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Abstract
Inspired by the success of unsupervised pre-
training paradigms, researchers have applied these
approaches to DNA pre-training. However, we
argue that these approaches alone yield subop-
timal results because pure DNA sequences lack
sufficient information, since their functions are
regulated by genomic profiles like chromatin ac-
cessibility. Here, we demonstrate that supervised
training for genomic profile prediction serves
as a more effective alternative to pure sequence
pre-training. Furthermore, considering the multi-
species and multi-profile nature of genomic pro-
file prediction, we introduce our Species-Profile
Adaptive Collaborative Experts (SPACE) that
leverages Mixture of Experts (MoE) to better cap-
ture the relationships between DNA sequences
across different species and genomic profiles,
thereby learning more effective DNA represen-
tations. Through extensive experiments across
various tasks, our model achieves state-of-the-
art performance, establishing that DNA models
trained with supervised genomic profiles serve
as powerful DNA representation learners. The
code is available at https://github.com/
ZhuJiwei111/SPACE.

1. Introduction
DNA sequences, encoded by four nucleotide bases (A, C, G,
and T), serve as biology’s fundamental language that carries
genetic instructions. Understanding the syntax and regula-
tory grammar of this molecular language is promising for
diverse applications, including disease diagnosis (Kernohan
& Boycott, 2024; Sermon et al., 2004), drug discovery (Pe-
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terson & Liu, 2023; Trajanoska et al., 2023), and protein
engineering (Gosai et al., 2024; Yang et al., 2025).

Due to the complexity of DNA sequences, gaining a clear
understanding of DNA is not easy. Inspired by the suc-
cess of unsupervised pre-training paradigms in NLP, such as
masked language modeling (Devlin et al., 2019) (MLM) and
next-token prediction (Brown et al., 2020) (NTP), several
DNA foundation models (DFMs) have recently emerged
following similar pre-training approaches. DFMs (Ji et al.,
2021; Zhou et al., 2024; Dalla-Torre et al., 2024; Nguyen
et al., 2024a;b) aim to learn transferable representations
by leveraging large-scale pre-training on massive DNA se-
quences, which can be adapted for exploring the functions
and mechanisms of DNA. Through fine-tuning, these mod-
els have demonstrated promising performance in tasks such
as regulatory element identification, splice site recognition,
and epigenetic modification prediction.

Although DFMs have made some progress, we argue that
solely applying unsupervised pre-training techniques to
DNA sequences alone cannot learn high-level semantic rep-
resentations with strong generalization capabilities (Tang
et al., 2023; Tang & Koo, 2024). Natural language se-
quences themselves can express their meaning relatively
completely. In contrast, the functional roles of DNA se-
quences in organisms are far more complex and are regu-
lated by numerous genomic profiles in a cell-type-specific
manner (Fu et al., 2025), including various epigenetic mod-
ifications (Portela & Esteller, 2010), chromatin accessibil-
ity (Tan et al., 2023), and transcription factor binding (Pe-
terson & Liu, 2023). Therefore, without incorporating these
additional biological contexts, DFMs pre-trained only on
raw DNA sequences may struggle to generalize to diverse
cell environments or provide meaningful insights into the
underlying biology.

Given that DNA’s functional roles are regulated by various
biological factors beyond sequence alone, we revisit super-
vised genomic profile prediction models (GPPMs) as an al-
ternative to unsupervised DFMs for learning DNA sequence
representations. These models (Zhou & Troyanskaya, 2015;
Kelley et al., 2018; Zhou et al., 2018; Chen et al., 2022;
Avsec et al., 2021) are trained to predict experimentally
measurable genomic profiles that directly encode regulatory
and functional information in a cell-type-specific manner.
By learning to map sequences to these biologically meaning-
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ful profiles that reflect the complex regulatory mechanisms
described above, supervised models may capture more func-
tionally relevant representations compared to unsupervised
DFMs that rely solely on sequence patterns. Such biological
context-aware representations could be better aligned with
downstream genomic applications, such as identifying regu-
latory elements or understanding gene expression patterns.
While Dalla-Torre et al. (2024) has demonstrated through
preliminary experiments that Enformer (Avsec et al., 2021)
can learn effective DNA representations, there has been no
systematic study on improving the representation learning
capabilities of GPPMs.

However, current GPPMs employ oversimplified architec-
tures, using a shared encoder for DNA sequences from
different species and independent prediction heads for dif-
ferent genomic profiles. This design has two major limi-
tations. First, the species-shared encoder fails to capture
species-specific characteristics, as regulatory mechanisms
and their influences often vary across species (Karollus
et al., 2024). These distinct features are crucial for under-
standing subtle genomic variations and context-dependent
expression patterns. Second, genomic profile prediction
inherently involves multiple interrelated tasks (Fu et al.,
2025), as different profiles influence each other and are of-
ten regulated by common mechanisms. The independent
prediction heads, however, prevent the model from captur-
ing these cross-profile dependencies and their variations
across species.

To effectively model both cross-species and cross-profile
relationships, we introduce our Species-Profile Adaptive
Collaborative Experts (SPACE), which consists of two
key components: (1) a species-aware encoder module and
(2) a profile-grouped enhancement decoder module, both
built upon Mixture of Experts (MoE). The species-aware
encoder employs sparse routing to dynamically balance
species-specific and shared biological features, while the
profile-grouped enhancement decoder uses dual-gated ex-
pert weighted aggregation to capture the intricate depen-
dencies between different genomic profiles. This design
enables our model to effectively learn both species-specific
patterns and shared regulatory mechanisms across profiles.

The major contributions of this paper include:

• We revisit the supervised pre-training paradigm for
DNA sequence foundation models through genomic
profile prediction as the pre-training objective, demon-
strating how function-related biological contextual in-
formation can be effectively encoded into the learned
representations.

• We propose SPACE, a novel architecture that lever-
ages MoE to better capture the relationships between
DNA sequences across different species and genomic

profiles, thereby learning more effective DNA repre-
sentations compared to current GPPMs, which simply
employ a shared encoder and independent prediction
heads.

• Through extensive experiments across a wide range of
tasks, our SPACE achieves state-of-the-art (SOTA) per-
formance, demonstrating that supervised pre-training
for genomic profile prediction serves as a more ef-
fective and powerful alternative to pure sequence pre-
training.

2. Related Work
Supervised genomic profile models are trained to predict
functional genomic profiles from DNA sequences (Kathail
et al., 2024). DeepSEA (Zhou & Troyanskaya, 2015) pio-
neered this paradigm by leveraging convolutional neural net-
works (CNNs) to extract DNA sequence features for multi-
task prediction. Subsequent works (Kelley et al., 2018; Zhou
et al., 2018; Chen et al., 2022) have continued to advance
this direction through either more advanced architectures
or larger-scale training data. Enformer (Avsec et al., 2021),
widely recognized as the SOTA method, achieved superior
prediction performance through a hybrid Transformer-CNN
architecture. While these methods primarily focus on ab
initio prediction of genomic profiles from DNA sequences
and directly utilize these profiles for downstream tasks such
as variant effect prediction, few studies (Dalla-Torre et al.,
2024) have explored whether their intermediate represen-
tations capture meaningful biological patterns. Moreover,
these models, which typically adopt a shared encoder cou-
pled with independent profile prediction heads, have not
thoroughly explored more effective architectural designs
that could potentially enhance both prediction performance
and representation learning.

Unsupervised DNA foundation models draw from the suc-
cess of unsupervised pre-training in NLP. DNABERT (Ji
et al., 2021) pioneered this approach, maintaining nearly
identical training methods to BERT (Devlin et al., 2019)
while adapting the tokenization scheme to 6-mers (Ce-
likkanat et al., 2024) for DNA sequences. Subsequent
works have continued along this direction, employing either
MLM (Zhou et al., 2024; Dalla-Torre et al., 2024; Sanabria
et al., 2024) or NTP (Nguyen et al., 2024a;b) as unsuper-
vised training objectives. Although these methods have
made effective optimizations in terms of training data, model
architectures, and tokenization strategies, they still adhere
to the assumption that unsupervised pre-training on pure
DNA sequences alone is sufficient for learning effective
representations. Moreover, there has been little system-
atic comparison between these models and genomic profile
prediction models in terms of their representation learning
capabilities.
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Figure 1. Overview of our SPACE architecture. It processes the input DNA sequence with three stages: (1) spatial compression and
local context aggregation via a CNN-based aggregation module; (2) latent representation learning via a species-aware sparse MoE-based
encoding module; (3) multi-profile prediction decoder via the dual-gated expert weighted prediction enhancement module. The detailed
structures of the encoding module and the dual-layer gated prediction enhancement module are shown in the left and right, respectively.

The MoE framework is a conditional computation tech-
nique that selectively activates different expert networks
for different inputs through sparse routing (Jacobs et al.,
1991; Shazeer et al., 2017). In Transformer-based large
language models (LLMs), MoE is typically applied to feed-
forward networks (FFNs) to achieve better parameter effi-
ciency while maintaining model capacity (Fedus et al., 2022;
Jiang et al., 2023; Liu et al., 2024). This adaptive routing
mechanism is particularly well-suited for our genomic mod-
eling task, as it enables the model to dynamically balance
between learning species-specific patterns and shared bio-
logical features, while also capturing the complex dependen-
cies between different genomic profiles. Following common
practice in Transformer architectures, we also implement
MoE by replacing the FFNs in our model.

3. Method
3.1. Problem Formulation

Consider DNA sequences from M species {S1, . . . , SM}.
For each sequence xm from species Sm, we predict Cm

genomic profile values. We train with interleaved batches
across all M species to facilitate cross-species knowledge
transfer (Kelley, 2020; Avsec et al., 2021). Through this
supervised pre-training, the learned representations are ex-
pected to capture rich biological and regulatory information.

3.2. Overview

To better capture cross-species and cross-profile represen-
tations, we present SPACE. As illustrated in Figure 1, our
architecture consists of three key stages: (1) CNN-based Lo-
cal Context Aggregation following Enformer (Avsec et al.,
2021); (2) Species-aware Transformer Encoder and (3)
Profile-Grouped Enhancement Decoder for genomic profile
prediction.

3.3. Local Context Aggregation

Given an input DNA sequence xm, we first follow En-
former (Avsec et al., 2021) to compress and aggregate the
raw nucleotides through 1D-CNNs, generating hidden states
hm ∈ RL×dh at 128bp resolution, where L denotes the com-
pressed sequence length and dh is the hidden dimension.

3.4. Species-aware Encoder

Previous approaches to cross-species modeling (Kelley,
2020; Avsec et al., 2021) typically employ a shared encoder
for all species, lacking fine-grained modeling of species
relationships. To address this limitation, we propose a novel
cross-species modeling framework consisting of Species-
specific Embedding and Cross-species MoE layers.

Species-specific embedding. We augment the aggregated
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hidden states hm with a trainable species-specific embed-
ding em ∈ R1×dh by concatenation. The combined rep-
resentation then passes through D transformer layers with
our Sparse Cross-species MoE for further transformation.
This design is analogous to the source tokens used in recent
language models (Jiang et al., 2023), where document-level
embeddings are prepended to provide explicit context about
the content source. In our case, the species-specific em-
bedding serves as an explicit signal to guide the model in
distinguishing and handling species-specific characteristics.
Among DNA models, Karollus et al. (2024) employed a
similar approach.

Cross-species MoE. Furthermore, we introduce a sparse
MoE encoding module that enables adaptive species-aware
representation learning through dynamic parameter routing.
For the M species {S1, ..., SM}, each MoE layer consists of
two core components: (1) a set of N shared expert networks
{E1, ..., EN}, and (2) M species-specific gating networks
{G1, ..., GM}, where each Gm is associated with species
Sm to dynamically weight expert contributions based on
species-specific patterns.

For an aggregated hidden state hm from species Sm, the
output representation ym is computed as:

ĥm = MHAttention([em, hm]),

ym =

N∑
k=1

Gm(ĥm)k︸ ︷︷ ︸
the k-th value of Gm(ĥm)

·Ek

(
ĥm

)
,

(1)

where em ∈ Rdh denotes the species embedding vector,
and [·] represents concatenation, ĥm is the hidden state after
attention. The gating weights are computed through:

Gm(ĥm) = Softmax
(

TopK
(
g(ĥm) +Rnoise

))
, (2)

where g(·) is the gating function and Rnoise is a noise injec-
tion term for training stability enhancement (Fedus et al.,
2022). Moreover, to explicitly guide expert networks in
learning both conserved and species-specific patterns, we
introduce an expert-species mutual information loss inspired
by Mod-Squad (Chen et al., 2023). We maximize the mutual
information between species identity S and expert selection
E to encourage species-specific expert specialization:

LMI = −MI(S;E) = −H(S)−H(E) +H(S,E)

=

M∑
i=m

P (Sm) logP (Sm) +

N∑
n=1

P (En) logP (En)

−
M∑

m=1

N∑
n=1

P (Sm, En) logP (Sm, En),

(3)
where Sm denotes the species probability and En represents
the selection weight of each expert. The detailed derivations
are provided in Appendix A.1.

After the encoding stage, we obtain the sequence represen-
tation y ∈ RL×dh that captures both species-specific and
shared biological features. Note that the sequence length
remains L as we exclude the species embedding token from
the final representation, retaining only the original sequence
positions for downstream genomic profile prediction.

3.5. Profile-grouped Enhancement Decoder

Current GPPMs treat profile prediction as independent multi-
tasks, overlooking inherent relationships between genomic
profiles. This limitation motivates our decoder design based
on the following biological principles:

Biological principles for profile relationships. Genomic
profile prediction should account for two key biological
relationships: (P1) Evolutionary conservation: Shared reg-
ulatory mechanisms exist across homologous profiles in
different species (Schmidt et al., 2010). (P2) Functional in-
terdependencies: Different genomic profiles often share reg-
ulatory mechanisms and exhibit mutual influences, e.g., re-
gions with high gene expression typically exhibit increased
chromatin accessibility (Fu et al., 2025).

To leverage these biological insights, we propose a dual-
layer gated prediction enhancement module that enables
systematic knowledge sharing across profiles. For clarity,
we present the formulation for a single species Sm and omit
the subscript m in subsequent notation.

Genomic profiles can be categorized based on their experi-
mental assays: for instance, DNase and ATAC-seq measure
chromatin accessibility, while CAGE quantifies gene ex-
pression levels. Profiles from the same experimental type
typically share similar functional mechanisms, enabling
knowledge transfer within each category. Given Q distinct
profile types {T1, ..., TQ} with specific biological interpreta-
tions, for the DNA sequence representation y ∈ RL×dh and
the species embedding e ∈ Rdh , the enhancement module
operates through the following sequential steps.

Profile categorization for initial predictions. We first
perform a linear projection on y to obtain the initial base
prediction obase, which represents the final profile predic-
tions from previous GPPMs (Kelley, 2020; Avsec et al.,
2021) that do not incorporate biological insights. Based on
biological priors, obase is categorized into Q independent
parts {o1, . . . , oQ}, as follows.

obase = (Linear(y))T ∈ Rdout×L,

{o1, . . . , oQ} = Φ(obase),
(4)

where dout denotes the dimension specifying the total num-
ber of genomic profiles (i.e., dout equals Cm for species Sm).
The category operator Φ(·) is constructed based on domain-
specific biological knowledge, which decomposes the base
prediction into Q profile types {oq}Qq=1 where oq ∈ Rdq×L
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corresponds to biological profile type Tq , with dq indicating
the number of profiles categorized to Tq .

Dual-gated expert weighted aggregation. Each dimension
of oq represents the base predicted sequence for a specific
profile track. To capture shared regulatory patterns, we em-
ploy K cross-profile-type shared experts {Ek}Kk=1, where
each expert Ek : Rdq×L → Rdq×L enhances the catego-
rized base prediction oq .

For adaptive expert selection, we introduce a dual-gated
mechanism with two complementary components. The
first layer (group-level gating) addresses principle (P1) by
dynamically assigning weights to R expert groups based
on species and sequence context, capturing evolutionary
conservation patterns. The group weights Ĝq are computed
as:

Ĝq = Softmax
(
Gq

species(e) +Gq
sequence(Pool(y))

)
, (5)

where Gq
species(·) and Gq

sequence(·) map Rdh → RR, weight-
ing the R expert-selected groups from species and sequence
perspectives, respectively. Here, Pool(·) denotes global av-
erage pooling applied along the sequence length L and q
indicates the profile type. The second layer (expert-level
gating) addresses principle (P2) by selecting specific ex-
perts based on profile prediction patterns, capturing func-
tional interdependencies between profiles. For each group
r and profile type q, we define the expert selection func-
tion Gq

r(o
q) ∈ RK , where Gq

r(o
q)k represents the weight

of the k-th expert within the r-th group, determined by the
base prediction patterns. The computation of Gq

r follows a
similar gating mechanism as in Equation 2.

Combining both gating layers, the enhanced prediction for
profile type Tq is formulated as:

oqenhanced =

R∑
r=1

Ĝq
r︸︷︷︸

Group weight

·

 K∑
k=1

Gq
r(o

q)k︸ ︷︷ ︸
Expert weight

·Ek(o
q)

 ,

(6)
where the dual-gated mechanism first weights relevant ex-
pert groups through Ĝq

r (based on species and sequence
context), then within each selected group, chooses appropri-
ate experts through Gq

r(o
q)k (based on prediction patterns).

The final predictions are computed through connections
between enhanced and base predictions:

oenhanced = Ψ
(
{o1enhanced, ..., o

Q
enhanced}

)
,

ofinal = obase + oTenhanced,
(7)

where Ψ(·) is the inverse operator of Φ(·), concatenating
the enhanced predictions across different profile types, and
the residual connection ensures stable training.

3.6. Training Objective

Following Enformer (Avsec et al., 2021), we adopt the Pois-
son negative log-likelihood as the primary loss function. To
further refine species-aware expert selection in Section 3.4
by maximizing mutual information between species propor-
tion and expert activations, we introduce an auxiliary mutual
information loss. The composite loss is defined as:

Ltotal = LPoisson − α

D∑
d=1

MI(S;Ed), (8)

where α = 0.01 controls the mutual information regulariza-
tion strength, D denotes the number of transformer layers,
S represents the species identifier, and Ed indicates the
shared expert pool at layer d, the Poisson loss LPoisson is
mathematically formulated in Appendix A.2.

4. Experiments
4.1. Experiment Setup

Pre-training dataset. The pre-training dataset aligns with
that used in Enformer (Kelley, 2020; Avsec et al., 2021),
containing DNA sequences and corresponding genomic
profiles for human and mouse genomes. Both species
shared four conserved profile types: chromatin accessibility
(DNase/ATAC-seq), transcription factor binding (TF ChIP-
seq), histone modifications (Histone ChIP-seq), and tran-
scriptional activity (CAGE). The number of profiles varies
among different profile types in different species, with de-
tailed dataset specifications provided in Appendix B.

Implementation details. Our model was pre-trained using
supervised genomic profile prediction, maintaining the same
prediction targets and genomic intervals as implemented in
Enformer (Avsec et al., 2021). For cross-species joint mod-
eling, we implemented an alternating training strategy using
eight NVIDIA A40 GPUs. Training proceeded for 50,000
steps (approximately 8 days) with a global batch size of 64,
achieved through 8 gradient accumulation steps (1 sample
per GPU). Optimization employed AdamW (Loshchilov &
Hutter, 2019) with an initial learning rate of 5× 10−4, lin-
early ramped from 0 during the first 5,000 steps followed
by cosine decay. Gradient norms were clipped at 0.2 to
maintain stability.

4.2. Nucleotide Transformer Downstream Tasks

We conducted rigorous benchmarking against the suite
of 18 genomic datasets established in NT (Dalla-Torre
et al., 2024), encompassing three fundamental task cate-
gories: (1) histone modification marker prediction, (2) cis-
regulatory element annotation, and (3) splice site recog-
nition. Following the evaluation protocol from NT, we
employed the Matthews Correlation Coefficient (MCC)
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Table 1. MCC performance of Nucleotide Transformer downstream tasks. This benchmark includes three categories of downstream
tasks, comprising a total of 18 datasets derived from human samples. The term ‘NT downstream tasks’ will be used to refer to these tasks.

Model Chromatin profiles

H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

DNABERT-2 0.490 ± 0.013 0.491 ± 0.010 0.599 ± 0.010 0.637 ± 0.007 0.490 ± 0.008 0.558 ± 0.013
HyenaDNA-32KB 0.467 ± 0.012 0.421 ± 0.010 0.550 ± 0.009 0.553 ± 0.011 0.423 ± 0.016 0.515 ± 0.018
NT-HumanRef (500M) 0.465 ± 0.011 0.457 ± 0.010 0.589 ± 0.009 0.594 ± 0.004 0.468 ± 0.007 0.527 ± 0.011
NT-1000G (500M) 0.464 ± 0.012 0.458 ± 0.012 0.591 ± 0.007 0.581 ± 0.009 0.466 ± 0.006 0.528 ± 0.011
NT-1000G (2.5B) 0.478 ± 0.012 0.486 ± 0.023 0.603 ± 0.009 0.632 ± 0.008 0.491 ± 0.015 0.569 ± 0.014
NT-Multispecies (2.5B) 0.503 ± 0.010 0.481 ± 0.020 0.593 ± 0.016 0.635 ± 0.016 0.481 ± 0.012 0.552 ± 0.022

Enformer 0.522 ± 0.019 0.520 ± 0.015 0.552 ± 0.007 0.567 ± 0.017 0.504 ± 0.021 0.626 ± 0.015
SPACE 0.548 ± 0.005 0.547 ± 0.007 0.586 ± 0.010 0.602 ± 0.005 0.543 ± 0.009 0.640 ± 0.007

Model Chromatin profiles Regulatory elements

H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

DNABERT-2 0.646 ± 0.008 0.564 ± 0.013 0.443 ± 0.025 0.655 ± 0.011 0.517 ± 0.011 0.476 ± 0.009
HyenaDNA-32KB 0.603 ± 0.020 0.487 ± 0.025 0.419 ± 0.030 0.590 ± 0.007 0.476 ± 0.021 0.445 ± 0.009
NT-HumanRef (500M) 0.622 ± 0.013 0.524 ± 0.013 0.433 ± 0.009 0.634 ± 0.013 0.515 ± 0.019 0.477 ± 0.014
NT-1000G (500M) 0.609 ± 0.011 0.515 ± 0.018 0.415 ± 0.019 0.634 ± 0.010 0.505 ± 0.009 0.459 ± 0.011
NT-1000G (2.5B) 0.615 ± 0.017 0.529 ± 0.012 0.483 ± 0.013 0.659 ± 0.008 0.504 ± 0.009 0.469 ± 0.005
NT-Multispecies (2.5B) 0.618 ± 0.015 0.527 ± 0.017 0.447 ± 0.018 0.650 ± 0.014 0.527 ± 0.012 0.484 ± 0.012

Enformer 0.635 ± 0.019 0.593 ± 0.020 0.453 ± 0.016 0.606 ± 0.016 0.614 ± 0.010 0.573 ± 0.013
SPACE 0.661 ± 0.025 0.635 ± 0.016 0.490 ± 0.011 0.650 ± 0.011 0.631 ± 0.007 0.583 ± 0.008

Model Regulatory elements Splicing

All NoTATA TATA Donors Acceptors All

DNABERT-2 0.754 ± 0.009 0.769 ± 0.009 0.784 ± 0.036 0.837 ± 0.006 0.855 ± 0.005 0.861 ± 0.004
HyenaDNA-32KB 0.698 ± 0.011 0.729 ± 0.009 0.666 ± 0.041 0.808 ± 0.009 0.907 ± 0.018 0.915 ± 0.047
NT-HumanRef (500M) 0.734 ± 0.013 0.738 ± 0.008 0.831 ± 0.022 0.941 ± 0.004 0.939 ± 0.003 0.952 ± 0.003
NT-1000G (500M) 0.727 ± 0.004 0.743 ± 0.012 0.855 ± 0.041 0.933 ± 0.007 0.939 ± 0.004 0.952 ± 0.004
NT-1000G (2.5B) 0.708 ± 0.008 0.758 ± 0.007 0.802 ± 0.030 0.952 ± 0.004 0.956 ± 0.004 0.963 ± 0.001
NT-Multispecies (2.5B) 0.761 ± 0.009 0.773 ± 0.010 0.944 ± 0.016 0.958 ± 0.003 0.964 ± 0.003 0.970 ± 0.002

Enformer 0.745 ± 0.012 0.763 ± 0.012 0.793 ± 0.026 0.749 ± 0.007 0.739 ± 0.011 0.780 ± 0.007
SPACE 0.764 ± 0.012 0.776 ± 0.011 0.838 ± 0.028 0.942 ± 0.006 0.902 ± 0.004 0.906 ± 0.003

as the primary performance metric across all tasks to en-
sure methodological consistency. The formal definition of
MCC, along with its theoretical properties, is comprehen-
sively detailed in Appendix A.3. Our comparative anal-
ysis includes both unsupervised pre-training approaches
(DNABERT (Ji et al., 2021), DNABERT2 (Zhou et al.,
2024), and NT (Dalla-Torre et al., 2024)) and supervised
baseline (Enformer (Avsec et al., 2021)). In alignment
with NT’s methodology, we implemented 10-fold cross-
validation with fixed random seeds (0-9) and early stopping
based on validation performance. All benchmark perfor-
mance metrics for the compared models in downstream
tasks are directly sourced from the original experimental
results reported in NT, ensuring consistent evaluation proto-
cols and dataset configurations. As detailed in Table 1, our
model achieves SOTA performance on 11 out of 18 predic-

tion tasks. Notably, this superior performance persists even
when compared to the parameter-intensive NT-Multispecies
variant (2.5B parameters), demonstrating that our supervised
pre-training paradigm enables the acquisition of more robust
DNA sequence representations. Moreover, our architectural
improvements consistently outperform Enformer’s original
implementation across all tasks, empirically confirming the
effectiveness of our modules. The specific details and com-
plete results of the tasks are presented in Appendix C.

4.3. Cross-species Validation on GUE Benchmark

To rigorously evaluate the cross-species generalization ca-
pacity of our architectural refinements to Enformer, we
employed the GUE benchmark (Zhou et al., 2024). While
the benchmark encompasses 7 prediction tasks across 4
taxonomic groups, our experimental design strategically pri-
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Table 2. Comparison Results with Enformer on the GUE Benchmark. MCC was used in EMP tasks, while F1-score was employed in
the CVC task. The upward arrow (↑) denotes SPACE’s relative improvement over Enformer in novel species.

Model
Epigenetic Marks Prediction

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2

Enformer 70.65 37.87 42.41 34.00 29.65
SPACE 79.53 (↑ 8.88) 54.12 (↑ 16.25) 54.82 (↑ 12.41) 50.92(↑ 16.92) 43.80 (↑ 14.15)

Model Epigenetic Marks Prediction Virus

H3K4me3 H3K79me3 H3K9ac H4 H4ac Covid

Enformer 22.19 55.69 49.35 76.32 32.90 61.33
SPACE 49.47 (↑ 27.28) 66.93 (↑ 11.24) 59.29 (↑ 9.94) 81.25 (↑ 4.93) 53.09 (↑ 20.19) 70.26 (↑ 8.93)

oritizes yeast and viral genomic contexts — evolutionarily
distant lineages characterized by marked nucleotide-level
divergence from the mammalian species used during model
training. These phylogenetically distinct evaluations in-
clude Epigenetic Mark Prediction (EMP) across 10 yeast
datasets and COVID Variants Classification (CVC) in viral
genomes. Following the evaluation protocol established in
DNABERT2 (Zhou et al., 2024), we adopted the MCC for
EMP and the F1-score for CVC.

As quantified in Table 2, our refined architecture demon-
strates significant improvements over the original Enformer
in these tasks. This systematic evaluation provides empirical
evidence that our architectural modifications enhance cross-
species generalization capabilities, particularly in identify-
ing evolutionarily conserved regulatory features compared
to Enformer’s baseline implementation. Cross-architecture
benchmarking against DNABERT2 and other established
baselines (Appendix D) confirms the universality of these
improvements, with non-Enformer baseline results rigor-
ously reproduced from DNABERT2’s original experimental
protocol to ensure methodological consistency. All evalua-
tions strictly adhered to benchmark specifications, including
standardized train-test splits and hyperparameter configura-
tions, to maintain reproducibility and fairness.

4.4. Genomic Benchmarks

To further validate the capabilities of our model, we per-
formed extended benchmarking using the Genomic Bench-
marks (Grešová et al., 2023) dataset, which represents
the only mainstream benchmark encompassing species be-
yond those investigated in our previous experiments, in-
cluding Human-or-worm classification and Drosophila en-
hancer classification. Following a methodology similar to
Caduceus (Schiff et al., 2024), we evaluated Enformer and
SPACE, adopting the baseline model results reported in that
paper. It is worth noting that Caduceus did not measure the
enhancer prediction task for Drosophila melanogaster, so

we referenced the CNN results from Genomic Benchmarks.
The results are presented in the Table 3.

4.5. Analysis of the MoE architecture

Analysis of the species-aware encoder module. As
shown in Figure 2a, this part reveals the implicit species-
characteristic learning mechanism through visual analysis
of expert selection frequencies in the final Transformer layer
from the Enformer test dataset. In our experiments, we adopt
a 4-expert architecture with a top-3 selection mechanism
(k = 3). Quantitative analysis demonstrates significant
functional differentiation in the expert system: Expert 1
and Expert 3 exhibit species-specific learning capabilities
for single species (human and mouse), while Expert 0 and
Expert 2 primarily participate in cross-species conserved
feature extraction. This hierarchical division successfully
achieves spatial decoupling of species-specific representa-
tions and evolutionarily conserved features, providing an
interpretable solution for multi-species joint modeling.

Analysis of the profile-grouped enhancement decoder
module. In our experiments, we employed 8 cross-profile-
type shared experts (K = 8) with 2 expert-selected groups
per profile type (R = 2), where each group dynamically
integrated the top 3 most contributory experts through a dual-
gated expert weighted aggregation. Through hierarchical
weighting, we derived final expert selection probabilities.
Normalized expert selection frequencies across Enformer
test datasets were systematically quantified and visualized
in Figure 2b, revealing distinct biological patterns.

Notably, TF binding (TF ChIP-seq) and histone modifica-
tions (Histone ChIP-seq) profiles exhibited high expert spe-
cialization, reflecting their biologically inherent complex-
ity: TF binding involves combinatorial interactions among
diverse transcription factor families, while histone modi-
fications require interpretation of multilayered epigenetic
codes governed by cooperative post-translational modifica-
tions. Conversely, Chromatin accessibility (DNase/ATAC-
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Table 3. The results on the Genomic Benchmarks datasets. The results for Drosophila enhancers were obtained from Genomic
Benchmarks (Grešová et al., 2023), while all other baseline results were sourced from the Caduceus model (Schiff et al., 2024).

Model Mouse Demo drosophila

Enhancers Coding VS. Intergenomic Human VS. Worm Enhancers

CNN 0.715 ± 0.087 0.892 ± 0.008 0.942 ± 0.002 0.586
HyenaDNA 0.780 ± 0.025 0.904 ± 0.005 0.964 ± 0.002 −
Mamba 0.743 ± 0.054 0.904 ± 0.004 0.967 ± 0.002 −
Caduceus-PH 0.754 ± 0.074 0.915 ± 0.003 0.973 ± 0.001 −
Caduceus-PS 0.793 ± 0.058 0.910 ± 0.003 0.968 ± 0.002 −
Enformer 0.835 ± 0.012 0.913 ± 0.001 0.958 ± 0.001 0.613 ± 0.005
SPACE 0.905 ± 0.010 0.922 ± 0.001 0.967 ± 0.004 0.721 ± 0.016

Model Human

Enhancers Cohn Enhancer Ensembl Regulatory OCR Ensembl Nontata Promoters

CNN 0.702 ± 0.021 0.744 ± 0.122 0.872 ± 0.005 0.698 ± 0.013 0.861 ± 0.009
HyenaDNA 0.729 ± 0.014 0.849 ± 0.006 0.869 ± 0.012 0.783 ± 0.007 0.944 ± 0.002
Mamba 0.732 ± 0.029 0.862 ± 0.008 0.814 ± 0.211 0.815 ± 0.002 0.933 ± 0.007
Caduceus-PH 0.747 ± 0.004 0.893 ± 0.008 0.872 ± 0.011 0.828 ± 0.006 0.946 ± 0.007
Caduceus-PS 0.745 ± 0.007 0.900 ± 0.006 0.873 ± 0.007 0.818 ± 0.006 0.945 ± 0.010

Enformer 0.723 ± 0.001 0.844 ± 0.001 0.903 ± 0.001 0.876 ± 0.001 0.878 ± 0.002
SPACE 0.769 ± 0.006 0.919 ± 0.014 0.944 ± 0.002 0.854 ± 0.001 0.940 ± 0.002

seq signals) and transcription initiation (CAGE signals)
profiles showed substantial expert overlap with differen-
tial weighting, mirroring their mechanistic and positional
interdependence. Chromatin accessibility creates permis-
sive 3D topological environments essential for transcription
initiation, with transcription start site (TSS)-associated pro-
moter and enhancer regions exhibiting substantial spatial
overlap with chromatin accessibility domains. This “func-
tional dependency-spatial coupling” drives the prediction en-
hancement decoder module to develop coordinated feature
extraction strategies. These findings collectively demon-
strate that divergent genomic profiles converge on shared
regulatory architectures and engage in reciprocal regulatory
interactions – a phenomenon that fundamentally informed
our development of the profile-grouped enhancement de-
coder to systematically leverage such interconnectivity.

4.6. Comparative Analysis with Enformer in Gene
Expression Prediction

We conducted a comparative analysis based on the core task
of the baseline Enformer model, which aims to predict hu-
man and mouse genomic profiles at 128-bp resolution from
input DNA sequences. We computed the average Pearson
correlation coefficients across all positions for genomic pro-
files in the test set and performed stratified visualization by
species and profile types, as illustrated in Figure 2c. The
results demonstrate that our approach significantly enhances
the prediction accuracy for mouse genomic profiles while
maintaining the prediction performance for human genomic
profiles. It should be noted that our training steps were only

1/3 of those used by Enformer, yet we were still able to
achieve good results on the training objective tasks.

4.7. Ablation Study

We conducted ablation experiments with a half-scale model
(hidden dim=768) on five configurations: (1) baseline with-
out the prediction-enhanced decoder, (2) decoder replace-
ment with a parameter-matched MLP, (3) substitution of
MoE layers with standard FFNs in the encoder, (4) addi-
tional removal of species embeddings from configuration
(3), and (5) our complete dual-module architecture. The
results are presented in the Table 4. SPACE demonstrates
superior performance across most tasks, with the notable
exception of the TATA box dataset (see Table 14) – due to
its exclusive focus on simple sequence motifs rather than
complex regulatory mechanisms. This indicates that while
our decoder doesn’t directly boost chromatin profile pre-
diction accuracy, the MoE architecture implicitly models
cross-profile regulatory dependencies, offering significant
advantages for tasks requiring integrated profile understand-
ing. Cross-species evaluation on the GUE benchmark (yeast
and virus tasks, detailed in Table 15) further demonstrates
that the MLP-based decoder variant exhibits substantially
weaker generalization to new species compared to SPACE’s
enhancement decoder architecture.

5. Limitations
This work has limitations in data coverage and model scale.
First, SPACE has only been trained on two species. While
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(a)

(b)

(c)

Figure 2. Expert selection visualizations and prediction results. (a) Visualization of expert selection in the final cross-species MoE. (b)
Expert selection in the profile-grouped enhancement decoder module. (c) Pearson correlation coefficients across all positions per profile
on the test set. Each point represents the average correlation of predicted genomic profiles across all 128-bp binned genomic positions.

Table 4. Ablation Studies on NT downstream tasks and GUE benchmarks. The results include the average outcomes of the three major
categories of downstream tasks in NT and the average results of the EMP tasks and the CVC task in the GUE benchmark experiments.

Model NT GUE

Chromatin Regulatory Splicing EMP CVC

SPACE w/o decoder 0.5674 0.7054 0.8977 0.5339 0.6866
SPACE w/o decoder w/ MLP 0.5651 0.6920 0.9020 0.5153 0.6783
SPACE w/o encoder 0.5653 0.7022 0.8887 0.5346 0.6846
SPACE w/o encoder w/o species emb 0.5692 0.6986 0.8957 0.5322 0.6856
SPACE 0.5705 0.7024 0.9077 0.5368 0.6889

this study demonstrates the advantages of our design, we
believe extending to more species would yield benefits as ad-
ditional data becomes available (Vandereyken et al., 2023).
Second, constrained by computational resources, our model
(588M, sparse-activated) is significantly smaller than the
largest variant of NT (2.5B, dense) (the detail is in Ap-
pendix H. Given the observed scaling laws in DFMs (Dalla-
Torre et al., 2024; Nguyen et al., 2024a), we believe increas-
ing our model scale would lead to improvements.

6. Conclusion
In this work, we demonstrate that supervised pre-training
via genomic profile prediction serves as a moreeffective and
targeted alternative to pure sequence pre-training for DNA
foundation models. To distinguish unique characteristics
of different species and profiles while fully utilizing the
transferrable knowledge among species and profiles, we
introduce SPACE that provides biological insights into the
model architecture. Through extensive evaluations, we show

that our supervised pre-training with the proposed SPACE
sets a new standard for DNA representation learning, paving
the way for future developments in DFMs.
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Grešová, K., Martinek, V., Čechák, D., Šimeček, P., and
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A. Derivation of Mathematical Formulations for Key Functions
A.1. Mutual Information Analysis

The Mutual Information defined in Equation (3) is:

LMI = −MI(S;E) = −H(S)−H(E) +H(S,E)

=

M∑
i=m

P (Sm) logP (Sm) +

N∑
n=1

P (En) logP (En)

−
M∑

m=1

N∑
n=1

P (Sm, En) logP (Sm, En),

where Sm denotes the species probability and En represents the selection weight of each expert.

We split the formulae to analyse them separately. The mutual information decomposition exhibits three fundamental
components:

Species Entropy:

−
M∑
i=1

P (Si) logP (Si) = H(S).

This term represents the inherent diversity of species distribution in training data. As P (Si) constitutes a fixed prior, H(S)
remains constant during optimization.

Expert Diversity Regularization:

−
N∑
j=1

P (Ej) logP (Ej) = H(E).

Maximizing this entropy term encourages balanced utilization of experts, preventing expert collapse where few experts
dominate computations. Formally, this ensures:

lim
H(E)→logN

P (Ej) =
1

N
∀j.

Conditional Specialization Objective:

M∑
i=1

N∑
j=1

P (Si, Ej) logP (Si, Ej) = −H(S,E).

Minimizing this joint entropy (equivalent to maximizing −H(S,E)) sharpens the conditional distribution P (Ej |Si), thereby
promoting:

lim
H(S,E)→0

P (Ej |Si) =

{
1 if j = argmaxk G

Si

k (x)

0 otherwise
.

This objective ensures that, for a given species, the model preferentially activates a fixed subset of k experts.

In this way, the sparse MoE-based encoding module encourages different expert combinations to handle different species,
while some shared experts in the pool can capture common knowledge across species.

A.2. Poisson negative log-likelihood

The Poisson negative log-likelihood function is defined as

LPoisson =
1

N

N∑
i=1

(pi − ti ln pi) ,
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whree p denotes the prediction vector and t represents the target vector.

A.3. Matthews Correlation Coefficient (MCC)

The Matthews Correlation Coefficient (MCC) is a statistically rigorous metric for evaluating classification models. Its
definition and generalization to multi-class problems are formally outlined below.

Binary Classification Case For binary classification, let TP , TN , FP , and FN denote the counts of true positives, true
negatives, false positives, and false negatives, respectively. The MCC is defined as:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

Here, TP , TN , FP , and FN correspond to entries in the confusion matrix for two classes.

Multi-class Classification Case

For K-class classification (K ≥ 2), let C be the K ×K confusion matrix, where Cij represents the number of samples
from class i predicted as class j. The MCC generalizes to:

MCC =

∑K
k=1

∑K
l=1

∑K
m=1 CkkClm − CklCmk√(∑K

k=1

∑K
l=1 Ckl

∑K
m=1
m ̸=k

Cmk

)(∑K
k=1

∑K
l=1 Clk

∑K
m=1
m̸=k

Ckm

) .

This formulation quantifies the covariance between all class pairs, ensuring robustness to imbalanced data distributions.

The MCC ranges in [−1, 1], where 1, 0, and −1 correspond to perfect prediction, random guessing, and total disagreement,
respectively.

B. Pre-training Dataset

Table 5. Genomic Dataset Statistics

Species Train Val Test Sequence Length

Human 34,021 2,213 1,937 131,072 bp
Mouse 29,295 2,209 2,017 131,072 bp

Our model was pretrained on the same dataset as Enformer (Avsec et al., 2021), with detailed composition statistics provided
in Table 5. To address the pronounced species imbalance between human and mouse genomic data, we implemented
balanced batch sampling through randomized minority-class augmentation, ensuring equal representation of both species in
every batch. This strategy mitigates species bias while preserving sequence diversity through stochastic resampling.

The dataset comprises DNA sequences paired with genomic profiles as prediction targets. These genomic profiles are
categorized into four functional classes: chromatin accessibility (DNase/ATAC-seq), transcription factor binding (TF
ChIP-seq), histone modifications (Histone ChIP-seq), and transcriptional activity (CAGE). The species-specific distribution
of profile types is quantified in Table 6, which details the number of available tracks per category for each organism.

Table 6. Distribution of Genomics profiles

species DNase/ATA TF ChIP Histone ChIP CAGE Total

Human 684 2131 1860 638 5313
Mouse 228 308 750 357 1643
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C. Nucleotide Transformer Downstream Tasks Revised
C.1. Datasets

The benchmark dataset comprises 18 downstream tasks originally proposed in Nucleotide Transformer (NT) (Dalla-
Torre et al., 2024), accessible via https://huggingface.co/datasets/InstaDeepAI/nucleotide_
transformer_downstream_tasks_revised. These tasks establish a unified genomics benchmarking frame-
work encompassing both binary and multi-class classification challenges. All data is exclusively derived from human
samples, organized into three biologically meaningful categories: Chromatin Profiles, Regulatory Elements and Splicing.
The complete dataset composition, including sequence numbers, class distributions and sequence length statistics, is detailed
in Table 7.

Table 7. Details of the NT downstream tasks

Task Number of train sequences Number of test sequences Number of labels Sequence length

promoter all 30,000 1,584 2 300
promoter tata 5,062 212 2 300
promoter no tata 30,000 1,372 2 300
enhancers 30,000 3,000 2 400
enhancers types 30,000 3,000 3 400
splice sites all 30,000 3,000 3 600
splice sites acceptor 30,000 3,000 2 600
splice sites donor 30,000 3,000 2 600
H2AFZ 30,000 3,000 2 1,000
H3K27ac 30,000 1,616 2 1,000
H3K27me3 30,000 3,000 2 1,000
H3K36me3 30,000 3,000 2 1,000
H3K4me1 30,000 3,000 2 1,000
H3K4me2 30,000 2,138 2 1,000
H3K4me3 30,000 776 2 1,000
H3K9ac 23,274 1,004 2 1,000
H3K9me3 27,438 850 2 1,000
H4K20me1 30,000 2,270 2 1,000

C.2. Implementation

We maintained identical hyperparameter configurations across all tasks. Our systematic hyperparameter search included
learning rates of 5 × 10−5, 3 × 10−5, and 5 × 10−4, combined with batch sizes of 8, 16, and 32. Through empirical
validation, we identified the optimal configuration employing a learning rate of 5× 10−5 with batch size 8. The training
protocol utilized the AdamW optimizer (Loshchilov & Hutter, 2019) over 3 epochs, while retaining default parameter
settings from the HuggingFace Transformer Trainer implementation (Wolf et al., 2020).

C.3. Results

The complete benchmark results of the downstream tasks for NT are presented in Table 8. All baseline results are sourced
from NT (Dalla-Torre et al., 2024). Performance per task was calculated as the median of the 10 cross-validation folds (±
standard deviation). The best results for each task are highlighted in bold.

14

https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised
https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised


SPACE: Your Genomic Profile Predictor is a Powerful DNA Foundation Model

Table 8. Complete Benchmark Results of Nucleotide Transformer Downstream Tasks

Model Chromatin profiles

H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

BPNet (original) 0.473 ± 0.009 0.296 ± 0.046 0.543 ± 0.009 0.548 ± 0.009 0.436 ± 0.008 0.427 ± 0.036
BPNet (large) 0.487 ± 0.014 0.214 ± 0.037 0.551 ± 0.009 0.570 ± 0.009 0.459 ± 0.012 0.427 ± 0.025
DNABERT-2 0.490 ± 0.013 0.491 ± 0.010 0.599 ± 0.010 0.637 ± 0.007 0.490 ± 0.008 0.558 ± 0.013
HyenaDNA-1KB 0.455 ± 0.015 0.423 ± 0.017 0.541 ± 0.018 0.543 ± 0.010 0.430 ± 0.014 0.521 ± 0.024
HyenaDNA-32KB 0.467 ± 0.012 0.421 ± 0.010 0.550 ± 0.009 0.553 ± 0.011 0.423 ± 0.016 0.515 ± 0.018
NT-HumanRef (500M) 0.465 ± 0.011 0.457 ± 0.010 0.589 ± 0.009 0.594 ± 0.004 0.468 ± 0.007 0.527 ± 0.011
NT-1000G (500M) 0.464 ± 0.012 0.458 ± 0.012 0.591 ± 0.007 0.581 ± 0.009 0.466 ± 0.006 0.528 ± 0.011
NT-1000G (2.5B) 0.478 ± 0.012 0.486 ± 0.023 0.603 ± 0.009 0.632 ± 0.008 0.491 ± 0.015 0.569 ± 0.014
NT-Multispecies (2.5B) 0.503 ± 0.010 0.481 ± 0.020 0.593 ± 0.016 0.635 ± 0.016 0.481 ± 0.012 0.552 ± 0.022

Enformer 0.522 ± 0.019 0.520 ± 0.015 0.552 ± 0.007 0.567 ± 0.017 0.504 ± 0.021 0.626 ± 0.015
SPACE 0.548 ± 0.005 0.547 ± 0.007 0.586 ± 0.010 0.602 ± 0.005 0.543 ± 0.009 0.640 ± 0.007

Model Chromatin profiles Regulatory elements

H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

BPNet (original) 0.445 ± 0.047 0.336 ± 0.034 0.298 ± 0.030 0.531 ± 0.025 0.488 ± 0.009 0.449 ± 0.006
BPNet (large) 0.445 ± 0.049 0.298 ± 0.033 0.234 ± 0.037 0.525 ± 0.038 0.492 ± 0.008 0.454 ± 0.008
DNABERT-2 0.646 ± 0.008 0.564 ± 0.013 0.443 ± 0.025 0.655 ± 0.011 0.517 ± 0.011 0.476 ± 0.009
HyenaDNA-1KB 0.596 ± 0.015 0.484 ± 0.022 0.375 ± 0.026 0.580 ± 0.009 0.475 ± 0.006 0.441 ± 0.010
HyenaDNA-32KB 0.603 ± 0.020 0.487 ± 0.025 0.419 ± 0.030 0.590 ± 0.007 0.476 ± 0.021 0.445 ± 0.009
NT-HumanRef (500M) 0.622 ± 0.013 0.524 ± 0.013 0.433 ± 0.009 0.634 ± 0.013 0.515 ± 0.019 0.477 ± 0.014
NT-1000G (500M) 0.609 ± 0.011 0.515 ± 0.018 0.415 ± 0.019 0.634 ± 0.010 0.505 ± 0.009 0.459 ± 0.011
NT-1000G (2.5B) 0.615 ± 0.017 0.529 ± 0.012 0.483 ± 0.013 0.659 ± 0.008 0.504 ± 0.009 0.469 ± 0.005
NT-Multispecies (2.5B) 0.618 ± 0.015 0.527 ± 0.017 0.447 ± 0.018 0.650 ± 0.014 0.527 ± 0.012 0.484 ± 0.012

Enformer 0.635 ± 0.019 0.593 ± 0.020 0.453 ± 0.016 0.606 ± 0.016 0.614 ± 0.010 0.573 ± 0.013
SPACE 0.661 ± 0.025 0.635 ± 0.016 0.490 ± 0.011 0.650 ± 0.011 0.631 ± 0.007 0.583 ± 0.008

Model Regulatory elements Splicing

All NoTATA TATA Donors Acceptors All

BPNet (original) 0.696 ± 0.026 0.717 ± 0.023 0.848 ± 0.042 0.859 ± 0.038 0.793 ± 0.072 0.920 ± 0.014
BPNet (large) 0.672 ± 0.023 0.672 ± 0.043 0.826 ± 0.017 0.925 ± 0.031 0.865 ± 0.026 0.930 ± 0.021
DNABERT-2 0.754 ± 0.009 0.769 ± 0.009 0.784 ± 0.036 0.837 ± 0.006 0.855 ± 0.005 0.861 ± 0.004
HyenaDNA-1KB 0.693 ± 0.016 0.723 ± 0.013 0.648 ± 0.044 0.815 ± 0.049 0.854 ± 0.053 0.943 ± 0.024
HyenaDNA-32KB 0.698 ± 0.011 0.729 ± 0.009 0.666 ± 0.041 0.808 ± 0.009 0.907 ± 0.018 0.915 ± 0.047
NT-HumanRef (500M) 0.734 ± 0.013 0.738 ± 0.008 0.831 ± 0.022 0.941 ± 0.004 0.939 ± 0.003 0.952 ± 0.003
NT-1000G (500M) 0.727 ± 0.004 0.743 ± 0.012 0.855 ± 0.041 0.933 ± 0.007 0.939 ± 0.004 0.952 ± 0.004
NT-1000G (2.5B) 0.708 ± 0.008 0.758 ± 0.007 0.802 ± 0.030 0.952 ± 0.004 0.956 ± 0.004 0.963 ± 0.001
NT-Multispecies (2.5B) 0.761 ± 0.009 0.773 ± 0.010 0.944 ± 0.016 0.958 ± 0.003 0.964 ± 0.003 0.970 ± 0.002

Enformer 0.745 ± 0.012 0.763 ± 0.012 0.793 ± 0.026 0.749 ± 0.007 0.739 ± 0.011 0.780 ± 0.007
SPACE 0.764 ± 0.012 0.776 ± 0.011 0.838 ± 0.028 0.942 ± 0.006 0.902 ± 0.004 0.906 ± 0.003

D. GUE
D.1. Dataset

GUE is a comprehensive benchmark for genome understanding consising of 28 distinct datasets across 7 tasks and 4 species,
downloaded from https://github.com/MAGICS-LAB/DNABERT_2. The complete dataset composition, including
sequence numbers, class distributions and sequence length statistics, is detailed in Table 9
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Table 9. The Composition of GUE Datasets

Species Task Num. Datasets Num. Classes Sequence Length

Human

Core Promoter Detection 3 2 70
Transcription Factor Prediction 5 2 100
Promoter Detection 3 2 300
Splice Site Detection 1 3 400

Mouse Transcription Factor Prediction 5 2 100

Yeast Epigenetic Marks Prediction 10 2 500

Virus Covid Variant Classification 1 9 1000

D.2. Implementation

Building upon DNABERT2’s downstream task hyperparameter framework, we systematically evaluated learning rates from
5×10−6, 5×10−5, 6×10−5, 7×10−5, 8×10−5, 3×10−4 while maintaining a consistent batch size of 32 across all tasks.
Task-specific learning rates were empirically determined through validation set performance. The optimization process
employed the AdamW algorithm (Loshchilov & Hutter, 2019) with 10,000 training steps, while retaining default parameter
configurations from the HuggingFace Transformer Trainer implementation (Wolf et al., 2020).

Table 10. The results on the GUE datasets

Model Epigenetic Marks Prediction

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT (3-mer) 74.15 42.07 48.49 42.95 31.34 28.92
DNABERT (4-mer) 73.03 41.88 48.03 41.06 30.66 25.31
DNABERT (5-mer) 73.40 40.68 48.29 40.65 30.67 27.10
DNABERT (6-mer) 73.10 40.06 47.25 41.44 32.27 27.81
NT-500M-human 69.67 33.55 44.14 37.15 30.87 24.06
NT-500M-1000g 72.52 39.37 45.58 40.45 31.05 26.16
NT-2500M-1000g 74.61 44.08 50.86 43.10 30.28 30.87
NT-2500M-multi 78.77 56.20 61.99 55.30 36.49 40.34
DNABERT-2 78.27 52.57 56.88 50.52 31.13 36.27
DNABERT-2 ■ 80.17 57.42 61.90 53.00 39.89 41.20

Enformer 70.65 37.87 42.41 34.00 29.65 22.19
SPACE 79.53 54.12 54.82 50.92 43.80 49.47

D.3. Results

The results on the GUE datasets are presented in Table 10 and Table 11. In accordance with the implementation protocol of
DNABERT2 (Zhou et al., 2024), all benchmark tasks utilized the Matthews Correlation Coefficient (MCC) for performance
evaluation, with the singular exception of viral sequence analysis where F1-score metrics were employed. The notation
DNABERT2 ■ specifically denotes the model variant that underwent additional masked language modeling (MLM) pre-
training on the training sets of the Genomic Understanding and Evaluation (GUE) benchmark, as detailed in the DNABERT2
methodology.
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Table 11. The results on the GUE datasets.

Model Epigenetic Marks Prediction Promoter Detection

H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT (3-mer) 60.12 50.48 78.27 38.60 90.44 93.61 69.83
DNABERT (4-mer) 59.77 51.44 78.28 36.40 89.54 92.65 66.78
DNABERT (5-mer) 59.61 51.11 77.27 37.48 90.16 92.45 69.51
DNABERT (6-mer) 61.17 51.22 79.26 37.43 90.48 93.05 61.56
NT-500M-human 58.35 45.81 76.17 33.74 87.71 90.75 78.07
NT-500M-1000g 59.33 49.29 76.29 36.79 89.76 91.75 78.23
NT-2500M-1000g 61.20 52.36 79.76 41.46 90.95 93.07 75.80
NT-2500M-multi 64.70 56.01 81.67 49.13 91.01 94.00 79.43
DNABERT-2 67.39 55.63 80.71 50.43 86.77 94.27 71.59
DNABERT-2 ■ 65.46 57.07 81.86 50.35 88.31 94.34 68.79
grover 86.42 92.3 59.77

Enformer 55.69 49.35 76.32 32.90 85.68 92.92 69.63
SPACE 66.93 59.29 81.25 53.09 91.90 94.23 79.13

Model Transcription Factor Prediction (Human) Core Promoter Detection

0 1 2 3 4 all notata tata

DNABERT(3-mer) 67.95 70.90 60.51 53.03 69.76 70.92 69.82 78.15
DNABERT(4-mer) 67.90 73.05 59.52 50.37 71.23 69.00 70.04 74.25
DNABERT(5-mer) 66.97 69.98 59.03 52.95 69.26 69.48 69.81 76.79
DNABERT(6-mer) 66.84 70.14 61.03 51.89 70.97 68.90 70.47 76.06
NT-500M-human 61.59 66.75 53.58 42.95 60.81 63.45 64.82 71.34
NT-500M-1000g 63.64 70.17 52.73 45.24 62.82 66.70 67.17 73.52
NT-2500M-1000g 66.31 68.30 58.70 49.08 67.59 67.39 67.46 69.66
NT-2500M-multi 66.64 70.28 58.72 51.65 69.34 70.33 71.58 72.97
DNABERT-2 71.99 76.06 66.52 58.54 77.43 69.37 68.04 74.17
DNABERT-2 ■ 69.12 71.87 62.96 55.35 74.94 67.50 69.53 76.18
grover 65.76 67.9 61.62 48.26 74.68 63.58 66.75 60.57

Enformer 69.42 72.76 77.88 66.41 81.89 60.94 66.46 46.21
SPACE 69.02 76.49 76.45 66.08 82.91 68.18 68.04 79.23

Model Transcription Factor Prediction (Mouse) Virus Splice

0 1 2 3 4 Covid Splice

DNABERT(3-mer) 42.31 79.10 69.90 55.40 41.97 62.23 84.14
DNABERT(4-mer) 49.42 79.95 72.62 51.79 44.13 59.87 84.05
DNABERT(5-mer) 42.45 79.32 62.22 49.92 40.34 50.46 84.02
DNABERT(6-mer) 44.42 78.94 71.44 44.89 42.48 55.50 84.07
NT-500M-human 31.04 75.04 61.67 29.17 29.27 50.82 79.71
NT-500M-1000g 39.26 75.49 64.70 33.07 34.01 52.06 80.97
NT-2500M-1000g 48.31 80.02 70.14 42.25 43.40 66.73 85.78
NT-2500M-multi 63.31 83.76 71.52 69.44 47.07 73.04 89.35
DNABERT-2 56.76 84.77 79.32 66.47 52.66 71.02 84.99
DNABERT-2 ■ 64.23 86.28 81.28 73.49 50.80 68.49 85.93
grover 84.35

Enformer 67.15 81.56 85.99 67.88 44.03 61.33 81.55
SPACE 65.94 84.91 90.30 86.72 50.66 70.26 87.48
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E. Results on BEND Benchmark

Table 12. Results on all tasks of BEND

Method Genomic Tasks

Chromatin Histone CpG Variant effects Variant effects
accessibility modification Methylation (expression) (disease)

Expert method 0.85 0.74 0.93 0.70 0.56
BASSET BASSET BASSET DEEPSEA DEEPSEA

Fully supervised
ResNet – – – – –
CNN 0.75 0.76 0.84 – –

Pre-trained
ResNet-LM 0.82 0.77 0.87 0.55 0.55
AWD-LSTM 0.69 0.74 0.81 0.53 0.45
NT-H 0.74 0.76 0.88 0.55 0.48
NT-MS 0.79 0.78 0.92 0.54 0.77
NT-1000G 0.77 0.77 0.89 0.45 0.49
NT-V2 0.80 0.76 0.91 0.48 0.48
DNABERT 0.85 0.79 0.91 0.60 0.56
DNABERT-2 0.81 0.78 0.90 0.49 0.51
GENA-LM BERT 0.76 0.78 0.91 0.49 0.55
GENA-LM BigBird 0.82 0.78 0.91 0.49 0.52
HyenaDNA large 0.84 0.76 0.91 0.51 0.45
HyenaDNA tiny 0.78 0.76 0.86 0.47 0.44
GROVER 0.82 0.77 0.89 0.56 0.51
GPN-MSA – – – – 0.97

SPACE 0.89 0.81 0.92 0.51 0.49

Experiments in the main paper involve complete fine-tuning of our Encoder parameters. In this section, we validate the
effectiveness of SPACE’s embeddings on the Bend Benchmark (Marin et al., 2024) (i.e., directly using frozen SPACE
embeddings for downstream tasks). All our experimental settings strictly follow the official configurations of Bend (Marin
et al., 2024). The results are shown in Figure 12. We observe that SPACE achieves SOTA performance on chromatin
accessibility, histone modification, and CpG methylation tasks, with chromatin accessibility surpassing the second-best
method by 0.04. It is worth noting that although our supervised pre-training tasks also include chromatin accessibility and
histone modification representations, which may provide potential advantages, their data processing approaches are not
entirely identical. However, on the two variant effects tasks, SPACE shows limited effectiveness, similar to most DFMs.
We hypothesize that masked language modeling tasks may be necessary to achieve good performance on variant effect
prediction (Benegas et al., 2025).

F. Genomic Benchmarks
F.1. Dataset

Genomic Benchmarks currently comprises nine datasets focusing on regulatory elements (promoters, enhancers, and open
chromatin regions) from three model organisms: Homo sapiens (human), Mus musculus (mouse), and Caenorhabditis
elegans (nematode). All data were downloaded from https://github.com/ML-Bioinfo-CEITEC/genomic_
benchmarks. The detailed composition of these datasets is presented in Table 13.
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Table 13. Composition of Genomic Benchmarks.

Name sequences classes Class ratio

dummy mouse enhancers ensembl 1210 2 1.0
demo coding vs intergenomic seqs 100000 2 1.0
demo human or worm 100000 2 1.0
drosophila enhancers stark 6914 2 1.0
human enhancers cohn 27791 2 1.0
human enhancers ensembl 154842 2 1.0
human ensembl regulatory 289061 3 1.2
human nontata promoters 36131 2 1.2
human ocr ensembl 174756 2 1.0

F.2. Implementation

We systematically evaluated learning rates 5× 10−6, 5× 10−5, 6× 10−5, 7× 10−5, 8× 10−5, 3× 10−4 and batch sizes
8, 16, 32, 64. The optimal learning rate and batch size for each task were determined through validation set performance
experiments. The optimization process employed the AdamW algorithm (Loshchilov & Hutter, 2019) with 3 training epochs,
while maintaining the default parameter configuration from the HuggingFace Transformer Trainer implementation (Wolf
et al., 2020).

G. Ablation Study
SPACE demonstrates comparable or superior performance to the decoder-removed variant in 14/18 tasks, with 11/18 tasks
still outperforming even when replaced by a parameter-matched MLP. Notably, for regulatory element classification tasks,
SPACE achieves better results in 4/5 datasets, with the only exception being the TATA box dataset—which primarily
examines sequence motifs of TATA boxes and does not require complex regulatory mechanism understanding. This suggests
that while our decoder does not explicitly improve direct chromatin profile prediction accuracy, the MoE architecture
implicitly captures cross-profile regulatory interactions by modeling their dependencies. This capability provides critical
advantages for tasks requiring integrated understanding of multiple profiles, such as regulatory element prediction.

H. Model Parameter Counts
We present the parameter counts of SPACE and its ablation variants in Table 16. The SPACE (large) configuration represents
our primary model with complete architectural components for comparative analysis, while the other variants correspond to
reduced-scale models specifically designed for ablation studies. These smaller models employ 131 KB input sequences with
a compressed hidden dimension of 768 and operate under a batch size of 32.

Table 16. Model Parameter Counts of SPACE and its ablation variants

SPACE (large) SPACE w/o enhancement SPACE w/o species MoE SPACE (small)

param counts 588.75M 150.96M 105.19M 183.19M
hidden dim 1536 768 768 768

It should be particularly noted that, based on the sparse architecture design of the MoE, our model activates only a partial
subset of parameters during a single forward computation. This selective parameter activation mechanism makes the number
of effective parameters actually involved in the computation significantly lower than the total number of parameters in the
model, thus significantly reducing the computational resource consumption while maintaining the model capacity.
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Table 14. Ablation study on NT downstream tasks.

Model Chromatin profiles

H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

SPACE w/o decoder 0.535 0.514 0.567 0.593 0.520 0.604
SPACE w/o decoder w/ MLP 0.551 0.528 0.577 0.580 0.534 0.637
SPACE w/o encoder 0.540 0.524 0.569 0.579 0.506 0.625
SPACE w/o encoder and species emb 0.551 0.518 0.566 0.585 0.519 0.622
SPACE 0.556 0.529 0.579 0.593 0.516 0.612

Model Chromatin profiles Regulatory elements

H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

SPACE w/o decoder 0.661 0.601 0.452 0.627 0.598 0.563
SPACE w/o decoder w/ MLP 0.668 0.589 0.451 0.636 0.601 0.558
SPACE w/o encoder 0.627 0.585 0.461 0.637 0.612 0.564
SPACE w/o encoder and species emb 0.654 0.588 0.454 0.635 0.596 0.563
SPACE 0.637 0.582 0.457 0.644 0.607 0.564

Model Regulatory elements Splicing

All NoTATA TATA Acceptors All Donors

SPACE w/o decoder 0.752 0.773 0.841 0.873 0.884 0.936
SPACE w/o decoder w/ MLP 0.743 0.750 0.808 0.883 0.886 0.937
SPACE w/o encoder 0.738 0.769 0.828 0.864 0.869 0.933
SPACE w/o encoder and species emb 0.739 0.767 0.828 0.869 0.876 0.942
SPACE 0.763 0.776 0.802 0.898 0.884 0.941

Table 15. Ablation study on GUE benchmarks.

Model
Epigenetic Marks Prediction

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2

SPACE w/o dec 76.76 46.75 50.09 39.56 34.80
SPACE w/o dec w/ MLP 75.59 45.17 48.21 39.70 34.81
SPACE w/o enc 76.16 48.78 49.14 37.57 34.08
SPACE w/o enc and species emb 76.94 48.77 42.46 43.01 34.33
SPACE 76.40 50.76 49.18 41.30 32.83

Model Epigenetic Marks Prediction Virus

H3K4me3 H3K79me3 H3K9ac H4 H4ac Covid

SPACE w/o dec 34.85 57.85 55.38 79.78 49.05 68.66
SPACE w/o dec w/ MLP 34.26 58.94 56.36 78.81 43.49 67.83
SPACE w/o enc 36.84 63.44 56.63 77.17 50.78 68.46
SPACE w/o enc and species emb 37.13 63.84 56.27 78.29 51.14 68.56
SPACE 37.74 61.10 57.06 79.33 51.05 68.89
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