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Abstract
The prevalent employment of narrow neural net-
works, characterized by their minimal parameter
count per layer, has led to a surge in research
exploring their potential as universal function ap-
proximators. A notable result in this field states
that networks with just a width of d + 1 can ap-
proximate any continuous function for input di-
mension d arbitrarily well. However, the optimal
approximation rate for these narrowest networks,
i.e., the optimal relation between the count of
tunable parameters and the approximation error,
remained unclear. In this paper, we address this
gap by proving that ReLU networks with width
d+ 1 can achieve the optimal approximation rate
for continuous functions over the domain [0, 1]d

under Lp norm for p ∈ [1,∞). We further show
that for the uniform norm, a width of d + 11 is
sufficient. We also extend the results to narrow
feed-forward networks with various activations,
confirming their capability to approximate at the
optimal rate. This work adds to the understanding
of universal approximation of narrow networks.

1. Introduction and Main Results
Neural networks have emerged as a key component in deep
learning, garnering considerable interest due to their re-
markable success in practice. Meanwhile, understanding
the expressive power of neural networks is important for
deep learning, and boasts a rich and extensive history.

The study of the universal approximation property can at
least date back to the 1980s. The classical universal theorem
holds for wide and shallow networks. Specifically, in the
early years, researchers (Cybenko, 1989; Hornik et al., 1989;
Hornik, 1991; Leshno et al., 1993; Pinkus, 1999) show that
networks with reasonable activation with two hidden layers
can approximate any multivariate continuous function and
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Lebesgue-integrable function over a compact domain to any
desired accuracy as the width goes to infinity.

Since 2010, deep learning has experienced accelerated de-
velopment, sparking increased interest in understanding the
expressive capabilities of neural networks. Although neural
networks are recognized for their universal approximation
capability, an essential question remains: what is the mini-
mum number of parameters required for a neural network to
approximate a function adequately? To address this query,
researchers have primarily focused on establishing the up-
per and lower bounds for the size of both deep and shallow
networks in the approximation of certain functions (Eldan
& Shamir, 2016; Liang & Srikant, 2016; Telgarsky, 2016;
Yarotsky, 2017), consistently highlighting the benefits of
deeper architectures. Recently, (Yarotsky, 2018; Shen et al.,
2019a; Yarotsky & Zhevnerchuk, 2020; Shen et al., 2022b)
quantitatively characterizes the approximation capabilities
of ReLU FNNs with width O(N) and depth O(L) by exam-
ining the approximation rate, that is, they show how fast the
error infgN,L

∥f − gN,L∥ will decay in terms of N and L
when approximating a given continuous or smooth function
f and finally they find the optimal rate.

Meanwhile, the use of narrow network structures has be-
come increasingly prevalent in practice. Typically, the width
of a neural network is chosen to be near the input dimen-
sion, a preference driven by the reduced number of tunable
parameters in training. However, the upper bounds or ap-
proximation rate results discussed above can not apply to
these very narrow networks. For instance, it has been shown
that for a ReLU network constrained to a width not exceed-
ing the input dimension d, there exists a continuous function
f from which the network cannot reduce its approxima-
tion error, regardless of the number of parameters (Hanin &
Sellke, 2017).

Thus, some researchers shifted their focus to understanding
the approximation capabilities of networks from the view
of width (Lu et al., 2017; Hanin & Sellke, 2017; Kidger
& Lyons, 2020; Park et al., 2020; Cai, 2022; Kim et al.,
2023; Duan et al., 2023). This line of work is concerned
with the minimal width required for a network to univer-
sally approximate a continuous mapping from a compact
domain in Rd to Rv. The goal of this research has been
the determination of the exact minimal width wmin neces-
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Table 1. A summary of known universal approximation results of FNNs with fixed width and depth O(L). For a target function class
F and a hypothesis model (the set of networks) HL with L measuring its complexity, the approximation rate quantifies the speed of
convergence of the error supf∈F infh∈HL ∥f − h∥ in terms of L where the norm is associated with the target function class.

Reference Function Class Activation Width Approximation Rate Optimality

(Hanin & Sellke, 2017) C([0, 1]d;Rv) ReLU d+ v O
(
ωf

(
L−1/d

))
Suboptimal

(Yarotsky, 2018) C([0, 1]d;R) ReLU 2d+ 10 O
(
ωf

(
L−2/d

))
Optimal

(Kidger & Lyons, 2020) C([0, 1]d;Rv) Continuous† d+ v + 1 N.A
Lp(Rd;Rv) ReLU d+ v + 1 N.A

(Park et al., 2020) C([0, 1]d;Rv) ReLU+STEP max{d+ 1, v} O
(
ωf

(
L−1/d

))
Suboptimal

Lp(Rd;Rv) ReLU max{d+ 1, v}

(Cai, 2022) Lp([0, 1]d;Rv) LeakyReLU max{d, v, 2} N.A
C([0, 1]d;Rv) ReLU+Floor max{d, v, 2} N.A

(Duan et al., 2023) C([0, 1]d;Rv) Leaky-ReLU max{d+ 1, v} N.A

This paper (Thm. 1.1) Lp([0, 1]d;R) ReLU max{d+ 1, 5} O
(
ωf

(
L−2/d

))
Optimal

This paper (Thm. 3.1) Lp([0, 1]d;Rv) ReLU max{d+ 1, v + 6}
This paper (Thm. 3.1) C([0, 1]d;Rv) ReLU d+ v + 10 O

(
ωf

(
L−2/(d+1)

))
Nearly Optimal

† The activation function is assumed to be nonpolynomial and continuously differentiable at at least one point, with a nonzero
derivative at that point.

sary for an FNN with some reasonable activation function
to achieve universality. This width is established to be
max{d, v} for Lp-integrable mappings from [0, 1]d to Rv,
where p ∈ [1,∞), and max{d+ 1, v} for continuous func-
tion spacesC([0, 1]d;Rv). However, the approximation rate
of these networks, with their minimal widths, has been either
neglected due to the complexity of the methods involved
or not optimally characterized. Our contribution addresses
this oversight, providing a detailed analysis of the approx-
imation rate for minimally wide networks (Theorems 1.1
and 3.1). Refer to Table 1 for a succinct overview of these
developments.

Motivation: why we matter the approximation rate. The
approximation rate is a fundamental metric that quantifies
the efficacy of neural networks in representing various func-
tions. An optimal rate within the specific class of ReLU
networks denotes that a given neural network architecture is
capable of harnessing the fullest potential for function ap-
proximation. The practical implications of this are profound.
By demonstrating that a simple, yet commonly employed
neural network structure, such as the narrow networks we
examine, can realize the optimal approximation rate, we
establish that these accessible and computationally efficient
architectures do not compromise their ability to approxi-
mate functions. This, in turn, suggests that practitioners
can confidently use these simpler networks without fearing
a trade-off in performance, thus bridging the gap between
theoretical optimality and practical utility.

1.1. Main Results and Contributions

We denote by C
(
[0, 1]d

)
the set of continuous func-

tions over [0, 1]d under uniform norm ∥f∥L∞([0,1]d) =

maxx∈[0,1]d |f(x)| and by Lp
(
[0, 1]d

)
the set of Lp-

integrable functions over [0, 1]d under norm ∥f∥Lp([0,1]d) =

(
∫
[0,1]d

|f(x)|pdx)1/p < ∞. Here, without any specific
implication, we always assume 1 ≤ p < ∞. We de-
fine the modulus of continuity of a continuous function
f ∈ C

(
[0, 1]d

)
via ωf (t) :=

sup
{
|f(x)− f(y)| : ∥x− y∥2 ≤ t,x,y ∈ [0, 1]d

}
for any t ≥ 0. Note that ωf is well defined for any con-
tinuous function f but may not for Lebesgue-integrable
functions. Thus, when we use the modulus of continuity to
characterize the rate for approximating Lebesgue-integrable
functions, we may consider approximating continuous func-
tions under Lp norm since the continuous function class is
dense in the Lebesgue-integrable function class over any
compact domain under Lp norm (Walter, 1987). Our main
result is that ReLU FNN with the minimum width to satisfy
the universality can achieve the optimal rate, as shown be-
low where the proof of Theorem 1.1 is deferred to Appendix
B for (i) and Appendix C for (ii).

Theorem 1.1. Let d ∈ N. For any continuous function f ∈
C([0, 1]d), we have the following approximation results:
(i) for p ∈ [1,∞), there exists a ReLU neural network
ρ : Rd → R with width max{d+ 1, 5} and depth not more
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than 25L+ 7d+ 4 such that

∥f − ρ∥Lp([0,1]d) ≤ 7
√
dωf (L

− 2
d );

(ii) for p = ∞, there exists a ReLU neural network ρ :
Rd → R with width d+ 11 and depth not more than 6d3dL
such that

∥f − ρ∥L∞([0,1]d) ≤ 3d(3d+ 1)(6d
3
2 + 1)ωf (L

− 2
d+1 ).

Our main contributions are summarized as follows:

▷ While the minimum width of ReLU FNNs to achieve the
universality is known, we extend the approximate rate of
ReLU FNN with the minimum width to optimal (Theorem
1.1). Besides, we have a more general result in Theorem
3.1 which extends the target functions to mappings from
[0, 1]d to R. Our contribution completes the approximation
rate map of ReLU FNNs as illustrated in Figure 1, ensur-
ing that the approximation rates for continuous functions
across various regions, denoted by distinct colors, can not
be imporved.

[1
]O

(N
−
1
/
d
)

[2
]O

(N
−
2
/
d
)

[3] Infeasible

[Ours] O(L−2/d)

[4] O(L−2/d)

[5] O
((
N2L2 logN

)−1/d
)

Width N

Depth L1 L0

Minimum
width d

2d

Figure 1. A summary of existing and our new results on the ap-
proximation rate of narrow ReLU FNNs with width d + O(1)
and depth L for continuous functions. The existing results can
be found from [1][2][4] (Yarotsky, 2018; Shen et al., 2019b), [5]
(Shen et al., 2022b), and [3] (Hanin & Sellke, 2017; Park et al.,
2020; Cai, 2022).

▷ Building on the results in Theorem 1.1, we show
that narrow FNNs with either variant of ReLU functions
(e.g. LeakyReLU,ELU,ReLU2) or other commonly used
activation functions (e.g. Sigmoid,Tanh,Softsign) can
also achieve this enhanced approximation rate. Specifi-
cally, networks employing some ReLU variants such as
ELU,Softplus,Mish, network with nearly minimum width
to satisfy the universality, i.e., d + 1 (or d + O(1)), can
achieve the approximation rate in Theorem 1.1. Further,
we confirm that the rate of O(L−2/d) in Theorem 1.1
on the approximation of continuous functions is also op-
timal for narrow networks with activation functions like
LeakyReLU,ReLU2,Softsign.

2. Related Work
In recent years, the expressive power of diverse neural net-
work architectures has attracted wide interest, propelled by
their impressive and noteworthy achievements in numerous
domains. In this section, we focus on the function approxi-
mation perspective, offering an overview of previous work
relevant to our study.

2.1. Universal Approximation Property

Universal approximation property of a function family
H implies that H is dense in the continuous space
C([0, 1]d)/Lp([0, 1]d), i.e., for f ∈ C([0, 1]d)/Lp([0, 1]d)
and any desired error ϵ, there is h ∈ H such that ∥h−f∥ ≤ ϵ.
The universal approximation property has been widely stud-
ied from shallow and wide networks with suitable activation
functions (e.g., sigmoid, non-polynomial) (Cybenko, 1989;
Hornik et al., 1989; Hornik, 1991; Leshno et al., 1993) to
its dual scenario, narrow and deep networks (e.g., (Hanin
& Sellke, 2017; Kidger & Lyons, 2020)). Over the past ten
years, various network architectures have been developed to
cater to diverse tasks and objectives, aside from FNNs. The
universal approximation property has been studied for vari-
ous network architectures, such as 1D convolutional neural
networks (CNNs) (Zhou, 2018; 2020b), 2D CNNs with the
classical structure (He et al., 2022), continuous-time recur-
rent neural network (Li et al., 2020; 2022b), continuous-time
ResNet (Li et al., 2022a), and ResNet with one neuron per
hidden layer (Lin & Jegelka, 2018).

Approaches. Classical results, e.g., (Cybenko, 1989;
Hornik et al., 1989), utilize real analysis but not constructive
methods to demonstrate their result, hence it is not available
for the actual approximation rate from these results. It is
well known that polynomials, as per Stone-Weierstrass the-
orem, or piecewise linear functions are dense in continuous
function space and step functions are dense in Lebesgue-
integrable function space. Thus, to show the universality of
some NN architecture, modern approaches often construct
the architecture to generate or approximate a dense class
of C([0, 1]d)/Lp([0, 1]d). This technical extends beyond
real-valued continuous function approximators to complex-
valued function approximators e.g.,(Geuchen et al., 2023;
Voigtlaender, 2023), and to permutation invariant function
approximators e.g.,(Segol & Lipman, 2019; Sannai et al.,
2019), among others. Furthermore, the quantitative version
of Stone-Weierstrass theorem and spline approximation the-
ory inform us that any continuous function f over [0, 1]d

can be approximated by a polynomial pn with degree O(n)
and a piecewise linear interpolation function gn on the grid
(Z/n)d such that ∥f − pn∥∞ = O(ωf (1/

√
n)) (Kratsios

& Papon, 2022) and ∥f − gn∥∞ = O(ωf (1/n)) (Yarotsky,
2018). Thus, if the size of a model class to approximate
a polynomial or piecewise linear function is known, one
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can deduce the approximation rate of that model class for
continuous functions.

2.2. Minimum Width of FNNs to Satisfy Universality

While classical approximation theory most focuses on ’fat’
(wide and shallow) networks, recent research become more
interested in its dual scenario–’flat’ (narrow and deep)
networks and their universality has been explored exten-
sively. We denote Lp([0, 1]d;Rv)/C([0, 1]d;Rv) by the
set of mappings from [0, 1]d to Rv and use wmin to de-
note the minimum width of FNNs to possess the universal
approximation property. For function approximation in
Lp(Rd;R), the lower bound of wmin is d + 1 for ReLU
FNNs given by (Lu et al., 2017). When focusing on
a compact domain, specifically for approximating func-
tions in Lp([0, 1]d;R), the lower bound decreases to d (Lu
et al., 2017). When extending to approximate mappings
in Lp(Rd;R) and Lp([0, 1]d;Rv), the lower bound of wmin

is max{d + 1, v} and max{d, v} respectively for ReLU
networks (Park et al., 2020), and also hold for networks
with arbitrary activation (Cai, 2022). Recent work (Park
et al., 2020) and (Kim et al., 2023) has pinpointed the tight
upper bounds of wmin for ReLU(-Like) networks approxi-
mating mappings in Lp([0, 1]d;Rv) and Lp(Rd;Rv) to be
max{d + 1, v} and max{d, v, 2} respectively, thus, pre-
cisely determining the minimum width on the approxima-
tion in Lp space. Later, for LeakyReLU networks, (Cai,
2022) find the exact wmin in Lp space. The approxima-
tion of continuous mappings in C([0, 1]d;Rv) presents addi-
tional complexities. Its lower bound of wmin is eastablished
at both d + 1 (Hanin & Sellke, 2017) and v + 1{d<v≤2d}
(Kim et al., 2023) for ReLU FNNs, and at max d, v for FNN
with arbitrary activation (Cai, 2022). The upper bounds of
wmin on approximation of space C([0, 1]d;Rv) is d+ v for
ReLU FNNs (Hanin & Sellke, 2017) and d + v + 1 for
FNNs with continuous activation under some mild condi-
tion (Kidger & Lyons, 2020). While (Cai, 2022) shows that
the upper bound of wmin for Leaky-ReLU networks can
be lowered to max{d, v, 2} which is optimal, it remains
an open question that if the upper bound can be lowered
for ReLU networks. Nonetheless, on the approximation of
continuous functions over [0, 1]d, the minimum width to
satisfy the universality is exactly d+1. For those interested,
a comprehensive summary of these results can be found in
Table 1 presented in (Kim et al., 2023).

Approaches. On approximating mappings from a compact
domain over Rd to Rv, initial approaches (Lu et al., 2017;
Hanin & Sellke, 2017; Kidger & Lyons, 2020) typically allo-
cate d neurons in each layer to forward the value of the input
and additional v+ c neurons (with c being a small constant)
for intermediate computations. They construct this kind of
narrow network to approximate piecewise linear/constant
functions or polynomials to show its universality. As we

will further discuss later in Subsection 2.3 their constructive
network parameter, regarded as a mapping over the target
function space, is a continuous mapping. Advancements
were marked by (Park et al., 2020; Kim et al., 2023), who
introduce an encoding-memorizing-decoding scheme to ef-
fectively lower down the upper bound from d + v + c to
max{d, v(+1)}. Specifically, this method begins by parti-
tioning the interval into numerous segments and mapping
the input x to the leftmost endpoint of the corresponding
segment, thus transforming the input into a finite set. They
then decode the finite set to a scalar number. Following
this, they employ v neurons in each layer to compute the
encoder number of f(x). Finally, they decode the number
back into the v output values. Their constructive method is
in a discontinuous phase and the approximation rate is not
optimal. Recently, (Cai, 2022) found the exact minimum
width wmin for LeakyReLU networks by showing that the
narrow LeakyReLU network can approximate any flow map
that can approximate the target mapping. However, the ap-
proximation rate is not available due to the implicit rate of
flow map approximation.

2.3. Approximation Rate of FNNs

The approximation rate precisely measures the effective-
ness of an approximation. In other words, given a target
function f and a hypothesis model Hn where n denote the
complexity of the model, it characterized how fast the error
infgn∈Hn

∥f − gn∥ will decay as n increases. The approx-
imation rate of FNNs which is a special case of nonlinear
approximation, has been widely studied and has a long his-
torical origin.

Optimality. To ascertain whether a model class attains an
optimal approximation rate, it is imperative to identify the
lower bound of the approximation rate. The lower bound of
the approximation rate of continuous approximators is lim-
ited by metric entropy (Kolmogorov & Tikhomirov, 1959).
For a compact set C over a metric space M, the ϵ metric
entropy of C is a number logN(ϵ; C) where N(ϵ; C) is the
cardinality of the smallest ϵ-covering, i.e.,

C ⊆
N(ϵ;C)⋃
i=1

B (xi, ϵ)

and B(xi, ϵ) is the ball in the metric space M centered at
xi with radius ϵ. Thus, metric entropy reflects the smallest
number of bits needed to approximate any element x ∈ C. It
has been shown that the metric entropy of the Lipschitz con-
tinuous function space Lip([0, 1]d;µ) under uniform metric
is Θ((µ/ϵ)d) (DeVore et al., 1989). Given an approximator
H with a complexity measure n, and a mapping τ from
Rn → H, if the approximation rate of H for Lipschitz
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continuous functions satisfy

sup
f∈Lip([0,1]d)

inf
F :Lip([0,1]d)→Rn

∥f − τ(F (f))∥∞ = O(n−k)

(1)

for some positive number k, then we have that k ≤ 1/d
under the assumption that F is continuous meaning that H
is an continuous approximator, according to (DeVore et al.,
1989; Yarotsky, 2017). Notably, setting O(n−1/d) ≤ ϵ,
we have n ≥ Θ(ϵ−d). Thus, the approximation rate (1)
of a continuous approximator, not only FNN, is inherently
limited by the metric entropy. However, a discontinuous
approximator could yield a distinct result. If we regard FNN
as a discontinuous approximator, i.e., F : Lip([0, 1]d) →
Rn in (1) is discontinuous where Rn is the parameter space
and τ is the structure of FNN, then the approximation rate is
limited by Vapnik-Chervonenkis (VC) dimension (Goldberg
& Jerrum, 1993). Consequently, the approximation rate
(1) of ReLU FNN with n parameters is lower bounded by
k ≤ 2/d (Shen et al., 2022b; Yarotsky, 2018; Yarotsky &
Zhevnerchuk, 2020) which is the result of VC dimension of
ReLU FNN (Bartlett et al., 2019; Anthony et al., 1999).

Therefore, researchers hope that FNN can achieve this opti-
mal approximation rate in Lipschitz function space. Pioneer-
ing work (Yarotsky, 2017) constructively shows that ReLU
deep FNNs can become optimal continuous approximators
for Lipschitz functions. Following this work, (Yarotsky,
2018; Yarotsky & Zhevnerchuk, 2020) extend the optimality
to ReLU FNN discontinuous approximator and (Shen et al.,
2019a; Lu et al., 2021; Shen et al., 2022b) later achieve the
optimal approximation by ReLU FNN in terms of width and
depth.

Meanwhile, there is an ongoing effort to attain a higher
approximation rate using FNN which will break the limit of
the metric entropy. In the beginning, they search for smaller
function space, which may result in a higher approximation
rate by ReLU networks, such as Barron class (Barron, 1993),
polynomials (Liang & Srikant, 2016), piecewise smooth
function class (Petersen & Voigtlaender, 2018), analytic
functions (Wang et al., 2018; Bonito et al., 2021; Schwab
& Zech, 2021), Korobov space (Montanelli & Du, 2019;
Blanchard & Bennouna, 2021), bandlimited function class
(Montanelli et al., 2019). More recently, researchers have
broken the lower bound of the approximation rate limited
by the metric entropy. They find a much higher approxima-
tion rate by networks with other activations or the activa-
tions newly designed. On the approximation of Lipschitz
functions, some find the exponential approximation rate in
terms of depth achieved by FNN with ReLU-sine activation
(Yarotsky & Zhevnerchuk, 2020), Floor-ReLU activation
(Shen et al., 2020), ReLU-sine-2x activation (Jiao et al.,
2023). Even shallow networks of three layers can achieve
the exponential approximation rate in terms of width if the

activation is Floor, 2x, and Step function (Shen et al., 2021).
More surprisingly, to approximate continuous function over
[0, 1]d, (Yarotsky, 2021; Shen et al., 2022a) design the new
activation such that FNNs with fixed size can achieve the
approximation rate O(ϵ) where ϵ is an arbitrarily small con-
stant. As we discussed previously, these models transcend
the limit of the metric entropy, hence they are discontinu-
ous approximators, which are unstable in relation to target
functions, leading to failure in practice. Nevertheless, from
a theoretical standpoint, they are beginning to shatter so-
called curse of dimensionality.

3. Theoretical Results and Proof Ideas
We denote by C

(
[0, 1]d;Rv

)
the set of continuous map-

pings from [0, 1]d to Rv, i.e., and by Lp
(
[0, 1]d

)
the set of

Lp-integrable functions from [0, 1]d to Rv . Let T be a com-
pact set of Rd. Define ωf (·) is the modulus of continuity of
f = (f1, · · · , fv) ∈ C (T ;Rv) defined by ωT

f (r) :=

sup {dist(f(x),f(y)) : x,y ∈ T , ∥x− y∥2 ≤ r} ,

for any r ≥ 0 where

dist (f(x),f(y)) = max
1≤i≤v

|fi(x)− fi(y)|.

Moreover, we define

diam(T ) = sup{∥x− y∥∞ : x,y ∈ T }.

The following is our main theorem which extends Theo-
rem 1.1 to the approximation of mappings (vector-valued
functions).

Theorem 3.1. Let d, v ∈ N+ and T be a compact set over
Rd. Then for any continuous mapping f ∈ C(T ;Rv), we
have the following approximation results:
(i) for p ∈ [1,∞), there exists a ReLU neural network
ρ : Rd → Rv with width max{d+ 1, v + 6} and depth not
more than (4 + 21v)L+ 7d+ 8v such that

∥f − ρ∥Lp(T ) ≤ C1(d, p) · ωT
f (diam (T )L− 2

d ),

where C1 = 7
√
d · (diam (T ))

d
p v

1
p .

(ii) for p = ∞, there exists a ReLU neural network ρ :
Rd → Rv with width d+ v + 10 and depth not more than
6dv3dL such that

∥f − ρ∥L∞(T ) ≤ C2(d) · ωT
f

(
diam (T )L− 2

d+1

)
where C2 = 3d(3d+ 1)(6d

3
2 + 1).

Remark. The results in the theorem can apply to Lip-
schitz/Hölder directly according to the definition of ωf .
That is, if f is a µ-Lipschitz continuous function, then
ωf (t) ≤ µt.
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Further, (Zhang et al., 2023) recently investigates the
relationship between the ReLU function and diverse ReLU
variant activation functions. With the conclusion, it follows
that the approximation rate in Theorem 3.1 (or Theorem
1.1) can also be achieved by FNN with various as shown
in Corollary 3.2. We list some of the commonly used
activation functions in the set Σ = { LeakyReLU,ReLU2,
ELU,SELU,Softplus,Mish,Swish,SiLU,Sigmoid,Tanh,
Softsign,dSiLU,SRS,Arctan}. The definition of these
activation functions can be found in Appendix D.1.

Corollary 3.2. Assume a narrow ReLU network with
fixed width N0 and depth O(L) can achieve the rate as
shown in Theorem 1.1 (or Theorem 3.1) for approximating
continuous functions. Then narrow networks of width N
and depth O(L) equipped with activation σ ∈ Σ can also
achieve the same rate. Moreover, the width N satisfies the
following proposition.

(i) If σ ∈ {ELU,SELU,Softplus,Mish,Swish,SiLU,
ϱ1(x), ϱ2(x), ϱ3(x)}, N = N0. Here

ϱ1(x) = x · SiLU(x),

ϱ2(x) = x · (Softsign(x)
2

+
1

2
),

ϱ2(x) = x · (Arctan(x)

π
+

1

2
).

(ii) If σ is LeakyReLU, N = 2N0.
(iii) If σ ∈ {ReLU2,Sigmoid,Tanh,Softsign,dSiLU,SRS},
N = 3N0.

The proof details of Corollary 3.2 can be found in Appendix
D.2. Next, we outline the proof idea of Theorem 1.1 and it
is natural to be extended to Theorem 3.1.

3.1. Proof Ideas: Lp Norm

In this section, we outline the proof idea of (i) of Theo-
rem 1.1. For a continuous function f ∈ [0, 1]d, we aims
to construct a narrow ReLU network ρ : Rd → R with
width d+ 1 and depth O(L), such that ∥ρ− f∥Lp([0,1]d) =

O(ωf (L
−2/d)). By carving out a small region Ω with a

small enough Lebesgue measure, and ensuring the approxi-
mation rate holds on [0, 1]d \ Ω, our objective is met. It is
known that step functions are dense in Lp space. Thus, the
basic idea is to construct ReLU networks to generate step
functions with more steps outside the small region, inspired
by the work (Shen et al., 2019a; Lu et al., 2021; Shen et al.,
2022b).

Step 1. Space Partitions.

We first divide [0, 1]d into a union of main cubes {Qβ}
index by β ∈ {0, 1, · · · ,K − 1}d and a trifling region Ω,

where K is a proper integer to be determined later.

Qβ :=
{
x = [x1, · · · , xd]T ∈ [0, 1]d :

xi ∈
[
βi
K
,
βi + 1

K
− δ · 1{βi≤K−2}

]
, i = 1, · · · , d

}
.

Moreover, there is a representative xβ ∈ Qβ for each β ∈
{0, 1, · · · ,K−1}d. Concretely, xβ is the vertex of the cube
Qβ with minimum ∥ · ∥1 norm, i.e., xβ = β/K.

Step 2. Mapping x ∈ Qβ to β and encoding it as a scalar.

To achieve this, we begin by examining a one-dimensional
scenario. In the one-dimension case, Qβ for β = k is
the interval

[
k
K ,

k+1
K − δ · 1{k≤K−2}

]
. Thus, the following

proposition facilitates this task:

Proposition 3.3. For any L, d ∈ N+and δ ∈
(
0, 1

3K

]
with K =

⌊
L2/d

⌋
, there exists a function ζ̂ : [0, 1] →

R2, ζ̂(x) = (x, ζ(x)) implemented by a ReLU network with
width 2 and depth not more than 4L

1
d + 3 such that

ζ(x) = k, if x ∈
[
k

K
,
k + 1

K
− δ · 1{k≤K−2}

]
for k = 0, 1, · · · ,K − 1.

The proof of Proposition 3.3 is deferred to Appendix B.5.
Then for the multivariate situation, we could construct a
mapping Φ(x) = β for x ∈ Qβ by

Φ(x) = (ζ(x1), · · · , ζ(xd)) .

With certain techniques, we can implement Φ using a ReLU
network of width d + 1. Note that Proposition 3.3 uses
a ReLU network with depth O(L1/d) to realize Φ for
K = O(L2/d) many cubes which ensure the optimal ap-
proximation rate as detailed in proof details. We end Step 2
by decoding β by a scalar:

ψ(β) :=
βd
2Kd

+

d−1∑
i=1

βi
Ki

.

Remark. Note that in this step, d bits of precision are
indispensable in the construction. This precision plays a
pivotal role in Step 3, where it underpins the conditions of
Prop. 3.4 during the point-fitting process. Proposition 3.4
predicates on data with a small variance, i.e., |yi − yj | < ϵ.
This critical assumption might be violated when precision
is finite.

Step 3. Mapping ψ(β) approximately to f(xβ).

Note that
{

βd

2Kd +
∑d−1

i=1
βi

Ki

}
β

⊂
{

j
2Kd

}
j=1,2,··· ,2Kd .

According to (Shen et al., 2019a; 2022b), there is a function
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g : R → R such that g ◦ ψ(β) = f(β) and∣∣∣∣g( j

2Kd

)
− g

(
j − 1

2Kd

)∣∣∣∣ ≤ ωf

(√
d

K

)
,

for j = 1, 2, · · · , 2Kd. This reduces the problem of approx-
imating f to a point-fitting problem. We need the following
proposition where the proof is deferred to B.6.

Proposition 3.4. Given any ε > 0 and arbitrary L, J ∈ N+

with J ≤ L2, assuming yj ≥ 0 for j = 0, 1, · · · , J − 1
satisfy

|yj − yj−1| ≤ ε, for j = 1, 2, · · · , J − 1,

then there exists a ReLU network γ : R → R with width 5
and depth 14L+ 8 such that
(i) |γ(j)− yj | ≤ ε for j = 0, 1, · · · , J − 1, and
(ii) 0 ≤ γ(x) ≤ maxj=0,1,··· ,J−1 {yj} for any x ∈ R.

This proposition enables a narrow ReLU network ϕ = γ◦ψ :
Rd → R such that ϕ(β) ≈ f(xβ). Crucially, Proposition
3.4 leverages a narrow network with depth O(L) to solve a
point-fitting problem with O(L2) points which is central to
achieving the optimal approximation rate.

Step 4. Estimation of the network size and the approximation
error.

Based on previous steps, we can construct a network ρ =
ϕ ◦Φ such that ρ(x) = ϕ ◦Φ(x) = ϕ(β) ≈ f(xβ) ≈ f(x)
outside the small region Ω. The last ’≈’ is achieved by
choosing large K, i.e., dividing [0, 1]d into many small
enough cubes. Due to the approximation rate being under
the Lp norm, it can be achieved in the entire domain [0, 1]d.
The width of the network ρ is max{d+ 1, 5} according to
Step 2 and 3. If d is not too small, the width d+ 1 is almost
the minimum width to satisfy the universality (Hanin &
Sellke, 2017; Park et al., 2020; Kim et al., 2023). However,
our result guarantees that this minimally wide network can
achieve the optimal approximation rate. The proof details
can be found in Appendix B.

As a closing remark, Lemma 3.4 (Lu et al., 2021) shows
that the approximation rate can be extended from [0, 1]d/Ω
to the entire cube [0, 1]d also under uniform norm. How-
ever, the width of the network will expand according to
their approaches. Hence, under the uniform norm, we will
draw another constructive approximation method (Yarotsky,
2018; Yarotsky & Zhevnerchuk, 2020).

3.2. Proof Ideas: Uniform Norm

In this section, we outline the proof of (ii) of Theorem
1.1. We follow the work of (Yarotsky, 2018) to construct a
narrow ReLU network with depth O(L) that achieves the
optimal approximation rate. The main challenge is to make

its width close to d. At first, let us consider the linear interpo-
lation f̃1 on the grid (Z/n)d with n ∼ L1/d. If we use O(n)
parameters to construct a sub-network to implement the ap-
proximation on a small cube, the number of the total weights
of the network to approximate f is nd ∼ O(L). Then the
approximation rate ∥f − f̃1∥∞ = O

(
ωf

(
L−1/d

))
. To

achieve a higher approximation rate, it is worthwhile to con-
sider the refined approximation of f2 = f − f̃1 on a smaller
grid (Z/m)d with m ∼ L2/d. We expect an approximation
rate ∥f̃2− f2∥∞ = O

(
ωf

(
L−2/d

))
while not significantly

expanding the parameter budget beyond O(L). Thus, we
need to consider the linear interpolation approximation f̃2 of
f2 on a scale 1/m and construct a narrow ReLU network to
generate f̃2 with O(L) parameters. Given that nd = O(L)
and the function f̃2 has O(md) information, each cube on
a scale 1/n contains (n/m)d information of f̃2. Hence, in
each cube on a scale 1/n, we need to use O(1) parameters
of a sub-network to encode about O

(
(m/n)

d
)

information.

In summary, we will consume about nd = O(L) parameters
to construct f̃2 which matches the budget and totally we
recover O

(
(m/n)

d · nd
)
= O

(
md
)

information.

The key of the approximation of f̃2 on a refined scale 1/m
without increasing the number of parameters is to use O(1)

parameters to encode about O
(
(m/n)

d
)

information and
decode it. This process can be realized by the bit-extraction
technique, which has been widely used in modern construc-
tive methods (Shen et al., 2022b; Yarotsky & Zhevnerchuk,
2020). Recall that the domain is partitioned into a union
of small cubes Qk on a scale 1/n. In this key process, it
is essential to determine which specific small cube the in-
put vector x falls into. Thus, similar to the function Φ in
section 3.1, we also have a mapping Ψ : Rd → Rd such
that Ψ(x) = (ψ1(x1), · · · , ψd(xd)) = k/n if x belongs to
the small cube Qk. In (Yarotsky, 2018), the author uses d
neurons in each layer to forward the value of the input x
and another d neurons to forward the value of Ψ(x). With
some extra neurons in each layer to do the intermediate
computation, they cost 2d + O(1) neurons in each layer.
However, in our paper, to make the network narrow as much
as possible, instead of using neurons to store the value of
Ψ(x) we compute them as the intermediate computation in
each constructive stage. The cost is that we get a little lower
rate O

(
L−2/(d+1)

)
. But anyway, this approximation rate is

almost optimal. The proof details can be found in C.

3.3. Optimality

In this section, we show that the approximation rate
O(ωf (L

−2/d)) is optimal for both Lp norm and uniform
norm. Specifically, we will see that there is no room to
improve this rate on the approximation of Lipschitz func-
tions over [0, 1]d. We denoted by Lip([0, 1]d;µ > 0) the
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set of Lipschitz functions over [0, 1]d and for any f ∈
Lip([0, 1]d;µ > 0), we have |f(x)− f(y)| ≤ µ∥x− y∥.

As we mentioned before, the rate is lower bounded by the so-
called VC dimension of the hypothesis space. Thus, we first
give the definition. Let H be a function family consisting
of functions from X ⊂ Rd to {0, 1}. For any non-negative
integer m, the growth function of H is defined as

ΠH(m) := max
x1,...,xm∈X

|{(h (x1) , . . . , h (xm)) : h ∈ H}| .

If |{(h (x1) , . . . , h (xm)) : h ∈ H}| = 2m, we say H shat-
ters the set {x1, . . . ,xm}. Moreover, let F be a set of func-
tions from X to R, we say F shatters the set {x1, . . . ,xm}
if S ◦ F shatters the set {x1, . . . ,xm} where

S(t) :=

{
1, t ≥ 0,
0, t < 0

and S ◦ F := {T ◦ f : f ∈ F}.

The VC dimension of H, denoted by VCdim(H), is the
size of the largest shattered set, i.e. the largest m such
that ΠH(m) = 2m. If there is no largest m, we define
VCdim(H) = ∞.

Theorem 3.5. Let p ∈ [1,∞], d ∈ N+ and Hσ(L) be
the set of FNNs of fixed width and depth O(L) with some
activation function σ. Define

E(d, L) := sup
f∈Lip([0,1]d,µ)

(
inf

ρ∈Hσ(L)
∥ρ− f∥Lp([0,1]d)

)
.

If V Cdim(Hσ(L)) ≤ D, then we have

E(d, L) ≥ C(p, d)D− 1
d

where C(p, d) is a constant may depend on p and d.

For p = ∞, this result is the direct corollary of (Yarotsky,
2017; 2018; Shen et al., 2019a; 2022b) and recently, (Siegel,
2023) prove it for p ∈ [1,∞). The proof details can be
found in Appendix D.3.

Corollary 3.6. With the same notation as Theorem 3.5, we
have the following result for various activation functions σ.

(i) If σ belongs to {piecewise polynomial (e.g. ReLU,
ReLU2, LeakyReLU), Softsign}, we have
VCdim(Hσ(L)) = O(L2). Thus,

E(d, L) ≥ C(p, d)L− 2
d .

(ii) If σ belongs to {ELU,SELU,SiLU,Swish,Mish,
Sigmoid,Tanh,dSiLU,SRS,Arctan}, we have
VCdim(Hσ(L)) = O(L4). Thus, for these activation func-
tions, we have

E(d, L) ≥ C(p, d)L− 4
d .

In Corollary 3.6, (i) is the result of Theorem 8.4 (Anthony
et al., 1999) or (Bartlett et al., 2019) and (ii) is the result of
(Karpinski & Macintyre, 1997) or Theorem 8.14 (Anthony
et al., 1999). We have the details of the explanation in D.4.
Besides, it remains open whether the bound (ii) of Corollary
3.6 can be improved.

It follows from Corollary 3.6 that the rate O(L−2/d)
is optimal for piecewise polynomials activation such as
LeakyReLU, ReLU2 and for Softsign. For other activation
functions in (ii) of Corollary 3.6, the rate achieved by narrow
networks may be suboptimal but higher than the previous
results. For those activation functions in (i) of Corollary 3.2,
they keep the minimum width to achieve the higher approxi-
mation rate. Moreover, we can see that an activation ϱ2(x)
simultaneously keeps the minimum width and achieves the
optimal approximation rate.

4. Concluding Remarks and Discussion
Non-compact Domains. While some readers may be cu-
rious about how will the result change if the domain is
not compact, we provide some explanations here from two
aspects. First, for uniform approximation, the results gen-
erally do not hold on non-compact domains. For example,
we take the task of approximating the continuous function
f(x) = 1

x on the bounded yet open interval (0, 1], which
is not compact. ReLU neural networks g produce con-
tinuous piecewise linear functions and are thus bounded
on [0, 1]. However, for any desired error ϵ, the difference
|f(x)− g(x)| will inevitably exceed ϵ in the vicinity of 0,
due to the unbounded behavior of f . However, the situation
is different for Lp approximation, i.e., the results will still
hold on a (measurable) non-compact set. The explanation
is in the following. The space of continuous functions with
compact support is dense in Lp(Rd) (Walter, 1987), mean-
ing that for any f ∈ Lp(Rd) and any error ϵ > 0, there
exists a continuous function h with compact support such
that ∥f − h∥Lp ≤ ϵ. Therefore, when the domain of in-
terest is Rd, one can effectively reduce the problem to that
of a compact domain for Lp approximation. Furthermore,
if the target function f is initially defined over a measur-
able subset E ⊂ Rd, it can be extended to Rd by setting
f(x) = 0 for x ∈ Rd \ E, thereby allowing for a reduction
to a compact domain scenario.

Non-trivial Extension. It has been shown that any ReLU
FNN of width N and depth L can be approximated by a
narrow network width d+ 2 and depth O(L2) (Vardi et al.,
2022). However, if we directly apply this conclusion to
(Shen et al., 2019a; Yarotsky, 2018; Shen et al., 2022b), the
rate would become suboptimal because it just uses a narrow
network of depth O(L2) to achieve the rate O(L−2/d) for
approximating Lipschitz functions. Thus, our work showing
that ReLU FNN with the minimal width can achieve the
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optimal approximation rate is a non-trivial extension of
previous work.

Approximation of Mappings from [0, 1]d to Rv. As
shown in (Kim et al., 2023), the minimal width of ReLU
FNNs to satisfy the universal approximation property for
Lebesgue-integrable mappings from [0, 1]d to Rv is exactly
max{d, v, 2}. Our result reveals that a ReLU FNN with a
width max{d+1, v+6} slightly greater than the minimum
by a small constant, satisfies not only universality but also
ensures an optimal approximation rate. Furthermore, our
work shows that for continuous mappings from [0, 1]d to
Rv , ReLU networks with a width of d+ v + 10 are capable
of achieving nearly optimal approximation. Meanwhile, the
upper bound of the minimum width of ReLU networks for
uniform universal approximation remains d + v + 1. Our
work shows a width slightly exceeding this by an absolute
constant can still guarantee the optimal approximation for
continuous mappings over a compact domain.

Approximation Rate of Other Neural Network Struc-
tures. Recently, approximation capabilities have also been
widely studied for various neural network architectures such
as convolutional neural networks (Zhou, 2018; 2020b) and
ResNet (Lin & Jegelka, 2018; Oono & Suzuki, 2019). It
has been shown (Zhou, 2020a) that any FNN could be repre-
sented by a downsampled CNN with the same order number
of parameters. Thus, it follows that ReLU CNN can also
achieve the optimal approximation rate for continuous func-
tions in terms of width and depth. Besides, the construction
of FNN is also possible for ResNet which allows them to
achieve the optimal approximation for continuous functions.

Diverse Activation Functions. Our work discusses the
approximation capabilities of FNNs with various activation
functions. FNNs with different activation functions may
have different VC dimensions, hence resulting in different
approximation capabilities. Narrow networks with piece-
wise polynomial activation functions, such as ReLU and
Leaky-ReLU, share the same order VC dimension O(L2).
While (Cai, 2022; Kim et al., 2023; Duan et al., 2023) show
that LeakyReLU networks with width d can achieve univer-
sal approximation for Lebesgue-integrable functions over a
compact domain in Rd, we use a network with a larger width,
2d+O(1) to guarantee the optimality. However, the approx-
imation rate of the minimally wide LeakyReLU networks
in (Cai, 2022; Kim et al., 2023) is implicit. One might need
a large number of parameters while using a LeakyReLU
network with width d for approximation. Moreover, it is a
non-trivial and open question whether a LeakyReLU net-
work width d+O(1) can achieve the optimal approximation
for Lebesgue-integrable functions over a compact domain
in Rd.

Depth-Width Trade-offs. This paper focuses on the approx-
imation rates of narrow networks, specifically how these

rates correlate with network depth. However, readers may
also be interested in exploring the depth-width trade-offs
in network architectures within approximation theory. This
subject has received extensive attention in the previous liter-
ature, with key findings illustrated in Fig. 1. It is important
to note that a shallow network with a width of N typically
has around O(N2) parameters. Therefore, the approxi-
mation rate of O(N−2/d) with respect to width becomes
O(W−1/d) when expressed in terms of the total number
of parameters W . When compared to the optimal rate of
O(L−2/d) associated with a depth of O(L), it becomes evi-
dent that deep networks tend to be more parameter-efficient
in function approximation due to the number of parameters
W = O(L).

Heavy Dependency on the Number of Parameters. Read-
ers might note that the approximation rates heavily depend
on the input dimension d, width N , and depth L. We
remark on this briefly. In approximation theory, the ap-
proximation rate of ReLU networks is often expressed as
O(c(d)N− 2

dL− 2
d ) when approximating a Lipschitz continu-

ous function. The rate’s dependency on N and L is intrinsic,
tied to the limitations of the network’s VC dimension as
pointed out in Sec. 2. Besides, the rate heavily depends
on d because of the worst-case analysis in the proof, and
improving this dependency remains an open challenge.
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A. Prelimineries and Notations
A.1. Notations

We summarize the notations we will use in this paper in the following.

• We denote by R the set of real numbers, by N the set of natural numbers 0, 1, 2, · · · , by Z the set of integers. Moreover,
N+ := N/{0}.

• We use non-bold letters like x, y, z for scalars, and boldface letters like x,y, z for vectors in the Euclidean space.
Moreover, we use normal, non-bold letters like f, g for scalar-valued functions, shortened as functions, and normal
bold letters like f , g for vector-valued functions, shortened as mappings.

• For any p ∈ [1,∞), the p-norm of a vector x = (x1, x2, · · · , xd) ∈ Rd is defined by

∥x∥p := (|x1|p + |x2|p + · · ·+ |xd|p)
1/p

.

• Denote by µ(T ) the Lebesgue measure of a measurable set T .

• Let 1S be the characteristic function on a set S, i.e., 1S = 1 on set S and 0 otherwise.

• For two sets A,B, A\B := {x : x ∈ A, x /∈ B}.

• For any ξ ∈ R, let ⌊ξ⌋ := max{i : i ≤ ξ, i ∈ Z} and ⌈ξ⌉ := min{i : i ≥ ξ, i ∈ Z}.

• Let d, v ∈ N+ and T be some compact (and measurable) set of Rd.

Then we denote by C (T ) the set of continuous functions from T to R with the norm ∥f(x)∥L∞(T ) = supx∈T |f(x)|.
Similarly, for p ∈ [1,∞), Lp(T ) denotes the space of p-integrable measurable functions on T , with norm ∥f∥Lp(T ) =(∫

E
|f(x)|pdx

)1/p
.

Moreover, denote by C (T ;Rv) the set of continuous mappings from T to Rv with the norm

∥f∥L∞(T ) = max
1≤i≤v

sup
x∈T

|fi(x)| .

Similarly, for p ∈ [1,∞), Lp(T ;Rv) denotes the space of p-integrable measurable mappings from T to Rv, with the
norm

∥f∥Lp(T ) =

(∫
E

∥f(x)∥pp dx
)1/p

=

(∫
E

(
v∑

i=1

|fi(x)|p
)

dx

)1/p

.

• Assume n ∈ Nd, then f(n) = O(g(n)), f(n) = Θ(g(n)), f(n) = Ω(g(n)), respectively, implies that there exists
positive C,C1, C2 independent of n, f , and g such that f(n) ≤ Cg(n), C1g(n) ≤ f(n) ≤ C2g(n), f(n) ≥ Cg(n)
when all entries of n go to +∞.

• Let T be a compact set of Rd. ωf (·) is the modulus of continuity of f = (f1, · · · , fv) ∈ C (T ;Rv) defined by

ωT
f (r) := sup {dist(f(x),f(y)) : x,y ∈ T , ∥x− y∥2 ≤ r} ,

for any r ≥ 0 where

dist (f(x),f(y)) =

{
|f(x)− f(y)|, v = 1,

max1≤i≤v |fi(x)− fi(y)|, v > 1.

For conciseness, we write ωf (r) := ωT
f (r) when T = [0, 1]d.

• For conciseness, we denote (x1, x2, · · · , xd) := [x1, · · · , xd]T ∈ Rd for x1, · · · , xd ∈ R and (z1, z2, · · · , zd) :=
[zT1 , z

T
2 , · · · , zTd ] ∈ Rm1+m2+···+md where zi ∈ Rmi for i = 1, 2, · · · , d.
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• Given K ∈ N+and δ ∈
(
0, 1

K

)
, define a trifling region Ω

(
[0, 1]d,K, δ

)
of [0, 1]d as

Ω
(
[0, 1]d,K, δ

)
:=

d⋃
i=1

{
x = (x1, x2, · · · , xd) ∈ [0, 1]d : xi ∈ ∪K−1

k=1

(
k

K
− δ,

k

K

)}
.

In particular, Ω
(
[0, 1]d,K, δ

)
= ∅ if K = 1.

• For θ ∈ [0, 1), suppose its base-q representation is θ =
∑∞

ℓ=1 θℓq
−ℓ with θℓ ∈ {0, 1, · · · , q − 1}. Then we use the

notation 0.θ1θ2 · · · θL to denote the L-term base-q representation of θ, i.e., 0.θ1θ2 · · · θL :=
∑L

ℓ=1 θℓq
−ℓ.

• Let T ⊂ Rd be a compact (and measurable) set. We define diam(T ) = sup{∥x− y∥∞ : x,y ∈ T }.

• For a univariate continuous piecewise linear function f(x), x0 is called a breakpoint of f if limx→x+
0
f ′(x) ̸=

limx→x−
0
f ′(x). We will abbreviate ’continuous piecewise linear’ as ’CPwL’.

• For a finite sample set A = {(xi, yi) : 1 ≤ i ≤ m} and let xi be increasing for i, we have a CPwL function f such that:
i) f(xi) = yi and ii) f is linear in each interval (−∞, x1], [x1, x2], · · · , [xm−1, xm], [xm,∞]. In this case, we say f
is a CPwL function defined by the sample set A. Note that the set of the breakpoints of f is a subset of {x1, · · · , xm}.

• e is the base of the natural logarithm, i.e., e = limn→∞(1 + 1
n )

n.

Next, we introduce some neural network architecture we will discuss in this paper.

A.2. Feedforward Neural Networks (FNNs)

As is known to all, FNN is a mapping f : Rd :→ Rv which is formed as the alternating compositions of an activation function
σ : R → R, and affine transformations A[i](y) = Uiy + vi with Ui ∈ Rdi×di−1 , vi ∈ Rdi , d0 = d for i = 1, 2, · · · , L.
Specifically,

f (x) = L ◦ σ ◦ A[L] ◦ σ ◦ A[L−1] ◦ · · · ◦ σ ◦ A[1] (x)

where L is a final affine transformation and for x ∈ Rd, σ(x) := (σ(x1), · · · , σ(xd)). Here L denotes the number of layers
of the FNN, and the width of the FNN is conventionally defined by max{d1, d2, · · · , dL} := K. As usual, we use ReLU as
the activation function defined by:

ReLU(x) = max (x, 0) = (x)+ , x ∈ R.
Typically, it is presumed that the number of neurons in each layer of an FNN is the same, which is equal to the width K, as
any neuron deficits in a layer can be dealt with by adding K − dj neurons whose biases are zero in layer j. The weights
between these extra neurons are consequently assigned to zero.

We denote by NN d,v
σ (N,L) the set of all FNN mappings from some compact set T ⊂ Rd to Rv with width N , depth L,

and activation function σ. In cases without ambiguity, we may omit the subscripts d, v and superscripts σ for conciseness.
Moreover, we commonly refer to all neurons from a fixed row as a channel.

A.3. Register Models

To describe the construction of networks concisely and conveniently in this paper, we introduce a special network architecture
that we call the register model, which designates certain channels for specific tasks. Given an input x ∈ Rd, we use the top
d channels to reserve the input values. This allows us to use x as an input to the computation performed at any later layer of
the network. We refer to these channels source channels. Moreover, we will designate the bottom v channels to simply
aggregate the value of certain intermediate computations and may push them forward. These channels are called collation
channels. Note that the neurons in source channels and collation channels are activation-free, i.e., their activation function
is x 7→ x. The rest of the channels are used for normal computation in which the neurons are equipped with given activation
functions. The specific definition of the register model is given in the following.
Definition A.1. Let d, v, n,m,C ∈ N+, σ : R → R and Aff (Rn;Rm) be the set of affine transformations from Rn to Rm.
Denote by Id,v

σ (d,C,m;L) the set of register models and each h ∈ Id,v
σ (d,C,m;L) is a mapping from some compact set

T ⊂ Rd to Rv defined by

TL ◦ σ̃ ◦ . . . ◦ σ̃ ◦ T1,
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where T1 ∈ Aff
(
Rd;Rd × RC × Rm

)
, TL ∈ Aff

(
Rd × RC × Rm;Rv

)
, Tℓ ∈ Aff

(
Rd × RC × Rm;Rd × RC × Rm

)
for ℓ ∈ {2, . . . , L− 1}, and the map σ̃ acts on Rd+C+m via

σ̃ : Rd × RC × Rm → Rd × RC × Rm, (2)

(σ̃ (x1, . . . , xd+C+m))j =

{
σ (zj) , j ∈ {d+ 1, · · · , d+ C},
zj , j ∈ {1, 2, · · · , d+ C +m}/{d+ 1, · · · , d+ C}.

(3)

Let x ∈ Rd and z = (z1, z2, z3) ∈ Rd × RC × Rm. Tℓ for ℓ ∈ {1, 2, . . . , L− 1} is futher defined by

T1(x) = (x,A1(x),B1(x)), and
Tℓ(z1, z2, z3) = (z1,Aℓ(z1, z2),Bℓ(z1, z2, z3)), ℓ = 2, 3, · · · , L− 1

where A1 ∈ Aff
(
Rd;RC

)
,B1 ∈ Aff

(
Rd;Rm

)
and Aℓ ∈ Aff

(
Rd+C ;RC

)
,Bℓ ∈ Aff

(
Rd+C+m;Rm

)
for ℓ =

2, 3, · · · , L− 1.

If v = 1, we will simply denote Id,v
σ (d,C,m;L) as Iσ(d,C,m;L). According to the discussion before, in a register

model belonging to Id,v
σ (d,C,m;L), the top d channels are called source channels and the bottom m channels are called

collation channels. Here the definition of σ action on Rd+C+m (3) just implies the neurons in source channels and collation
channels are activation-free.

For a register model in Id,v
σ (d,C,m;L), note that the domain is compact. Then for each source and collation chan-

nel, we can always find Cj(j = 1, 2, · · · , L) such that S(j) + Cj ≥ 0 where S(j)(j = 1, 2, · · · , L). Hence
S(j) = ReLU

(
S(j)(x) + Cj

)
− Cj . With this trick, we have the following conclusion.

Lemma A.2 (Remark 3.1 (Daubechies et al., 2022)). Let Id,v
ReLU(d,C,m;L) be the set of register models from T ⊂ Rd to

Rv . Then Id,v
ReLU(d,C,m;L) ⊂ NN d,v

ReLU(d+ C +m,L).

This lemma states that a ReLU register model is also a ReLU network with the same width and depth.

A.4. Extending Approximation from [0, 1]d to an irregular Domain

In this section, we show how to extend the approximation result from a hypercube [0, 1]d to a compact domain T ⊂ Rd.
With these results, it suffices to consider the approximation of functions on [0, 1]d later.

Lemma A.3. Let N,L ∈ N+ and T ⊂ Rd be a compact (and measurable) set. Suppose f : [0, 1]d → R is a continuous
function and for p ∈ [1,∞], there exists a ReLU network ρ with width N and depth L such that

∥f − ρ∥Lp([0,1]d) ≤ C1ωf (r) ,

for some r > 0 and C1 is some constant that can depends on d or p. Then for any g ∈ C(T ) and p ∈ [1,∞], there is a
ReLU network ρ with width N and depth L such that

∥g − ρ∥Lp(T ) ≤ C1 (diam (T ))
d/p

ωT
g (diam (T ) r) .

Proof. By assumption, T is a compact set. Hence, g can be extended to [−R,R]d (for some R > 0 and T ⊂ [−R,R]d)
preserving its modulus of continuity by Theorem 2 in (McShane, 1934). Thus, without loss of generality, we can assume T
is connected. We define

g̃(x) := g(diam(T )x+ inf T ), for any x ∈ [0, 1]d.

For g̃ ∈ C
(
[0, 1]d

)
, by assumption there exists a ReLU FNN ρ̃ with width N and depth L such that

∥ρ̃− g̃∥Lp([0,1]d) ≤ C1ωg̃ (r) ,

Note that g(x) = g̃
(

x−inf T
diam(T )

)
for any x ∈ T and

ωg̃(t) = ωT
g (diam(T )t), for any t ≥ 0.
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Define ρ(x) := ρ̃
(

x−inf T
diam(T )

)
= ρ̃ ◦ L(x) for any x ∈ Rd, where L : Rd → Rd is an affine linear map given by

L(x) = x−inf T
diam(T ) . Then ρ is a ReLU network with widthN and depthL. Moreover, for any x ∈ T , we have x−inf T

diam(T ) ∈ [0, 1]d.
Then for p ∈ [1,∞] we have

∥ρ− g∥Lp(T ) = ∥ρ̃ ◦ L − g̃ ◦ L∥Lp(T )

≤ (diam (T ))
d/p ∥ρ̃− g̃∥Lp([0,1]d)

≤ C1 (diam (T ))
d/p

ωg̃ (r)

≤ C1 (diam (T ))
d/p

ωT
g (diam (T ) r) .

Lemma A.4. Similarly, for a continuous mapping f = (f1, · · · , fv) from a compact domain T ⊂ Rd to Rv, if there exist
neural networks ρ = (ρ1, · · · , ρv) that can approximate f then we have

∥f − ρ∥Lp(T ) ≤ v1/p · max
1≤i≤v

∥fi − ρi∥Lp(T )

for p ∈ [1,∞].

Proof. It can be directly deduced from

∥f − ρ∥Lp(T ) =

(∫
E

v∑
i=1

|fi(x)− ρi(x)|p dx

)1/p

(Minkowski inequality) ≤

(
v∑

i=1

∥fi − ρi∥pLp(T )

)1/p

≤
(
v max
1≤i≤v

∥fi − ρi∥pLp(T )

)1/p

= v1/p · max
1≤i≤v

∥fi − ρi∥Lp(T ), for p ∈ [1,∞),

and

∥f − ρ∥L∞(T ) = max
1≤i≤v

sup
x∈T

|fi(x)− ρi(x)| ≤ max
1≤i≤v

∥fi − ρi∥L∞(T ).

B. Proof of (i) of Theorem 1.1
Given the following theorem, we prove (i) of Theorem 1.1. The proof of Theorem B.1 is postponed to Sec. B.1.

Theorem B.1. Given f ∈ C
(
[0, 1]d

)
, for any L ∈ N+, there exists a function ρ implemented by a ReLU FNN with width

max {d+ 1, 5} and depth 25L+ 7d+ 8 such that ∥ρ∥L∞(Rd) ≤ |f(0)|+ ωf (
√
d) and

|f(x)− ρ(x)| ≤ 6
√
dωf

(
L−2/d

)
, for any x ∈ [0, 1]d\Ω

(
[0, 1]d,K, δ

)
,

where K =
⌊
L2/d

⌋
and δ is an arbitrary number in

(
0, 1

3K

⌋
.

Proof of (i) in Theorem 1.1. Assuming f is not a constant function since it is a trivial case, we have ωf (r) > 0 for any
r > 0. We define K =

⌊
L2/d

⌋
and select a small δ ∈

(
0, 1

3K

]
such that

≤ Kdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

≤
(
ωf

(
L−2/d

))p
.

16



ReLU Network with Width d+O(1) Can Achieve Optimal Approximation Rate

By Theorem B.1, there exists a ReLU FNN ρ : Rd → R with width max {d+ 1, 5} and depth 25L + 7d + 8 such that
∥ρ∥L∞(Rd) ≤ |f(0)|+ ωf (

√
d) and

|f(x)− ρ(x)| ≤ 6
√
dωf

(
L−2/d

)
, for any x ∈ [0, 1]d\Ω

(
[0, 1]d,K, δ

)
,

Moreover, by the definition of the modulus of the continuity, we have |f(x)− f(0)| ≤ ωf (
√
d) for any x ∈ [0, 1]d, hence

∥f∥L∞([0,1]d) ≤ |f(0)|+ ωf (
√
d). Then it follows from µ(Ω([0, 1]d,K, δ) that

∥f − ρ∥p
Lp([0,1]d)

=

∫
Ω([0,1]d,K,δ)

|f(x)− ρ(x)|p dx+

∫
[0,1]d\Ω([0,1]d,K,δ)

|f(x)− ρ(x)|p dx

≤ Kdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

+
(
6
√
dωf

(
L−2/d

))p
≤
(
ωf

(
L−2/d

))p
+
(
6
√
dωf

(
L−2/d

))p
≤
(
7
√
dωf

(
L−2/d

))p
.

Hence, ∥f − ρ∥Lp([0,1]d) ≤ 7
√
dωf

(
L−2/d

)
.

B.1. Proof of Theorem B.1

Definition B.2. Let K ∈ N+, and δ be an arbitrary number in
(
0, 1

3K

]
. For each d-dimensional index β = (β1, · · · , βd) ∈

{0, 1, · · · ,K − 1}d, define xβ := β/K and

Qβ :=

{
x = (x1, · · · , xd) ∈ [0, 1]d : xi ∈

[
βi
K
,
βi + 1

K
− δ · 1{βi≤K−2}

]
, i = 1, · · · , d

}
.

As is easy to see that xβ is the vertex of Qβ with minimum ∥ · ∥1 norm and [0, 1]d is divided into {Qβ}β∈{0,1,··· ,K−1}d

and Ω
(
[0, 1]d,K, δ

)
, i.e.,

[0, 1]d =
(
∪β∈{0,1,··· ,K−1}dQβ

)
∪ Ω

(
[0, 1]d,K, δ

)
.

Now, given the following lemmas we show Theorem B.1. The proof of Lemma B.3 and B.3 can be found in Sec. B.2 and
B.3 respectively.

Lemma B.3. Let K =
⌊
L2/d

⌋
, δ be an arbitrary number in

(
0, 1

3K

]
and Qβ∈{0,1,··· ,K−1}d defined as it in Def. B.2. Then

there exists a ReLU network Φ : Rd → R width width d+ 1 and depth 4L+ 7d− 4 such that

Φ(x) = β if x ∈ Qβ

for β ∈ {0, 1, · · · ,K − 1}d.

Lemma B.4. Let K =
⌊
L2/d

⌋
, δ be an arbitrary number in

(
0, 1

3K

]
and xβ∈{0,1,··· ,K−1}d defined as it in Def. B.2.

Assuming f is non-constant and f̃ = f − f(0)+ωf (
√
d), then there exists a ReLU network ϕ ∈ NN (5, 21L+8) such that∣∣∣ϕ(β)− f̃ (xβ)

∣∣∣ ≤ ωf

(√
d

K

)
, (4)

for any β ∈ {0, 1, · · · ,K − 1}d and

0 ≤ ϕ(x) ≤ 2ωf (
√
d), (5)

for any x ∈ Rd. Besides, ϕ = q ◦ ψ where ψ : Rd → R is a linear function independent of f and q : R → R is a function
depend on f .

Proof of Theorem B.1. Let K =
⌊
L2/d

⌋
, and δ be an arbitrary number in

(
0, 1

3K

]
. Now we divide [0, 1]d into

{Qβ}β∈{0,1,··· ,K−1}d and Ω
(
[0, 1]d,K, δ

)
given by Definition B.2. We may assume f is not a constant since it is a

trivial case and define f̃ = f − f(0) + ωf (
√
d).
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Let Φ and ϕ be the functions satisfying Lemma B.3 and Lemma B.4 respectively. We define the desired ReLU network ρ by
ρ := ϕ◦Φ+f(0)−ωf (

√
d). Since Φ ∈ NN (d+1, 4L+7d−4) and ϕ ∈ NN (5, 21L+8), ρ = ϕ◦Φ+f(0)−ωf (

√
d)

is in
NN (max{d+ 1, 5}, 25L+ 7d+ 4) .

Now let us estimate the approximation error. Note that f = f̃ + f(0)− ωf (
√
d). By Equation (4), for any x ∈ Qβ and

β ∈ {0, 1, · · · ,K − 1}d, we have

|f(x)− ρ(x)| =
∣∣∣f̃(x)− ϕ (Φ(x))

∣∣∣ = ∣∣∣f̃(x)− ϕ(β)
∣∣∣

≤
∣∣∣f̃(x)− f̃ (xβ)

∣∣∣+ ∣∣∣f̃ (xβ)− ϕ(β)
∣∣∣

≤ ωf

(√
d

K

)
+ ωf

(√
d

K

)
≤ 2ωf

(
2
√
dL−2/d

)
,

where the last inequality comes from the fact K =
⌊
L2/d

⌋
≥ L2/d

2 for any L ∈ N+. Recall the fact ωf (nr) ≤ nωf (r) for
any n ∈ N+and r ∈ [0,∞). Therefore, for any x ∈ ∪β∈{0,1,··· ,K−1}dQβ = [0, 1]d\Ω

(
[0, 1]d,K, δ

)
, we have

|f(x)− ρ(x)| ≤ 2ωf

(
2
√
dL−2/d

)
≤ 2⌈2

√
d⌉ωf

(
L−2/d

)
≤ 6

√
dωf

(
L−2/d

)
.

It remains to show the upper bound of ρ. By Equation (5) and ρ = ϕ ◦ Φ + f(0)− ωf (
√
d), it holds that ∥ρ∥L∞(Rd) ≤

|f(0)|+ ωf (
√
d). Thus, we finish the proof.

B.2. Proof of Lemma B.3

Given Proposition 3.3, we show Lemma B.3. The proof of Proposition 3.3 is postponed to Sec. B.5.

Proof of Lemma B.3. By Proposition 3.3, there exists a ReLU network ζ̂ = (x, ζ(x)) ∈ NN (2, 4L1/d + 3) such that

ζ(x) = k, if x ∈
[
k

K
,
k + 1

K
− δ · 1{k≤K−2}

]
for k = 0, 1, · · · ,K − 1.

It follows that ζ (xi) = βi if x = (x1, x2, · · · , xd) ∈ Qβ for each β = (β1, β2, · · · , βd). Let

L0(x1, · · · , xd) = (x1, x2, · · · , xd, 0),
φi(x1, x2, · · · , xd, 0) = (x1, x2, · · · , xd, ζ(xi)), for i = 1, 2, · · · , d,
Li(x1, · · · , xd, y) = (x1, · · · , xi−1, y, xi+1, · · · , xd, 0), for i = 1, 2, · · · , d,
L(x1, x2, · · · , xd, 0) = (x1, x2, · · · , xd).

Then define Φ(x1, · · · , xd) = L ◦ Ld ◦ φd ◦ · · · ◦ L1 ◦ φ1 ◦ L0(x1, · · · , xd). It follows that Φ is a ReLU network in
NN (d+ 1, 4dL1/d + 3d) ⊂ NN (d+ 1, 4L+ 7d− 4) and

Φ(x) := (ζ (x1) , ζ (x2) , · · · , ζ (xd)) , for any x = (x1, x2, · · · , xd) ∈ Rd

i.e., Φ(x) = β if x ∈ Qβ for β ∈ {0, 1, · · · ,K − 1}d. Note that NN (d+ 1, 4dL1/d + 3d) ⊂ NN (d+ 1, 4L+ 7d− 4)
comes form the inequality na1/n ≤ a+ n− 1 for any non-negative real number a and positive integer n.

B.3. Proof of Lemma B.4

Given Proposition 3.4, we show Lemma B.4. The proof of Proposition 3.4 is postponed to Sec. B.6.
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Proof of Lemma B.4. Let K =
⌊
L2/d

⌋
, and δ be an arbitrary number in

(
0, 1

3K

]
. Suppose xβ is the vertex of Qβ with

minimum ∥ · ∥1 norm and [0, 1]d is divided into {Qβ}β∈{0,1,··· ,K−1}d and Ω
(
[0, 1]d,K, δ

)
as Definition B.2.

We may assume f is not a constant since it is a trivial case. It is clear that |f(x)− f(0)| ≤ ωf (
√
d) for any x ∈ [0, 1]d. For

f̃ = f − f(0) + ωf (
√
d), we have 0 ≤ f̃(x) ≤ 2ωf (

√
d) for any x ∈ [0, 1]d.

We want to construct ϕ mapping β approximately to f̃ (xβ). The construction of the sub-network ϕ2 is essentially based on
Proposition 3.4. To meet the requirements of applying Proposition 3.4, we follow a fact from (Shen et al., 2019a) as shown
below.

Fact (Shen et al., 2019a): Let ψ be a linear function defined as

ψ(x) :=
xd
2Kd

+

d−1∑
i=1

xi
Ki

, for any x = (x1, x2, · · · , xd) ∈ Rd.

There exists a CPwL function g : [0, 1]d → R that satisfies g ◦ ψ(β) = f̃ (xβ) for β ∈ {0, 1, · · · ,K − 1}d. Besides, we
have ∣∣∣∣g( j

2Kd

)
− g

(
j − 1

2Kd

)∣∣∣∣ ≤ ωf

(√
d

K

)
, for j = 1, 2, · · · , 2Kd,

and

0 ≤ g

(
j

2Kd

)
≤ 2ωf (

√
d), for j = 0, 1, · · · , 2Kd

Note 2Kd = 2
(⌊
L2/d

⌋)d ≤ 2 L2 ≤ L̃2, where L̃ = 3
2L. Hence if we set yj = g

(
j

2K2

)
and ε = ωf

(√
d

K

)
> 0 in

Proposition 3.4, there exists a ReLU network γ̃ ∈ NN (5, 14L̃+ 8) such that∣∣∣∣γ̃(j)− g

(
j

2Kd

)∣∣∣∣ ≤ ωf

(√
d

K

)
, for j = 0, 1, · · · , 2Kd − 1,

and

0 ≤ γ̃(x) ≤ max

{
g

(
j

2Kd

)
: j = 0, 1, · · · , 2Kd − 1

}
≤ 2ωf (

√
d), for any x ∈ R. (6)

By defining γ(x) := γ̃
(
2Kdx

)
for any x ∈ R, we have γ ∈ NN (5, 21L+8), 0 ≤ γ(x) = γ̃

(
2Kdx

)
≤ 2ωf (

√
d) for any

x ∈ R, and ∣∣∣∣γ ( j

2Kd

)
− g

(
j

2Kd

)∣∣∣∣ = ∣∣∣∣γ̃(j)− g

(
j

2Kd

)∣∣∣∣ ≤ ωf

(√
d

K

)
, for j = 0, 1, · · · , 2Kd − 1.

Now define ϕ as ϕ := γ ◦ ψ and note that ψ : Rd → R is a linear function and γ ∈ NN (5, 21L + 8). We have
ϕ ∈ NN (5, 21L+ 8). Thus, ∣∣∣ϕ(β)− f̃ (xβ)

∣∣∣ = |γ (ψ(β))− g (ψ(β))| ≤ ωf

(√
d

K

)
, (7)

for any β ∈ {0, 1, · · · ,K − 1}d. Equation (6) and ϕ = γ ◦ ψ implies

0 ≤ ϕ(x) ≤ 2ωf (
√
d), (8)

for any x ∈ Rd.
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B.4. Approximation of Mappings: Proof of (i) of Theorem 3.1

Now, we assume f = (f1, f2, · · · , fv) is a continuous mapping in from [0, 1]d to Rv . Similarly, we define f̃i = fi−fi(0)+
ωfi(

√
d) for i = 1, 2, · · · , v. From Lemma B.4, there exists a linear function ψ : Rd → R and γ(i) : R → R such that

ϕi = γ(i) ◦ ψ and ∣∣∣ϕi(β)− f̃i (xβ)
∣∣∣ ≤ ωfi

(√
d

K

)
, (9)

for any β ∈ {, 1, · · · ,K − 1}d where γ(i) : R → R is a ReLU network in NN (5, 21L+ 8). Hence ϕi is a ReLU network
in NN 1,1(5, 21L+ 8). Moreover, for x ∈ Rd

0 ≤ ϕi(x) ≤ 2ωf (
√
d) (10)

for i = 1, 2, · · · , v.

Let ρi := ϕi ◦ Φ+ fi(0)− ωf (
√
d). It follows from the proof of Theorem B.1 that for any x ∈ [0, 1]d\Ω

(
[0, 1]d,K, δ

)
|fi(x)− ρi(x)| ≤ 6

√
dωfi

(
L−2/d

)
≤ 6

√
dωf

(
L−2/d

)
(11)

for i = 1, 2, · · · , v. Moreover, we have

∥ρi∥L∞(Rd) ≤ |fi(0)|+ ωf (
√
d)

for i = 1, 2, · · · , v.

Let ρ = (ρ1, · · · , ρv). Next, we explain how to compute ρ by a ReLU neural network. Assume we have computed
Φ(x) by Lemma B.3. Then we can use one more channel to reserve the value of ψ(Φ(x)). We can then use 6 chan-
nels to compute ϕi one by one and store the value of ρi(i = 1, 2, · · · , v) in v channels. Finally, we can output
ρ = (ρ1, · · · , ρv). For each ϕi, its depth is 21L + 8 by Lemma B.4 and recall that Φ ∈ NN (d + 1, 4L + 7d − 4).
Thus, ρ ∈ NN d,v (max{d+ 1, v + 6}, (4 + 21v)L+ 7d+ 8v − 4).

Last, we end this section by extending the domain to [0, 1]d. With the similar idea as the proof B, we set K =
⌊
L2/d

⌋
and

choose a small δ ∈
(
0, 1

3K

]
such that

Kdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

≤
(
ωf

(
L−2/d

))p
.

By the above discussion, for i = 1, 2, · · · , v,

∥ρi∥L∞(Rd) ≤ |fi(0)|+ ωf (
√
d)

and
|fi(x)− ρi(x)| ≤ 6

√
dωf

(
L−2/d

)
, for any x ∈ [0, 1]d\Ω

(
[0, 1]d,K, δ

)
,

It follows from µ
(
Ω
(
[0, 1]d,K, δ

))
≤ Kdδ, ∥ρi∥L∞([0,1]d) ≤ |fi(0)|+ ωf (

√
d), and the proof of Theorem 1.1 that

∥fi − ρi∥Lp([0,1]d) =

∫
Ω([0,1]d,K,δ)

|fi(x)− ρi(x)|p dx+

∫
[0,1]d\Ω([0,1]d,K,δ)

|fi(x)− ρi(x)|p dx

≤ Kdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

+
(
6
√
dωf

(
L−2/d

))p
≤
(
ωf

(
L−2/d

))p
+
(
6
√
dωf

(
L−2/d

))p
≤
(
7
√
dωf

(
L−2/d

))p
.

Hence, ∥fi − ρi∥Lp([0,1]d) ≤ 7
√
dωf

(
L−2/d

)
for i = 1, 2, · · · , v. By Lemma A.3 and A.4, we have finished the proof of

(i) of Theorem 3.1.

20



ReLU Network with Width d+O(1) Can Achieve Optimal Approximation Rate

B.5. Proof of Proposition 3.3

We first give some lemmas so that it can be convenient for us to state our proof.

Definition B.5. A function g : Rd → Rv is a max-min string of length L ≥ 1 on d input variables and v output variables if
there exist affine functions ℓ1, . . . , ℓL : Rd → Rv such that

g = τL−1 (ℓL, τL−2 (ℓL−1, . . . , τ2 (ℓ3, τ1 (ℓ1, ℓ2)) · · · ) ,

where each τi is either a coordinate-wise max or a min.

Proposition B.6 (Proposition 2, (Hanin & Sellke, 2017)). For any input x ∈ Rd and any max-min string g : Rd → Rv

of length L, there is a network g̃ ∈ Id,v
ReLU(d, v, 0;L) that can generate g, i.e., g̃ = g. This implies that there is a ReLU

network ϕ ∈ NN d,d+v (d+ v, L) such that ϕ(x) = (x, g(x)).

Lemma B.7. Let f any given univariate continuous piecewise linear function with L breakpoints: x1 < x2 < · · · < xL.
For i = 0, 1, · · · , L, we define fi(x) to be the linear function coincides with the linear function f(x) in [xi, xi+1] and is
extended to R. Here we set x0 = −∞ and xL+1 = ∞. Assume f satisfies the following property for i = 1, 2, · · · , L:

(i) if f ′i(x) ≥ f ′i−1(x), then fi(x) ≤ f(x),∀x ≤ xi, and

(ii) if f ′i(x) < f ′i−1(x), then fi(x) ≥ f(x),∀x ≤ xi.

Then there exists a ReLU network ϕ with width 2 and depth L such that ϕ(x) = (x, f(x)).

Proof. It is easy to show f is a max-min string of length L by induction. Let us briefly show it. L = 1 is the trivial case. If
f is CPwL of two breakpoints and satisfies the assumption (actually, any CPwL function of two breakpoints will satisfy the
condition), then we have f(x) = max{f0(x), f1(x)} for the case (i) and f(x) = min{f0(x), f1(x)} for the case (ii). We
now assume Lemma B.7 holds for L = k we will show it also holds for L = k + 1. Suppose f is a CPwL function with
k + 1 breakpoints (x1 < x2 < · · · < xk+1), we define g is the function such that g(x) equal to f(x) as x < xk+1 and g(x)
is equal to fk(x) as x > xk+1. Then g(x) is a CPwL function satisfying the assumption, hence g is a max-string of length k.
Moreover, for i = k + 1, we have f(x) = max{g(x), fk+1(x)} if (i) is the case and f(x) = min{g(x), fk+1(x)} if (ii) is
the case. Thus, f is a max-min string of length L by induction. Then we can get the conclusion by Proposition B.6.

Now, we are ready to prove Proposition 3.3 and we may prove Proposition 3.3 with the following notation.

Proposition B.8 (Proposition 3.3). For any L, d ∈ N+and δ ∈
(
0, 1

3K

]
with K =

⌊
L2/d

⌋
, there exists a function

ρ̂ : [0, 1] → R2, ρ̂(x) = (x, ρ(x)) implemented by a ReLU network with width 2 and depth not more than 4L
1
d +3 such that

ρ(x) = k, if x ∈
[
k

K
,
k + 1

K
− δ · 1{k≤K−2}

]
for k = 0, 1, · · · ,K − 1.

proof of Prop. 3.3. Without loss of generality, assume K =
⌊
L2/d

⌋
= L̃2 where L̃ = L1/d. We first consider the sample

set

{(1, L̃− 1), (2, 0)} ∪
{(

m

L̃
,m

)
: m = 0, 1, · · · , L̃− 1

}
∪
{(

m+ 1

L̃
− δ,m

)
: m = 0, 1, · · · , L̃− 2

}
.

By Lemma B.7, there exists a ReLU network ϕ̂1 ∈ NN (2, 2L̃+ 1) such that ϕ̂1(x) = (x, ϕ1(x)) where ϕ1(x) is a CPwL
function with breakpoints in the above point set, i.e.,

• ϕ1
(

L̃−1

L̃

)
= ϕ1(1) = L̃− 1 and ϕ1

(
m

L̃

)
= ϕ1

(
m+1

L̃
− δ
)
= m for m = 0, 1, · · · , L̃− 2, and

• ϕ1 is linear on
[
L̃−1

L̃
, 1
]

and each interval
[
m

L̃
, m+1

L̃
− δ
]

for m = 0, 1, · · · , L̃− 2.
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Then we have

ϕ1 (x) = ℓ, for x ∈
[
m

L̃
,
m+ 1

L̃
− δ · 1{ℓ≤L̃−2}

]
.

Next we consider the another sample set{(
1

L̃
, L̃− 1

)
, (2, 0)

}
∪
{(

ℓ

L̃2
, ℓ

)
: ℓ = 0, 1, · · · , L̃− 1

}
∪
{(

ℓ+ 1

L̃2
− δ, ℓ

)
: ℓ = 0, 1, · · · , L̃− 2

}
.

Its size is 2L̃+ 1. By Lemma B.7, there exists a ReLU network ϕ2 ∈ NN (2, 2L̃+ 1) such that

• ϕ2
(

L̃−1

L̃2

)
= ϕ2

(
1

L̃

)
= L̃− 1 and ϕ2

(
ℓ

L̃2

)
= ϕ2

(
ℓ+1

L̃2
− δ
)
= ℓ for ℓ = 0, 1, · · · , L̃− 2;

• ϕ2 is linear on
[
L̃−1

L̃2
, 1

L̃

]
and each interval

[
ℓ

L̃2
, ℓ+1

L̃2
− δ
]

for ℓ = 0, 1, · · · , L̃− 2.

It follows that, for m = 0, 1, · · · , L̃− 1 and ℓ = 0, 1, · · · , L̃− 1,

ϕ2

(
x− m

L̃

)
= ℓ, for x ∈

[
mL̃+ ℓ

L̃2
,
mL̃+ ℓ+ 1

L̃2
− δ · 1{ℓ≤L̃−2}

]
.

The fact K = L̃2 implies each k ∈ {0, 1, · · · ,K − 1} can be unique represented by k = mL̃+ ℓ for m = 0, 1, · · · , L̃− 1

and ℓ = 0, 1, · · · , L̃− 1. For any x ∈
[
k
K ,

k
K − δ · 1{k≤K−2}

]
for k ∈ {0, 1, · · · ,K − 1}, ϕ̂1(x) = (x, ϕ(x)) = (x,m).

Next, we define an affine mapping ϕ0 such that ϕ0(x,m) =
(
x− m

L̃
,m
)

. Finally, let ϕ̂2(x) = (ϕ2(x), x). Then

ϕ̂2

(
x− m

L̃
,m
)
=
(
ϕ2

(
x− m

L̃

)
,m
)
= (ℓ,m). With a final affine layer L(ℓ,m) = mL̃+ ℓ = k.

Thus, the desired function ρ := L ◦ ϕ̂2 ◦ ϕ0 ◦ ϕ̂1 can be implemented by a ReLU FNN and

ρ(x) = k, if x ∈
[
k

K
,
k

K
− δ · 1{k≤K−2}

]
for k ∈ {0, 1, · · · ,K − 1}.

Moreover, ρ ∈ NN (2, 4L̃+ 3) so we finish the proof.

B.6. Proof of Propsition 3.4

Lemma B.9 (Proposition 4, (Hanin & Sellke, 2017)). Let S ⊆ R be a finite set. Then any function f : S → R can be
computed exactly by a max-min string of length 2|S|. This implies there exists a ReLU network ϕ with width 2 and depth
2|S| such that ϕ(x) = (x, f(x)).

Lemma B.10. For any L ∈ N+ and q ∈ {2, 3}, there exists a ReLU network ϕ in NN (5, (2q + 2)L) such that, for any
θ1, θ2, · · · , θL ∈ {0, 1, · · · , q − 1}, we have

ϕ (0.θ1θ2 · · · θL, ℓ) =
ℓ∑

j=1

θj , for ℓ = 1, 2, · · · , L

Proof. Given θ1, θ2, · · · , θL ∈ {0, 1, · · · , q − 1}, define

ξj := 0.θjθj+1 · · · θL =

L∑
i=j

θi
qi−j+1

, for j = 1, 2, · · · , L
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and Sq(x) : [0, q) → R as

Sq(x) = k, if x ∈ [k, k + 1− ϵ] for k = 0, 1, · · · , q − 1,

where ϵ is a parameter to be determined later. Then we have

θj = ⌊qξj⌋ for j = 1, 2, · · · , L,

and
ξj+1 = qξj − θj for j = 1, 2, · · · , L− 1.

Moreover, ⌊·⌋ can be approximated by the ReLU network Sq(·). Note that if ϵ < q−L, then ⌊qx⌋ = Sq(qx) for any
x = 0.θ1θ2 · · · θl where l ≤ L. Now let

S(x) :=
{

1, x ≥ 0,
0, x < 0.

If x ∈ Z, S(x) = S0(x) where S0(x) is defined by

S0(x) :=

 1, x ≥ 0,
x+ 1, 0 ≥ x ≥ −1,
−1, x < −1.

Now we have
ℓ∑

j=1

θj =

L∑
j=1

θjS(ℓ− j) =

L∑
j=1

θjS0(ℓ− j) :=

L∑
j=1

zℓ,j

for ℓ = 1, 2, · · · , L where zℓ,j = θjS0(ℓ− j) ≥ 0.

Here the multiplication of x ∈ {0, 1} and y ∈ {0, 1} can be done by xy = σ(x + y − 1), and the multiplication of
x ∈ {0, 1, 2} and y ∈ {0, 1} can be done by xy = σ(x+ y − 1)− σ(x− y − 1).

Now, we construct a ReLU network ϕ such that ϕ (0.θ1θ2 · · · θL, ℓ) =
∑ℓ

j=1 θj for ℓ = 1, 2, · · · , L. Note that Sq is a linear
interpolation at the sample set

{(k, k) : k = 0, 1, · · · , q − 1} ∪ {(k + 1− ϵ, k) : k = 0, 1, · · · , q − 1} .

Then by Lemma B.7, Sq(q ≥ 1) can be implemented by a ReLU network L with width 2 and depth 2q, i.e., L(x) =
(x,Sq(x)). Similarly, S0 can be implemented by a ReLU network with width 2 and depth 2. Let A(j)(ξj) = (ξj , θj =
Sq(qξj)) and B(j)(ℓ) = (ℓ,S0(ℓ− j)) for j = 1, 2, · · · , L. Here note that A(ax+ b) is a CPwL function of x if A(x) is
CPwL. Then we have the following network architecture to output the desired value:

(
ξ1
ℓ

)
→


ξ1
ℓ
θ1

S0(ℓ− 1) := y1
0

→


ξ2
ℓ

σ (θ1 + y1 − 1)
σ (θ1 − y1 − 1)

0

→


ξ2
ℓ

σ (θ1 + y1 − 1)
σ (θ1 − y1 − 1)

zℓ,1

→ · · · →


ξm
ℓ
−
−∑m−1

j=1 zℓ,j



→


ξm
ℓ
θm

S0(ℓ−m) : ym∑m−1
j=1 zℓ,j

→


ξm+1

ℓ
σ (θm + ym − 1)
σ (θm − ym − 1)∑m−1

j=1 zℓ,j

→


ξm+1

ℓ
σ (θm + ym − 1)
σ (θm − ym − 1)∑m

j=1 zℓ,j

→ · · · →


−
ℓ
−
−∑L

j=1 zℓ,j

→
ℓ∑

j=1

θj

The entire network has not more than (2q + 2)L layers and its width is 5.
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Lemma B.11. For any L ∈ N+, q ∈ {2, 3}, any θk,ℓ ∈ {0, 1, · · · , q − 1} for k, ℓ = 0, 1, · · · , L− 1, there exists a ReLU
FNN ϕ : R2 → R with width 5 and depth (2q + 4)L+ 2 such that

ϕ(k, ℓ) =

ℓ∑
j=0

θk,j , for k, ℓ = 0, 1, · · · , L− 1

Proof. Let
yk := 0.θk,0θk,1 · · · θk,L−1, for k = 0, 1, · · · , L− 1.

Next, we consider the sample set {(k, yk) : k = 0, 1, · · · , L}, whose size is L+ 1. By Lemma B.9, there exists a ReLU
network ϕ1 ∈ NN (2, 2L+ 2) such that

ϕ1(k) = yk, for k = 0, 1, · · · , L− 1.

By Lemma B.10, there exists ϕ2 ∈ NN (5, (2q + 2)L) such that, for any ξ1, ξ2, · · · , ξL ∈ {0, 1, · · · , q − 1}, we have

ϕ2 (0.ξ1ξ2 · · · ξL, ℓ) =
ℓ∑

j=1

ξj , for ℓ = 1, 2, · · · , L.

It follows that, for any ξ0, ξ1, · · · , ξL−1 ∈ {0, 1, · · · , q − 1}, we have

ϕ2 (0.ξ0ξ1 · · · ξL−1, ℓ+ 1) =

ℓ∑
j=0

ξj , for ℓ = 0, 1, · · · , L− 1.

Thus, for k, ℓ = 0, 1, · · · , L− 1, we have

ϕ2 (ϕ1(k), ℓ+ 1) = ϕ2 (yk, ℓ+ 1) = ϕ2 (0.θk,0θk,1 · · · θk,L−1, ℓ+ 1) =

ℓ∑
j=0

θk,j

We have ϕ is a ReLU network of width 5 and depth (2q + 2)L+ 2L+ 2.

Lemma B.12. For any ε > 0, L ∈ N+, assume {yk,ℓ ≥ 0 : k, ℓ = 0, 1, · · · , L− 1} is a sample set with

|yk,ℓ − yk,ℓ−1| ≤ ε, for k, ℓ = 0, 1, · · · , L− 1.

Then there exists a ReLU netework ϕ ∈ NN (5, 12L+ 6) such that

(i) |ϕ(k, ℓ)− yk,ℓ| ≤ ε, for k, ℓ = 0, 1, · · · , L− 1, and

(ii) 0 ≤ ϕ (x1, x2) ≤ max {yk,ℓ : k, ℓ = 0, 1, · · · , L− 1}, for any x1, x2 ∈ R.

Proof. Define
ak,ℓ := ⌊yk,ℓ/ε⌋ , for k, ℓ = 0, 1, · · · , L− 1.

We will construct a a ReLU FNN to map the index (k, ℓ) to ak,ℓε for k, ℓ = 0, 1, · · · , L− 1.

Define bk,0 := 0 and bk,ℓ := ak,ℓ − ak,ℓ−1 for k, ℓ = 0, 1, · · · , L− 1. Since |yk,ℓ − yk,ℓ−1| ≤ ε for all k and ℓ, we have
bk,ℓ ∈ {−1, 0, 1}. Hence, we have

ak,ℓ = ak,0 +

ℓ∑
j=1

(ak,j − ak,j−1) = ak,0 +

ℓ∑
j=1

bk,j = ak,0 +

ℓ∑
j=0

bk,j

24



ReLU Network with Width d+O(1) Can Achieve Optimal Approximation Rate

for k = 0, 1, · · · , L− 1 and ℓ = 1, · · · , L− 1. For the sample set {(k, ak,0) : k = 0, 1, · · · , L− 1} ∪ {(L, 0)}, whose size
is L+ 1, by Lemma B.9, there exists a ReLU network ψ̃1 ∈ NN (2, 2L+ 2) such that

ψ̃1(k) = (k, ψ1(k) = ak,0) , for k = 0, 1, · · · , L− 1.

It follows that there exists a ReLU network ψ̂1 ∈ NN (3, 2L+ 1) such that ψ̂1(k, ℓ) = (k, ℓ, ak,0).

By Lemma B.11, there exists a ReLU network ψ2 ∈ NN (5, 10L+ 2) such that

ψ2(k, ℓ) =

ℓ∑
j=0

bk,j =

ℓ∑
j=0

(bk,j + 1)− ℓ.

Here note that bk,j ∈ {0, 1, 2} which will satisfy the condition of Lemma B.11.

Thus, we can compute ak,0 first by ψ̂1. According to the construction in Lemma B.10 and Lemma B.11 we use one channel
to reserve the value of ak,0 and the partial sum

∑ℓ
j=0 bk,j computed by ψ2. Thus, there exists a ReLU FNN ψ̂2 with width 5

and depth 10L+ 2 such that

ψ̂2(k, ℓ, ak,0) = ak,0 + ψ2(k, ℓ) = ak,0 +

ℓ∑
j=0

bk,j = ak,ℓ.

Define
ϕ1(k, ℓ) = L ◦ ψ̂2 ◦ ψ̂1(k, ℓ) = L ◦ ψ̂2(k, ℓ, ak,0) = εak,ℓ

by choosing appropriate affine mapping L. Then ϕ1 is a ReLU network with width 5 and depth 12L+4 and ϕ1(k, ℓ) = εak,l
for k = 0, 1, · · · .L − 1 and ℓ = 0, 1, · · · , L − 1. Let ϕ2(x) = min{σ(x), ymax}. Then for x, y ∈ R, ϕ(x, y) :=
ϕ2 ◦ ϕ1(x, y) ≤ ymax and ϕ(k, ℓ) = min{εak,ℓ, ymax} = ak,ℓ for k, ℓ = 0, 1, · · · , L.

Note min{a, b} = a− (a− b)+. Then ϕ is a ReLU network in NN (5, 12L+ 6).

Now, we are ready to prove Prop. 3.4. We are going to prove the Proposition 3.4 with the following notation.

Proposition B.13 (Proposition 3.4). Given any ε > 0 and arbitrary L, J ∈ N+with J ≤ L2, assume yj ≥ 0 for
j = 0, 1, · · · , J − 1 are samples with

|yj − yj−1| ≤ ε, for j = 1, 2, · · · , J − 1.

Then there exists a ReLU network ρ ∈ NN (5, 14L+ 8) such that

(i) |ρ(j)− yj | ≤ ε for j = 0, 1, · · · , J − 1, and

(ii) 0 ≤ ρ(x) ≤ max {yj : j = 0, 1, · · · , J − 1} for any x ∈ R.

Proof of Prop. 3.4. Without loss of generality, assume J = L2 since we can set yJ−1 = yJ = yJ+1 = · · · = yL2−1 if
J < L2. For the sample set

{(kL, k) : k = 0, 1, · · · , L} ∪ {(kL+ L− 1, k) : k = 0, 1, · · · , L− 1}

whose size is 2L+ 1. We then have a ReLU network ϕ̂1 ∈ NN (2, 2L+ 1) by Lemma B.7 such that

• ϕ̂1(x) = (ϕ1(x), x),

• ϕ1(L2) = L and ϕ1(kL) = ϕ1(kL+ L− 1) = k for k = 0, 1, · · · , L− 1, and

• ϕ1 is a CPwL function with breakpoints that coincide exactly with the first coordinate of the elements in the sample set.
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It follows that
ϕ1(j) = k, and j − Lϕ1(j) = ℓ, where j = kL+ ℓ,

for k, ℓ ∈ {0, 1, · · · , L − 1}. Note that any number j in {0, 1, . . . , J − 1} can be uniquely indexed as j = kL + ℓ for
k = 0, 1, · · · , L− 1 and ℓ = 0, 1, · · · , L− 1. So we can denote yj = ykL+ℓ as yk,ℓ. Then by Lemma B.12, there exists
ϕ2 ∈ NN (5, 12L+ 6) such that

|ϕ2(k, ℓ)− yk,ℓ| ≤ ε, for k, ℓ = 0, 1, · · · , L− 1,

and
0 ≤ ϕ2 (x1, x2) ≤ ymax, for any x1, x2 ∈ R.

So any j = kL+ ℓ ∈ {0, 1, · · · , J − 1}, we can have an affine mapping L such that

L ◦ ϕ̂1(j) = L(k, j) = (k, ℓ).

Let ρ = ϕ2 ◦ L ◦ ϕ1. We have ρ is a ReLU network in NN (5, 14L+ 8) and it satisfy

|ρ(j)− yj | ≤ ε.

Then we have finished the proof.

C. Proof of (ii) of Theorem 1.1
We follow the proof of theorem 2 in (Yarotsky, 2018). In our proof, we skip some details and focus on the constructions of
narrow networks. All the overlooked details can be found in (Yarotsky, 2018). First, we recall the idea of achieving the
optimal approximation rate (Yarotsky, 2018).

C.1. Preliminaries: Key Steps in (Yarotsky, 2018)

Step 1: Space Partitions.

Generally, we will approximate f by interpolation of f on a scale 1/N . To this end, divide [0, 1]d into standard simplexes
on the grid ( Z

N )d. Each simplex is a triangle

∆(N)
n,π =

{
x ∈ Rd : 0 ≤ xπ(1) −

nπ(1)

N
≤ . . . ≤ xπ(d) −

nπ(d)

N
≤ 1

N

}
where n = (n1, . . . , nd) ∈ Zd and π is a permutation of d elements. Denote by PN the set of all simplexes on the grid
(Z/N)d. The vertices of these simplexes are the points of the grid (Z/N)d. The set of all the vertices is called the N -grid
and a particular vertex is called an N -knot. For an N -knot we call the union of simplexes it belongs to an N -patch. There is
an illustration figure for these notations in (Yarotsky & Zhevnerchuk, 2020).

Step 2: Function approximation.

Let ϕ : Rd → R be the ”spike” function defined as the continuous piecewise linear function such that:
1. ϕ is linear on every simplex from the triangulation P1;
2. ϕ(0) = 1, ϕ(n) = 0 for all other n ∈ Zd.

Then from formula (6) in (Yarotsky, 2018)

ϕ(x) =

(
min

(
min
k ̸=s

(1 + xk − xs) ,min
k

(1 + xk) ,min
k

(1− xk)

))
+

. (12)

Now, the piecewise linear interpolation f̃1 on a scale 1/N is defined as

f̃1(x) =
∑

n∈{0,1,...,N}d

f
( n

N

)
ϕ(Nx− n) (13)
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with the approximation error

∥f − f̃1∥L∞ ≤ 3dωf (
1

N
).

If we simply store each coefficient f(n/N) by O(1) parameters and construct a neural network with W = O(Nd)
parameters to generate f̃1, we can only achieve the sub-optimal approximation rate. To achieve the optimal approximation
rate, we need to consider the interpolation function p(x) on a more refined scale 1/M where M < N and use networks
with the same order parameters W = O(Nd) to generate this interpolation function p(x).

To this end, we consider the approximation of the discrepancy f2 = f − f̃1. Further, f2 can be represented by a finite sum
of functions with supports consisting of disjoint N -patches. Concretely,

f2 =
∑

q∈{0,1,2}d

f2,q, (14)

where

f2,q = f2gq and gq(x) =
∑

n∈(q+(3Z)d)∩[0,N ]d

ϕ(Nx− n). (15)

Moreover, gq satisfy 1 =
∑

q∈{0,1,2}d gq. Each function f2,q is supported on the disjoint union of cubes Qn =

Xd
s=1

[
ns−1
N , ns+1

N

]
with n ∈

(
q+ (3Z)d

)
∩ [0, N ]d corresponding to the spikes in the expansion (15).

Recall that our budget is W = O(Nd) parameters and layers. We then write N =
⌊
c1W

1/d
⌋

and we further set
M = c2W

2/d. Without loss of generality, we assume M/N is an integer. We then consider a more refined approximation
on scale 1/M . We define f̃2,q to be piecewise linear with respect to the refined triangulation PM and to be given on the
refined grid (Z/M)d by

f̃2,q

(m
M

)
= λ

⌊
f2,q

(m
M

)
/λ
⌋
, m ∈ [0, . . . ,M ]d. (16)

Here the parameter λ is given by

λ =
(
6d3/2 + 1

)
ωf

(
1

M

)
. (17)

Then the full approximation of f is

ρ = f̃1 + f̃2 = f̃1 +
∑

q∈{0,1,2}d

f̃2,q (18)

Step 3: Accuracy of the Full Approximation.

According to equation (10) in (Yarotsky, 2018), we have

∥f − ρ∥L∞ ≤ 3d(3d+ 1)
(
6d3/2 + 1

)
ωf

(
1

M

)
. (19)

Then if we can generate ρ by a ReLU network of O(W ) parameters, we can achieve the optimal approximation rate as
follows:

∥f − ρ∥L∞ = O
(
ωf

(
O
(
W−2/d

)))
. (20)

In (Yarotsky, 2018), the author constructs a network of width 2d+ 10 to achieve this rate. However, the width 2d+ 10 is
slightly larger than the state-of-the-art minimum width to satisfy the universality, which is d+ 1. Thus, in this paper, we aim
to construct a network of width d+O(1) to achieve this rate. Before proceeding to this proof, we need to reformulate ρ so
that it can be convenient for us to construct a ReLU network to generate it. It suffices to reformulate f̃2,q since f̃1 is easy to
be generated by a ReLU network.
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Step 4: Reformulation of f̃2,q.

According to the proof of theorem 2 in (Yarotsky, 2018), we can rewrite

f̃2,q(x) = λ
∑

m∈[−M
N +1,...,MN −1]

d−1

M
N −1∑

m1=−M
N +1

Φ̃m,q (m1,x)Bq,n (m1,m) , (21)

where

Φ̃m,q (m1,x) =

{
Φn,m (m1,x) , x ∈ Qn,n ∈

(
q+ (3Z)d

)
∩ [0, N ]d,

0, otherwise,
(22)

= min

 m1∑
s=−M/N+1

ϕ

(
M

(
x−

(
Ψq(x) +

(s,m)

M

)))
, θq(x)

 , (23)

Φn,m (m1,x) =

m1∑
s=−M/N+1

ϕ

(
M

(
x−

(
n

N
+

(m1,m)

M

)))
, (24)

Ψq(x) =
n

N
, if x ∈ Qn,n ∈

(
q+ (3Z)d

)
∩ [0, N ]d, (25)

further, Ψq(x) = (ψq1 (x1) , . . . , ψqd (xd)) , (26)

ψq(x) =
q

N
+ 3

⌈N/3⌉∑
k=0

((
x− q + 3k + 1

N

)
+

−
(
x− q + 3k + 2

N

)
+

)
, (27)

θq(x) = N
∑

n∈(q+(3Z)d)∩[0,N ]d

(
1− max

s=1,...,d
|Nxs − ns|

)
+

, (28)

and

Bq,n(m) = Aq,n (m1,m)−Aq,n (m1 + 1,m) , m ∈
[
−M
N

+ 1, . . . ,
M

N
− 1

]d
, (29)

Aq,n(m) =
⌊
f2,q

( n

N
+

m

M

)
/λ
⌋
, m ∈

[
−M
N
, . . . ,

M

N

]d
. (30)

(31)

We skip many details for deriving these formulas and they can be found in (Yarotsky, 2018).

Moreover, the authors in (Yarotsky, 2018) introduces how to recover bq,n from Bq,n(m). Since Bq,n(m) ∈ {−1, 0, 1}, we
can encode all the (2M/N − 1)d values Bq,n(m) by a single ternary number

bq,n =

(2M/N−1)d∑
t=1

3−t (Bq,n (mt) + 1) , (32)

where t 7→ mt is some enumeration of the multi-indices m. The values bq,n for all q and n will be stored as parameters in
the network. Given x, the relevant value of bq,n can be selected among the values for all patches by the ReLU network
computing

bq(x) =
∑

n∈(q+(3Z)d)∩[0,N ]d

bq,n
2

((2− u)+ − (1− u)+) , where u = max
s=1,...,d

|Nxs − ns| . (33)

If x belongs to some patch Qn, then bq(x) = bq,n, as required. If x does not belong to any cube Qn, bq(x) will compute
some unimportant value because that term will vanish according to (21,22). Then Bq,n(m) can be reconstructed from bq,n
by the bit extraction methods.
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In (Yarotsky, 2018), the author uses d channels to reserve the value of the input, another d channels to reserve the value of
Ψq(x), and ten more channels to process some computations. Thus, it needs a ReLU network of width 2d+ 10 to achieve
the optimal approximation rates (20).

Now, we are ready to construct a network of width d+ 11 to generate ρ.

C.2. Construction Details

Now, given a continuous function f from [0, 1]d to R, we show that we can construct a register model in
IReLU (d, 10, 1;O (L)) to generate ρ (Equation 18). In this register model, we allocate the first d channels, referred
to as the source channels, for forwarding the input value x, and the final channel, referred to as the collation channel,
for storing and refreshing intermediate computations. For the sake of convenience in the narrative, we first suppose that
our register model has a few more channels, that is IReLU (d, 15, 1;O (L)) where we have 15 channels for intermediate
computations. We will call these 15 channels ’Channel1’,’Channel2’,..., ’Channel15’ respectively.

Stage 1. Computation of f̃1.

Note that all of ℓ(x) = 1+xk, ℓ(x) = 1−xk, ℓ(x) = 1+xk−xs are affine transformations. Then it follows from Equation
(12) that ϕ(x) is a min string of length O(d2). This allows us to use Channel1 to compute ϕ(Nx− n). Then the value of
f̃1 can be stored in the collation channel. For each ϕ, we will consume not more than d2 layers. By Equation (13), it will
consume not more than d2Nd layers to compute f̃1. Moreover, Channel1 becomes a garbage channel after computing f̃1 so
we can use it later.

Stage 2. Computation of θq(x), bq(x).

We use three channels (Channel2-Channel4) for our compuations. Note that

u = max
s=1,...,d

|Nxs − ns| = max
s=1,...,d

{Nxs − ns,−Nxs + ns} .

Hecen, we then can use Channel4 of depth 2d to compute u by Prop. B.6. Once we get the value of u for the first n, we
can compute bq,n

2 (2 − u)+ and reserve it in Channel2. Then we use one layer in Channel4 to compute (1 − u)+. Next,
pass the value − bq,n

2 (1− u)+ to Channel2 and add bq,n

2 (2− u)+ as the bias. At the same time, pass the value N(1− u)+
to Channel3 and reserve it. Now, Channel2 and Channel3 have reserved the value of the partial sum of bq(x) and θq(x)
respectively. Then for any n, we can first compute u and use the same process to compute bq,n

2 ((2− u)+ − (1− u)+) and
N(1− u)+.By induction, we can finally compute bq(x) and θq(x) and reserve them in Channel2 and Channel3 respectively.
The total process consumes not more than 2dNd layers. Moreover, note that Channel4 becomes a garbage channel, which
we can use for other computations later.

Stage 3. Computation of Bq,n(m) and Φ̃m in parallel.

Substage 3.1. Reconstruction of {Bq,n(m)} from bq,n. (Yarotsky, 2018) has shown that this reconstruction process can be
efficiently carried out using 4 channels. We state the idea of bit extraction. Let’s consider the sequence zt with z0 = bq,n and
zt+1 = 3zt − ⌊3zt⌋. It follows that the bit Bq,n (mt) is give by Bq,n (mt) = ⌊3zt−1⌋ − 1 for all t. For the implementation
of these computations by a ReLU network, it is necessary to compute ⌊3zt⌋ for all zt. This can be achieved by a piecewise
linear function χϵ : [0, 3) → R defined as

χϵ(x) =


0, x ∈ [0, 1− ϵ]

1, x ∈ [1, 2− ϵ],

2, x ∈ [2, 3− ϵ]

(34)

Such a function can be realized by χϵ(x) =
1
ϵ (x− (1− ϵ))+ − 1

ϵ (x− 1)+ + 1
ϵ (x− (2− ϵ))+ − 1

ϵ (x− 2)+. It is important
to note that if ϵ < 3−(2M/N−1)d , then for all t the number 3zt will fall within one of the three intervals in the right-hand
side of Equation (34) and hence χϵ (3zt) = ⌊3zt⌋.

Thus, using four channels (Channel5-Channel8), we can decode Bq,n(m) from bq,n. Channel5 is used to store and refresh
the value of zt. Channel6 is used to store and refresh Bq,n(m). Channel7 and Channel8 are used to compute χϵ(3zt).
Hence we can reconstruct the values Bq,n(m) for all m by a ReLU network with not more than 4(M/N)d layers. For each
Bq,n(m), we only need O(1) layers to decode it.
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Substage 3.2. Computation of Φ̃m. Unlike (Yarotsky, 2018), we do not compute and reserve Φq(x) in advance because we
need to conserve channels. In this process, we assume our budget has 6 channels (Channel9-Channel14).

Note that by formula (27), we can compute and refresh ψqi(xi) and ψqj (xj) (i ̸= j) using two channels (Channel9 and
Channel10 respectively). In this process, Channel11 can be used to compute some intermediate value. Concretely, Channel9
first compute 3(xi − qi+1

N )+ and Channel11 compute 3(xi − qi+2
N )+. Then pass the value −3(xi − qi+2

N )+ to Channel9
and add the pre-value 3(xi − qi+1

N )+ as bias. Then we have computed one term of the sum (27). With the same process and
by induction, we can consume not more than 2N layer to compute ψqi(xi) and ψqj (xj).

Now, suppose we have got the value yi and yj in Channel9 and Channel10 respectively where yi := M(xi − ψqi(xi)−
mi/M). Note that for any real number a, b, (min{a, b})+ = min{a+, b+}. We then use Channel11 to compute the current
value min{1 + yi, 1 − yi, 1 − yi + yj , 1 − yj + yi, ϕ

′} where ϕ′ is the partial min string of ϕ(y) for y = (y1, · · · , yd).
Now, this value will be passed to Channel12 for refreshing. We iterate i from 1 to d, and for each i we iterate j from i to d,
repeating this process. Finally, we can compute ϕ(y) in Channel12. Moreover, The remaining two channels are used to
store the partial sum

∑m1

s ϕ (Channel13) and compute Φ̃m (Channel14) by (22), respectively. For each s, we will consume
not more than 2d2N layers. Because the partial sum

∑m1

s ϕ is reserved, we will consume not more than 2d2N layers for
each m1 from M/N − 1 to M/N + 1.

Stage 4. Computation of the multiplication of Φ̃m and Bq,n(m).

For any a ∈ [0, 1], b ∈ {−1, 0, 1} we have ab = (a + b − 1)+ + (−a − b)+ − (−b)+. We can find Φ̃m and Bq,n(m) in
the same layer due to the parallel computation of Φ̃m and Bq,n(m). Then we only need one channel (Channel15) for this
multiplication operation. To show this, let’s a = Φ̃m and b = Bq,n(m). We can compute (a+ b− 1)+ first in Channel15
and pass the value λ(a+ b− 1)+ to the collation channel. Then compute (−a− b)+, (−b)+ and pass the value λ(−a− b)+,
−λ(−b)+ to collation channel. Then we have reserved one term of (21) in the collation channel. Then by repeating this
process, we can compute and reserve f̃2,q in collation channel with not more than 2dNd + 2dN × (MN )d layers.

Stage 5. For each q ∈ {0, 1, 2}d, we repeat the stage 2-4. Finally, we will cost 3d
(
2dNd + 2dN × (MN )d

)
layers to

generate f̃2 =
∑

q∈{0,1,2}d f̃2,q.

Reduction of the number of channels. Note that Channel1 and Channel4 are idle after stage 1 and stage 2. Therefore, in
substage 3.1, the tasks of Channel7 and Channel8 can be accomplished by Channel1 and Channel4, respectively. Although
the computations of Bq,n(m) and Φ̃m are in parallel, for each q,n,m, they can be computed sequentially. We only need
to find Bq,n(m) and Φ̃m in the same layer. Thus, the tasks of channel 9 and Channel8 10 can also be accomplished
by Channel1 and Channel4. Moreover, the task of Channel15 can also be accomplished by Channel11 because after
stage 3 Channel11 will become idle. In the end, we can save the use of five channels, i.e., our register model belongs to
IReLU(d, 15, 1; L̂) where L̂ is the depth we need.

Approximation rate. Recall that N = c1W
1/d, M = c2W

2/d. We can set M = L2/d so that by Equation (19) we have

∥f − ρ∥L∞ ≤ 3d(3d+ 1)
(
6d3/2 + 1

)
ωf

(
L− 2

d

)
. (35)

To generate ρ, we will totally cost

d2Nd + 3d
(
2dNd + 2dN × (

M

N
)d
)

layers. Let c2 ≤ c21 and c1 be small enough. Then the number of layers is not more than 6d3dL1+1/d. By letting L̃ = L1+1/d,
we can get the approximation rate

∥f − ρ∥L∞ ≤ 3d(3d+ 1)
(
6d3/2 + 1

)
ωf

(
L̃− 2

d+1

)
(36)

by a narrow ReLU network with width d+ 11 and depth O(L̃) = 6d3dL̃.
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C.3. Approximation of Mappings: Proof of (ii) of Theorem 3.1

Now, we assume f = (f1, f2, · · · , fv) is a continuous mapping in from [0, 1]d to Rv . It follows from Section C.2 we have a
register model ρ = (ρ1, · · · , ρv) ∈ Id,v

ReLU(d, 10, v; 6d3
dvL) such that for x ∈ [0, 1]d

∥fi − ρi∥L∞([0,1]d) ≤ 3d(3d+ 1)
(
6d3/2 + 1

)
ωf

(
L− 2

d+1

)
. (37)

Note that Id,v
ReLU(d, 10, v; 6d3

dvL) ⊂ NN d,v
ReLU(d+ v + 10, 6d3dvL) by Lemma A.2. Then by Lemma A.3 and A.4, we

end the proof of (ii) of Theorem 3.1.

D. Diverse Activation Functions
D.1. Definitions of Diverse Activation Functions in the Set Σ

• ReLU(x) = max{0, x}.

• LeakyReLU(x) =

{
x for x ≥ 0

αx for x < 0
where α ∈ (0, 1).

• ReLU2(x) = max{0, x}2.

• Standard Sigmoid:

Sigmoid(x) =
1

1 + e−x
.

• Tanh Function:

Tanh(x) =
ex − e−x

ex + e−x
.

• Arctan(x):

arctan(x) = tan−1(x) : R → (−π
2
,
π

2
)

• Softsign:
Softsign(x) =

x

1 + |x|
.

• Derivative of SiLU (dSiLU):

dSiLU(x) =
1 + e−x + xe−x

(1 + e−x)
2 .

• Soft-Root-Sign (SRS):

SRS(x) =
x

x/α+ e−x/β
with α, β ∈ (0,∞).

• Exponential linear unit (ELU):

ELU(x) =

{
x for x ≥ 0
α (ex − 1) for x < 0

with α ∈ R.

• Scaled Exponential Linear Unit (SELU): for λ ∈ (0,∞) and α ∈ R,

SELU(x) = λ

{
x for x ≥ 0
α (ex − 1) for x < 0

• Softplus(x) = ln (1 + ex) .

31



ReLU Network with Width d+O(1) Can Achieve Optimal Approximation Rate

• Sigmoid Linear Unit (SiLU):
SiLU(x) =

x

1 + e−x

.

• Swish(x) = x
1+e−βx with β ∈ (0,∞).

• Mish(x) = x · Tanh(Softplus(x)).

• Gaussian Error Linear Unit (GELU):

GELU(x) = x

∫ x

−∞

1

σ
√
2π
e−

1
2 (

t−µ
σ )

2

dt with µ ∈ R and σ ∈ (0,∞).

D.2. Proof of Corollary 3.2

In this section, we extend our results to networks equipped with other activation functions. Recently, (Zhang et al., 2023)
has investigated the relationship between ReLU networks and networks with diverse activation functions. For the sake
of convenience in our discussion, we categorize commonly used activation functions into the following sets according to
(Zhang et al., 2023).

(i) Piecewise smooth function set A1,k where k is the order of smoothness, is defined as

A1,k := {σ : R → R |∃a0, b0 ∈ R, a0 < b0, σ ∈ Ck ((a0, b0)) ,

∃x0 ∈ (a0, b0) ,R ∋ lim
t→0−

σ(k) (x0 + t)− σ(k) (x0)

t
̸= lim

t→0+

σ(k) (x0 + t)− σ(k) (x0)

t
∈ R

}
.

The following common used activation functions are in A1,k:

• ReLU,LeakyReLU ∈ A1,0.

• ReLU2 ∈ A1,1.

(ii) Ã2 is a specific subset of A2. It require that either limx→−∞ h(x) or limx→∞ h(x) must be equal to 0, and concretely
defined as

Ã2 := {σ : R → R |∀x ∈ R, σ(x) := (x+ b0) · h(x) + b1, b0, b1 ∈ R, h : R → R,

sup
x∈R

|h(x)| <∞, R ∋ L1 = lim
x→−∞

h(x) ̸= lim
x→∞

h(x) = L2 ∈ R, L1 · L2 = 0

}
.

The following activation functions are in Ã2:

• Softplus, GELU(µ = 0, σ > 0), SiLU, Swish(β > 0), Mish, ELU(α > 0), SELU.

• ϱ1(x) = x · dSiLU(x).

• ϱ2(x) = x · (Softsign(x)/2 + 1/2).

• ϱ3(x) = x · (Arctan(x)/π + 1/2).

(iii) A3 consists of functions with the similar shape of Sigmoid, defined as

A3 :=

{
σ : R → R | sup

x∈R
|σ(x)| <∞, ∃x0 ∈ R, σ′′ (x0) ̸= 0,R ∋ lim

x→−∞
σ(x) ̸= lim

x→∞
σ(x) ∈ R

}
.

The following activation functions are in A3:

32



ReLU Network with Width d+O(1) Can Achieve Optimal Approximation Rate

• Sigmoid,Tanh,Arctan,Softsign,dSiLU,SRS.

Corollary 3.2 is the direct result of the following theorem.

Theorem D.1 ((Zhang et al., 2023)). Suppose σ ∈ A and ϕReLU ∈ NN d,v
ReLU(N,L) with N,L, d, v ∈ N+. Then for any

ε > 0 and A > 0, there exists ϕσ ∈ NN d,v
σ (Ñ , L̃) such that

∥ϕσ − ϕReLU∥L∞([−A,A]d) < ε

where i) Ñ = k + 2, L̃ = L if A = A1,k, ii) Ñ = N, L̃ = L if A = Ã2 and iii) Ñ = 3N, L̃ = 2L if A = A3.

Let ϕσ be a neural network equipped with activation σ of fixed width and depth O(L). For any given continuous function or
mapping f over [0, 1]d, we have

∥ϕσ − f∥ ≤ ∥f − ϕReLU∥+ ∥ϕReLU − ϕσ∥

where ∥f−ϕReLU∥ = O(ωf (L
−2/d)) by Theorem 1.1 or 3.1 and ∥ϕReLU−ϕσ∥ = O(ωf (L

−2/d)) by letting ε = O(L−2/d)
in Theorem D.1. Thus, ϕσ can achieve the rate O(ωf (L

−2/d)) for approximating a given continuous function f over [0, 1]d.
Note that the norm here can be Lp for p ∈ [1,∞].

D.3. Proof of Theorem 3.5

For L∞ norm, we use the following theorem.

Theorem D.2 ((Yarotsky, 2017; Shen et al., 2022b)). Assume F is a set of functions mapping from [0, 1]d to R. For any
ε > 0, if VCDim(F) ≥ 1 and

inf
ϕ∈F

∥ϕ− f∥L∞([0,1]d) ≤ ε, for any f ∈ Lip
(
[0, 1]d

)
,

then VCDim(F) ≥ (9ε)−d.

Hence, if we let ε = E(d, L) := supf∈Lip([0,1]d,µ)

(
infρ∈Hσ(L) ∥ρ− f∥Lp([0,1]d)

)
and F = Hσ(L), we have the conclu-

sion.

For Lp norm where 1 ≤ p <∞, a recent result works.

Theorem D.3 ((Siegel, 2023)). Let p > 0,Ω = [0, 1]d and suppose that K is a translation invariant class of functions
whose V C-dimension is at most n. By translation invariant we mean that f ∈ K implies that f(· − v) ∈ K for any fixed
vector v ∈ Rd. Then there exists an f ∈ Lip([0, 1]d) such that

inf
g∈K

∥f − g∥Lp(Ω) ≥ C(p, d)n−
1
d ∥f∥sup[0,1]d

Note that the set of networks with any activation σ is a translation invariant class. We get the conclusion.

D.4. Proof of Corollary 3.6

It suffices to consider the VC dimension of a set consisting of networks with fixed width and some activation function σ.

For (i) of Corollary 3.6, we use the following theorem.

Theorem D.4 (Theorem 8.4 (Anthony et al., 1999)). Suppose h is a function from Rd × RW to {0, 1} and let

H =
{
x 7→ h(x, a) : a ∈ RW

}
be the class determined by h. Suppose that h can be computed by an algorithm that takes as input the pair (x, a) ∈ Rd×RW

and returns h(x, a) after no more than t operations of the following types:

• the arithmetic operations,+− x, and / on real numbers,
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• jumps conditioned on >,≥, <,≤,=, and ̸= comparisons of real numbers, and

• output 0 or 1.

Then VCdim (H) ≤ 4W (t+ 2).

If σ is a piecewise polynomial function, the time to compute each σ is O(1) where the constant is related to the number of
pieces and the degree of the polynomial. Here note that we can use the operation 2 in the above theorem to compute which
piece x belongs to. For a narrow network with width O(L), the parameters W ∝ L. Thus, we will take O(L) time in total
to compute a narrow σ network with width O(L). From the above theorem, its VC dimension is O(L2). Moreover, for
Softsign activation, one can also use the above theorem to compute the VC dimension of HSoftsign(L) is O(L2).

Theorem D.5 (Theorem 8.14 (Anthony et al., 1999)). Let h be a function from Rd × RW to {0, 1}, determining the class

H =
{
x 7→ h(x, a) : a ∈ RW

}
.

Suppose that h can be computed by an algorithm that takes as input the pair (x, a) ∈ Rd × RW and returns h(x, a) after
no more than t of the following operations:

• the exponential function α 7→ eα on real numbers,

• the arithmetic operations,,+− x, and / on real numbers,

• jumps conditioned on >,≥, <,≤,=, and ̸= comparisons of real numbers, and

• output 0 or 1.

Then VCdim(H) ≤ t2W (W + 19 log2(9W )).

For σ belonging to {ELU,SELU,SiLU,Swish,Mish,Sigmoid,Tanh,dSiLU,SRS}, the above theorem can directly show
VCdim(Hσ(L)) = O(L4).

Besides, note the above theorem can not apply to Arctan activation. But from another work (Karpinski & Macintyre, 1997),
we could get VCdim(Hσ(L)) = O(L4) if σ is Arctan. Let’s first introduce the definitions of Pfaffian functions.

Definition D.6 ((Yarotsky, 2021)). A Pfaffian chain is a sequence f1, . . . , fℓ of real analytic functions defined on a common
connected domain U ⊂ Rd and such that the equations

∂fi
∂xj

(x) = Pij (x, f1(x), . . . , fi(x)) , for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ d

hold in U for some polynomials Pij . A Pfaffian function in the chain (f1, . . . , fℓ) is a function on U that can be expressed
as a polynomial P in the variables (x, f1(x), . . . , fℓ(x)).

It follows from (Karpinski & Macintyre, 1997) that if σ is Pfaffian, then the VC dimension of Hσ(L) is O(L4). Note
that f(x) = arctan(x), is a Pfaffian function. To see this, take f1(x) = 1/

(
1 + x2

)
and f2(x) = arctan(x); then

f ′1(x) = −2x/
(
1 + x2

)2
= −2xf1(x)

2, and f ′2(x) = 1/
(
1 + x2

)
= f1(x). Thus, we end the proof.
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