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ABSTRACT

Adapting vision models using parameter-efficient fine-tuning (PEFT) remains
challenging, as it aims to achieve performance comparable to full fine-tuning us-
ing a minimal number of trainable parameters. When applied to complex dense
prediction tasks, existing methods exhibit limitations, including input-agnostic
modeling and redundant cross-layer representations. To address these limitations,
we propose AdaRoute, a new adapter-style method featuring a simple mixture-
of-experts (MoE) architecture. Specifically, we introduce shared expert centers,
where each expert is a trainable parameter matrix. During a feedforward pass,
each AdaRoute module in the network dynamically generates weight matrices tai-
lored for the current module via a simple dynamic parameter routing mechanism,
which selectively aggregates parameter matrices in the corresponding expert cen-
ter. Dynamic weight matrices in AdaRoute modules facilitate low-rank adaptation
in an input-dependent manner, thus generating more customized and powerful fea-
ture representations. Moreover, since AdaRoute modules across multiple network
layers share the same expert center, they improve feature diversity by promoting
implicit cross-layer feature interaction. Extensive experiments on diverse vision
tasks demonstrate the superiority of AdaRoute. For instance, in the object detec-
tion and instance segmentation task on COCO2017 with ConvNeXt-L, AdaRoute
significantly exceeds full fine-tuning by 1.4%/1.6% in AP*/AP™ using less than
5% of the trainable parameters. In the more challenging panoptic segmentation
task, when Swin-B and ConvNeXt-B are used as the backbone, AdaRoute remark-
ably improves over AdaptFormer by 1.7% and 2.0% in PQ, respectively, while
using a comparable number of trainable parameters.

1 INTRODUCTION

Parameter-efficient Fine-tuning (PEFT) aims to update or embed only a small number of parameters
into a pre-trained model while performing comparably to full fine-tuning (Han et al., 2024). This
approach has been widely adopted in both natural language processing (NLP) and computer vision.
For instance, prompt-based tuning in NLP tasks (Liu et al., 2023) has inspired many PEFT methods
in vision. A representative work is VPT (Jia et al., 2022), which inserts a set of learnable tokens
into the input sequence of Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al., 2021),
achieving task adaptation with minimal additional parameters. Although prompt-based tuning meth-
ods demonstrate promising performance on classification tasks, there still exists a considerable per-
formance gap between these methods and full fine-tuning on more complex vision tasks, such as
dense predictions. On the other hand, adapter-based PEFT methods (Houlsby et al., 2019) have also
attracted considerable attention. A well-known example is LoRA (Hu et al., 2022), which learns
low-rank adapters to achieve very efficient fine-tuning of large language models (LLMs). In the
same spirit, AdaptFormer (Chen et al., 2022) introduces a lightweight MLP module to adapt ViTs,
representing an early attempt to utilize adapters in visual recognition. LoRand (Yin et al., 2023)
further explores the potential of adapter-based tuning for more complex dense prediction tasks.
Recently, Mona (Yin et al., 2025) integrates multi-scale depthwise convolutions into the adapter
module to enhance its spatial modeling capacity for dense predictions. Although existing adapter-
based methods have achieved promising results in a variety of vision tasks, two important challenges
remain unresolved:
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Figure 1: (a) Classical adapter-based PEFT methods (e.g., Mona). (b) Our proposed AdaRoute.
Normalization layers and residual connections are omitted for simplicity. (¢) The first and second
rows show ERF and CKA visualizations for various fine-tuned models, respectively. Swin-L pre-
trained on ImageNet-21K is used as the backbone network, which is fine-tuned on the COC02017
validation set using various fine-tuning methods and the Mask R-CNN framework.
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Representation Deficiency. As shown in Figure 1 (a), each adapter is responsible for task-specific
model adaptations using input-agnostic low-rank modeling. For complex tasks such as dense pre-
dictions, it is inherently challenging to learn task-specific transformations that work universally well
for all possible inputs. The fact that such adapters cannot support dynamic input-dependent adapta-
tions to account for input variations limits the feature representation capacity of the resulting model.
To empirically verify this, we use the effective receptive field (ERF) (Luo et al., 2016) to visualize
a model’s representation capacity. Specifically, we fine-tune the Swin-L model (Liu et al., 2021)
pre-trained on ImageNet-21K (Deng et al., 2009) on the COCO2017 dataset (Lin et al., 2014) using
the Mask R-CNN framework (He et al., 2017). As shown in the first row of Figure 1 (c), previous
representative PEFT methods, including AdaptFormer and Mona , exhibit smaller ERFs compared
to full fine-tuning. This phenomenon indicates that these methods weaken the model’s ability to
capture complex spatial dependencies required for dense prediction tasks.

Feature Redundancy. Adapters embedded in different network layers and their parameters are
isolated from each other, and such a lack of cross-layer interaction may lead to redundant feature
representations. To visually illustrate this limitation, we perform a centered kernel alignment (CKA)
analysis (Kornblith et al., 2019) for different methods. As shown in the second row of Figure 1 (c),
the patterns learned by different layers in both AdaptFormer and Mona exhibit a higher similar-
ity compared to those under full fine-tuning, which means that different layers capture redundant
information.

To address these limitations, we propose a new adapter-based PEFT method dubbed AdaRoute.
As illustrated in Figure 1 (b), AdaRoute is built upon a simple mixture-of-experts (MoE) architec-
ture (Cai et al., 2025). Specifically, we construct a large shared expert center comprising a collection
of trainable parameter matrices, each having the same size as the corresponding weight matrix in
a standard adapter. Each AdaRoute module in the network dynamically generates weight matrices
tailored for the current module via a dynamic parameter routing mechanism, which selectively ag-
gregates parameter matrices in this shared expert center. This routing mechanism is analogous to
the gating mechanism in MoE that selects appropriate experts for a given input, and the trainable
parameter matrices are treated as experts in this work. Although our design is simple, it offers two
advantages that are absent in previous works:

First, dynamic weight matrices in AdaRoute modules facilitate low-rank adaptation in an input-
dependent manner, thus generating more customized and powerful feature representations. As ev-
idenced in Figure 1 (c), the ERF of our model is larger than those of other PEFT methods and
comparable to that of full fine-tuning. Such a large ERF enables our model to capture long-range
dependencies more easily, which is crucial in dense predictions (Xie et al., 2021).

Second, since the same expert center is shared among AdaRoute modules in multiple network
layers, an implicit cross-layer feature interaction can be developed, thus reducing feature redun-
dancy (Huang et al., 2017; Lou et al., 2025). As evidenced in Figure 1 (c), due to AdaRoute, the
feature diversity of our fine-tuned model is better than those of other PEFT methods and very close
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Figure 2: An overview of our proposed AdaRoute.

to that of full fine-tuning. This means that our method can extract more representative features from
complex scenes for dense predictions.

We have evaluated our method on a wide range of visual recognition tasks, including object detection
and instance segmentation, semantic segmentation, panoptic segmentation, and image classification.
Extensive experiments in Section 4 demonstrate that our method has achieved superior performance
compared to previous PEFT methods. For instance, in the semantic segmentation task on ADE20K
with Swin-L, AdaRoute surpasses full fine-tuning by 0.8% in mloU while requiring less than 4%
of trainable parameters. In the object detection and instance segmentation task on COC02017 with
ConvNeXt-L, our method achieves improvements of 0.6%/0.4% in APY/AP™ over Mona, using a
comparable number of parameters, and outperforms full fine-tuning by 1.4%/1.6% in AP?/AP™.
Furthermore, we employ PEFT methods for panoptic segmentation, a more challenging task that
unifies semantic segmentation, object detection, and instance segmentation, and has been under-
explored in prior work. Specifically, when integrated with Swin-B and ConvNeXt-B, our method
improves over AdaptFormer by 1.7% and 2.0% in PQ, respectively.

2 RELATED WORK

Efficient Transfer Learning in Language Models. With the development of LLMs, PEFT tech-
niques have been largely pioneered within the NLP community. For instance, BitFit (Ben-Zaken
et al., 2022) only updates bias terms in a backbone network and parameters outside the backbone.
Prompt-based tuning methods (Lester et al., 2021; Li & Liang, 2021; Liu et al., 2022a) aim to
achieve task adaptation by prepending a small number of learnable tokens to the input sequence,
while keeping the pre-trained weights frozen. Adapter-based methods (Houlsby et al., 2019; Pfeif-
fer et al., 2020; Hu et al., 2022; Liu et al., 2024) embed small trainable modules within the layers of a
frozen pre-trained network. A highly influential approach is LoRA (Hu et al., 2022), which approx-
imates weight updates via low-rank matrices. Subsequently, MoELoRA (Luo et al., 2024) employs
contrastive learning to encourage distinct feature learning among experts, mitigating random routing
issues. HydralLoRA (Tian et al., 2024) decomposes a projection matrix into multiple mini-rank ma-
trices and uses a router to combine their outputs. DoRA (Liu et al., 2024) decomposes pre-trained
weights into magnitude and direction to enhance both learning capacity and stability. HIRA (Huang
et al., 2025) devises a Hadamard product-based LoRA to facilitate high-rank adaptation.

PEFT for Visual Recognition. The aforementioned PEFT methods in NLP have served as a primary
source of inspiration for PEFT methods in computer vision (Jie & Deng, 2022; Luo et al., 2023; Jie
& Deng, 2023). For example, VPT (Jia et al., 2022) has successfully adapted prompt-based tuning
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Figure 3: The workflow of dynamic parameter routing in AdaRoute.

by prepending learnable tokens to the input sequence of ViTs. DA-VPT (Ren et al., 2025) further
improves visual prompt learning through semantic metric construction between prompts and image
features. TCPA (Liu et al., 2025) assigns coordinated prompts to different tokens to facilitate atten-
tion interactions. On the other hand, adapter-based methods have also been extensively explored.
AdaptFormer (Chen et al., 2022) attaches a parallel lightweight MLP module to the original channel
mixer in ViTs. KAdaptation (He et al., 2023b) decomposes and updates adapter weights through
the Kronecker product. SPT (He et al., 2023a) adaptively selects the most sensitive weights for a
given task. LoRand (Yin et al., 2023) sparsely combines low-rank weights in adapters for dense
predictions. Recently, Mona (Yin et al., 2025) introduces multi-scale spatial modeling capability
into adapters by integrating multi-kernel convolutions.

Unlike the aforementioned methods, this paper is inspired by the MoE mechanism, but redesigns
its core components: we treat parameter matrices themselves as experts. Specifically, we construct
a large shared expert center that can be dynamically queried by layer-specific routers embedded
in network layers. This enables the construction of adapters based on a rich parameter space to
facilitate cross-layer interactions, resulting in superior performance over previous PEFT methods on
diverse vision tasks.

3 METHOD

3.1 OVERVIEW

As illustrated in Figure 2 (a), we take a typical four-stage hierarchical vision architecture as an ex-
ample, where each stage consists of a patch embedding layer followed by a few network building
blocks. Within each stage, we set up a large shared expert center containing a collection of train-
able parameter matrices, while AdaRoute is integrated into every building block. For a Swin-like
transformer network (Liu et al., 2021), an AdaRoute module is attached after every token mixer
as well as every channel mixer, as shown in Figure 2 (b). In a ConvNeXt-style network (Liu et al.,
2022c), since each block encapsulates the token mixer and channel mixer into a single residual mod-
ule, an AdaRoute module is attached after every complete ConvNeXt block, as shown in Figure 2
(c). During a forward pass, each AdaRoute module selectively combines parameter matrices from
the shared expert center in the corresponding stage via a dynamic parameter routing mechanism,
analogous to the simple expert selection strategy in MoE. This process generates dynamic weight
matrices, enabling input-dependent low-rank transformation of input features.

3.2 ADAROUTE

Shared Expert Center. Each shared expert center contains a collection of trainable parameter
matrices. For channel-wise transformations, the parameter matrices form pairs,

{EA e RMXCxC g, ¢ Rchxc}’

where M denotes the capacity of the expert center. Both M and C are hyperparameters that control
the number of trainable parameters, and their configurations are discussed in Section 4.5. Since
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multi-scale spatial mixing is essential for adapting models in dense prediction tasks (Yin et al.,
2025), for generating dynamic weight matrices for spatial transformations, we introduce another set
of parameter matrices for implementing multi-kernel depthwise convolutions,

A 2 A 2 y A 2
{SA e RMXCxK] g e RMXCXKS g ¢ RMXCXKS},

where K7 represents one of the three kernel sizes. We discuss the combined settings of multiple
kernel sizes in Section 4.5.

Dynamic Parameter Routing. For simplicity, let us consider the case involving channel projection
only. As illustrated in Figure 3, given an input feature X € RZWXC (where C' and HW denote the
channel and spatial dimensions, respectively), a lightweight router network generates dynamic coef-
ficients for the parameter matrices in the expert center. Specifically, the input feature first undergoes
global average pooling (GAP), followed by a linear layer that produces a hidden representation with
a significantly reduced channel dimension (e.g., 24 channels in our implementation) to minimize
computational overhead. This hidden feature is then passed through two parallel linear layers with
softmax activation, yielding two dynamic gating vectors {G1, G2} € RM. These gating vectors
are used to dynamically aggregate the parameter matrices in the expert center: Gy is multiplied

with E 4 to produce the dynamic down-projection weight matrix W, € RCXG, and similarly, G2

is multiplied with Ep to form the dynamic up-projection weight matrix W, € R¢*¢. Although
more advanced MoE routing mechanisms exist, this simple yet efficient design aligns well with the
efficiency consideration of PEFT. The dynamically composed weight matrices W, and W, are then
used to transform the input feature X in an input-dependent and channel-wise manner. The final out-
put Y is obtained by adding a residual connection (He et al., 2016) to this dynamically transformed
input feature.

Dynamic Multi-scale Spatial Mixing. Inspired by Mona (Yin et al., 2025), we equip AdaRoute
with multi-kernel depthwise convolutions to enhance the spatial mixing of latent features pro-
duced by the dynamic down-projection weight matrix W;. Nonetheless, the convolution
kernels in AdaRoute are dynamically generated from the shared expert center. Specifically,
the router network produces three dynamic gating vectors {Ga,Gp,Gc} € RM, which
are multiplied with the corresponding parameter matrices {S4,Sp,Sc} to produce three dy-
namic convolution kernels. Then, these kernels are applied to the latent features via depth-
wise convolutions. Although the kernel generation process is conceptually similar to clas-
sical dynamic convolutions (He et al.,, 2019), a key difference is that our method produces
dynamic depthwise convolution kernels (D2Convs) rather than standard convolution kernels.
On the other hand, our design employs a
sequentially stacked multi-scale convolution
structure that progressively expands the recep-
tive field, as depicted in Figure 4. Specifically,
the input feature is sequentially fed into three
D2Conv layers with increased kernel sizes.
Each convolution stage is equipped with resid-
ual connections to facilitate gradient flow and
preserve original information. The multi-scale
outputs are then aggregated via a lightweight
Spatially-varying Aggregation (SA) module, in-
spired by spatial attention mechanisms (Li et al., 2025). The SA module uses a 1x1 convolution
followed by a softmax function to generate spatial attention maps corresponding to each scale. Each
attention map is multiplied element-wise with one of the three convolutional feature maps, dynami-
cally recalibrating these features in a spatially adaptive manner. This simple design further enhances
the dynamic capacity of AdaRoute with negligible parameter overhead, leading to more powerful
feature representations.

Figure 4: A schematic diagram of dynamic multi-
scale spatial mixing.

4 EXPERIMENTS

In this section, we present comprehensive experimental evaluations on various vision tasks, includ-
ing semantic segmentation, object detection, instance segmentation, panoptic segmentation, and
image classification. Recent work (Mai et al., 2025) has provided a detailed analysis of PEFT meth-
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Table 1: Comparison of semantic segmentation performance on the ADE20K dataset. # P denotes
the number of tunable parameters. Since all methods employ the same segmentation head, only the
number of trainable parameters in the backbone network are reported.

| Swin-B | Swin-L
Method | #P(M) mloU | #P (M) mloU
Full-tuning ‘ 86.8 50.2 ‘ 195.0 51.2
VPT 0.1 48.0 0.2 49.9
LoRA 54 494 8.1 51.1
AdaptFormer 54 50.0 8.1 513
LoRand 5.9 49.9 8.2 514
Mona 5.2 49.8 7.5 51.6
AdaRoute 5.2 50.3 7.3 52.0

| ConvNeXt-B | ConvNeXt-L
Method | 4 p (M) mIoU | #P (M) mloU
Full-tuning | 87.6 514 | 196.2 524
AdaptFormer 6.4 50.3 9.6 50.9
LoRand 6.7 49.6 9.3 51.2
Mona 6.5 50.7 9.1 51.5
AdaRoute 6.5 51.1 9.2 52.0

ods for the image classification task, but this work focuses primarily on dense prediction tasks, as
efficient dense prediction is more challenging to achieve and has more real-world applications. All
experiments are conducted on 4 NVIDIA H800 GPUs.

Pre-trained Models and Baselines. For dense prediction tasks, we employ two representative
hierarchical vision backbone networks, including Swin and ConvNeXt. In particular, we use the
base and large versions pre-trained on ImageNet-21K for both backbone architectures. Regarding
image classification, we employ ViT-B/16 (Dosovitskiy et al., 2021) pre-trained with MAE (He
et al., 2022), adhering to the setting in Chen et al. (2022). This setup allows us to comprehensively
validate the generalization ability and robustness of our method. Meanwhile, we also measure the
performance of other representative baseline methods, including VPT (Jia et al., 2022), LoRA (Hu
et al., 2022), AdaptFormer (Chen et al., 2022), LoRand (Yin et al., 2023), and Mona (Yin et al.,
2025), on the same tasks using the same pre-trained backbones. For a fair comparison, we adjust the
latent dimension of adapter-based methods to ensure that they have a comparable number of trainable
parameters. We retain the original configuration of VPT since introducing additional prompt tokens
would lead to substantial computational overhead due to self-attention operations. Since LoRA and
VPT are specialized transformer-based PEFT methods, they are not applied to ConvNeXt.

4.1 SEMANTIC SEGMENTATION

Setup. Semantic segmentation experiments are conducted on the ADE20K dataset (Zhou et al.,
2017) using the UperNet framework (Xiao et al., 2018). We adhere to the experimental setting in
Swin (Liu et al., 2021), where all models are trained for 160K iterations using the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with a “poly” learning rate schedule (Chen et al., 2017) and a
batch size of 16.

Results. Table 1 shows that our method achieves leading performance in semantic segmentation
compared to the baselines. Specifically, using Swin-B as the backbone, AdaRoute achieves the high-
est mloU of 50.3%, which is slightly better than the performance of full fine-tuning, while saving
approximately 95% of the trainable parameters. Meanwhile, when using Swin-L as the backbone,
AdaRoute achieves a notable performance improvement of 0.8% over full fine-tuning while only
using less than 4% of the parameters. Furthermore, compared to Mona, AdaRoute achieves perfor-
mance increases of 0.5% and 0.4% using Swin-B and Swin-L, respectively. AdaRoute also signif-
icantly surpasses LoRand by 1.5% and 0.8% in mloU when using ConvNeXt-B and ConvNeXt-L,
respectively, and performs on par with full fine-tuning while using less than 8% of the parameters.
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Table 2: Comparison of object detection and instance segmentation performance on the COC02017
dataset.

| Swin-B | Swin-L
Method | #P (M) AP® APY, APS, AP™ APY APZL | #P (M) AP® AP, APY, AP™  APY  APR
Full-tuning 86.8 475 698 523 428 66.6 460 | 1950 486 709 537 438 68.1 473
VPT 0.1 406 657 440 388 627 413 02 426 678 461 405 649 431
LoRA 54 401 651 432 385 621 410 81 423 676 462 404 646 435
AdaptFormer | 54 439 678 480 408 650 438 81 463 702 509 428 670 46.0
LoRand 59 428 670 465 402 640 430 82 449 692 492 418 66.1 450
Mona 52 466 694 509 424 662 456 75 481 713 528 439 682 476
AdaRoute 52 473 700 514 427 667 462 73 486 711 534 440 684 476

‘ ConvNeXt-B ‘ ConvNeXt-L
Method | #P(M) AP® APY, AP AP™ APZ  APR | #P(M) AP AP APh  AP™  APY  APE
Full-tuning 87.6 478 69.7 524 430 66.9 463 | 1962 481 69.7 531 432 668 467
AdaptFormer | 64 448 684 490 416 654 447 9.6 458 697 501 425 664 458
LoRand 6.7 439 676 477 410 646 444 93 451 688 494 420 658 452
Mona 6.5 475 700 522 432 670 467 9.1 489 714 537 444 684 48.1
AdaRoute 6.5 480 702 527 435 675 469 92 495 719 544 448 692 484

4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

Setup. Performance in object detection and instance segmentation is evaluated on the COC02017
dataset (Lin et al., 2014) using the Mask R-CNN framework (He et al., 2017), following the same
experimental setting in Swin (Liu et al., 2021). Specifically, all models are trained for 12 epochs
using the AdamW optimizer (Loshchilov & Hutter, 2019) with a batch size of 16.

Results. Unlike semantic segmentation, object detection and instance segmentation are more chal-
lenging, since models are required not only to predict bounding boxes but also to output instance-
level segmentation masks, which test the spatial modeling ability of PEFT methods more directly.
As shown in Table 2, our method delivers impressive performance compared to other PEFT methods.
For instance, using Swin-B, AdaRoute improves over Mona by 0.7%/0.3% in AP*/AP™. When us-
ing Swin-L, AdaRoute achieves remarkable performance improvements of 3.7%/2.8% in AP*/AP™
over LoRand while performing on par with full fine-tuning. When using ConvNeXt, AdaRoute
exceeds all other PEFT methods and full fine-tuning. Specifically, AdaRoute improves over full
fine-tuning by 0.2%/0.5% in AP®*/AP™ using ConvNeXt-B. When using ConvNeXt-L, AdaRoute
significantly outperforms full fine-tuning by 1.4%/1.6% in AP*/AP™.

4.3 PANOPTIC SEGMENTATION

Setup. We further perform evaluations on panoptic segmentation (Kirillov et al., 2019). This task
unifies semantic segmentation, instance segmentation, and object detection, providing a more com-
prehensive evaluation of a model’s dense prediction capability. Experiments are conducted on the
COCO2017 dataset using the Panoptic FPN framework (Kirillov et al., 2019). All models are trained
for 12 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019) with a batch size of 16. Per-
formance metrics include panoptic quality (PQ), segmentation quality (SQ), and recognition quality

(RQ).

Results. Table 3 provides the quantitative results of various models. Compared to other PEFT meth-
ods, our method delivers notable performance improvements. For instance, AdaRoute significantly
surpasses AdaptFormer by 1.7% and 1.1% in PQ using Swin-B and Swin-L, respectively. Simi-
larly, using ConvNeXt variants, AdaRoute improves over Mona by 0.6% and 0.9% in PQ. However,
we notice that our method still has a moderate performance gap with full fine-tuning in this task.
The reason might be that the extreme parameter efficiency of PEFT methods (less than 8% of the
trainable parameters of full fine-tuning) imposes fundamental limits on their ability to capture the
highly complex and diverse features required for panoptic understanding. The concurrent demands
of instance-level segmentation for things and semantic segmentation for stuff in panoptic segmenta-
tion necessitate a higher representation capability, which might not be fully attainable through PEFT
alone. Nevertheless, our method still exceeds all baselines.
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Table 3: Comparison of panoptic segmentation performance on the COCO2017 dataset.

| Swin-B | Swin-L
Method | #P(M) PQ SQ RQ |#P(M) PQ SQ RQ
Full-uning | 868 503 813 60.6| 1950 514 815 619
VPT 0.1 451 786 554 | 02 466 79.1 57.0
LoRA 54 453 785 557 | 81 466 794 57.1
AdaptFormer | 5.4  47.1 794 574 | 81 488 799 592
LoRand 59 464 793 567 | 82 477 803 580
Mona 52 481 799 583 | 7.5 497 807 602
AdaRoute 52 488 808 590 | 73 502 813 605

| ConvNeXt-B | ConvNeXt-L
Method | #P(M) PQ SQ RQ |#P(M) PQ SQ RQ
Full-tuning | 876 502 812 60.5| 1962 510 809 614
AdaptFormer | 64 466 788 567 | 96 472 796 573
LoRand 67 459 786 560 | 93 468 794 569
Mona 65 483 80.1 585| 9.1 495 809 59.7
AdaRoute 65 489 810 591 | 92 504 812 60.7

Table 4: Comparison of image classification performance obtained using ViT-B/16.

Method #P (M) CIFAR-100 SVHN Food-101 Avg.
Full-tuning 86.0 85.9 97.7 90.1 91.2
VPT 0.1 82.4 94.0 83.0 86.5
LoRA 3.9 86.2 97.1 87.8 90.4
AdaptFormer 4.3 86.2 97.0 87.9 90.4
LoRand 3.9 86.1 96.9 87.9 90.3
Mona 3.9 87.0 97.3 89.6 91.3
AdaRoute 39 87.7 97.7 89.7 91.7

4.4 IMAGE CLASSIFICATION

Setup. Following Chen et al. (2022), we conduct image classification experiments on three widely
adopted datasets: CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and Food-
101 (Bossard et al., 2014). The experimental setup follows the standard configuration as detailed in
Chen et al. (2022). Specifically, all models are trained for 100 epochs with the cosine learning rate
schedule (Loshchilov & Hutter, 2017) with 20 warm-up epochs and a total batch size of 1024.

Results. Table 4 reports the top-1 accuracy of different methods on each dataset and their average
performance on all three datasets, and it can be found that our method delivers the best performance
among all methods considered. AdaRoute achieves an improvement of 0.5% in average accuracy
over full fine-tuning. In comparison to the best-performing baseline (Mona), AdaRoute improves by
0.7%, 0.4%, and 0.1% in top-1 accuracy. The modest gains are consistent with prior observations
(Mai et al., 2025) that different PEFT methods often yield comparable performance in low-shot
image classification tasks, likely because the decision boundaries in such settings are relatively
simple to learn. In contrast, dense prediction tasks require more diverse knowledge and can better
demonstrate the capability of a model in handling complex feature representations.

4.5 ABLATION STUDIES

Setup. We conduct comprehensive ablation studies on object detection and instance segmentation,
utilizing Swin-B pre-trained on ImageNet-21K as the backbone network. The remaining experimen-
tal settings follow the configuration described in Section 4.2. Due to page limits, more experimental
evaluations are presented in the Appendix.

Trade-off between Latent Dimension and Expert Center Capacity. We investigate the effect of
two key hyperparameters: the expert center capacity M and the latent dimension C. To enable easy
integration of AdaRoute into various network architectures, we set M according to the number of
layers L in each stage of the network. For example, in stage 3 of Swin-B, which has 18 layers,
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Table 5: Impact of latent dimension and expert Table 6: Impact of expert center scope. Train-
center capacity. able parameter counts of all models are omitted

Trade-off #P(M) AP® AP due to negligible differences.

- #Layers/group AP®  AP™
M =4L,C = 40] 55 46.1 42.0

[
M=2L,C=72 54 469 424 > i
M= 35,0 =192 5.4 472 426 3 463 419

setting M = 2L yields M = 36. Table 5 reveals that performance is governed by a balance between

latent dimension and expert diversity. Optimal results occur at [M = L, C =128], indicating that
an overly small latent dimension or expert center capacity results in performance degradation.

Effect of Shared Expert Center. We evaluate the effectiveness of the shared expert center by
varying its scope within the network. Specifically, in stage 3 of Swin-B (18 layers), we divide
the expert center into smaller ones, each shared within a smaller group of consecutive layers. We
experiment with groups of 3, 6, and 9 consecutive layers. Note that stages 1, 2, and 4 are not divided
due to their small number of layers (2 layers only). As shown in Table 6, performance degrades as
the groups become smaller. Notably, when expert centers are shared within small groups (e.g., 3 or
6 layers), the performance becomes comparable to Mona, indicating that the benefit of AdaRoute
primarily comes from the proposed large shared expert center design.

Effect of Kernel Sizes in Multi-scale Spatial Mixing. We investigate the effect of kernel
sizes of depthwise convolutions in Section 3.2. As shown in Table 7, using a single kernel
size results in suboptimal performance, as it fails to capture object contexts at different scales.
In contrast, using multiple kernel sizes yields bet-
ter results. Specifically, the combination of kernel
sizes [3, 5, 7] achieves the best performance. How-

Table 7: Effect of kernel sizes in multi-scale
spatial mixing.

ever, further increasing the kernel sizes does not Kernel Size #P (M) AP® AP™
lead to better performance, which we attribute to the 3 5.1 463 422
difficulty of learning with large kernel sizes under 5 52 46.4 422
low-rank conditions. Furthermore, incorporating the 7 5.4 46.6 425
spatially varying aggregation (SA) module leads to [3,5,7] 52 47.1 426
modest performance improvements with a negligible [5,7,9] 55 469 42.6
increase in trainable parameters. [3,5,7] + SA 5.2 473 42.7

[5,7,9] + SA 55 472 427

5 LIMITATIONS

Although our AdaRoute achieves better performance than other PEFT methods in diverse vision
tasks, and sometimes even surpasses full fine-tuning using an extremely reduced number of train-
able parameters, it still has limitations. Like representative vision adapters such as AdaptFormer
and Mona, our AdaRoute cannot be integrated into the network during inference. In addition, the
introduction of multi-scale depthwise convolutions results in a minor increase in training latency.
Furthermore, due to resource constraints, we do not evaluate our approach on larger-scale models,
such as SwinV2-G (Liu et al., 2022b). In our future work, we aim to further improve efficiency,
reduce the number of trainable parameters, and achieve even stronger performance, while also ex-
panding evaluations to larger models.

6 CONCLUSION

In this paper, we propose AdaRoute, a new PEFT method for adapting vision models. Inspired by
expert routing in MoE, our method constructs a large shared expert center where trainable parameter
matrices serve as experts. A lightweight dynamic routing mechanism aggregates these experts to
generate input-dependent weights for the network, thus improving cross-layer feature interaction and
feature representation quality. Extensive experimental results on multiple challenging vision tasks
demonstrate that AdaRoute achieves superior performance compared to existing PEFT methods.
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A APPENDIX

A.1 MORE ABLATION STUDIES

Building on the training settings outlined in Section 4.5, we present additional ablation experiments
to systematically dissect the contribution of each component in our proposed method.

Impact of Different Initialization Methods of Expert Center. We adopt t runc_normal as the
default initialization strategy for the expert centers. To further investigate the impact of different ini-
tialization methods, we also evaluate kaiming normal and kaiming_uniform. As shown in
Table 8, results demonstrate that our method is not sensitive to the choice of parameter initialization,
that is, different strategies lead to only negligible differences in final performance, which confirms
the training robustness of our approach.

Table 8: Impact of different parameter initialization methods.
Init. Method AP®  AP™

trunc_normal 47.3 427
kaiming_normal 47.1 426
kaiming uniform 47.2 427

Table 9: Effect of the layout of multi-kernel dynamic convolutions.
Method AP®  AP™

Parallel 47.1 42,6
Sequential (w/o Res.) 46.6 423
Sequential (w Res.) 47.3 42.7

Table 10: Effect of activation function in dynamic routing.
Activation AP’ AP™

Sigmoid 462 419
Softmax 473 427

Other Design Choices. We further examine several design choices in AdaRoute. First, we evaluate
the layout of multi-scale dynamic convolutions introduced in Section 3.2. As shown in Table 9, our
sequential layout of multi-kernel convolutions with residual connections yields better performance
compared to both a residual-free sequential layout and a parallel layout without introducing extra
trainable parameters. We also test the activation functions used in the router. Table 10 indicates that
the use of sigmoid activation leads to performance degradation, as it does not adequately model the
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Table 11: Comparison of efficiency at the input resolution of 1280800 with a batch size of 4.

Method #P (M) Thr. (imgs/s) AP® AP™
Full-tuning 195.0 4.63 48.6 43.8
LoRA 8.1 4.07 423 404
AdaptFormer 8.1 5.15 463 428
LoRand 8.2 5.11 449 41.8
Mona 7.5 3.94 48.1 439
AdaRoute (w/o0 Conv) 7.0 4.96 477 435
AdaRoute 7.3 3.96 48.6 44.0

competition among experts in the shared center. In contrast, softmax activation provides a better
probability distribution over experts.

A.2 COMPUTATIONAL EFFICIENCY ANALYSIS

To evaluate computational efficiency, we measure training throughput (Thr.) using Swin-L as the
backbone. We focus solely on the efficiency of the backbone network since PEFT modules are only
integrated into the backbone. Specifically, the input size is set to 1280800 with a batch size of 4,
and measurements are averaged over more than 100 iterations using a single NVIDIA L40S GPU
based on the COCO2017 dataset. As shown in Table 11, our method achieves an excellent trade-off
among the number of trainable parameters, throughput, and performance. In particular, our method
matches the speed of the best-performing baseline while delivering clearly better performance. Al-
though our approach is approximately 15% slower than full fine-tuning during training, this is due
to the use of multi-kernel convolutions in the adapter design, following Mona. To analyze this over-
head, we construct a simplified variant, termed AdaRoute (w/o Conv), by removing all multi-kernel
convolutions. Results show that this variant achieves comparable throughput to AdaptFormer, while
significantly improving AP® and AP™ by 1.4% and 0.7%, respectively.

On the other hand, full fine-tuning requires storing a separate version of the network parameters for
each downstream task, while each version is nearly as large as the original pre-trained model. This
leads to significant storage overhead when multiple tasks are carried out. In contrast, our AdaRoute
requires less than 4% of the trainable parameters to achieve comparable performance, reducing the
storage cost by more than 95%.

THE USE OF LARGE LANGUAGE MODELS

In preparing this paper, the authors utilized DeepSeek-R1 (Guo et al.,, 2025) and Llama-3.1
(Grattafiori et al., 2024) to improve the readability and grammatical accuracy of selected texts, sub-
sequent to their initial drafting.

REPRODUCIBILITY STATEMENT

We have provided implementation details in this paper. Although the code is not included with this
paper submission, we are committed to making the source code publicly available once the paper
receives a final decision.
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This work proposes a generic transfer learning method for efficient vision recognition. All ex-
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thereby ensuring the absence of private or sensitive data. Furthermore, our research is designed to
be domain-agnostic and does not pose any ethical concerns, as it is not specifically tailored towards
potentially harmful application domains, including surveillance or misinformation dissemination.
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