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1 INTRODUCTION

Hematoxylin and eosin (H&E) staining provides detailed tissue morphology but lacks molecular
specificity. Multiplexed spatial proteomics (SP) addresses this gap by measuring dozens of markers
in situ, capturing molecular patterns, cellular composition, and cell–cell interactions at single-cell
resolution (Giesen et al. (2014), Black et al. (2021)). Integrating H&E’s morphological detail with
SP’s molecular specificity could enable richer tissue characterization to uncover disease mechanisms
and improve biomarker discovery, as demonstrated in integrative spatial transcriptomics analysis
(Shulman et al. (2025)). Textual information, including protein descriptions, cell-type annotations,
and clinical metadata, can augment these analyses by grounding learned embeddings in established
domain knowledge and enabling semantic queries (Schaefer et al. (2024)).

Recent self-supervised and vision-language models have generated robust morphological features
from H&E to predict therapeutic biomarkers (Chen et al. (2024), Vorontsov et al. (2024)) and en-
abled cross-modal retrieval to empower search capabilities for clinical and educational use (Huang
et al. (2023), Lu et al. (2024)). In SP, graph-based methods are employed to model cell–cell interac-
tions and cellular neighborhoods (Wu et al. (2022)). Other work focuses on representation modeling
directly from multiplexed SP images, employing convolutional or vision transformer architectures
to embed multichannel fluorescence signals for retrieval tasks (Yu et al. (2023)). Early attempts to
bridge SP and H&E have focused on predicting specific proteins from morphology alone, or integrat-
ing a limited set of markers for narrow tasks (Wu et al. (2024), Wu et al. (2023)). Although recent
efforts aim at more general purpose SP embeddings through self-supervised learning (Wenckstern
et al. (2025)), most studies rarely unify SP, H&E, and textual metadata in a single representation
space, nor address heterogeneity in SP panels. To address these gaps, we propose a vision-language
framework that combines a generalizable SP encoder capable of handling diverse marker sets with
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a joint trimodal alignment strategy leveraging complementary features from SP, H&E, and text. By
embedding explicit biological and clinical descriptors into natural language, our approach enriches
learned representations with domain knowledge, while enabling intuitive multimodal retrieval. This
single integrated framework captures molecular signals, morphological context, and biomedical se-
mantics on multiple scales, thereby facilitating advanced discovery and translational applications.

2 METHODOLOGY

2.1 DATA CURATION

We curated CODEX spatial proteomics (Black et al. (2021)), aligned H&E imaging (either from the
same or adjacent tissue slice), cell-type annotations, and clinical metadata from 64 studies consisting
of a total of 3,925 tissue regions (Enable Medicine (2024)). Due to the high dimensionality of
histology data, we cropped the regions into patches, resulting in over one million samples. We next
developed an automated captioning pipeline to incorporate protein information, marker expression,
cell-type annotations, and clinical metadata into natural language descriptions for each sample.

2.2 ENCODER ARCHITECTURES FOR MULTIMODAL ALIGNMENT

To create a unified representation space that jointly captures molecular, morphological, and textual
information, we employ separate unimodal encoders for SP, H&E, and text. Each encoder produces
a modality-specific embedding, which is then mapped to a shared 2048-dimensional space using
feed-forward projection layers.

To handle heterogeneous marker panels in spatial proteomics and capture high-dimensional protein
expression patterns, we propose a multistage transformer model trained from scratch. First, each
marker channel is encoded into a vector representation using a vision transformer to capture spatial
dependencies. Next, the channel embeddings are fused with an associated marker specific embed-
ding initialized using a protein language model via summation (ESM Team (2024) ,Wenckstern
et al. (2025)). Finally, the fused representations are input into a transformer encoder to model the
inter-marker interactions.

We fine-tune a pretrained histology foundation model, PLIP, for the H&E modality (Huang et al.
(2023)). Fine-tuning preserves the robust morphological features learned during pretraining while
adapting the encoder to the specific nuances of our dataset.

We leverage PubMedBERT, a domain specific language model, for textual inputs (Gu et al. (2022)).
To balance stability and adaptability, we only unfreeze the final two transformer layers for fine-
tuning. This encourages the model to retain general biomedical linguistic knowledge while allowing
the later layers to learn task-specific context.

After the unimodal encoders produce their respective embeddings, we align them in the joint-
embedding space. The training objective consists of pair-wise contrastive losses between the modal-
ities with an optional context-aware weighting scheme. Specifically, we follow the standard CLIP-
style loss formulation between all possible pairs of modality and take the average (Radford et al.
(2021)). Additionally, because some samples in a mini-batch may come from the same region, and
thus may not be truly independent, we introduce an optional weighting scheme to down-weight the
negative pairs originating from the same region.

2.3 EVALUATION AND PRELIMINARY RESULTS

Thus far we have conducted a pilot study using 648 regions from two cancer studies (head and neck
cancer, colorectal cancer) consisting of approximately 80,000 total patches. We split the data at
the region level into train and evaluation sets. We compare H&E performance to the baseline PLIP
model, and CODEX performance to a baseline representation that consists of the mean expression
value for each channel.

To evaluate our framework, we perform tasks at the patch and patient levels. At the patch level, we
test the framework’s ability to capture local cellular composition by retrieving patches with similar
cell-type distributions, using the learned embedding space to measure similarity and validate against
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ground-truth annotations. Our model improves (decreases) the average mean squared error of the
top five retrieved cell composition vectors for H&E from 0.39 to 0.37. However, for CODEX we
observe no improvement over the baseline. We also demonstrate a zero-shot classification capability
by prompting the text encoder with dominant cell-type annotations and identify the associated image
patches based on embedding similarities. For example, the model’s average precision for tumor cells
is 0.94 for H&E and 0.79 for CODEX compared to a random average precision of 0.32.

For patient-level evaluation, we use an attention-based multiple-instance learning (MIL) strategy
in which patch-level embeddings are aggregated within each patient, and a classifier is trained to
predict clinical phenotypes. Predicting human papillomavirus (HPV) status, a prognostic biomarker
in head and neck cancer, our results show that the area under the precision recall curve improves
from 0.90 to 0.92 for H&E and from 0.89 to 0.94 for CODEX. We further extend this to a retrieval
task by computing patient-level similarity scores to identify clinically similar patients where we see
improvement in CODEX based retrieval, however not for H&E.

3 CONCLUSION

Our preliminary results suggest that a trimodal framework for integrating molecular, morphological,
and textual signals in histopathology has significant potential. Future research will expand to the
entire dataset, allowing for a more comprehensive evaluation of our approach. Additionally, we will
explore self-supervised learning for SP and refine alignment strategies. Post alignment, exploring
multimodal generative large language models may unlock more advanced cross-modal capabilities,
enabling deeper knowledge discovery and facilitating new clinical applications.

MEANINGFULNESS STATEMENT

A meaningful representation of life seamlessly links molecular functions at the protein level to
macroscale structures of tissue and organ systems, integrating higher-order biological or clinical
narratives. By aligning multiplexed spatial proteomics, H&E histology, and clinical phenotype data
into a single embedding space, our work bridges the microscopic morphology of cells and tissues
with macroscopic patient-level context. This context-aware representation learning encourages shar-
ing of multi-scale biological information innate in the data to enhance the global representation of
life.
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