning begins.

World models learned over latent representations take a latent state, z, and an action, a, as input
to predict the next latent state, ẑ′ = wψ(z, a), with an MLP, wψ . World models learned over
continuous representations, or continuous world models, consist of three layers of 64 hidden units
(32 in the crossing environment), and rectified linear units (ReLUs) (Agarap, 2018) for activations.
In discrete world models, the MLP is preceded by an embedding layer that converts discrete values
into a continuous, 64-dimensional vectors. The loss for both world models is given by the difference
between the predicted next latent state and the ground-truth next latent state. The continuous world
model outputs a continuous vector and uses the squared error loss. The discrete model outputs
outputs multiple vectors of categorical logits and uses a categorical cross-entropy loss over each.
2 All world models are trained with 4 steps of hallucinated replay as described by Talvitie (2017),
which entails feeding outputs of the model back in as new inputs. Figures 10 and 11 in the Appendix
depict this training process for continuous and discrete world models.

Our aim is to train sample models — models that emulate the environment by producing outcomes
with frequency equivalent to that of the real environment. This is more difficult in stochastic envi-
ronments because our current training procedure would result in expectations models, where predic-
tions are weighted averages over possible outcomes. To instead learn sample models, we augment
our models using the method proposed by Antonoglou et al. (2022). This approach learns a distri-
bution over potential outcomes, and samples from them when using the world model. We provided
a more detailed explanation and relevant hyperparameters in Section A.2.

2We also experimented with a squared error loss for the discrete world model and found it made little
difference in the final world model accuracy.

4

Under review as a conference paper at ICLR 2024

Vanilla AE
VQ-VAE FTA AEEnd-to-End

Uniform

Figure 2: The KL divergence between the ground-truth state distribution and the world model in-
duced state distribution. Lower values are better, indicating a closer imitation of the real environment
dynamics. The VQ-VAE and Vanilla AE learn near-perfect models in the empty environment, so the
curves are so close to zero that they are not visible without maginification. FTA AE and End-to-End
experiments were not run in the empty environment because of the triviality. Curves depict averages
over 20 runs with 95% confidence intervals.

3.3 EXPERIMENTS

The goal of this first set of experiments is to measure how the representation of the latent space
affects the ability to learn an accurate world model. Unfortunately, this is not as simple as
comparing a predicted latent state to the ground-truth latent state, as multiple outcomes may be
possible for any given state-action pair. To account for this, we look at distributions over many
transitions instead of the outcomes of single transitions. Specifically, we measure the differences
between state distributions induced by a chosen behavior policy in the real environment and the same
policy in an environment simulated by the learned transition model. Accurate world models should
produce state distributions similar to that of the real environment, and inaccurate models should
produce state distributions that differ. Figure 12 in the Appendix contains a visualization that helps
build an intuition of how state distributions may differ, which we will discuss in more detail later.

The ability of world models to simulate trajectories outside of their training data is one of their major
benefits, so to reflect this use case, we chose behavior policies that differ from the data collection
policy. We use a random policy for the empty environment, a policy that explores the right half of
the grid in the crossing environment, and a policy that navigates directly to the goal in the door key
environment. Each of the policies are used to simulate 10,000 episodes in the real environment, and
10,000 episodes where the transition dynamics are simulated entirely by the learned world model.
Episodes are cut off early, or frozen at the terminal state to reach exact 30 steps of interaction. We
then compare the difference between state distributions at each step by measuring the KL divergence
between the induced and ground-truth state distributions. A lower KL divergence is better, indicating
that a model predicts outcomes more similar to the real environment.

We include two baselines in our comparisons that do not include auxiliary autoencoder objectives:
the uniform baseline and the end-to-end baseline. The uniform baseline predicts a uniform distri-
bution over all states and is strong when the agent’s target policy leads it to spread out, like in a
random walk. The end-to-end baseline shares an architecture equivalent to the vanilla autoencoder,
but the full model is trained end-to-end with a next-observation reconstruction loss, and the size of
the latent state is re-tuned in a separate hyperparameter sweep. This is the standard setup in deep
RL.

3.3.1 MODEL ROLLOUTS

We roll out the trained world models for 30 steps and evaluate their accuracy, plotting the results
in Figure 2. Although all of the methods perform the same in the empty environment, the gap in
accuracy widens as the complexity progressively increases in the crossing, and then in the door key
environment.

We examine visualizations of trajectories to better understand the patterns observed in Figure 2,
showing two visualizations that most clearly represent these patterns in Figures 12 and 13 in the Ap-
pendix. The trajectories predicted by the continuous models (Vanilla AE and FTA AE) in the cross-
ing environment rarely make it across the gap in the wall, which manifests as a steady increase in the

5

Under review as a conference paper at ICLR 2024

Vanilla AE

VQ-VAE

FTA AE

End-to-End

Uniform

Figure 3: The KL divergence between the ground-truth and world model induced state distributions,
averaged over 30 steps. Lower is better, indicating a closer imitation of the real environment dynam-
ics. The x-axis gives the number of hidden units per layer for all three layers of the world model.
Each point depicts the median over 20 runs with 95% confidence intervals. Error bars are high for
the end-to-end method likely due to a few divergent runs. Training the end-to-end model is harder
because gradients for multiple objectives must be passed back in time through multiple steps.

KL divergence starting around step 14. The performance of the continuous model in the door key
environment suffers much earlier as the model struggles to predict the agent picking up the key, and
again as the model struggles to predict the agent passing through the door. Notably, these two actions
occur infrequently in the training data because the training data is generated with random walks, and
because they can only happen once per episode even when they do occur. Stated concisely, the dis-
crete world model more accurately predicts transitions that occur less frequently in the training data.

3.3.2 SCALING THE WORLD MODEL

Despite sweeping over the latent vector dimensions of the vanilla and FTA autoencoders in the hy-
perparameter sweep, we were unable to find an encoder architecture that enabled either of the con-
tinuous world models to adequately learn transitions underrepresented in the training data. Either
the discrete representations allow learning something that is not learnable with the continuous
representations, or the fixed size of the world model is limiting the continuous model’s perfor-
mance. We test the latter hypothesis by varying the size of the world model while tuning the latent
dimensions of each autoencoder as described in Section A.3. We plot the average performance of
each world model in Figure 3.

In the plot, an interesting pattern emerges: the performance of all methods become indistinguishable
beyond a certain size of the world model. Only when the environment dynamics cannot be mod-
eled near-perfectly, due to the limited capacity of the world model, do the discrete representations
prove beneficial. As the size of the world model shrinks, the performance of the continuous models
degrade more rapidly. This observation aligns with the findings in the previous section, where the
performance gap between models widened with the complexity of the environment. Both results
converge to the same conclusion: the VQ-VAE discrete representations enable learning more of the
world with less capacity, relative to the size of the environment. This gap is notable especially when
the world is much larger than what the agent has capacity to model. In this setting, discrete represen-
tations are arguably favorable because they allow an agent to learn more despite its limited capacity.

3.3.3 REPRESENTATION MATTERS

Our experiments demonstrate the potential advantage of using VQ-VAE latents, but latent spaces
are defined both by the information they represent—informational content—and by the way that
information is structured—representation. Our goal in the previous experiments was to measure how
representation alone affects performance, but we do not directly control for information content—i.e.
the different bottleneck structures of a vanilla AE and a VQ-VAE may change what is learned. Our
next experiment controls for this factor as we ask the question: do the benefits of discrete world
models stem from the representation or from the informational content of the latent states?

To answer this question, we rerun the model learning experiment with two types of latents, both pro-
duced by the same VQ-VAE but represented in different ways. Generally, the outputs of a VQ-VAE
encoder are quantized by “snapping” each latent to the nearest of a finite set of embedding vectors.
The resulting quantized latents are discrete in the sense that each can take only a finite number of

6

Under review as a conference paper at ICLR 2024

Quantized

Multi-One-Hot

Uniform

Figure 4: The KL divergence between the ground truth state distribution and the world model in-
duced state distribution. Lower values are better, indicating a closer imitation of the real environment
dynamics. Both methods use the same VQ-VAE architecture, but represent the information in dif-
ferent ways. Curves depict averages over 20 runs with 95% confidence intervals.

distinct values, but are element-wise continuous. In our work, we alternatively represent latents as
(one-hot encoded) indices of the nearest embedding vectors, which are element-wise binary. Both
of these methods encode the same informational content and can produce latents of the same shape,
but have different representations. If the representation of the latent space does not matter, then we
would expect models learned over both representations to perform similarly.

We prepare the experiment by constructing architecturally equivalent world models with quantized
and multi-one-hot representations. The number and dimensionality of the embedding vectors are
set to 64 so that both representations take the same shape. The quantized model is trained with the
squared error loss, but otherwise both models follow the same training procedure.

We plot the accuracy of both models in Figure 4, where we see multi-one-hot representations vastly
outperform quantized representations despite both being discrete and semantically equivalent. These
results support the claim that the representation, rather than the informational content, is responsi-
ble for the superior performance of the VQ-VAE latents in our experiments. Our results also suggest
that the superior performance of discrete representations is not necessarily attributable to their ”dis-
creetness”, but rather to their sparse, binary nature. Both quantized and multi-one-hot representa-
tions are discrete and semantically equivalent, yet yield different results. These results reveal that
the implicit choice of representing discrete values as multi-one-hot vectors is essential to the success
of discrete representations, yet to our knowledge, such a choice is not discussed in any prior work.

4 MODEL-FREE RL WITH DISCRETE REPRESENTATIONS

As we progress to the full reinforcement learning problem, we face new challenges, like that of
learning from non-stationary distributions. Our first experiments of this section aim to understand
the effects of using discrete representations in the standard, episodic RL setting. After identifying a
clear benefit, we progress to the continual RL setting with continually changing environments Abbas
et al. (2023) as a proxy for environments that are too big for the agent to perfectly model.

We train all RL agents in this section with the clipping version of proximal policy optimization
(PPO) (Schulman et al., 2017). Instead of observations, the policy and value functions intake
learned representations. Separate networks are used for the policy and value functions, but both
share the same architecture, an MLP with two hidden layers of 256 units and ReLU activations. We
sweep over select hyperparameters for PPO and over autoencoder hyperparameters as described in
Section 2.

Training loops between collecting data, training the actor-critic model, and training the autoencoder,
and is detailed in Algorithm 2 in the Appendix. This setup differs from previous experiments in that
environment interaction and the training of each component happen in tandem instead of in separate
phases. The objectives, however, remain separate; PPO gradients only affect the policy and value
function weights, while autoencoder gradients only affect the encoder. Only the end-to-end baseline
is an exception, in which the entire model is trained with PPO, as is often standard in deep RL.

Agents are trained in the crossing and door key environments shown in Figure 1. The maximum
episode length is set to 400 in the crossing environment and 1,000 in the door key environment.

7

Under review as a conference paper at ICLR 2024

(a)

Vanilla AE

FTA AE

(b)

VQ-VAE

End-to-End

(c) (d)

Figure 5: Performance of RL agents as measured by episode length with a 95% confidence interval
over 30 runs. Lower is better. (a-b) Agents are trained with PPO and autoencoder objectives from
the beginning. (c-d) The PPO objective is introduced only after the dotted line (with the exception
of the end-to-end method).

4.1 EPISODIC RL

We train RL agents with each type of representation in the crossing and door key environments,
plotting the results in Figures 5a and 5b. All of the methods with an explicit representation learning
objective perform better than end-to-end RL. In a reverse from the previous model learning results,
the VQ-VAE now performs the worst of all the representation learning methods. Inspecting the
autoencoder learning curves in Figure 15 in the Appendix, however, reveals an important detail: all
of the autoencoders learn at different speeds. If the speed of the RL learning updates is our primary
concern (whether it actually is will be discussed later), then the learning speed of the autoencoder is
a confounding factor. We address this by delaying PPO updates until all autoencoders are trained to
around the same loss and plot the results in Figures 5c and 5d. Though the gap in performance in
the new results looks small, the VQ-VAE and FTA autoencoder methods converge with around two
to three times less PPO updates than the vanilla autoencoder.

4.2 CONTINUAL RL

While static Minigrid environments can test these representation learning methods to an extent, they
do not reflect the vastness of the real world. When the size of the world and the complexity of its
problems dwarf that of the agent, the agent will lose its ability to perfectly model the world and learn
perfect solutions (Sutton et al., 2022). The agent must instead continually adapt in response to its
limited capacity if it is to best achieve its goal(s) in this continual RL setting (Kumar et al., 2023).
Given the ability of these representation learning methods to expedite policy learning, they may be
well suited for the continual RL setting, where fast adaptation is key.

To test this hypothesis, we modify the previous experimental RL setup by randomizing the layout
of the crossing environment every 40,000 steps, and the layout of the door key environment every
100,000 steps, as is similarly done in related work (Taylor & Stone, 2009; Khetarpal et al., 2022;
Abbas et al., 2023). All of the same items and walls remain, but their positions are randomized, only
the positions of the goal and outer walls staying constant. Example layouts are shown in Figure 14
in the Appendix. By only changing the environment after a long delay, we create specific points
in the learning process where we can observe the difference between how the different types of
representation methods adapt to change. The RL training process otherwise stays the same, and is
specified in Algorithm 2 in the Appendix. With only this modification to the environments, we rerun
the previous RL experiment with a delayed PPO start, and plot the results in Figures 6a and 6b.

We observe a spike in the episode length each time the environment changes, indicating that the
agents’ previous policies are no longer sufficient to solve the new environments. While the repre-
sentation learning methods clearly outperform end-to-end training, the confidence intervals overlap
at many time steps. If we instead, however, consider the average reward accumulated by each
method per layout as displayed in Table 4 in the Appendix, a clear ranking emerges. In the crossing
environment we see VQ-VAE > FTA AE > Vanilla AE, and in the door key environment we see
VQ-VAE > FTA AE ≈ Vanilla AE.

While the slower initial learning speed of the VQ-VAE hinders its ability to maximize reward at the
beginning of the training process (when PPO updates are not delayed), it does not seem to hinder its

8

Under review as a conference paper at ICLR 2024

(a)

Vanilla AE End-to-End

(b) (c)

VQ-VAE

(d)

FTA AE

Figure 6: (a-b) Mean agent performance as the environments change at intervals indicated by the
dotted, black lines. Lower is better. (c-d) Median encoder reconstruction loss. Lower peaks mean the
representation generalizes better, and a quicker decrease means the autoencoder is learning faster.
Overall, a lower reconstruction loss is better. (a-d) Results are averaged over 30 runs and depict
95% confidence intervals. Performance is plotted after an initial delay to learn representations, after
which all methods are trained with PPO. Refer to Figure 16 for the full figure.

ability to adapt after an initial representation has already been learned. Inspecting the reconstruction
loss of both autoencoders, plotted in Figures 6c and 6d, shows that the VQ-VAE’s reconstruction loss
increases much less when the environment changes. The shorter spikes suggest that the VQ-VAE
representations generalize better, allowing them to adapt faster when the environment changes.

With these results, we return to the prior question: can multi-one-hot representations be beneficial
in RL even if the initial representation is learned slower? We argue in the affirmative. If we consider
continually learning RL agents in the big world setting, where the goal of the agent is to maximize
reward over its lifetime by quickly adapting to unpredictable scenarios, then the cost of learning an
initial representation is easily amortized by a lifetime of faster adaptation.

5 CONCLUSION & FUTURE WORK

In this work, we explored the effects of learning from discrete and sparse representations in three
modules that are commonly found in models of intelligent agents: a world model, a value function,
and a policy. When learning a world model, discrete, multi-one-hot representations enabled
accurately modeling more of the world with less resources. When in the model-free RL setting,
agents with multi-one-hot or sparse representations learned to navigate to the goal and adapt to
changes in the environment faster.

Our study underscores the advantages of multi-one-hot representations in RL but leaves several
questions of deeper understanding and extrapolation to future work. We show that one-hot encoding
is crucial to the success of discrete representations, but do not disentangle multi-one-hot represen-
tations from purely binary or sparse representations in our experiments. While the results of the
FTA autoencoder and prior work (Wang et al., 2022) suggest that sparsity and orthogonality are
major factors in the success of multi-one-hot representations, the evidence is not conclusive. Future
work could also experiment with different methods of producing discrete representations or apply
these methods to a wider variety of environments, beyond the inherently discrete domain of Mini-
grid. Prior work on DreamerV3 (Hafner et al., 2023) and the success of VQ-VAEs in the domain of
computer vision (van den Oord et al., 2017; Nash et al., 2021; Esser et al., 2021; Hong et al., 2022)
already suggest that this method will extrapolate and scale to larger environments.

Regardless of these open questions, our results implicate multi-one-hot representations learned by
VQ-VAEs as a promising candidate for the representation of observations in continual RL agents.
If we care about agents working in worlds much larger than themselves, we must accept that they
will be incapable of perfectly modeling the world. The agent will see the world as forever changing
due to its limited capacity, which is the case in complex environments like the real world (Sutton
et al., 2022; Kumar et al., 2023). If we wish to address this issue in the representation learning
space, agents must learn representations that enable quick adaptation, and are themselves quick to
adapt (Sutton et al., 2007). Multi-one-hot representations learned by VQ-VAEs do exactly that, and
provide a path towards ever more efficient, continually learning RL agents.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plastic-
ity in continual deep reinforcement learning. In Conference on Lifelong Learing Agents (CoLLAs),
2023.

Abien Fred Agarap. Deep learning using rectified linear units (ReLU). CoRR, abs/1803.08375,
2018.

P. C. Edgar An, W. Thomas Miller III, and P. C. Parks. Design improvements in associative memories
for cerebellar model articulation controllers (CMAC). Artificial Neural Networks, 47:1207–1210,
1991.

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K. Hubert, and David Silver. Plan-
ning in stochastic environments with a learned model. In International Conference on Learning
Representations (ICLR), 2022.

Christopher G. Atkeson and Juan Carlos Santamarı́a. A comparison of direct and model-based
reinforcement learning. In International Conference on Robotics and Automation (ICRA), 1997.

Dana H. Ballard. Modular learning in neural networks. In Association for the Advancement of
Artificial Intelligence (AAAI), 1987.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David Silver, and Hado
van Hasselt. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research
(JAIR), 47:253–279, 2013.

Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taı̈ga, Pablo Samuel Castro, Nico-
las Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on op-
timal representations for reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. In Association for the Advancement of Artificial Intelligence (AAAI), 2021.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
scalable distributed deep-rl with importance weighted actor-learner architectures. In International
Conference on Machine Learning (ICML), 2018.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

David Friede, Christian Reimers, Heiner Stuckenschmidt, and Mathias Niepert. Learning disen-
tangled discrete representations. In Machine Learning and Knowledge Discovery in Databases,
2023.

10

Under review as a conference paper at ICLR 2024

Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance in re-
inforcement learning by breaking generalization in neural networks. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2020.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations.
In International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In International Conference on
Learning Representations (ICLR), 2022.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with
discrete world models. In International Conference on Learning Representations (ICLR), 2021.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap. Mastering diverse domains
through world models. CoRR, abs/2301.04104, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Institute of Electrical and Electronics Engineers (IEEE), 2016.

Yan Hong, Li Niu, Jianfu Zhang, and Liqing Zhang. Few-shot image generation using discrete
content representation. In International Conference on Multimedia, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is q-learning provably effi-
cient? In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research (JAIR), 75:
1401–1476, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, and Ben-
jamin Van Roy. Continual learning as computationally constrained reinforcement learning. CoRR,
abs/2307.04345, 2023.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G. Bellemare. On the
generalization of representations in reinforcement learning. In Gustau Camps-Valls, Francisco
J. R. Ruiz, and Isabel Valera (eds.), International Conference on Artificial Intelligence and Statis-
tics (AISTATS), 2022.

S.H. Lane, D.A. Handelman, and J.J. Gelfand. Theory and development of higher-order cmac neural
networks. IEEE Control Systems, 12(2):23–30, 1992.

Yann LeCun. A path towards autonomous machine intelligence. Open Review, 2022.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E.
Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Comput., 1(4):541–551, 1989.

Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael H. Bowling. State of the art control of
Atari games using shallow reinforcement learning. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2016.

11

Under review as a conference paper at ICLR 2024

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research (JAIR), 61:523–562, 2018.

Erfan Miahi. Feature generalization in deep reinforcement learning: An investigation into represen-
tation properties, 2022.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els. In International Conference on Learning Representations (ICLR), 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, Feb 2015.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W. Battaglia. Generating images with
sparse representations. In International Conference on Machine Learning (ICML), 2021.

Yangchen Pan, Kirby Banman, and Martha White. Fuzzy tiling activations: A simple approach to
learning sparse representations online. In International Conference on Learning Representations
(ICLR), 2021.

Jan Robine, Tobias Uelwer, and Stefan Harmeling. Smaller world models for reinforcement learning.
CoRR, abs/2010.05767, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. Special
Interest Group on Artificial Intelligence (SIGART) Bulletin, 2(4):160–163, 1991.

Richard S. Sutton. The quest for a common model of the intelligent decision maker. CoRR,
abs/2202.13252, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
second edition, 2018.

Richard S. Sutton, Anna Koop, and David Silver. On the role of tracking in stationary environments.
In International Conference on Machine Learning (ICML), 2007.

Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael H. Bowling. Dyna-style
planning with linear function approximation and prioritized sweeping. In Uncertainty in Artificial
Intelligence, volume 24, pp. 528–536, 2008.

Richard S. Sutton, Michael H. Bowling, and Patrick M. Pilarski. The Alberta plan for AI research.
CoRR, abs/2208.11173, 2022.

Erik Talvitie. Self-correcting models for model-based reinforcement learning. In Association for
the Advancement of Artificial Intelligence (AAAI), 2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. Deepmind control suite. CoRR, abs/1801.00690, 2018.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research (JMLR), 10:1633–1685, 2009.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Han Wang, Erfan Miahi, Martha White, Marlos C. Machado, Zaheer Abbas, Raksha Kumaraswamy,
Vincent Liu, and Adam White. Investigating the properties of neural network representations in
reinforcement learning. CoRR, abs/2203.15955, 2022.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 AUTOENCODERS EXPLAINED

In this work, we opt to learn representations with autoencoders, neural networks with the objective
of reconstructing their own inputs. Autoencoders can be decomposed into an encoder, fθ, that
projects the input into a latent space, and a decoder, gϕ, that attempts to reverse the transformation.
Where x ∈ Rn is an observation input to the encoder, the corresponding latent state is given by
z = fθ(x) ∈ Rk, and the goal is to learn parameters θ and ϕ such that gϕ(fθ(x)) = x. We achieve
this by minimizing the squared error between the input and the reconstruction over observations
sampled from some dataset, D:

Lae = Ex∼D

[
||x− gϕ(fθ(x))||22

]
. (1)

Because the latent space of an autoencoder is constrained (generally by size, and sometimes by
regularization), the model is encouraged to learn properties of the input distribution that are the
most useful for reconstruction. We refer to this type of autoencoder, where the latent states are
represented by vectors of real-valued numbers, as a vanilla autoencoder. An overview of the model
is depicted in Figure 7.

To learn discrete representations, we use an autoencoder variant called a vector quantized varia-
tional autoencoder (VQ-VAE) van den Oord et al. (2017). VQ-VAEs also use an encoder, a decoder,
and have the same objective of reconstructing the input, but include an additional quantization step
that is applied to the latent state between the encoder and decoder layers. After passing the in-
put through the encoder, the resultant latent state z is split into k latent vectors of dimension d:
{z1, z2, . . . , zk} ∈ Rd. Each latent vector is quantized, or “snapped”, to one of l possible values
specified by a set of embedding vectors. The quantization function uses l embedding vectors of
dimension d, {e1, e2, . . . , el} ∈ Rd, which are learned parameters of the VQ-VAE.

The quantization happens in two phases. First, each latent vector is compared to every embedding
vector using the L2 norm, and indices of the most similar embedding vectors are returned:

ci = argmin
j
∥zi − ej∥2, for all i = 1, 2, ..., k. (2)

The resultant vector of integers c is called the codebook, and indicates which embedding vectors are
the most similar to each latent vector. In the second phase, the indices in the codebook are used to
retrieve their corresponding embeddings, producing the quantized latent vectors:

z′i = eci , for all i = 1, 2, ..., k. (3)
The quantized vectors {z′1, z′2, . . . , z′k} ∈ Rd are the final output of the quantization function, and
are concatenated before being passed to the decoder. The full architecture is depicted in Figure 8.

Because the quantization process is not differentiable, a commitment loss is added to pulls pairs of
latent states and their matching embeddings towards each other. If latent vectors are always near an
existing embedding, then there will be minimal difference between all zi and z′i, and we can use
the straight-through gradients trick Bengio et al. (2013) to pass gradients directly back from z′ to z
with no changes. Combining the reconstruction and commitment losses, the full objective is given
by the minimization of

Lvqvae = Ex∼D

[
||x− gϕ(qe(fθ(x)))||22 + β

k∑
i=1

∥zi − ezi
∥22

]
, (4)

where qe is the quantization function, β is a hyperparameter that weights the commitment loss,
and ezi

is the closest embedding vector to zi. In practice, the speed at which the encoder weights
and embedding vectors change are modified separately by weighting the gradients of both modules
individually. We use a value of β = 1 in our work, and scale the embedding updates with a weight
of 0.25.

The discrete representations we use for downstream tasks RL tasks are different from the quan-
tized vectors that are passed to the decoder. We instead use one-hot encodings of the values in the
codebook:

oij =

{
1 if j = ci,

0 otherwise
for j = 1, 2, . . . , l. (5)

13

Under review as a conference paper at ICLR 2024

Figure 7: Depiction of a vanilla autoencoder with a continuous latent space. The input x is encoded
with fθ to produce a latent state z, which is decoded by gϕ to produce the reconstruction x̂. The
model is trained to minimize the distance between the input and reconstruction with the reconstruc-
tion loss Lae.

Figure 8: Depiction of the VQ-VAE architecture. The input x is encoded with encoder fθ to produce
latent vectors {z1, z2, . . . , zk} ∈ Rd. In the first green circle, each latent vector is compared to every
embedding vector to produce codebook c, a vector of indices indicating the most similar embedding
vectors (example values are depicted). In the second green circle, the indices are transformed into
their corresponding embedding vectors to produce quantized vectors {z′1, z′2, . . . , z′k} ∈ Rd. The
quantized vectors are then decoded by gϕ to produce the reconstruction x̂. Our work uses one-hot
encodings of the codebook c as discrete representations.

The result is a series of one-hot vectors {o1,o2, . . . ,ok} ∈ Rl that represent a single state, which
we refer to as a multi-one-hot encoding or discrete representation.

A.2 STOCHASTIC WORLD MODELS

We use a variant of the method proposed by Antonoglou et al. (2022) to learn sample models for
stochastic environments. The method works similarly to a distribution model, first learning a dis-
tribution over possible outcomes during training, and then sampling from that distribution during
evaluation. The problem faced by most distribution models is how to represent a distribution over
a complex state space (or latent space in our case). Antonoglou et al. circumvent this problem by

14

Under review as a conference paper at ICLR 2024

learning an encoder e that discretizes each state-action pair, mapping it to a single, k-dimensional
one-hot vector we call the outcome vector. Each of the possible k values represents a different
outcome of the transition.

The high-level idea is that while directly learning a distribution over full latent states is intractable,
learning a categorical distribution over a limited, discrete set of outcomes (the outcome distribution)
is possible. Whenever we wish to use the world model, we can sample from the outcome distribution
and include the one-hot outcome vector as an additional input to the world model, indicating which
of the k outcomes it should produce. Table 1 in provides the relevant hyperparameters for this
method.

Table 1: Stochastic sample model hyperparameters

Hyperparameter Value
Bin count 32
Discretization projection 256, 256
Prediction projection 256, 256

A.3 AUTOENCODER ARCHITECTURE

The vanilla autoencoder, FTA autoencoder, and VQ-VAE use the same encoder and decoder archi-
tecture, only differing in the layer that produces the latent state. The decoder is a mirror of the
encoder, reversing each of the shape transformation, so we describe only the encoder architecture.
The encoder starts with three convolutional layers with square filters of sizes {8, 6, 4}, channel
of sizes {64, 128, 64}, strides of {2, 2, 2} (or {2, 1, 2} for the crossing environment), and uniform
padding of {1, 0, 0}. Each convolutional layer is followed by a ReLU activation. The downscal-
ing convolutions are followed by an adaptive pooling layer that transforms features into a shape of
(k× k× 64), and finally a residual block (He et al., 2016) consisting of a convolutional layer, batch
norm (Ioffe & Szegedy, 2015), ReLU, convolutional layer, and another batch norm. These general
layers are followed by layers specific to the type of autoencoder.

The vanilla autoencoder flattens the convolutional output and projects it to a latent space of size D
with a linear layer. We use a value of k = 8 and sweep over values of d = {16, 64, 256, 1024}
for each environment. We use d = 64 for the empty environment, d = 256 for crossing, and
d = 1024 for door key, though we note that we do not observe a statistically significant difference
in performance for values of d ≥ 64. The end-to-end baseline uses the same architecture and tuning
procedure, but the final hyperparameter values are d = 64 for crossing, and d = 1024 for door key.

The FTA autoencoder has the same structure as the vanilla autoencoder, but with an FTA after
the final bottleneck layer. The tiling bounds are fixed at [−2, 2] for all cases, except for learning
a world model in the door key environment, where it is [−4, 4]. We sweep over values of d =
{64, 256, 1024} and the number of tiles, k = {8, 16, 32}. The sparsity parameters, η, is set to be
the same as the size of the tiles, as is recommended in the original work (Pan et al., 2021). We use
values of d = 64 and k = 16 in both environments.

The VQ-VAE directly quantizes the output of the general layers, so the only other parameters added
are the embedding vectors. The number of vectors that make up a latent state is given by k2, and
we let l be the number of embedding vectors, resulting in discrete representations of shape (k2, l).
We sweep over values of k = {3, 6, 9} and l = {16, 64, 256, 1024} for each environment. We use
k = 6 and l = 1024 (for a total size of 6,144) for all environments except for crossing, which uses
a value of k = 9 (for a total size of 9,216).

When designing the experiments, we considered how to construct a fair comparison between the
continuous and discrete methods despite the fact that each have different ideal sizes of the latent
state, which makes one model bigger than the other. This is a particularly difficult question because
it is unclear if we should focus on the size of a representation in bits, or the size of the representation
in the number of values used to represent it in a deep learning system. A discrete representation is
orders of magnitude smaller than a continuous representation if represented in bits (9× log2 1024 =
90 bits in the crossing environment), but takes an order of magnitude more values to represent as one-
hot vectors being passed to a neural network (9× 1024 = 9216 values in the crossing environment).
Ultimately, we found that answering this question was unnecessary, as the performance of both

15

Under review as a conference paper at ICLR 2024

methods was limited no matter how large we made the size of the representations. In the crossing
environment, for example, the performance of the continuous model would not increase even if we
increased the size of the latent state from 256 to 9,216 values to match that of the discrete latent
state.

A.4 REINFORCEMENT LEARNING HYPERPARAMETERS

Before running the model-free RL experiments, we performed a grid search over the most sensitive
PPO hyperparameters for the continuous model. We swept over clipping values, ϵ ∈ {0.1, 0.2, 0.3},
and the number of training epochs per batch, n ∈ {10, 20, 30, 40}. We use the same final PPO
hyperparameters for training the RL models with FTA and VQ-VAE latents, which are provided in
table 2.

After the sweep over PPO hyperparameters, we also repeated a sweep over the latent dimensions
of all of the autoencoders (with the exception of the VQ-VAE, which we found to be robust to
a large range of hyperparamers) as described in Section A.3. The vanilla autoencoder and end-
to-end baseline use a d = 256 dimensional latent space. The FTA autoencoder also uses d = 256
dimensional pre-activation latent space with k = 8 tiles, forming a 2048-dimensional post-activation
latent space. The VQ-VAE uses k2 = 36 latent vectors and l = 256 embedding vectors, forming a
9216-dimensional latent space.

Table 2: RL training hyperparameters

Hyperparameter Value
Horizon (T) 256
Adam step size 256
(PPO) Num. epochs 10
(PPO) Minibatch size 64
Clipping value (ϵ) 0.2
Discount (γ) 0.99
(Autoencoder) Num. epochs 8

A.5 EXPERIMENT DETAILS

Table 3: Minigrid environment specifications

Environment
Name

Image
Dimensions Actions Stochastic

of
Unique
States

Empty 48× 48× 3 left, right, forward no 64
Crossing 54× 54× 3 left, right, forward yes 172

Door Key 64× 64× 3
left, right, forward,

pickup, use yes 292

A.6 MEASURING SPARSITY

In Section 3.3.3, our comparison between multi-one-hot and quantized VQ-VAE representations
(Figure 4) resulted in a decisive victory for multi-one-hot representations, which are both sparse and
binary. Then in the continual RL setting in Section 4.2, we again see the two sparse representations
perform the best. These results suggest that there is an advantage to using sparse representations,
but can we measure the effects of different levels of sparsity?

In this section, we design an experiment that measures the effects of varying levels of sparsity in the
continual RL setting. The most straightforward way to design such an experiment with a VQ-VAE is
to change the size of the codebook, which directly controls the level of sparsity. Changing only the
codebook, however, also changes the number of the parameters in the model. If we want to measure
the effects of only sparsity, then we need to control for the size of the model.

16

Under review as a conference paper at ICLR 2024

Figure 9: Episode length of a continual RL agent averaged over 15 runs per data point. Lower is
better, indicating faster navigation to the goal. All agents use VQ-VAE representations, and the
sparsity level indicates the ratio of 0s to 1s in the representation (e.g. a sparsity level of 8 indicates
that there are 7 zeros for each one). The shaded region depicts a 95% confidence interval.

In this experiment, we vary the dimensionality of the embeddings, the number of latents, and the
size of the codebook all in tandem so that the size of the model stays constant as the level of sparsity
changes. At each level of sparsity, we rerun the continual RL experiments as described in Section
4.2 and plot a summary of the results in Figure 9. In the results, we see that sparsity does help
and that there is an ideal amount of sparsity. In both the crossing and door key environments, a
sparsity level of 8 leads to optimal performance.3 These results mirror findings from the work on
FTA by Pan et al. (2021), which also show sparsity helping up to a certain threshold.

3Note that the optimal sparsity levels in this experiment do not align with experiments in previous sections
because we use a modified architecture that allows us to change the sparsity level more freely.

17

Under review as a conference paper at ICLR 2024

A.7 SUPPLEMENTAL WORLD-MODEL MATERIALS

This section contains additional materials that help describe the model training process and results.
Algorithm 1 provides pseudo-code for the training algorithm, Figures 10 & 11 visualize the training
process, and Figures 12 & 13 visualize distributions of rollouts predicted by the learned world
models.

Algorithm 1 Training Autoencoder and World Model

D ← dataset of transition tuples (s, a, s′)
Initialize the encoder, fθ, decoder, gϕ, and world model, wψ
Set the number of autoencoder training steps, N , the number of of world model training steps, L,
and the number of hallucinated replay steps, K

{Training the Autoencoder}
for N steps do

Sample transition (s0, a0, s1) ∈ D
z← fθ(s0)
ŝ0 ← gϕ(z0)
loss← MSE(s0, ŝ0)
Update parameters θ and ϕ with Adam

end for
Freeze autoencoder model weights, θ and ϕ

{Training the World Model}
for L steps do

Sample a sequence of transitions (s0, a0, s1, a1, ..., sK) ∈ D
ẑ← fθ(s0)
for k in {0, 1, ...,K − 1} do

ẑ← wψ(ẑ, ak)
zk+1 ← fθ(sk+1)
Compute loss between ẑ and zk+1 {cross-entropy for discrete, MSE for continuous}
Update parameters ψ with Adam

end for
end for

18

Under review as a conference paper at ICLR 2024

Figure 10: Depiction of a continuous world model training with n steps of hallucinated replay. After
encoding the initial observation, the world model rolls out a trajectory of predicted latent states,
ẑt+1, ẑt+2, . . . , ẑt+n. Actions from a real trajectory are used during training, but are excluded in the
depiction to avoid clutter. The loss at each time step is calculated as the mean square error between
the hallucinated latent state ẑt+i and the ground-truth, zt+i. This method is called hallucinated
replay because the entire trajectory after the first latent state is hallucinated by the world model.

Figure 11: Depiction of a single step of discrete world model training and the subsequent discretiza-
tion of the latent state. The observation xt is encoded to produce latent state zt, which is passed to
the world model to sample the logits ẑt+1 for a following state. The predicted next state logits ẑt+1

are compared to the ground truth state zt+1, which is constructed from the corresponding ground-
truth observation: zt+1 = fθ(xt+1). Before the world model can be reapplied, the latent state logits
must be discretized with an argmax operator and converted to the one-hot format.

19

Under review as a conference paper at ICLR 2024

G
ro

un
d

Tr
ut

h
V

Q
-V

A
E

V
an

ill
a

A
E

1 5 10 15 20 25 30

Figure 12: Comparison of rollouts predicted by different world models in the crossing environment.
Each row visualizes the state distributions throughout rollouts predicted by different world models,
with the x-axis giving the step in the rollout. The ground-truth row depicts the state distribution over
rollouts as a policy that explores the right side of the environment is enacted in the true environment.
Predicted observations are averaged over 10,000 rollouts. Being closer to the ground-truth indicates
a higher accuracy.

G
ro

un
d

Tr
ut

h
V

Q
-V

A
E

V
an

ill
a

A
E

1 5 10 15 20 25 30

Figure 13: Comparison of rollouts predicted by different world models in the door key environment.
Each row visualizes the state distributions throughout rollouts predicted by different world models,
with the x-axis giving the step in the rollout. The ground-truth row depicts the state distribution
over rollouts as a policy that navigates to the goal state is enacted in the true environment. Predicted
observations are averaged over 10,000 rollouts. Being closer to the ground-truth indicates a higher
accuracy.

20

Under review as a conference paper at ICLR 2024

A.8 SUPPLEMENTAL RL MATERIALS

This section contains additional materials that help describe the RL training process and results.
Algorithm 2 provides pseudo-code for episodic and continual RL training. Figure 14 shows differ-
ent environment variations used in the continual learning setting. Table 4 provides analytical data
on continual RL performance. Figure 15 plots the reconstruction loss of the autoencoder during
episodic RL training. And lastly, Figure 16 depicts the full results of the continual RL runs starting
from the first timestep.

Algorithm 2 Reinforcement Learning Training Process

Initialize the encoder, fθ, and decoder, gϕ
Initialize the policy and value networks, πψ and Vψ , with combined parameters ψ
D ← ∅ {Dataset of observations}
Set number of interaction steps, N , batch size, B0, autoencoder epochs, L, PPO epochs K, PPO
start step P , and autoencoder batch size, B1

For continual learning experiments, specify environment change frequency, C

while number of interactions is less than N do
Enact policy πψ in the environment to obtain a batch of B0 transition tuples
if interaction step ≥ P then

Using the online data, perform K epochs of PPO updates on parameters ψ
end if
for L steps do

Sample a batch of observations (s0, s1, ..., sB1) ∈ D
Apply the autoencoder and calculate the reconstruction loss
Update parameters θ and ϕ using Adam

end for
if doing continual learning and C interaction steps have passed then

Randomize the environment
end if

end while

Figure 14: The top row depicts random initializations of the crossing environment, and the bottom
that of the door key environment. Each time the environment changes, the positions of all internal
walls and objects are randomized, with the exception of the agent position in the crossing environ-
ment and the goal in both environments.

Table 4: RL performance per environment layout (95% CI)

Latent Type Crossing Reward Door Key Reward
End-to-End 28± 5 14± 2
Vanilla AE 382± 33 866± 94
FTA AE 574± 57 1033± 130
VQ-VAE 674 ± 21 1324 ± 64

21

Under review as a conference paper at ICLR 2024

Vanilla AE

VQ-VAE

FTA AE

Figure 15: Median reconstruction loss of the autoencoder during episodic RL training. The au-
toencoder is trained on observations randomly sampled from a buffer that grows as the RL training
progresses. Lower is better, indicating a better reconstruction of the input observation. The plot de-
picts a 95% confidence interval around the median over 30 runs. We plot the median of this metric
as there are a few outliers that drastically skew the average. The VQ-VAE in particular exhibits the
highest variance in reconstruction loss, but this does not seem to hinder the representation’s perfor-
mance in the RL setting.

(a)

End-to-End

(b) (c)

VQ-VAE

Vanilla AE

(d)

FTA AE

Figure 16: (a-b) Mean agent performance as the environments change at intervals indicated by the
dotted, black lines. Lower is better. (c-d) Median encoder reconstruction loss. Lower peaks mean the
representation generalizes better, and a quicker decrease means the autoencoder is learning faster.
Overall, a lower reconstruction loss is better. (a-d) Results are averaged over 30 runs and depict
95% confidence intervals. Performance is plotted after an initial delay to learn representations, after
which all methods are trained with PPO.

22

	Introduction
	Background
	World-Model Learning with Discrete Representations
	Environments
	Learning World Models
	Experiments
	Model Rollouts
	Scaling the World Model
	Representation Matters

	Model-Free RL with Discrete Representations
	Episodic RL
	Continual RL

	Conclusion & Future Work
	Appendix
	Autoencoders Explained
	Stochastic World Models
	Autoencoder Architecture
	Reinforcement Learning Hyperparameters
	Experiment Details
	Measuring Sparsity
	Supplemental World-Model Materials
	Supplemental RL Materials

