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Abstract
Geometry is a ubiquitous tool in computer graph-
ics, design, and engineering. However, the lack
of large shape datasets limits the application of
state-of-the-art supervised learning methods and
motivates the exploration of alternative learning
strategies. To this end, we introduce geometry-
informed neural networks (GINNs) – a frame-
work for training shape-generative neural fields
without data by leveraging user-specified design
requirements in the form of objectives and con-
straints. By adding diversity as an explicit con-
straint, GINNs avoid mode-collapse and can gen-
erate multiple diverse solutions, often required in
geometry tasks. Experimentally, we apply GINNs
to several problems spanning physics, geometry,
and engineering design, showing control over ge-
ometrical and topological properties, such as sur-
face smoothness or the number of holes. These
results demonstrate the potential of training shape-
generative models without data, paving the way
for new generative design approaches without
large datasets.

1. Introduction
Recent advances in deep learning have revolutionized fields
with abundant data, such as computer vision and natural
language processing. However, the scarcity of large datasets
in many other domains, including 3D computer graphics,
design, engineering, and physics, restricts the use of ad-
vanced supervised learning techniques, necessitating the
exploration of alternative learning strategies.

Fortunately, these disciplines are often equipped with formal
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problem descriptions, such as objectives and constraints.
Previous works for PDEs (Raissi et al., 2019), molecular
science (Noé et al., 2019), and combinatorial optimization
(Bengio et al., 2021) demonstrate these can suffice to train
models even in the absence of any data. The success of
these data-free approaches motivates an analogous attempt
in geometry, raising the question: Is it possible to train a
shape-generative model on objectives and constraints alone,
without relying on any data?

We address this question by introducing geometry-informed
neural networks or GINNs. GINNs are trained to satisfy
specified design requirements and to produce feasible shapes
without any training samples. A GINN solves a structural
optimization problem using neural fields, which offer de-
tailed, smooth, and topologically flexible geometry repre-
sentations, while being compact to store. This setup is
analogous to physics-informed neural networks but with
a high number of varied constraints: differential, integral,
geometrical, and topological.

In contrast to both physics-informed neural networks and
classical structural optimization, GINNs allow to generate
multiple solutions by enforcing solution diversity as an ex-
plicit constraint. This is of high interest when applied to
problems with solution multiplicity, e.g., induced by under-
determinedness or near-optimality common in geometry
problems. Connecting back to our research question, the
proposed framework allows us to train neural fields that sat-
isfy user-specified design constraints, and by adding diver-
sity as an explicit constraint, we can generate a multiplicity
of solutions. GINNs can thus be used as shape-generative
models trained purely on constraints and without data.

We take several steps to demonstrate GINNs experimen-
tally. We formulate a tractable learning problem using con-
strained optimization and by converting constraints into
differentiable losses. We demonstrate the generality of the
framework by solving several tasks, including an under-
determined PDE, geometric optimization, and engineering
design (Figures 4, 5). Figure 1 illustrates the task of de-
signing a jet-engine lifting bracket, or geometrically – con-
necting cylindrical interfaces within the given design region.
We show different GINNs trained with various smoothness
and topology requirements, illustrating the robustness of the
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Figure 1: We train geometry-informed neural networks to produce shapes satisfying geometric design requirements. For
example, we generate parts that connect the cylindrical interfaces within the sketched design region depicted on the left. To
highlight the user’s control over the problem and the solutions, we specify different additional requirements on the number
of holes and surface smoothness. By complementing the design requirements with a diversity constraint, we can train a
shape-generative model without data as further illustrated in Figures 3, 5 and 6.

constrained optimization approach and the user’s control
over the framework. Figure 6 shows a GINN trained on the
same task but with an additional diversity constraint. Sur-
prisingly, this constraint induces a structured latent space,
with generalization capacity and interpretable directions.

We show that training shape-generative networks using con-
straints and objectives without data is a feasible learning
strategy, paving the way for new generative design ap-
proaches without large datasets. Our main contributions
are summarized as follows1:

1. We introduce GINN - a framework for training shape-
generative neural fields without data by leveraging de-
sign constraints and avoiding mode-collapse using a
diversity constraint.

2. We apply GINNs to several problems spanning physics,
geometric optimization, and engineering design, in-
vestigating the user’s control, the robustness of the
method, key framework choices, and emerging latent
space structure.

2. Related Work
We begin by reviewing and relating three important facets
of GINNs: theory-informed learning, neural fields, and
generative modeling.

2.1. Theory-Informed Learning

Theory-informed learning has introduced a paradigm shift in
scientific discovery by using scientific knowledge to remove
physically inconsistent solutions and reducing the variance

1Code is available at https://github.com/ml-jku/
GINNs-Geometry-informed-Neural-Networks

of a model (Karpatne et al., 2017). Such knowledge can
be included in the model via equations, logic rules, or hu-
man feedback (Dash et al., 2022; Muralidhar et al., 2018;
Von Rueden et al., 2021). Geometric deep learning (Bron-
stein et al., 2021) introduces a principled way to characterize
problems based on symmetry and scale separation princi-
ples, e.g. group equivariances or physical conservation laws.

Notably, most works operate in the typical deep learning
regime, i.e., with an abundance of data. However, in theory-
informed learning, training on data can be replaced by
training with objectives and constraints. More formally,
one searches for a solution f minimizing the objective
o(f) s.t. f ∈ K, where K defines the feasible set in which
the constraints are satisfied. For example, in Boltzmann
generators (Noé et al., 2019), f is a probability function
parameterized by a neural network to approximate an in-
tractable target distribution. Another example is combinato-
rial optimization where f ∈ {0, 1}N is often sampled from
a probabilistic neural network (Bello et al., 2016; Bengio
et al., 2021; Sanokowski et al., 2024).

Physics-informed neural networks (PINNs) (Raissi et al.,
2019) are a prominent example of neural optimization. In
PINNs, f is a function that must minimize the violation
o of a partial differential equation (PDE), the initial and
boundary conditions, and, optionally, some measurement
data. Since PINNs can incorporate noisy data and are mesh-
free, they hold the potential to overcome the limitations of
classical mesh-based solvers for high-dimensional, paramet-
ric, and inverse problems. This has motivated the study of
the PINN architectures, losses, training, initialization, and
sampling schemes (Wang et al., 2023). We further refer to
the survey by Karniadakis et al. (2021).
Same as PINNs, GINNs use neural fields to represent the
solution. Consequentially, we also observe that some best
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Figure 2: GINNs build on neural fields, generative modeling,
and theory-informed learning.

practices of training PINNs (Wang et al., 2023) transfer to
training GINNs. However, PINNs may suffer from ill nu-
merical properties due to minimizing the squared residual of
the strong-form different to classical PDE solvers (Rathore
et al., 2024; Ryck et al., 2024). In contrast, GINNs share
the same underlying formulation and numerical properties
as classical topology optimization methods. In addition to
a high number of various constraints (differential, integral,
geometrical, and topological), geometric problems often
require solution multiplicity, motivating the generative ex-
tension.

2.2. Neural Fields

A neural field (NF) (also coordinate-based NN, implicit
neural representation (INR)) is a NN (typically a multilayer-
perceptron) representing a function f : x 7→ y that maps a
spatial and/or temporal coordinate x to a quantity y. Com-
pared to discrete representations, NFs are significantly more
memory-efficient while providing higher fidelity, continu-
ity, and access to automatic differentials. They have seen
widespread success in representing and generating a vari-
ety of signals, including shapes (Park et al., 2019; Chen &
Zhang, 2019; Mescheder et al., 2019), scenes (Mildenhall
et al., 2021), images (Karras et al., 2021), audio, video (Sitz-
mann et al., 2020), and physical quantities (Raissi et al.,
2019). For a more comprehensive overview, we refer to the
survey by Xie et al. (2022).

Implicit neural shapes (INSs) represent geometries
through scalar fields, such as occupancy (Mescheder et al.,
2019; Chen & Zhang, 2019) or signed-distance (Park et al.,
2019; Atzmon & Lipman, 2020). In addition to the prop-
erties of NFs, INSs also enjoy topological flexibility sup-
porting shape reconstruction and generation. We point out
the difference between these two training regimes. In the
generative setting, the training is supervised on the ground
truth scalar field of every shape. However, in surface recon-
struction, i.e., finding a smooth surface from a set of points

measured from a single shape, no ground truth is available
and the problem is ill-defined (Atzmon & Lipman, 2020;
Berger et al., 2016).

Regularization methods have been proposed to counter the
ill-posedness in geometry problems. These include leverag-
ing ground-truth normals (Atzmon & Lipman, 2021) and
curvatures (Novello et al., 2022), minimal surface property
(Atzmon & Lipman, 2021), and off-surface penalization
(Sitzmann et al., 2020). A central effort is to achieve the
distance field property of the scalar field for which many reg-
ularization terms have been proposed: eikonal loss (Gropp
et al., 2020), divergence loss (Ben-Shabat et al., 2022), di-
rectional divergence loss (Yang et al., 2023), level-set align-
ment (Ma et al., 2023), or closest point energy (Marschner
et al., 2023). The distance field property can be expressed
as a PDE constraint called eikonal equation |∇f(x)| = 1,
establishing a relation of regularized INSs to PINNs (Gropp
et al., 2020).

Inductive bias. In addition to explicit loss terms, the
architecture, initialization, and optimizer can also limit or
bias the learned shapes. For example, typical INSs are
limited to watertight surfaces without boundaries or self-
intersections (Chibane et al., 2020; Palmer et al., 2022).
ReLU networks are limited to piece-wise linear surfaces
with sharp vertices and edges and, together with gradient
descent, are biased toward low frequencies (Tancik et al.,
2020). Fourier-feature encoding (Tancik et al., 2020), sine
activations (Sitzmann et al., 2020), and wavelet activations
(Saragadam et al., 2023) allow for controlling this frequency
bias. Similarly, initialization techniques are important to
converge toward desirable optima (Sitzmann et al., 2020;
Atzmon & Lipman, 2020; Ben-Shabat et al., 2022; Wang
et al., 2023).

2.3. (Data-Free) Generative Modeling

Generative modeling (Kingma & Welling, 2013; Goodfel-
low et al., 2014; Rezende & Mohamed, 2015; Tomczak,
2021) is almost exclusively performed in a data-driven (i.e.,
supervised) setting to capture and sample from the underly-
ing data distribution. However, notable exceptions exist.

Boltzmann generators (Noé et al., 2019) are a prominent
example of data-free generative models. They are trained
to capture the Boltzmann distribution associated with an
energy landscape. In the generative setting, GINNs also
learn a distribution minimizing an energy as an implicit
combination of constraint violations and objectives. How-
ever, Boltzmann generators avoid mode-collapse using an
entropy-regularizing term, which presupposes invertibility,
making them not directly applicable to function spaces. In-
stead, GINNs use a more general diversity term to hinder
mode-collapse over the function space of shapes.
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Conditional neural fields allow for generative modeling
of functions. By conditioning a base network F on a mod-
ulation (i.e., latent) variable z, a conditional NF encodes
multiple fields simultaneously: f(x) = F (x; z). The dif-
ferent choices of the conditioning mechanism lead to a zoo
of architectures, including input concatenation (Park et al.,
2019), hypernetworks (Ha et al., 2017), modulation (Mehta
et al., 2021), and attention (Rebain et al., 2022). These
can be classified into global and local mechanisms, which
also establishes a connection between conditional NFs and
operator learning (Wang et al., 2024). For more detail, we
refer to Xie et al. (2022); Rebain et al. (2022).

Generative design refers to computational methods that
automatically conduct design exploration under constraints
set by designers (Jang et al., 2022). It holds the potential of
streamlining innovative solutions, e.g., in material design,
architecture, or engineering. GINNs can be seen as solving
the general task of topology optimization – finding the mate-
rial distribution that minimizes a specified objective subject
to constraints. However, while classical methods optimize
a single shape directly, we optimize a model that generates
diverse feasible shapes. This supports design space explo-
ration and downstream tasks while allowing to incorporate
sparse data samples, if available. While generative design
datasets are not abundant, deep learning has shown promise
in material design and topology optimization. For more de-
tail, we refer to surveys on generative models in engineering
design (Regenwetter et al., 2022) and topology optimization
via machine learning (Shin et al., 2023).

3. Method
Consider the metric space (F , d) of functions, such as those
representing a shape or a PDE solution. Let the set of con-
straints define the feasible set K = {f ∈ F|ci(f) = 0, i =
1..m}. Additionally, let the problem be equipped with an ob-
jective o : F 7→ R. Selecting the objectives and constraints
of a geometric nature lays the foundation for a GINN, which
is trained to produce an optimal feasible solution by solv-
ing minf∈K o(f). A key feature of geometric problems is
that one is often interested in finding different near-optimal
solutions, for example, due to incompleteness, uncertainty,
or under-determinedness in the problem specification (e.g.,
see Figure B.4). This motivates making GINN generate a
set of sufficiently diverse near-optimal solutions S ⊂ K:

min
S⊂K

δ(S)≥δ̄

O(S) . (1)

O(S) aggregates the objectives o(f) of all solutions f ∈ S
and δ captures some intuitive notion of diversity. While
it can be treated as another constraint, it acts on the entire
solution set instead of each solution separately. Section 3.1
first discusses representing shapes as functions, in particu-

lar, neural fields, and formulating differentiable constraints.
In Section 3.2, we generalize to representing and finding
diverse solutions using conditional neural fields.

3.1. Finding a Solution

Representation of a solution. Let f : X 7→ R be a con-
tinuous scalar function on the domain X ⊂ Rn. The sign
of f implicitly defines the shape Ω = {x ∈ X |f(x) ≤ 0}
and its boundary ∂Ω = {x ∈ X |f(x) = 0}. We use a NN
f = fθ with parameters θ to represent the implicit function,
i.e., an implicit neural shape, due to its memory efficiency,
continuity, and differentiability. Nonetheless, the GINNs
extend to other representations, as shown in Section 4.2.
We additionally require f to approximate the signed-
distance function (SDF) of Ω (defined in Eq. 21). This
alleviates the ambiguity of many implicit functions repre-
senting the same geometry and aids the computation of
persistent homology, surface point samples, and diversity.
In training, the eikonal constraint is treated analogously to
the geometric constraints.

Constraints on a solution. To perform gradient-based
optimization, we must first ensure each constraint can be
written as a differentiable constraint violation ci : F 7→ R.
A geometric constraint has the general form ci(Ω, ∂Ω) = 0.
By representing the shape and the boundary implicitly via
the function f , the constraints on the sets can be translated
into constraints on f . This in turn allows to formulate dif-
ferentiable constraint violations ci, although this choice
is not unique. Table 1 shows several examples using the
constraints from our experiments. Some losses are straight-
forward, and some have been previously demonstrated as
regularization terms for INSs (see Section 2.2). Section 4.1
discusses two complex losses in more detail: connectedness
and smoothness.

3.2. Generating Diverse Solutions

Representation of the solution set. The generator
G : z 7→ f maps a latent variable z ∈ Z to a function
f . The solution set is hence the image of the latent set under
the generator: S = ImG(Z). Furthermore, the generator
transforms the input probability distribution pZ over Z to an
output probability distribution p over S. In practice, the gen-
erator is a modulated base network producing a conditional
neural field: f(x) = F (x; z).

Constraints on the solution set. By adopting a proba-
bilistic view, we extend each constraint violation and the ob-
jective to their expected values: Ci(S) = Ez∼pZ

[ci(G(z)]
and O(S) = Ez∼pZ

[o(G(z)].

Diversity of the solution set. The last missing piece to
training a generative GINN is making S a diverse collection
of solutions. In the typical supervised generative modeling

4



Geometry-Informed Neural Networks

Design region Interface Connectedness Smoothness Diversity

Figure 3: The user can define geometric problems and solve them using the GINN framework. Here, we illustrate the results
of progressively adding more design requirements, overall resulting in a shape generative model trained without data.

Set constraint ci(Ω) Function constraint Constraint violation ci(f)

Design region Ω ⊂ E f(x) > 0 ∀x /∈ E
∫
X\E [min(0, f(x))]2 dx

Interface ∂Ω ⊃ I f(x) = 0 ∀x ∈ I
∫
I [f(x)]2 dx

Prescribed normal n(x) = n̄(x) ∀x ∈ I ∇f(x) = n̄(x) ∀x ∈ I
∫
I [∇f(x)− n̄(x)]2 dx

Topology Using persistent homology; see Section 4.1 and Appendix E

Table 1: Geometric constraints used in several experiments. The shape Ω and its boundary ∂Ω are represented implicitly
by the (sub-)level set of the function f . The shape must be contained within the design region E ⊆ X and attach to the
interface I ⊂ E with a prescribed unit normal n̄(x). Other interesting constraints are listed in Table 8.

setting, the diversity of the generator is inherited from the
diversity of the training dataset. The violation of this is
studied under phenomena like mode-collapse in GANs (Che
et al., 2017). Exploration beyond the training data has been
attempted by adding an explicit diversity loss, such as en-
tropy (Noé et al., 2019), Coulomb repulsion (Unterthiner
et al., 2018), determinantal point processes (Chen & Ahmed,
2020; Heyrani Nobari et al., 2021), pixel difference, and
structural dissimilarity (Jang et al., 2022). We observe that
simple generative GINN models are prone to mode-collapse,
which we mitigate by adding a diversity constraint.
Many scientific disciplines require to measure the diversities
of sets which has resulted in a range of definitions of diver-
sity (Parreño et al., 2021; Enflo, 2022; Leinster & Cobbold,
2012). Most start with a distance d : F2 7→ [0,∞), which
can be transformed into the related dissimilarity. Diversity
δ : 2F 7→ [0,∞) is then the collective dissimilarity of a
set (Enflo, 2022), aggregated in some way. In the follow-
ing, we describe these two aspects: the distance d and the
aggregation into the diversity δ.

Aggregation. Adopting terminology from Enflo (2022),
we use the minimal aggregation measure:

δ(S) =

(∑
i

(
min
j ̸=i

d(fi, fj)

)1/2
)2

. (2)

This choice is motivated by the concavity property, which
promotes uniform coverage of the available space, as de-
picted in Figure 13. Figure 5c illustrates how it coun-
teracts mode-collapse in a geometric problem. However,

Equation 2 is well-defined only for finite sets, so, in prac-
tice, we apply δ to a batch of k i.i.d. sampled shapes
Sk = {G(zi)|z1, ..., zk

iid∼ pZ}. We leave the considera-
tion of diversity on infinite sets, especially with manifold
structure, to future research.

Distance. A simple choice for measuring the distance be-
tween two functions is the L2 function distance d2(fi, fj) =√∫

X (fi(x)− fj(x))2 dx. However, recall that we ulti-
mately want to measure the distance between the shapes,
not their implicit function representations. For example,
consider a disk and remove its central point. While we
would not expect their shape distance to be significant, the
L2 distance of their SDFs is. This is because local changes
in the geometry can cause global changes in the SDF. For
this reason, we modify the distance (derivation in Appendix
F) to only consider the integral on the shape boundaries
∂Ωi, ∂Ωj which partially alleviates the globality issue:

d(fi, fj) =

√∫
∂Ωi

fj(x)2 dx+

∫
∂Ωj

fi(x)2 dx . (3)

If fj (analogously fi) is an SDF then
∫
∂Ωi

fj(x)
2 dx =∫

∂Ωi
minx′∈∂Ωj ||x−x′||22 dx and d is closely related to the

chamfer discrepancy (Nguyen et al., 2021). We note that
d is not a metric distance on functions, but recall that we
care about the geometries they represent. Using appropriate
boundary samples, one may also directly compute a geomet-
ric distance, e.g., any point cloud distance (Nguyen et al.,
2021).
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In summary, training a GINN corresponds to solving a
constrained optimization problem, i.e. improving the ex-
pected objective O(S) and feasibility Ci(S) w.r.t. to each
geometric constraint i = 1..m and the diversity constraint
Cm+1(Sk) = max(δ(Sk) − δ̄, 0). In practice, we convert
this into a sequence of unconstrained optimization prob-
lems using the augmented Lagrangian method introduced
in Section 4.1.

4. Experiments
We demonstrate the proposed GINN framework experimen-
tally on a range of problems spanning physics, geometry,
and engineering, summarized in a problem-constraint ma-
trix (Table 2). To the best of our knowledge, data-free
shape-generative modeling is an unexplored field with no
established baselines, problems, and metrics. Thus, in addi-
tion to the problems defined and solved in Section 4.2, we
define metrics for each constraint as detailed in Appendix
C.1. We use these to perform quantitative ablation studies
in Appendix C.2 and evaluate baselines in Appendix C.4,
reserving the primary text for the main findings. We proceed
with an overview of key experimental considerations, with
more experimental and implementation details available in
Appendix B.

4.1. Experimental Details

Constrained optimization. To solve the aforementioned
constrained optimization problem in Equation 1, we employ
the augmented Lagrangian method (ALM). It is well studied
in the classical and more recently deep learning literature.
ALM balances the feasibility and optimality of the solution
by controlling the influence of each constraint while avoid-
ing the ill-conditioning and convergence issues of simpler
methods. Specifically, we use an adaptive ALM (Basir &
Senocak, 2023) that uses adaptive penalty parameters µi

for each constraint to solve Equation 1 as the unconstrained
optimization problem maxλ minθ L(θ, λ, µ) where

L(θ, λ, µ) := O(Sk(θ)) +

m+1∑
i=1

λiCi(Sk(θ))

+
1

2

m+1∑
i=1

µiC
2
i (Sk(θ)) . (4)

The multipliers λi and the penalty parameters µi are
updated during training according to Equations (18) -
(20). Adaptive ALM allows GINNs to handle different
constraints without manual hyperparameter tuning for each
loss. However, ALM works best if the losses are already
on a similar scale. Appendix D provides a more detailed
introduction and motivation for this approach.

Topology describes properties of a shape that are invariant
under deformations, such as the number of holes. Certain
materials and objects display specific topological properties
(Moore, 2010; Caplan et al., 2018; Bendsoe & Sigmund,
2011), e.g., connectedness, which is a basic requirement for
the propagation of forces and, by extension, manufacturabil-
ity and structural function.
Despite topological properties being discrete-valued, persis-
tent homology (PH) allows to formulate a differentiable loss.
It identifies topological features (e.g., connected compo-
nents) and quantifies their persistence w.r.t. some filtration
function. For our implicit shapes, this is the implicit func-
tion f itself. Consequently, the birth and death of each
feature can be matched to a pair of critical points of f . Their
values can then be adjusted to achieve the desired topology.
In practice, we follow the standard procedure of first dis-
cretizing the continuous function onto a cubical complex.
We filter cells outside the design region E to prevent invalid
connections. In some experiments, we use an additional
constraint that minimizes the number of holes. We detail
PH and our approach in Appendix E.

Smoothness is another computationally non-trivial design
requirement that we consider. Many alternative smoothing
energies exist, each leading to different surface qualities
(Westgaard & Nowacki, 2001; Song, 2021), but a broad class
of smoothing energies can be written as the surface integral∫
∂Ω\I e(κ1(x), κ2(x)) dx of some curvature expression e :

R2 7→ R. The principal curvatures κ1 and κ2, same as
other differential-geometric quantities, can be computed
from ∇xf and Hxf in closed-form (Goldman, 2005). To
solve Plateau’s problem, we use the mean curvature κH :=
κ1+κ2

2 . In the bracket experiment, we use the surface-strain
E := κ2

1 + κ2
2 and a variant thereof Elog := log(1 + E).

Surface sampling is required to estimate the surface inte-
grals for smoothness and diversity. We describe our sam-
pling strategy in Appendix B, noting that it gives a lower
variance of the losses and a better convergence compared to
a naive strategy.

Models. Across the experiments, we consider several NF
models that primarily differ in their activation function, in-
cluding softplus, SIREN (Sitzmann et al., 2020), and WIRE
(Saragadam et al., 2023). We require all models to have
well-defined and non-vanishing first and second derivatives
∇xf and Hxf to compute the iso-level normals and curva-
tures. As the NF conditioning mechanism, we always use
input concatenation (see Section 2.3), denoting the latent
space dimension as dim(z). We continue the model choice
discussion in Appendix B.

4.2. Problems

Generative PINN solving an under-determined PDE to
demonstrate the generality of the approach. Although
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Figure 4: A generative PINN producing Turing patterns that
morph during latent space interpolation. This is a result of
searching for diverse solutions to an under-determined PDE.

we focus mainly on geometric tasks, we show that the idea
of a diversity-constrained data-free neural field generator
generalizes to other areas, such as physics. While most
familiar problems in physics are well-defined, cases exist
where, e.g., the initial conditions are irrelevant and general
PDE solutions are sought, such as in chaotic systems or
animations. Here, we seek stationary solutions to a reaction-
diffusion system with no initial condition. Note that this
system has infinitely many solutions. Figure 4 illustrates
the resulting Turing patterns that continuously morph dur-
ing latent space traversal of the trained generative PINN.
Appendix B.1 describes the problem in greater detail.

Plateau’s problem to demonstrate GINNs on a well-
posed problem. Plateau’s problem is to find the surface
M with the minimal area given a prescribed boundary Γ (a
closed curve in X ⊂ R3). A minimal surface is known to
have zero mean curvature κH everywhere. Minimal surfaces
have boundaries and may contain intersections and branch
points (Douglas, 1931) which cannot be represented implic-
itly. For simplicity, we select a suitable problem instance,
noting that more appropriate geometric representations exist
(Wang & Chern, 2021; Palmer et al., 2022). Altogether, we
represent the surface as M = ∂Ω ∩ X and the two con-
straints are Γ ⊂M and κH(x) = 0 ∀x ∈M . The result in
Figure 5a approximates the known solution.

Parabolic mirror to demonstrate a different geometry
representation. Although we mainly focus on the im-
plicit representation, the GINN framework extends to other
representations, such as explicit, parametric, or discrete
shapes. Here, the GINN learns the explicit height function
f : [−1, 1] 7→ R of a mirror with the interface constraint
f(0) = 0 and that all the reflected rays should intersect
at the focal point (0, 1). The result in Figure 5b approx-
imates the known solution: a parabolic mirror. This is a
very basic example of caustics, an inverse problem in optics,
which we hope inspires future work leveraging the recent
advancements in neural rendering techniques.

Obstacle to introduce connectedness and diversity con-
straints. Consider a 2D rectangular design region E with
a circular obstacle in the middle. The interface I consists
of two vertical line segments and has prescribed outward-
facing normals n̄. We seek shapes that connect these two
interfaces while avoiding the obstacle. Despite this problem

admitting infinitely many solutions, the naive application
of the generative softplus-MLP with dim(z) = 1 leads to
mode-collapse. This is mitigated by employing the addi-
tional diversity constraint as illustrated in Figure 5c.

Wheels as a simple design problem. Consider the domain
X = [−1, 1]2 containing the ring-shaped design region
E = {x ∈ X|0.22 ≤ x2

1 + x2
2 ≤ 0.82} and the interface

I = ∂E . As before, the shapes must also satisfy the con-
nectedness and diversity constraints. Additionally, a 5-fold
cyclic symmetry constraint is required. We implement this
as a soft constraint by sampling a point, rotating it by 2

5π
four times, and minimizing the variance of the implicit func-
tion f at these five points. Alternatively, exact symmetry
can be imposed using a periodic encoding of the input. The
result of traversing the 2D latent space of discovered shapes
is shown in Figure 5d (larger version in Figure 7).

Jet engine bracket to demonstrate scaling to 3D engineer-
ing design problems. The problem specification is based
on an engineering design competition hosted by General
Electric and GrabCAD (Kiis et al., 2013). The challenge
was to design the lightest possible lifting bracket of a jet
engine subject to both physical and geometrical constraints.
Here, we focus only on the geometric requirements: the
shape must fit in the given freeform design region E and
attach to five cylindrical interfaces I: a horizontal loading
pin and four vertical fixing bolts (see the sketch in Figure
1). Instead of minimizing the volume subject to a linear
elasticity PDE constraint, we minimize the surface smooth-
ness E subject to a topological connectedness constraint.
Conceptually, this formulation is similar but avoids a PDE
solver in the training loop, which we address in a follow-up
work. These requirements and several GINN solutions are
illustrated in Figures 1 and 3, which also explore additional
requirements, including the modified surface energy Elog,
number of holes, and diversity. The result of latent space
traversal of the GINN model trained with diversity is illus-
trated in Figure 6. In all cases, GINNs produce smooth,
singly connected shapes that attach to the interfaces while
remaining within the given design space. These properties
are quantified in Appendix C.

4.3. Discussion

Solution diversity, generalization, and latent structure.
With the diversity constraint, GINNs not only produce mul-
tiple solutions, but we also observe the emergence of a
latent space structure. This is best seen in Figure 6 using
a 2D latent space from which k = 9 random samples are
drawn every training iteration. Traversing the latent space
of the trained GINN produces continuously morphing fea-
sible shapes, i.e., the model generalizes. Furthermore, the
latent space is organized – the solutions vary consistently
over large latent distances, and latent directions account

7
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(a) Plateau’s problem (b) Parabolic mirror (c) Obstacle (d) Wheels

Figure 5: GINN applied to four different problems. (a) Plateau’s problem: the unique minimal surface that attaches to the
prescribed boundary. (b) Parabolic mirror: the unique curve that collects reflected rays into a single point. (c) Obstacle:
connecting the two interfaces within the allowed design region. A superposition of 16 solutions is shown trained with
(bottom) and without (top) a diversity loss, which is required to avoid mode-collapse. (d) Wheel: The diverse and structured
latent space of a GINN trained to discover cyclically symmetric wheel designs. A larger version is available in Figure 7.

for different aspects. We see similar behavior in all four
experiments that include the diversity constraint. However,
we find that the learned structure depends on the exact setup
of the diversity constraint. In particular, we observe a more
pronounced organization emerge for larger δ̄, however, over-
specifying it impedes convergence.

User control. The variations of the bracket problem il-
lustrated in Figure 1 highlight the user’s ability to tune the
problem and the resulting solutions. We solve these with the
same setup and hyperparameters, illustrating the robustness
of GINNs and the adaptive ALM approach to constrained
optimization.

Optimization. A representative convergence behavior
of the training is shown in Figures 11 and 12. Despite up
to seven loss terms, adaptive ALM automatically balances
these and minimizes each constraint violation. However,
the variance in several losses remains high. This is largely
due to the diversity and smoothness terms, which are hard
to optimize and increase the necessary number of iterations
by roughly a factor of two and five, respectively. Curvature
is a second-order differential operator and is expected to be
ill-conditioned, motivating the future use of second-order
optimizers (Ryck et al., 2024; Rathore et al., 2024).

Runtime of a single bracket shape is roughly 10K itera-
tions or 30 minutes. Similarly, the diverse model trains for
around 50K iterations or 5 hours on a single GPU. Of the
total time, the surface strain takes roughly 10% (due to the
Hessian) and the PH solver 75% (expensive multi-processed
CPU task). The runtime also increases when ablating the
eikonal constraint as it destroys the geometric regularity
of the implicit function, hindering efficient surface point
sampling that usually takes 15% of total time. More details
are available in Appendix C.3.

Ablations are performed in Appendix C.2, measuring the
expected role of each constraint, as well as ALM. Less

z2

z1

Figure 6: With the diversity constraint, GINNs not only
produce multiple solutions but also discover a latent space
structure. Traversing the 2D latent space morphs solutions,
i.e., the model generalizes. The latent space is also orga-
nized – a central bulky shape becomes thinner in the radial
direction, and the axes can be identified by how the shape
connects on the sides. Figure 9 shows a large 9× 9 version.

obvious is the strong impact of the eikonal constraint on the
connectedness, smoothness, and diversity metrics, again due
to the lack of geometric regularity of the implicit function.
A progressive ablation of all requirements of the bracket
problem is illustrated in Figure 3. Figure 8 also visually
compares different NF models, highlighting the superiority
of WIRE over softplus-MLP and SIREN due to their spectral
behavior.
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5. Conclusion
We have introduced geometry-informed neural networks
demonstrating shape-generative modeling driven solely by
geometric constraints and objectives. After formulating
the learning problem and discussing key theoretical and
practical aspects, we applied GINNs to a range of problems.

Limitations and future work. GINNs combine several
known and novel components, each of which warrants an
in-depth study of theoretical and practical aspects, including
alternative shape distances, their aggregation into diversity,
conditioning mechanisms, constraints, and optimization.
In this work, we focused on building the conceptual frame-
work of GINNs and validating it experimentally. This in-
cluded a realistic engineering design task. However, we
considered a modified version of the original task and did
not compare to established topology-optimization methods
as this required the integration of a PDE solver – a task we
address in a follow-up work.
Even though ALM is a significant improvement over the
naive approach of manually weighted loss terms, the recent
literature on multi-objective and second-order optimizers
suggests further possible improvements.
Finally, we investigated GINNs in the limit of no data. How-
ever, GINNs can integrate partial observations of a single or
multiple shapes. This combination of classical and machine
learning methods suggests a new approach to generative
design in data-sparse settings, which are of high relevance
in practical engineering settings.
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A. Problem-Constraint Matrix
Table 2 provides an overview of the variety of considered tasks using a problem-constraint matrix. Not captured by this
matrix are also the differences in domain dimension, shape representation, and problem symmetries.

Table 2: Problem-constraint matrix.

Turing patterns Plateau’s problem Parabolic mirror Obstacle Wheels Jet engine bracket

Reaction-diffusion PDE +

Interface + + + + +

Mean-curvature +

Reflection +

Design region + + +

Prescribed normal + + +

Connectedness + + +

Diversity + + + +

Eikonal + + +

Rotational symmetry +

Holes +

Surface strain +

Minimum thickness + +

B. Implementation and Experimental Details
We report additional details on the experiments and their implementation. We run all experiments on a single GPU (one
of NVIDIA RTX2080Ti, RTX3090, A40, P40, or A100-SXM). The largest GPU memory requirement is 16GB for the
multi-shape training of the jet engine bracket (9 shapes).

Surface sampling is required to estimate the surface integrals for smoothness and diversity. We first sample points in the
envelope and project them onto the surface using Newton iterations. We then repel the points on the surface to achieve a
more uniform distribution similar to Yifan et al. (2020). Finally, we exclude points sampled within a small distance to the
interface I , as the surface should not change here. We also begin to sample surface points and compute the surface integrals
only after a warm-up phase of 500 iterations. In combination, these aspects lead to a lower variance and better convergence.

B.1. Reaction-Diffusion

The high-level idea of GINNs is to find diverse solutions to an under-determined problem. While the main focus of the
paper is on geometry, we show that this idea generalizes to other areas. In physics, problems are often well-defined and
have a unique solution. However, cases exist where the initial conditions are irrelevant and a non-particular PDE solution is
sufficient, such as in chaotic systems or animations.
We demonstrate an analogous concept of generative PINNs on a reaction-diffusion system. Such systems were introduced by
Turing (1952) to explain how patterns in nature, such as stripes and spots, can form as a result of a simple physical process
of reaction and diffusion of two substances. A celebrated model of such a system is the Gray-Scott model (Pearson, 1993),
which produces a variety of patterns by changing just two parameters – the feed-rate α and the kill-rate β – in the following
PDE:

∂u

∂t
= Du∆u− uv2 + α(1− u) ,

∂v

∂t
= Dv∆v + uv2 − (α+ β)v . (5)

This PDE describes the concentration u, v of two substances U, V undergoing the chemical reaction U + 2V → 3V . The
rate of this reaction is described by uv2, while the rate of adding U and removing V is controlled by the parameters α and β.
Crucially, both substances undergo diffusion (controlled by the coefficients Du, Dv), which produces an instability leading
to rich patterns around the bifurcation line α = 4(α+ β)2.

14



Geometry-Informed Neural Networks

Computationally, these patterns are typically obtained by evolving a given initial condition u(x, t = 0) = u0(x), v(x, t =
0) = v0(x) on some domain with periodic boundary conditions. A variety of numerical solvers can be applied, but previous
PINN attempts fail without data (Giampaolo et al., 2022). To demonstrate a generative PINN on a problem that admits
multiple solutions, we omit the initial condition and instead consider stationary solutions, which are known to exist for some
parameters α, β (McGough & Riley, 2004). We use the corresponding stationary PDE (∂u/∂t = ∂v/∂t = 0) to formulate
the residual losses:

Lu =

∫
D
(Du∆u− uv2 + α(1− u))2 dx , Lv =

∫
D
(Dv∆v + uv2 − (α+ β)v)2 dx . (6)

To avoid trivial (i.e. uniform) solutions, we encourage non-zero gradient with a loss term −max(1,
∫
D(∇u(x))

2 +
(∇v(x))2 dx). We find that architecture and initialization are critical (described below). Using the diffusion coefficients
Dv = 1.2 × 10−5, Du = 2Dv and the feed and kill-rates α = 0.028, β = 0.057, the generative PINN produces diverse
and smoothly changing pattern of worms, illustrated in Figure 4. To the best of our knowledge, this is the first PINN that
produces 2D Turing patterns in a data-free setting.

Experimental details. We use two identical SIREN networks for each of the fields u and v. They have two hidden layers
of widths 256 and 128. We enforce periodic boundary conditions on the unit domain X = [0, 1]2 through the encoding
xi 7→ (sin 2πxi, cos 2πxi) for i = 1, 2. With this encoding, we use ω0 = 3.0 to initialize SIREN. We also find that the
same shaped Fourier-feature network (Tancik et al., 2020) with an appropriate initialization of σ = 3 works equally well.
We compute the gradients and the Laplacian using finite differences on a 64× 64 grid, which is randomly translated in each
epoch. Automatic differentiation produces the same results for an appropriate initialization scheme, but finite differences are
an order of magnitude faster. The trained fields u, v can be sampled at an arbitrarily high resolution without displaying any
artifacts. The generative PINNs are trained with Adam for 20000 epochs with a 10−3 learning rate taking a few minutes.

B.2. Plateau’s Problem

The model is an MLP with [3, 256, 256, 256, 1] neurons per layer and the tanh activation. We train with Adam (default
parameters) for 10,000 epochs with a learning rate of 10−3, taking around three minutes. The three losses (interface, mean
curvature, and eikonal) are weighted equally, but the mean curvature loss is introduced only after 1000 epochs. To facilitate
a higher level of detail, the corner points of the prescribed interface are weighted higher.

B.3. Parabolic Mirror

The model is an MLP with [2, 40, 40, 1] neurons per layer and the tanh activation. We train with Adam (default parameters)
for 3000 epochs with a learning rate of 10−3, taking around ten seconds.

B.4. Obstacle

The obstacle experiment serves as a proof of concept for including several losses, in particular the connectedness loss.

Problem definition. Consider the domain X = [−1, 1]× [−0.5, 0.5] and the design region that is a smaller rectangular
domain with a circular obstacle in the middle: E = ([−0.9, 0.9]× [−0.4, 0.4]) \ {x2

1 + x2
2 ≤ 0.12}. There is an interface

consisting of two vertical line segments I = {(±0.9, x2)| − 0.4 ≤ x2 ≤ 0.4} with the prescribed outward facing normals
n̄(±0.9,−0.4 ≤ x2 ≤ 0.4) = (±1, 0).

Softplus-MLP. The neural network model f should be at least twice differentiable with respect to the inputs x, as
necessitated by the computation of surface normals and curvatures. Since the second derivatives of an ReLU MLP are
zero everywhere, we use the softplus activation function as a simple baseline. In addition, we add residual connections
(Dugas et al., 2000) to mitigate the vanishing gradient problem and facilitate learning. We denote this architecture with
”softplus-MLP”. We train a softplus-MLP with 4× 512 hidden layers with Adam (default settings).

Conditioning the model. For training the conditional models, we approximate the one-dimensional latent set Z = [−1, 1]
with N = 16 fixed equally spaced samples. This enables the reuse of some calculations across epochs and results in a
well-structured latent space, illustrated through latent space interpolation in Figure 5c.

Computational cost. The total training wall-clock time is around 10 minutes for a single shape and approximately 60
minutes for 16 shapes.
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Figure 7: GINNs produce diverse shapes with a structured latent space. The shapes morph continuously into one another
when traversing the 2D latent space. From the top-left to bottom-right, the holes become smaller, while from bottom-left to
top-right, the holes move inwards.

B.5. Wheel

The problem setup is as described in the main text. The ML setup is shared with the bracket problem. A larger illustration of
the results is available in Figure 7, showing diverse shapes and a structured latent space.

B.6. Jet Engine Bracket

The jet engine bracket (JEB) is our most complex experiment. We tested different architectures (c.f. Figure 8) and found
that WIRE (Saragadam et al., 2023) produced the best results, while being easier to train with ALM than softplus-MLP or
SIREN (Sitzmann et al., 2020). We train the WIRE with 3× 128 hidden layers with Adam (default settings) and a learning
rate scheduler 0.5t/10000 for t = 10000 iterations for the single shape and t = 50000 for multiple shapes. To decrease the
training time, we use multi-processing to asynchronously create diagnostic plots or computing the PH loss for multiple
shapes.

WIRE. For the jet engine bracket settings, early experiments indicated that the softplus-MLP cannot satisfy the given
constraints. We therefore employ a WIRE network (Saragadam et al., 2023), which is biased towards higher frequencies of
the input signal. As mentioned by the authors, the spectral properties of a WIRE model are relatively robust. Several values
for ω0 and s0, which control the frequency and scale of the Gaussian of the first layer at initialization, were tested. As there
was no big difference in the results, we fixed them to ω0 = 18 and s0 = 6 For more detailed results, we refer to Section C.

Conditioning the model. In the generative GINN setting, we condition WIRE using input concatenation which can be
interpreted as using different biases at the first layer. As we refer in the main text, we leave more sophisticated conditioning
techniques for future work. We use N = 9 different latent codes spaced in the interval Z = [0, 0.1] and are resampled every
iteration. The results are shown in Figure 9.

Spatial resolution. The curse of dimensionality implies that with higher dimensions, exponentially (in the number of
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Figure 8: Comparison of architectures trained for 10k epochs to produce a single shape. From left to right: softplus-MLP,
SIREN, WIRE. The softplus-MLP is unable to fit the interfaces due to the low-frequency bias. SIREN converges much
slower than WIRE, especially at the interfaces, and does not produce a smooth shape.

Figure 9: GINNs produce diverse shapes with a structured latent space. The shapes morph continuously into one another
when traversing the 2-dimensional latent space. These shapes are produced by the same model as Figure 6. A trained
GINN allows the user to sample densely in the latent space with shapes all meeting the constraints: Interfaces are modeled
correctly, shapes are not disconnected or leave the design space.
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dimensions) more points are needed to cover the space equidistantly. Therefore, in 3D, substantially more points (and
consequently memory and compute) are needed than in 2D. In our experiments, we observe that a low spatial resolution
around the interfaces prevents the model from learning high-frequency details, likely due to a stochastic gradient. Increased
spatial resolution results in a better learning signal, and the model picks up the details more easily. To facilitate learning, we
additionally increase the resolution around the interfaces.

C. Additional Evaluation
After defining the metrics used in our experiments in Appendix C.1, we perform an additional study in Appendix C.2
ablating each constraint, as well as the ALM, for three tasks. Additionally, in Appendix C.3, we measure the impact of
each constraint on the runtime. Finally, Appendix C.4 discusses and applies two baseline methods to the jet engine bracket
problem.

C.1. Metrics

We introduce several metrics for each constraint. We will use the chamfer divergence (Nguyen et al., 2021) to compute
the divergence measure between two shapes P and Q. For better interpretability, we take the square root of the common
definition of chamfer divergence

CD1(P,Q) =

√
1

|Q|
∑
x∈Q

min
y∈P
||x− y||22 (7)

and, similarly, for the two-sided chamfer divergence.

CD2(P,Q) =

√
1

|Q|
∑
x∈Q

min
y∈P
||x− y||22 +

1

|P |
∑
x∈P

min
y∈Q
||x− y||22 . (8)

Reusing the notation from the main text, let E be the design region, δE the boundary of the design region, I the interface
consisting of nI connected components, X the domain, Ω the shape and δΩ its boundary. Let vol(P ) =

∫
P
dP be the

generalized volume (i.e., length, area, or volume) of P .

Design region. We introduce two metrics to quantify how well a shape fits the design region. Intuitively, for 3D, the first
metric quantifies how much volume is outside the design region E compared to the overall available volume. The second
metric compares how much surface area intersects the boundary of the design region. For both, the optimal values are 0,
with lower being better.

• vol(Ω\E)
vol(X\E) : The d-volume (i.e. volume for d = 3 or area for d = 2) outside the design region, divided by the total
d-volume outside the design region.

• vol(Ω∩δE)
vol(δE) : The (d− 1)-volume (i.e. the surface area for d = 3 or length of contours for d = 2) of the shape intersected

with the design region boundary, normalized by the total (d− 1)-volume of the design region.

Interface. To measure the goodness of fit to the interface, we use the one-sided chamfer distance of the boundary of the
shape to the interface, as we do not care if some parts of the shape boundary are far away from the interface, as long as there
are some parts of the shape which are close to the interface. The best fit is 0, with lower being better.

• CD1(Ω, I): The average minimal distance from sampled points of the interface to the shape boundary.

Connectedness. For the connectedness, we care whether the shape itself and the interfaces are connected. Since the shape
could potentially connect through paths outside the design region, we also introduce a connectedness metric that accounts
for this undesirable effect. DC(Ω) denotes all connected components of a shape Ω except the largest. We define the metrics
as follows:
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• b0(Ω): The zeroth Betti number represents the number of connected components of the shape. The target in our work
is always 1.

• b0(Ω ∩ E): The zeroth Betti number of the shape restricted to the design region.

• vol(DC(Ω))
vol(E) : The normalized d-volume (i.e. volume for d = 3 and area for d = 2) of disconnected components.

• vol(DC(Ω∩E))
vol(E) : The normalized d-volume of disconnected components inside the design region.

• CI(Ω,I)
nI

: The share of connected interfaces. If an interface is an ϵ-distance from a connected component of a shape, we
consider it connected to the shape. This metric then represents the maximum number of connected interfaces of any
connected component, divided by the total number of interface components. By default, we set ϵ = 0.01 when the
domain bounds are comparable to the unit cube.

Diversity. We define the diversity δmean on a finite set of shapes S = {Ωi, i ∈ [N ]} as follows:

δmean(S) =

 1

N

∑
i∈[N ]

 1

N − 1

∑
j ̸=i∈[N ]

CD2(Ωi,Ωj)

 1
2


2

. (9)

Smoothness. There are many choices of smoothness measures in multiple dimensions. In this paper, we use a Monte Carlo
estimate of the surface strain (Goldman, 2005) (also mentioned in Section 4). To make the metric more robust to large
outliers (e.g., tiny disconnected components have very large curvature and surface strain), we clip the surface strain of a
sampled point xi, i ∈ [N ] with a value κmax = 1, 000, 000.

Estrain(Ω) =
1

N

∑
i∈[N ]

min
[

div2
(
∇ f(xi)

|f(x)|

)
, κmax

]
(10)

C.2. Ablations

Using the metrics defined above, the impact of ablating each constraint, as well as ALM, is reported for the obstacle (Table
3), wheel (Table 4), and bracket (Table 5) tasks.

Table 3: Metrics for the ablations of the obstacle problem for multiple shape solutions.

Connectedness Interface Design region Diversity

Ablation ↓ b0(Ω) ↓ b0(Ω ∩ E) ↓ vol(DC(Ω))
vol(E)

↓ vol(Ω\E)
vol(X\E)

↑ CI(Ω,I)
nI

↓ CD1(Ω, I) ↓ vol(Ω∩δE)
vol(δE)

↑ δmean

(None) 1.11 1.11 0.02 0.00 0.39 0.03 0.01 0.15

Interface 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Design region 1.00 1.00 0.00 0.53 2.00 0.00 0.71 0.08

Prescribed normal 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Connectedness 0.56 1.00 0.00 0.00 0.00 0.00 0.00 1.45

Diversity 1.22 1.22 0.02 0.00 0.15 0.03 0.00 0.12

Surface strain 1.11 1.11 0.01 0.00 0.22 0.03 0.00 0.15

Augmented Lagrangian 1.22 1.22 0.02 0.00 0.28 0.03 0.01 0.14
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Table 4: Metrics for the ablations of the wheel problem for multiple shape solutions.

Connectedness Interface Design region Diversity

Ablation ↓ b0(Ω) ↓ b0(Ω ∩ E) ↓ vol(DC(Ω))
vol(E)

↓ vol(Ω\E)
vol(X\E)

↑ CI(Ω,I)
nI

↓ CD1(Ω, I) ↓ vol(Ω∩δE)
vol(δE)

↑ δmean

(None) 1.11 1.00 0.00 0.00 1.00 0.00 0.07 0.31

Interface 1.00 1.00 0.00 0.00 0.44 0.07 0.02 1.10

Design region 6.89 1.00 0.06 0.11 1.00 0.00 0.44 0.68

Prescribed normal 1.00 1.00 0.00 0.00 1.00 0.00 0.03 0.19

Connectedness 1.22 1.22 0.02 0.00 0.89 0.00 0.11 0.34

Diversity 1.00 1.00 0.00 0.00 1.00 0.00 0.08 0.03

Rotational symmetry 1.00 1.00 0.00 0.00 1.00 0.00 0.06 0.54

Minimum thickness 1.11 1.00 0.00 0.00 1.00 0.00 0.10 0.38

Eikonal 1.00 1.00 0.00 0.00 1.00 0.00 0.09 0.03

Curvature & Diversity 1.00 1.00 0.00 0.00 1.00 0.00 0.08 0.03

Augmented Lagrangian 1.00 1.00 0.00 0.00 1.00 0.00 0.01 0.21

Table 5: Metrics for ablations of the jet engine bracket problem for single and multiple shape solutions.

Connectedness Interface Design region Smoothness Diversity

Ablation ↓ b0(Ω) ↓ b0(Ω ∩ E) ↓ vol(DC(Ω))
vol(E)

↓ vol(Ω\E)
vol(X\E)

↑ CI(Ω,I)
nI

↓ CD1(Ω, I) ↓ vol(Ω∩δE)
vol(δE)

↓ Estrain(Ω) ↑ δmean

Multiple shapes

(None) 1.00 1.00 0.00 0.00 1.00 0.00 0.00 410 0.14

Interface 1.11 1.11 0.00 0.00 1.00 0.02 0.00 373 0.13

Design region 4.44 1.00 -0.01 0.97 1.00 0.00 0.14 95 0.09

Prescribed normal 1.00 1.00 0.00 0.00 1.00 0.01 0.00 343 0.13

Connectedness 25.11 19.44 0.00 0.00 0.17 0.01 0.00 178740 0.02

Diversity 1.00 1.00 0.00 0.00 1.00 0.00 0.00 341 0.05

Surface strain 1.00 1.00 0.00 0.00 1.00 0.00 0.00 263 0.10

Minimum thickness 1.00 1.00 0.00 0.00 1.00 0.01 0.00 432 0.15

Eikonal 6.67 6.44 0.00 0.00 1.00 0.00 0.00 722 0.07

Curvature & Diversity 1.00 1.00 0.00 0.00 1.00 0.00 0.00 305 0.05

Augmented Lagrangian 3.22 2.00 0.00 0.00 1.00 0.00 0.01 198 0.07

Single shape

(None) 1.00 1.00 0.00 0.00 1.00 0.01 0.00 291

Augmented Lagrangian 1.00 1.00 0.00 0.01 1.00 0.01 0.06 170

C.3. Runtimes

In addition to quantifying the impact of the constraint ablations on the metrics, we also report the iteration times in Table 6,
focusing on the 3D jet engine bracket problem, which has the highest number and complexity of constraints. The other
experiments show similar behavior. Most constraints have little effect on the time per iteration. Of the total runtime, the
surface strain takes 10% (due to the Hessian) and the PH solver 75% (expensive multi-processed CPU task). The runtime
increases when ablating the eikonal constraint as it destroys the geometric regularity of the implicit function, hindering
efficient surface point sampling that usually takes 15% of total time. We use an A100-SXM GPU, and the peak memory
usage for a batch of 9 shapes does not exceed 16 GB. These two losses also have a strong impact on the iterations needed.
As discussed in the main text, adding the smoothness loss increases the number of iterations roughly two-fold, and adding
the diversity increases it roughly five-fold. Overall, the biggest effect is not so much the number of constraints, but rather
losses that are ill-conditioned. This conditioning issue is also known in the PINN literature, and its mitigation is an open and
active research topic.
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Table 6: Time per iteration when ablating each constraint. Largest differences from the baseline (None) indicate compu-
tationally expensive components of the method, most notably the connectedness constraint (due to the CPU-based PH
calculation) and the boundary sampler required for calculating both the diversity and surface-strain.

Ablated constraint Time [ms] per iteration

(None) 260

Eikonal 291

Interface 264

Design region 262

Prescribed normal 265

Diversity 265

Surface strain 230

Surface strain & Diversity (no boundary point sampler) 187

Connectedness 94

C.4. Baselines

While a complete and fair comparison to a baseline is not available, we compare to two at least partially fitting baselines.

Topology optimization. We consider classical TO, specifically, FeniTop (Jia et al., 2024) which implements the standard
SIMP method with a popular FEM solver. We define a TO problem that is as similar as possible, applying a diagonal force
to the top cylindrical pin interface and allowing a 7% volume fraction in the same design region. The other interfaces are
fixed in the same way. The shape compliance is minimized for 400 iterations on a 104× 172× 60 FEM grid (taking 190
min on a 32 core CPU to give a sense of runtime, although a fair timing comparison requires a more nuanced discussion).
The produced shape is visualized in Figure 10.
We then compute the surface strain (the objective we use) for this TO shape and, conversely, the compliance for a GINN
shape (Section 4.2; illustrated in the penultimate column of Figure 3). Unsurprisingly, both shapes perform best at the
objective they are optimized for while satisfying the constraints up to the relevant precision. This serves as a sanity check
and confirmation of the constraint satisfaction.

Table 7: GINN compared to the topology optimization baseline for a single jet engine bracket shape. Both methods perform
best on the objectives they are optimized for while satisfying the shared constraints up to the relevant precision.

Metric Topology optimization GINN

↓ Connectedness (0-th Betti-number) 1 1

↓ Interface (Chamfer distance) 0.00 0.00

↓ Design region (Volume outside) 0.00 0.00

↓ Curvature 442 144

↓ Compliance 0.99 0.344

Human-expert dataset. A unique aspect of GINN is the data-free shape generative aspect. Comparison to classical TO is
trivial since it is inherently limited to a single solution with null diversity. Instead, we use the simJEB (Whalen et al., 2021)
dataset to give an intuitive estimate of the diversity of the produced results. The dataset is due to the design challenge on
a related problem described in Section 4.2. The shapes in the dataset were produced by human experts, many of whom
also used topology optimization. To compute the diversity metric, we sample 196 clean shapes from the simJEB dataset,
producing a diversity of 0.099, and 14× 14 equidistant samples from the 2D latent space generative GINN model, producing
a diversity of 0.167. Even though these sets are not directly comparable as they optimize for different objectives, these
results indicate that GINNs can produce diversity on the same and larger magnitude as a dataset that required an estimated
collective effort of 14 expert human years (Whalen et al., 2021).
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Figure 10: A solution to the jet engine bracket problem found by the FeniTop (Jia et al., 2024) topology optimization
software. The quantitative metrics are reported in Table 7.

D. Optimization
In general, an equality-constrained optimization problem can be written as

min
θ

O(θ) such that Ci(θ) = 0 ∀i ∈ 0, . . . ,m (11)

where O,C1 . . . Cm are smooth scalar functions RN → R. O is the objective function and constraint functions Ci represent
the collection of equality constraints. A naive approach to solve this optimization problem is to simply relax the constraints
into the objective function and solve the unconstrained optimization problem

min
θ

O(θ) + µ0k

m∑
i=0

Ci(θ) (12)

for a sequence {µ0k} with µ0k ≤ µ0k+1
for all k and µ0k →∞. However, this penalty method can suffer from numerical

instabilities for large µ0k , hence the sequence is generally capped at a maximum value µmax. A further problem, which has
recently been studied regarding PINNs, is that the different objectives in 12 behave on different scales, leading to instabilities
in training as the gradients of the larger objective functions dominate training.

This issue is addressed by weighting each constraint term individually

min
θ

O(θ) +

m∑
i=0

µikC
2
i (θ). (13)

Besides manual tuning of the weights µik , several schemes to dynamically balance the different terms throughout training
have been proposed, such as loss-balancing via the sub-gradients ((Wang et al., 2021)), via the eigenvalues of the neural
tangent kernel (Wang et al., 2022) or using a soft-attention mechanism (McClenny & Braga-Neto, 2020).
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A different method for solving 11 is the augmented Lagrangian method (ALM) defined as:

min
θ

max
λ,µ
L(θ, λ, µ) := O(θ) +

m∑
i=0

λiCi(θ) +
1

2
µ0

m∑
i=0

C2
i (θ) . (14)

Using the min-max inequality or weak duality

max
λ,µ

min
θ
L(θ, λ, µ) ≤ min

θ
max
λ,µ
L(θ, λ, µ) (15)

we can solve the max-min problem instead. In each epoch k, a minimization over network parameters θk is performed using
gradient descent, yielding new parameters θk+1. Then, the Lagrange multipliers are updated as follows:

λik+1
= λik + µ0kCi(θk+1) ∀i ∈ 0, . . . ,m. (16)

Note that this so-called dual update of the Lagrange multipliers is simply a gradient ascent step with learning rate µ0k

for each multiplier λik . Typically, there is also an increase of µ0k up to maximum value µmax as in the penalty method.
Constrained optimization with neural networks using the ALM has been shown to perform well in previous works, such as
in (Son et al., 2023), (Kotary & Fioretto, 2024), (Sangalli et al., 2021), (Fioretto et al., 2021), and (Basir & Senocak, 2023).

In this classical ALM formulation, there is only a single penalty parameter µ0, which is monotonically increased during
optimization. As outlined above, this is often insufficient to handle diverse constraints with different scales. Thus, we opt
for the adaptive ALM proposed in (Basir & Senocak, 2023) using adaptive penalty parameters for each constraint, solving
11 as the unconstrained optimization problem:

max
λ

min
θ
L(θ, λ, µ) := o(θ) +

m∑
i=0

λiCi(θ) +
1

2

m∑
i=0

µiC
2
i (θ) (17)

In each epoch k, again a minimization step over the parameters θk via gradient descent is performed. Then the penalty
parameters µik , which are simultaneously the learning rate of the Lagrange multipliers λik , are updated using RMSprop
followed by the gradient ascent step for λik

ν̄ik+1
← αν̄ik + (1− α)C2

i (θk+1) (18)

µik+1
← γ
√
ν̄ik + ϵ

(19)

λik+1
← λik + µikCi(θk+1) (20)

where ν̄i is the weighted moving average of the squared gradient w.r.t. λi, α is the discounting factor for old gradients, γ is
a global learning rate and ϵ is a constant added for the numerical stability of the division. This adaptive approach enables us
to handle the diverse set of constraints in GINNs without the need for manual hyperparameter tuning.

Algorithm 1 shows the full algorithm used to train for T epochs and specifies the hyperparameters we used. The only
difference to (Basir & Senocak, 2023) is that we set α = 0.90, which is the default value of RMSprop in PyTorch, instead of
α = 0.99.
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Algorithm 1 Adaptive augmented Lagrangian method

1: Parameters: γ = 1× 10−2, α = 0.90, ϵ = 1× 10−8

2: Input: θ0
3: Initialize: λ0,i ← 1, µ0,i ← 1, v0,i ← 0 ∀i
4: for t← 1 to T do
5: θt ← argminθ L(θt−1;λt−1, µt−1) {primal update: a gradient descent step over θ}
6: vt,i ← αvt−1,i + (1− α)Ci(θt)

2 ∀i
7: µt,i ← γ√

vt,i+ϵ
∀i {penalty update}

8: λt,i ← λt−1,i + µt,iCi(θt) ∀i {dual update}
9: end for

10: Output: θt

D.1. Loss plots

In Figures 11 and 12, we show the loss plots for training single and multiple shapes, respectively. As expected, the
unweighted losses (middle rows in the Figures) decrease, while the Lagrange terms (bottom rows) increase over training.

E. Topology loss
We provide additional details on our approach to the connectedness loss. We break this down in three parts: First, we define
the signed distance function of a shape Ω, which the neural field we train approximates. Then, we give a short rundown
on computing the persistent homology (PH), in particular the PH of a neural field in a non-rectangular region. Lastly, we
explain how to obtain a differentiable loss on the field from the outputs of the non-differentiable PH computation.

Signed distance function (SDF) f : X → R of a shape Ω gives the (signed) distance from the query point x to the closest
boundary point:

f(x) =

{
d(x, ∂Ω) if x ∈ Ωc (if x is outside the shape),
−d(x, ∂Ω) if x ∈ Ω (if x is inside the shape).

(21)

A point x ∈ X belongs to the medial axis if its closest boundary point is not unique. The gradient of an SDF obeys the
eikonal equation ∥∇f(x)∥ = 1 everywhere except on the medial axis, where the gradient is not defined. In INS, the SDF is
approximated by a NN with parameters θ: fθ ≈ f .

Connectedness refers to an object Ω consisting of a single connected component. It is a ubiquitous feature enabling the
propagation of mechanical forces, signals, energy, and other resources. Consequently, connectedness is an important
constraint for enabling GINNs. In the context of machine learning, connectedness constraints have been multiply applied
in segmentation (Wang et al., 2020; Clough et al., 2022; Hu et al., 2019), surface reconstruction (Brüel-Gabrielsson et al.,
2020), and 3D shape generation with voxels (Nadimpalli et al., 2023), point clouds (Gabrielsson et al., 2020), and INSs
(Mezghanni et al., 2021).

E.1. Persistent Homology

Persistent homology (PH) is one of the primary tools that has emerged from topological data analysis to extract topological
features from data. Data modalities such as point clouds, time series, graphs, and n-dimensional images can all be
transformed into weighted cell complexes from which the homology can be computed. The homology provides global
information about the underlying data and is generally robust.

Homology is an invariant originating from algebraic topology. A topological space X is encoded as cell complexes Cn(X)
consisting of n-dimensional balls Bn (n = 0, 1, 2, ...) and boundary maps ∂n from dimension n to n − 1 which satisfy
∂n ◦ ∂n+1 = 0 and ∂0 = 0. The homology Hn(X) is then defined as the quotient space

Hn(X) =
ker(∂n)

im(∂n+1)
(22)
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Figure 11: Loss plots for training a single shape of the bracket problem. The solid lines are exponential-moving averages
(factor 0.99) of the noisy values in lighter colors. (a) The losses used for backpropagation. (b) The unweighted losses of
each constraint. (c) The λ values of each constraint.
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Figure 12: Loss plots for training multiple shapes of the bracket problem. The solid lines are exponential-moving averages
(factor 0.99) of the noisy values in lighter colors. (a) The losses used for backpropagation. (b) The unweighted losses of
each constraint. (c) The λ values of each constraint.
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The dimension of Hn(X) counts the number of n-dimensional features and defines the Betti number bn: for n = 0 the
number of connected components, for n = 1 the number of holes, for n = 2 the number of voids.

Filtrations on the space X are defined using a filter function f : X → R. Using a sequence of increasing parameters αn

with αk < αn for k < n we can define a sequence of nested subspaces of X as sub-level sets Xn = f−1([−∞, αn]). We
then have

∅ ⊆ X1 ⊆ · · · ⊆ XN = X . (23)

The homology of each of these nested complexes Cn(Xi) can be computed.

Persistent Homology encodes how the homology of an increasing sequence of complexes changes under a given filtration.
Topological features appear and vanish as the filter function sweeps over X . The birth time b of a feature is defined as the
value αn at which the homology of Cn(Xn) changes to include this feature. The death time d of a feature is analogously
defined as the value αn at which it is removed from Cn(Xn). The persistence of a feature is defined as the length of its
lifetime l = d− b.

For each Betti number bn (for each homology class Hn) the information about the persistent homology of a given filtration
is encoded in a persistence diagram containing the points (b, d) of the birth and death pairs of all n-dimensional topological
features (changes in the dimension of Hn). For a sufficiently fine filtration, the persistence diagrams contain the entire
topological information about the underlying space or shape.

To compute the persistent homology of a neural field, we evaluate the network on a cubical complex on the domain of the
field, i.e., a grid in RN . The output is simply a gray-scale image (since we are only dealing with scalar fields in this work),
and the PH can be computed with existing algorithms. The current state-of-the-art algorithm for PH computation on cubical
complexes is CRipser (Kaji et al., 2020).

Given a grayscale image and a filtration value a, the sublevel set at a is the binary image resulting from thresholding
the image for values smaller or equal to a. For every such binary image, which defines a weighted cubical complex
with coefficients in Z/2Z, the homology can be computed. The persistence homology is then obtained by sweeping the
thresholding value a through R.

In general, we are interested in computing the PH within a given design region or envelope, which is not necessarily a
rectangular region. We achieve this by sampling the field in a rectangular domain containing the envelope and setting the
value of points not in the envelope to∞. Applying the PH computation to this altered image then correctly returns the
evolution of persistence features within the envelope. The only drawback of this method is the additional computational cost
of having to include the grid points outside the envelope in the PH computation, which is why the bounding domain should
be chosen tightly around the envelope.

The PH computation itself does not have to be differentiable (and the CRipser library we use is not) because the cells, i.e.,
the grid points of the image, at which a given persistence feature is born or killed, are stored. Hence, we can simply use the
network output at this grid coordinate to compute the loss and there are no issues concerning differentiability or having to
re-implement the PH computation into PyTorch.

E.2. Differentiable topology loss

To compute a differentiable loss, we use the outputs of the PH computation: For each homology class Hn we obtain the
points npi in the persistence diagram with the associated birth and death times nbi, ndi and the coordinates of these births
xnbi , ynbi , znbi and deaths xndi

, yndi
, zndi

.
Remark: The representatives of a homology class are not uniquely determined. The CRipser library internally chooses a
representative and then outputs its coordinates. In practice, this caused no issues.

For a selected iso-level a0 we select all npi for which nbi < a0 < ndi and sort them by lifetime nli =
ndi − nbi. Now let

the index i run from 1 . . .M sorting the selected npi. To train the network fθ to produce a single connected component at
iso-level a0 the loss is given by the residuals of the deaths ndi to a0 for all i = 2 . . .M , effectively pushing down all but the
most persistent component.
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Figure 13: A visual comparison of different diversity losses in a simple 2D example (F = R2 and the feasible set K is the
partial annulus). Each point f ∈ F represents a candidate solution. The points are optimized to maximize the diversity
within the feasible set. The top row shows the minimal aggregation δmin as defined in Equation 26. The bottom row shows
the total aggregation δsum as defined in Equation 27. Each column uses a different exponent p ∈ {0.5, 1, 2}. For 0 ≤ p ≤ 1
the minimal aggregation diversity δmin is concave meaning it favors increasing smaller distances over larger distances. This
leads to a uniform coverage of the feasible set. In contrast, the δmin is convex for p ≥ 1 as indicated by the formed clusters
for p = 2. Meanwhile, δsum pushes the points to the boundary of the feasible set for all p.

Lcc =

M∑
i=2

(
a0 − fθ(x0di

, y0di
, z0di

)
)2

(24)

It is immediately clear that this term is differentiable with respect to θ.

More generally, to obtain a shape with a Betti number bn = m at iso-level an, the summation above runs from i =
m+ 1 . . .M . The full topology loss for an N -dimensional shape is then given as

Ltopo =

N−1∑
n=0

M∑
i=m+1

(
an − fθ(xndi , yndi , zndi)

)2
(25)

F. Diversity
Concavity. We elaborate on the aforementioned concavity of the diversity aggregation measure with respect to the distances.
We demonstrate this in a basic experiment in Figure 13, where we consider the feasible set K as part of an annulus. For
illustration purposes, the solution is a point in a 2D vector space f ∈ X ⊂ R2. Consequentially, the solution set consists of
N such points: S = {fi ∈ X , i = 1, . . . , N}. Using the usual Euclidean distance d2(fi, fj), we optimize the diversity of S
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within the feasible set K using minimal aggregation measure

δmin(S) =

(∑
i

(
min
j ̸=i

d2(fi, fj)

)p
)1/p

, (26)

as well as the total aggregation measure

δsum(S) =

∑
i

∑
j

d2(fi, fj)

p1/p

. (27)

Using different exponents p ∈ {1/2, 1, 2} illustrates how δmin covers the domain uniformly for 0 ≤ p ≤ 1, while clusters
form for p > 1. The total aggregation measure always pushes the samples to the extremes of the domain.

Distance. We detail the derivation of our geometric distance. We can partition X into four parts (one, both or neither of the
shape boundaries): ∂Ωi \ ∂Ωj , ∂Ωj \ ∂Ωi, ∂Ωi ∩ ∂Ωj ,X \ (∂Ωi ∪ ∂Ωj). Correspondingly, the integral of the Lp distance
can also be split into four terms. Using f(x) = 0 ∀x ∈ ∂Ω we obtain

dp2(fi, fj) =

∫
X
(fi(x)− fj(x))

p dx

=

∫
∂Ωi\∂Ωj

(0− fj(x))
p dx+

∫
∂Ωj\∂Ωi

(fi(x)− 0)p dx

+

∫
∂Ωi∩∂Ωj

(0− 0)p dx+

∫
X\(∂Ωi∪∂Ωj)

(fi(x)− fj(x))
p dx

=

∫
∂Ωi\∂Ωj

fj(x)
p dx+

∫
∂Ωj\∂Ωi

fi(x)
p dx+

∫
X\(∂Ωi∪∂Ωj)

(fi(x)− fj(x))
p dx

=

∫
∂Ωi

fj(x)
p dx+

∫
∂Ωj

fi(x)
p dx+

∫
X\(∂Ωi∪∂Ωj)

(fi(x)− fj(x))
p dx

(28)

G. Geometric constraints
In Table 8, we provide a non-exhaustive list of more constraints relevant to GINNs.

Constraint Comment

Volume Non-trivial to compute and differentiate for level-set function (easier for density).

Area Non-trivial to compute, but easy to differentiate.

Minimal feature size Non-trivial to compute, relevant to topology optimization and additive manufac-
turing.

Symmetry Typical constraint in engineering design, suitable for encoding.

Tangential Compute from normals, typical constraint in engineering design.

Parallel Compute from normals, typical constraint in engineering design.

Planarity Compute from normals, typical constraint in engineering design.

Angles Compute from normals, relevant to additive manufacturing.

Curvatures Types of curvatures, curvature variations, and derived energies.

Euler characteristic Topological constraint.

Table 8: A non-exhaustive list of geometric and topological constraints relevant to GINNs but not considered in this work.
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