
Mixture of Normalizing Flows for European Option Pricing

Yongxin Yang1 Timothy M. Hospedales2,3

1Queen Mary University of London
2University of Edinburgh

3Samsung AI Centre, Cambridge

Abstract

We present a mixture of normalizing flows (MoNF)
approach to European option pricing with guaran-
tees that its estimations are free from static arbit-
rage. In contrast to many existing methods that
meet economic rationality constraints (e.g., non-
arbitrage) by introducing auxiliary losses, our solu-
tion meets those constraints exactly by design. To
achieve this, we propose to build a model for risk
neutral density using normalizing flows, which
results in a pricing model, instead of modelling
the option pricing function directly. First, we con-
vert the constraints for direct pricing models to
the constraints for models backed by risk neut-
ral density estimation, then we design a specific
NF architecture that meets these constraints. Fur-
thermore, we find that employing a mixture of
such normalizing flows improves the performance
significantly, compared to using a deeper single
NF. Finally, we present a mechanism to regular-
ise the proposed model, and this regularisation
can serve as a bridge between our method and
any sample-based mathematical finance method.
The evaluations on five option datasets show su-
periority of our method compared to mathemat-
ical finance solutions and some other neural net-
works based methods. The code is available at
https://github.com/qmfin/MoNF.

1 INTRODUCTION

Option pricing has long been an active research area in
both mathematical finance and machine learning community.
Option pricing models provide a window to explain financial
market mechanics, while efficient pricing models to set bid
and ask prices in derivative markets are very valuable for
practitioners. The seminal work Black–Scholes [Black and

Scholes, 1973] initiated modern derivative theory by giving
a theoretical estimate of European option price. Since then
many studies have been carried out on finding better option
pricing models in terms of fitting real market data more
reliably.

The research paradigm of mathematical finance (MF) usu-
ally starts from a set of assumptions, e.g., what kind of
stochastic process provides a sensible and accurate model
of market movements. Based on these assumptions, they
end up with a parametric model that takes as input some
market signals (e.g., moneyness, time to maturity, and risk-
free rate) then outputs the corresponding option price. The
parameters in MF models usually have physical meaning in
econometric theory, and thus they are more transparent and
explainable, compared to their black-box machine learning
counterparts. However, when a MF model fails to fit the
market data, i.e., underfitting in machine learning sense, it
is not straightforward to introduce more parameters.

On the other side, machine learning approaches treat option
pricing as a regression problem. Though the input-output
pairs are almost the same as the MF models above, research-
ers tend to use generic methods, such as kernel machines and
neural networks [Malliaris and Salchenberger, 1993]. As a
result, ML models can fit the market data nearly perfectly
(if not, one can always choose to increase the model capa-
city). However, ML models usually fail important sanity
checks, e.g., they would give nonsense predictions for ex-
treme cases where no training data are available. This makes
them less appealing to practitioners since their behaviours
can be unpredictable for the rare events.

There are some attempts to integrate the econometric ax-
ioms into a machine learning model as inductive bias. More
specifically, there are several conditions for an economically
rational pricing model, and some studies [Dugas et al., 2000,
Yang et al., 2017, Ackerer et al., 2020] try to meet these
conditions by architecture design, auxiliary losses, and data
augmentation. However, those methods can only meet the
part of conditions with guarantees, and the rest of them are

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<yongxin.yang@qmul.ac.uk>?Subject=UAI 2023 MoNF Option Pricing
mailto:<t.hospedales@ed.ac.uk>?Subject=UAI 2023 MoNF Option Pricing
https://github.com/qmfin/MoNF

dealt with penalties that can be violated.

Our insight is that meeting all conditions for a pricing model
is intrinsically hard, but it becomes much easier if we choose
to work on the risk neural density (the probability density
of the underlying asset’s price on the maturity date) [Bahra,
1997], which comes with the corresponding conditions.

In this work, we propose a normalizing flows based model
for risk neutral density, which results in a deterministic
pricing function in the end. By specific architecture and
activation function design, our method can meet all finan-
cial axiom conditions, and yields very accurate estimates.
Furthermore, our approach sheds light on the less studied
issue of how to bridge mathematical finance and machine
learning approaches to option pricing.

2 RELATED WORK

2.1 OPTION PRICING

Option pricing is an active research area in mathematical fin-
ance. The seminal work Black–Scholes [Black and Scholes,
1973] assumed geometric Brownian motion (GBM) for the
underlying asset price and provided a closed-form pricing
formula with only one free parameter – volatility (the stand-
ard deviation of logarithmic returns). The GBM assumption
is usually invalidated in real market, and there are two main-
stream research directions for a fix. The first direction intro-
duces randomness to the volatility, rather than treating it as a
constant. For example, [Heston, 1993] allowed arbitrary cor-
relation between volatility and asset returns. It introduced
stochastic interest rates as well, and demonstrated the ef-
fectiveness for bond options and foreign currency options.
[Barndorff-Nielsen, 1997] took the normal inverse Gaussian
law as a building element, exploring the construction of
analytically and statistically tractable stochastic processes.
[Madan et al., 1998] used the Variance Gamma process
(a.k.a. the Laplace motion) because it allows for a wider
of skewness and kurtosis than the Brownian motion. The
second direction is to add a jump process, which represents
rare events, in addition to GBM. [Merton, 1976] superim-
posed a jump component on a diffusion component. The
jump component is composed of log-normal jumps driven
by a Poisson process. [Carr and Geman, 2002] generalised
the Variance Gamma model [Madan et al., 1998] to allow
for both diffusion process and jump process. [Kou, 2002]
proposed a double exponential jump-diffusion model, in-
corporate the leptokurtic feature that the return distribution
of assets having a higher peak and two heavier tails than
normal distribution, and strike a balance between reality and
tractability. A comprehensive study over those models can
be found in [Jeanblanc et al., 2009].

Apart from working on the pricing formula directly, it is
possible to build the model through other proxies. Possible

indirect modelling approaches are: (i) Implied volatility
[Ackerer et al., 2020], which is essentially the inverse func-
tion of Black–Scholes formula; One can build the model
for implied volatility curve (SVI) or implied volatility sur-
face (SSVI) and then apply Black–Scholes formula for pri-
cing. (ii) Risk neural density [Monteiro et al., 2008], which
models the probability distribution of asset prices in future.
The majority of mathematical finance methods model the
stochastic process of how asset price evolves, which natur-
ally lead to density functions along time axis. However, they
may not have analytic forms for these density functions,
therefore the pricing has to be done by Monte Carlo.

2.2 NEURAL NETWORKS FOR OPTION PRICING

The use of neural networks for option pricing can be traced
back to 1990s [Malliaris and Salchenberger, 1993, Hutchin-
son et al., 1994]. For a comprehensive review, please refer to
[Ruf and Wang, 2020]. At the first glance, neural networks
appear to be a good fit because they are universal approx-
imators, and it is easy to increase the number of parameters
in the case of under-fitting. In contrast, the parameters in
white-box mathematical finance models usually have phys-
ical meanings, and it is non-trivial to extend those models by
introducing more parameters. However, option pricing is not
simply mapping the input features (e.g., strike price, time
to maturity) to the market prices. Rational option pricing
models have to meet a series of conditions to guarantee that
they rule out any arbitrage opportunities. To this end, many
neural networks models borrow the insight from the mathem-
atical finance models. To name a few, [Garcia and Gençay,
2000] designed a NN-based option pricing model with a
similar form of Black–Scholes formula. [Dugas et al., 2000]
chose specific activation functions and weight constraints
so that their model has the same properties on first-order
and second-order derivatives as the mathematical finance
models. [Yang et al., 2017] adapted these strategies and
also utilised learning from hint [Abu-Mostafa, 1990] for the
conditions that are hard to meet with architecture design.
[Ackerer et al., 2020] extended those techniques to implied
volatility surface fitting and demonstrated their effectiveness.
These studies showed that employing constraints required
for econometric rationality produces better option pricing
models compared to vanilla unconstrained feed-forward
neural networks.

Overall, neural networks are promising methods for option
pricing, and there exist some successful studies in which
rationality constraints are exploited. However, they usually
use auxiliary loss functions to enforce the constraints, as
a result, those constraints are not guaranteed to hold at all
times. The reason for using auxiliary losses rather than ex-
ploiting architecture design is that the constraints are in the
form of taking the limit or the higher-order gradient w.r.t. the
input of the neural network. So they are hard to meet as the

neural networks go deeper. For example, [Dugas et al., 2000,
Yang et al., 2017] have only one hidden layer, and the tech-
niques developed can not be extended beyond that. In our
work, we choose to model the risk neutral density (RND),
and derive the corresponding constraints for it. We find that
it becomes much easier to deal with these constraints in
RND space.

2.3 NORMALIZING FLOWS

The key ingredient of the proposed method is called normal-
izing flows (NF), which is a popular generative model in
machine learning [Papamakarios et al., 2019]. The unique
advantage of NF over other generative models is that it al-
lows exact likelihood computation, which leads to a closed-
form pricing formula in our case. The basic idea of NF is to
stack a number of invertible layers, such as coupling [Dinh
et al., 2015, 2017], autoregressive [Kingma et al., 2016],
masked autoencoder [Papamakarios et al., 2017], and invert-
ible convolution [Kingma and Dhariwal, 2018], such that the
data distribution is transformed to a pre-defined distribution
(e.g., Gaussian). Studies in this area usually focus on design-
ing an invertible operator with small computation cost of the
determinant (e.g., the operator produces a triangular matrix).
Recently, NFs have been extended to the continuous domain
[Grathwohl et al., 2019]. Their applications beyond generat-
ing realistic data samples are also exploited, e.g., in lossless
compression [Hoogeboom et al., 2019]. An early attempt of
using NFs for RND modelling was [Loaiza-Ganem et al.,
2017], and it followed the principle of maximum entropy
from the previous studies [Buchen and Kelly, 1996, Neri
and Schneider, 2012]. However, it is effectively not risk-
neutral because the constraint over expectation of asset’s
future price is realised by an auxiliary loss, which is not
guaranteed to be zero.

3 METHODOLOGY

3.1 PROBLEM SETTING

A European option is a contract that gives the holder the
right, but not the obligation, to buy (call option) or to sell
(put option) the underlying asset (e.g., stock) at a specified
price (strike price) on a certain future date (maturity date).
For example, at time t = 0 (i.e., today), a company’s stock
price is $100, and an individual buys a call option with
strike price $110 and maturity date T = 5 (five days later).
After five days, if the company’s stock price is $120, he can
exercise the option and get the stock at the strike price $110.
In this case, if he sells the stock immediately, he will get
$10 profit. One the other hand, if the company’s stock price
is below $110, he will choose not to exercise the option, and
the only loss for him is the price of the option (sometimes
called premium). For the put option, he profits if the stock

price is lower than the strike price on the maturity date, as
he can buy the stock from the market at a lower price and
sell it at the strike price.

The problem setting of option pricing is to answer: what
should the price for the option at t = 0 be? In this work,
we restrict ourselves to the case of modelling option price
curves, i.e., for a given (annualised) time to maturity τ =
T−t
365 and the current underlying asset price S0, we seek for

the “best” mapping from the strike price K to the option
price y. For a parametric model fθ, the process of fitting
market data of N option prices (sometimes referred to as
calibration) usually involves the following optimisation,

min
θ

1

N

N∑
i=1

∥fθ(Ki; zi)− yi∥22 (1)

where Ki refers to the i-th option’s strike price; zi refers to
other factors such as the asset price S0, time to maturity τ ,
type of option (put/call), risk-free rate, and dividend yield
of the option’s underlying asset (if any); yi refers to the i-th
option’s price. The optimised model can be used to price
the option contract with unseen strike prices.

3.2 THE CONSTRAINTS FOR NON-ARBITRAGE

At the first glance, Eq. 1 appears to be a univariate regression
problem. However, fθ has to meet a series of constraints
such that it rules out arbitrage opportunities.

More specifically, we consider the static arbitrage for pricing
curves defined in [Carr et al., 2003], which include the
following constraints for call options

∂fθ(K)
∂K ≤ 0 (C1) ∂2fθ(K)

∂K2 ≥ 0 (C2) fθ(∞) = 0 (C3)

max(0, e−rτ (Fτ −K)) ≤ fθ(K) ≤ e−rτFτ (C4)

In (C4), the forward price Fτ is defined as Fτ = e(r−q)τS0,
where r is the continuously compounded zero-coupon in-
terest rate and q is the continuously paid dividend yield.
Note that, r and q have their own structures which need to
be estimated separately in real-world trading, but it is out of
the scope of this work. We treat them as known constants
for a given time period τ in this work. For put options, we
have similar constraints,

∂fθ(K)
∂K ≥ 0 (P1) ∂2fθ(K)

∂K2 ≥ 0 (P2) fθ(0) = 0 (P3)

max(0, e−rτ (K − Fτ)) ≤ fθ(K) ≤ e−rτK (P4)

The key insight of our work is that it is hard for a parametric
model (e.g., neural networks) to meet all constraints above,
but it is much easier if we chose to model the risk neural
density instead.

We propose to model the density of forward log-moneyness

of the asset price ST on the maturity date, i.e., x = log(ST

Fτ
),

because the common range of forward log-moneyness is
[−3, 3], which is more numerically stable than the asset
price itself.

More specific, we design the following option pricing model

fθ(K; z) = e−rτFτ

∫ +∞

−∞
[I(z)(ex − K

Fτ
)]+qθ(x)dx (2)

where [·]+ := max(0, ·) and I(z) is an indicator func-
tion that returns +1 for call option and −1 for put op-
tion. Here we slightly abuse the notation z for the triplet
(Put/Call, Fτ , e

−rτ) while the indicator function only ap-
plies to its first element – option type.

With Eq. 2, all constraints for pricing model are reduced
to the following three constraints on the density estimator
qθ(x). (Proof can be found in the appendix.)

qθ(x) ≥ 0 (R1)
∫ +∞
−∞ qθ(x) = 1 (R2)∫ +∞

−∞ exqθ(x)dx = 1 (R3)

(R1) and (R2) are constraints for any valid density function,
and (R3) sets the expectation of ex to be constant 1, which
means the expectation of underlying asset price at maturity
date, Eq[ST], should be the same as the forward price Fτ ,
and its discounted value (by risk-free rate r) at t = 0 would
be e−qτS0, which corresponds to the upper bound of call
option price in (C4). The density that meets (R3) is referred
to as risk-neutral density, as it basically states that the ex-
pectation of an asset priced at S0 will be S0e

(r−q)τ after the
period of τ (or S0e

rτ if it does not pay any dividends).

3.3 A NORMALIZING FLOWS MODEL

In this work, we build qθ(x) by a normalizing flows model,
which maps a one-dimension standard Gaussian to the dis-
tribution of interest. More specifically, we have a sample
ϵ ∼ N (0, 1). After a sequence of invertible transforms, it
becomes a sample from the risk neural density, i.e., ϵ

gθ−→ x
where gθ(·) stands for the sequence of transforms.

To find the best θ, we can estimate Eq. 2 by Monte Carlo,

fθ(K; z) = e−rτFτ
1

M

M∑
m=1

[I(z)(exp (gθ(ϵm))− K

Fτ
)]+

(3)
where {ϵ1, ϵ2, . . . , ϵM} are samples from standard Gaussian.
Then we can minimise Eq. 1 with Eq. 3 plugged-in by any
gradient based method, as long as gθ(·) is differentiable.

∇θ

N∑
i=1

∥e−rτFτ
1

M

M∑
m=1

[I(zi)(exp (gθ(ϵm))−Ki

Fτ
)]+−yi∥22

(4)

One may question the necessity of normalizing flows, be-
cause any generator appears to do the job in Eq. 4. The very
unique advantage of normalizing flows is that we can get
the exact density of q(x) by

qθ(x) = N (g−1
θ (x); 0, 1)

∣∣∣∣dg−1
θ (x)

dx

∣∣∣∣ (5)

Therefore we can run a numerical integration instead of
Monte Carlo for Eq. 2 in the testing stage, such that we will
have a deterministic result. This is crucial for real-world
deployed applications, though we still prefer to do Monte
Carlo during training for better efficiency. Note that, the in-
terval of integration in Eq. 2 is [−∞,+∞] theoretically, but
[−3, 3] is sufficient in practice, e.g., 3 means the underlying
asset price increases by e3 ≈ 20 times.

3.3.1 Enforcing the expectation constraint

It is non-trivial to meet (R3) by the architecture design, but
it becomes possible for normalizing flows as they model the
density explicitly.

If we have the following expectation calculated by nu-
merical integration µθ =

∫ +∞
−∞ exqθ(x)dx, it is easy to

see
∫ +∞
−∞

ex

µθ
qθ(x)dx ≡ 1. Therefore the following pricing

model meets (R3) up to machine precision.

fθ(K; z) = e−rτFτ

∫ +∞

−∞
[I(z)(

ex

µθ
− K

Fτ
)]+qθ(x)dx (6)

However, differentiating through µθ (the numerical integ-
rator) is unnecessarily expensive, thus we place the stop
gradient operator SG(·) over µθ, i.e.,

fθ(K; z) = e−rτFτ

∫ +∞

−∞
[I(z)(

ex

SG(µθ)
− K

Fτ
)]+qθ(x)dx

(7)
To understand the effect of SG(µθ), an equivalent realisa-
tion is: (i) duplicate θ into online parameter θ1 and offline
parameter θ2 and (ii) use the following pricing formula,

fθ1,θ2(K; z) = e−rτFτ

∫ +∞

−∞
[I(z)(

ex

µθ2

− K

Fτ
)]+qθ1(x)dx

(8)
For optimisation, we initialise θ1 and set θ2 = θ1 to ensure
the expectation constraint (R3) is met, then alternate

Step (1) Update θ1 by running one-step gradient descent
for reducing the pricing errors.

Step (2) Update θ2 by setting θ2 = θ1.

We can see that, Step (1) improves the fitness of pricing
model to market data, but it breaks the expectation con-
straint. Step (2) fixes the expectation constraint issue, but
it worsens the fitness. By alternating these two steps until
convergence, we should have the final model that fits the

3 2 1 1 2 3 x

1.5
1.0
0.5

0.5
1.0
1.5
2.0

y

(x)
1(x)

′(x)

Figure 1: Plots of the proposed activation function (Eq. 10),
its inverse, and its first order derivative.

market data well and meets the the expectation constraint.
When it comes to the actual implementation, it is easier to
use stop gradient SG(µθ) in Eq. 7 instead of the explicit
alternating optimisation explained above. With Eq. 7, we
modify the Monte Carlo estimator in Eq. 3 correspondingly.

fθ(K; z) = e−rτFτ
1

M

M∑
m=1

[I(z)(
exp (gθ(ϵm))

SG(µθ)
− K

Fτ
)]+

3.3.2 Activation function design

As we only need to transform a one-dimensional distribution
to another, a layer in our model is simply,

h(L+1) = ϕ(a(L) × h(L) + b(L)) (9)

where ϕ(·) is an invertible activation function. Apart from
being invertible, we introduce two more desired properties:
(i) symmetric: we start from a standard Gaussian, which
is symmetric, and we do not have bias towards positive or
negative sides, i.e., we do not assume the asset price should
increase or decrease. (ii) it is close to an identity function for
the input with sufficiently large absolute value, because we

need to avoid a possible explosion in values, in both ϵ
fθ−→ x

and x
f−1
θ−−→ ϵ, given that multiple transformations (layers)

can be stacked.

Frustratingly, the identity function ϕ(x) = x meets all the
conditions above, but we want a degree of non-linearity,
otherwise the model is reduced to Gaussian. To this end,
we design the following activation function, based on some
translation and rotation of the softplus function,

ϕ(x) =

{
log(1 + ex)− log(2) if x ≥ 0

− log(1 + e−x) + log(2) if x < 0
(10)

The plots of ϕ(x), its inverse ϕ−1(x), and its gradient ϕ′(x)
can be found in Fig. 1.

3.3.3 Mixture of normalizing flows

The model that we have developed so far has one drawback:
it is hard to scale up by introducing more trainable para-
meters. Every layer contains two parameters only, i.e., the
shift term a and the bias term b. To add more parameters
in the case of under-fitting, we have to stack more layers.
However, this would cause difficulties for training, e.g. we
may have the gradient vanishing-exploding problem.

To add one more axis in the parameter space, we propose
to use a mixture of normalizing flows models, rather than a
single one, i.e.,

q(x) =

K∑
i=1

πiqi(x) s.t. πi ≥ 0,
∑
i

πi = 1 (11)

Behind each qi is an independent NF model, realised by

z
fθi−−→ x.We can also verify that all conditions are still met

as long as π is a probability simplex. In fact, the mixture of
normalizing flows effectively creates K pricing models, and
the final price is the re-weighted sum of the outputs of those
models, i.e.,

ĉ = SOFTMAX(π̃) · [ĉ1, ĉ2, . . . , ĉK] (12)

where π̃ ∈ RK and each ĉi is estimated by Monte Carlo
(Eq. 3). With Eq. 12, Eq. 3, and Eq. 1, we can train all para-
meters {π̃, θ1, θ2, . . . , θK} using gradient based methods.

3.3.4 Regularisation

The mixture of normalizing flows can fit market data nearly
perfectly, but it may result in an overly complicated dens-
ity function (see zig-zag in Fig. 4). Though a non-smooth
density function will not lead to a non-smooth pricing func-
tion, because the density function is just the second order
derivative of pricing function, we want a mechanism for
regularisation to reduce the risk of over-fitting1.

Assume that we have a reference risk neutral density q̄(x),
which could come from a well-calibrated mathematical fin-
ance model, or other model with much fewer parameters. To
regularise our model qθ(x), we can minimise the divergence
of qθ(x) and q̄(x), i.e.,

min
θ

D(qθ(x)||q̄(x)) (13)

Here we choose D(·, ·) to be the Wasserstein distance
(a.k.a. earth mover’s distance), because it has a closed-
form solution for sample-based approximation under the
one-dimensional case. For example, if we draw M samples
{x̄1, x̄2, . . . , x̄M} from q̄(x), sort them in ascending order,

1Strictly speaking, only non-smooth pricing function raise
concerns over over-fitting. Hence the regularisation is mainly for
elegance in machine learning rather than generalization.

0.6 0.8 1.0 1.2 1.4 1.6
Strike/Forward

0

20

40

60

80

100
Op

tio
n

Pr
ice

Call Option (Train)
Call Option (Test)
Put Option (Train)
Put Option (Test)

0.6 0.8 1.0 1.2 1.4 1.6
Strike/Forward

0

20

40

60

80

100

Op
tio

n
Pr

ice

Call Option (Train)
Call Option (Test)
Put Option (Train)
Put Option (Test)

Figure 2: The two ways to split the training and testing set: Interpolation (left) and Extrapolation (right)

Number of Contracts Average Prices
Alphabet Apple Microsoft NASDAQ100 S&P500 Alphabet Apple Microsoft NASDAQ100 S&P500

Call 1,939,066 809,333 63,0234 4,292,133 10,029,359 253.69 35.75 30.29 1131.10 441.96
Put 1,943,777 803,095 63,4802 4,186,962 10,492,160 96.24 23.13 16.72 458.22 95.50

Table 1: Some Statistics of the Dataset: Number of Contracts (Left) and Average Prices (Right)

i.e., x̄[1] < x̄[2] < · · · < x̄[M]. Similarly, we get the sorted
samples from qθ(x), say, x[1] < x[2] < · · · < x[M], then
the estimate of Eq. 13 is,

min
θ

1

M

M∑
i=1

|x[i] − x̄[i]| (14)

To calculate the gradient for Eq. 14, we need to differen-
tiate a random sample x w.r.t. distribution parameters θ
(in this case θ = {π̃, θ1, θ2, . . . , θK}). Since qθ(x) is one-
dimensional mixture of distributions, this can be done by
the implicit gradient technique developed in [Graves, 2016,
Figurnov et al., 2018].

∂x

∂θ
= − 1

qθ(x)

∂

∂θ

∫ x

−∞
qθ(u)du (15)

The integral part in Eq. 15 can be estimated by numerical
integration, starting from a sufficiently small value, i.e., −3,
and ending by a value which is sufficiently close to x.

The techniques developed here can serve as a bridge
between our machine learning model and mathematical fin-
ance models, enabling us to use a well-calibrated (well-
trained) mathematical finance model to regularise our
model, so that it behaves closely to the MF model. This
is potentially useful to improve out-of-distribution predic-
tions of our model.

Besides, many MF models do not have a risk neutral dens-
ity or a pricing function in an analytic form, as they are
essentially sample based. Therefore, we can approximate a
MF model and obtain an analytic expression for RND using

Eq. 14, which can be used for further analysis or simply a
means for producing a deterministic price in a more efficient
manner (numerical integration v.s. Monte Carlo).

4 EXPERIMENTS

We evaluate our method as well as several baselines on
five option datasets including three stock options: Alphabet,
Apple Inc, and Microsoft; two index options: NASDAQ100
and S&P500. Since there are not real ground truths for
option prices, we assume that the frequently traded options
reflect the true value of option contracts.

4.1 DATA PRE-PROCESSING

The full options dataset is provided by a third party, and we
release an anonymised snapshot of data with the coverage
over the period from 01-Jan-2017 to 31-Dec-20212.

The option price is the mid-point of best bid and best offer
quotes by the end of day. Besides, we apply three filters: (i)
we exclude all options with time to maturity shorter than
7 days or longer than 2 years (ii) we discard options with
implied volatility larger than 1.5 as they are less frequently
traded. (iii) we discard options with best offer smaller than
0.05 for the same reason. In total we have 35 million option
contracts left after filtering. Some statistics on the number
of contracts for each asset and average prices can be found
in Table. 1

2https://github.com/qmfin/option_data

https://github.com/qmfin/option_data

Alphabet Apple Microsoft NASDAQ100 S&P500
Test Train Test Train Test Train Test Train Test Train

Black Scholes 0.3436 0.3448 0.2284 0.2240 0.2149 0.2175 0.3156 0.3189 0.5354 0.5358
Heston 0.2855 0.2872 0.1825 0.1810 0.1185 0.1154 1.2811 1.3029 0.8356 0.8377
Kou Jump 1.0465 0.9165 0.6261 0.6589 0.4294 0.4246 1.3204 1.2927 1.7156 1.7563
Merton Jump 0.3384 0.3385 0.2284 0.2240 0.2149 0.2175 0.4049 0.4055 0.3794 0.3797
Variance Gamma 0.2351 0.2365 0.1150 0.1106 1.0360 1.3023 0.1324 0.1314 0.1494 0.1499

MNN 0.3427 0.3456 0.2325 0.2586 0.2275 0.2113 0.4221 0.4824 0.3883 0.3825
GNN 0.2896 0.3021 0.1921 0.2242 0.1300 0.1147 1.0503 1.2572 0.7849 0.8472

MoNF (Linear) 0.4791 0.5077 0.1209 0.1325 0.0626 0.0510 0.0559 0.0849 0.0479 0.0671
MoNF 0.1715 0.1649 0.0448 0.0391 0.0391 0.0363 0.0229 0.0220 0.0310 0.0334

Black Scholes 0.4950 0.1840 0.3676 0.0994 0.3498 0.0889 0.4717 0.1705 0.6185 0.4270
Heston 0.4228 0.1066 0.3472 0.0661 1.8010 0.4541 1.4452 0.3736 0.6884 1.0936
Kou Jump 4.0404 0.2047 1.1308 0.0602 1.0607 0.0471 7.1047 0.1038 6.1269 0.2024
Merton Jump 1.0406 0.1824 0.3676 0.0994 0.3498 0.0889 1.4126 0.1100 0.5640 0.2514
Variance Gamma 0.3924 0.0811 0.2389 0.0469 0.1937 0.0344 0.2279 0.0323 0.5670 0.0904

MNN 1.0287 0.1906 0.3987 0.1023 0.3214 0.0934 1.3352 0.1054 0.5568 0.2459
GNN 0.4204 0.1099 0.3544 0.0633 2.1005 0.4199 1.2218 0.3088 0.7339 0.9670

MoNF (Linear) 0.5706 0.0951 0.3490 0.0626 0.1620 0.0854 0.1184 0.0385 0.6351 0.1691
MoNF 0.1706 0.0289 0.1564 0.0221 0.0982 0.0222 0.1084 0.0185 0.3130 0.0564

Table 2: Option Pricing Performance (Mean Absolute Error): Interpolation Setting (Top) and Extrapolation Setting (bottom)

4.1.1 Train-test split

The dataset for each individual experiment is formed by
options with the same maturity on every trading day, and
we have around 120, 000 datasets/experiments. On average,
each dataset has 300 option contracts/samples. For those
samples, we have two strategies to split them into the train-
ing and testing sets:

Interpolation We sort all options by their strike prices,
and choose the even-indexed ones as training and odd-
indexed ones as testing.

Extrapolation We choose 50% all options with the strike
prices near the current asset price for the training, and
leave the remaining options with strike prices far away
from the current asset price for the testing.

The illustration of these two splits can be found in Fig. 2.

4.2 IMPLEMENTATION

We implement our method using PyTorch [Paszke et al.,
2019], and tune the hyper-parameters using the data from
the day before the starting date then keep them fix for the
whole five years’ experiments. For the main experiments,
we use a mixture model with 8 NFs and each NF has 4
layers, and the reference distribution is a single 4-layer NF.
We also evaluate the performance for MoNF with identify
function instead of the proposed activation function, de-
noted as MoNF (Linear). Note that, the model is actually

reduced to Gaussian Mixture Model (GMM), as the linear
transformation of Gaussian is still Gaussian.

For neural network based methods, we choose Modular
Neural Networks (MNN) [Gradojevic et al., 2009] and
Gated Neural Networks (GNN) [Yang et al., 2017], which
partially meet the constraints. For mathematical finance
baselines, we choose Black–Scholes [Black and Scholes,
1973], Heston [Heston, 1993], Variance Gamma [Madan
et al., 1998], Kou Jump [Kou, 2002], and Merton Jump
[Matsuda, 2004], as they represent different diffusion and
jump process designs.

All models are trained to minimise the mean absolute error
of the real market v.s. predicted prices, and the true differ-
ence over prices is reported. This is different from some
studies that train and evaluate their methods using the nor-
malised price (e.g., option price divided by asset price), as
that may not reflect the performance in trading.

4.3 RESULTS ANALYSIS

In option pricing, we care both the training and testing error,
because training error reflects how well the model explains
market behaviour, and the testing error reflects how well the
model performs if we ask for a quote of an unseen strike
price. In real market data, the strike prices are some com-
mon numbers (e.g., 50, 100, 150), and a practical use of
option pricing is to estimate the price for an arbitrary strike
(e.g., 76.54). From the summary of results in Table 2, we

8 v.s. 2x4 16 v.s. 4x4 32 v.s. 8x4
Model Configurations

0.0

0.2

0.4

0.6

0.8
Te

st
in

g
M

AE
Single
Mix

Figure 3: Single NF models vs. Mixture of NFs (Test-MAE)

can easily see the advantage of the proposed method over
other baselines. Interestingly, other neural network based
methods, such as MNN and GNN, do not outperform the
mathematical finance models constantly, which use signi-
ficantly fewer parameters. We further investigate why this
happened. Both MNN and GNN are designed for call option
pricing, and the designs are made to meet some (not all) of
the constraints so it is not easy to adapt the same design
for put options, therefore, we have to convert put options
to call options via put-call parity, and convert them back
after pricing. However, the re-converted put options have
much larger errors, even though their converted call options
are well fitted by MNN and GNN. This is reasonable: put-
converted call options are usually much cheaper than their
original prices, so the errors over put-converted call options
will be amplified when converting back to put options.

4.3.1 Is mixture model necessary?

One may question that whether we really need a mixture
of normalizing flows, or the similar performance can be
achieved by using a single but deeper NF model. Here we
evaluate the model performance for three pairs of models:
(i) an 8-layer NF v.s. a 4 × 2-layer MoNF (ii) a 16-layer
NF v.s. a 4 × 4-layer MoNF (iii) a 32-layer NF v.s. a 8 ×
4-layer MoNF. The results can be found in Fig. 3. Increasing
the number of parameters helps to reduce the testing error
in both cases, but it is more effective to use a mixture of
NFs models rather than a single deep NF model. Besides,
we have also found that the deep single model is more sens-
itive to initialisation empirically because of the numerical
stability issues when more layers/transformations are added,
so the mixture of shallower normalising flows is preferred.

4.3.2 Regularisation

We investigate the effect of the regularisation term
(Sec 3.3.4). First, we train a single NF model and use it as
a prior distribution. Then, we train our model with/without

0.1 0.0 0.1
Log Moneyness

0

2

4

6

8

10

12

De
ns

ity

Prior
W Reg.
W/O Reg.

Figure 4: The effect of regularisation on MoNF.

the regularisation term and plot the risk neutral density in
Fig. 4. We can see that the density without regularisation
tends to be non-smooth, due to its nature of being a mix-
ture model. In contrast, the density with regularisation is
much closer to the single NF model’s. We also compare the
performance of MoNF without regularisation on S&P500
index option. As we can see in Table 3, the performance is
improved slightly without regularization. We reiterate that
the model without regularization does not invalidate any
constraints as the density is still valid despite being non-
smooth. A more realistic use of regularization is to form a
rather simple density function, e.g., a uni-modal distribution,
so one can answer the questions like “what is the option
inferred mode of future asset price from market data”.

Test Train

Interpolation MoNF (w. Reg.) 0.0310 0.0334
MoNF (w.o. Reg) 0.0301 0.0290

Extrapolation MoNF (w. Reg.) 0.3130 0.0564
MoNF (w.o. Reg) 0.3224 0.0519

Table 3: Impact of regularization (S&P 500, MAE).

5 CONCLUSION

In this work, we presented a European option pricing model
based on the normalizing flows. It achieved excellent per-
formance in terms of fitting the market data as well as gen-
eralising to unseen strike prices. More crucially, it met all
conditions for an economically rational model, so we are as-
sured that it will behave rationally in out-of-distribution
scenarios and rare events. Finally, we demonstrate that
neural networks for risk neutral density could potentially
be a better choice than directly modelling the pricing func-
tion. For the future work, we plan to extend the model from
pricing curves to pricing surfaces.

Disclaimer: All authors are faculty. Neither graduate stu-
dents nor small animals were hurt while producing this
paper.

References

Y. S. Abu-Mostafa. Learning from hints in neural networks.
Journal of Complexity, 6(2):192–198, 1990.

Damien Ackerer, Natasa Tagasovska, and Thibault Vatter.
Deep smoothing of the implied volatility surface. In Ad-
vances in Neural Information Processing Systems (Neur-
IPS), 2020.

Bhupinder Bahra. Implied risk-neutral probability dens-
ity functions from option prices: theory and applica-
tion. Bank of england working papers, Bank of England,
1997. URL https://EconPapers.repec.org/
RePEc:boe:boeewp:66.

Ole E. Barndorff-Nielsen. Normal inverse gaussian distribu-
tions and stochastic volatility modelling. Scandinavian
Journal of Statistics, 24(1):1–13, 1997.

Fishcer Black and Myron Scholes. The pricing of options
and corporate liabilities. Journal of political economy, 81
(3):637–654, 1973.

Peter W. Buchen and Michael Kelly. The maximum entropy
distribution of an asset inferred from option prices. The
Journal of Financial and Quantitative Analysis, 31(1):
143–159, 1996.

Peter Carr and Helyette Geman. The fine structure of as-
set returns: An empirical investigation. The Journal of
Business, 75(2):305–332, 2002.

Peter Carr, Hélyette Geman, Dilip B. Madan, and Marc Yor.
Stochastic volatility for lévy processes. Mathematical
Finance, 13(3):345–382, 2003.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. In Inter-
national Conference on Learning Representations (ICLR)
Workshop, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real nvp. In International Con-
ference on Learning Representations (ICLR), 2017.

Charles Dugas, Yoshua Bengio, Francois Belisle, Claude
Nadeau, and Rene Garcia. Incorporating second-order
functional knowledge for better option pricing. In Neural
Information Processing Systems (NIPS), 2000.

Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Im-
plicit reparameterization gradients. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

René Garcia and Ramazan Gençay. Pricing and hedging
derivative securities with neural networks and a homo-
geneity hint. Journal of Econometrics, 94(1):93–115,
2000.

N. Gradojevic, R. Gencay, and D. Kukolj. Option pricing
with modular neural networks. IEEE Transactions on
Neural Networks, 20(4):626–637, 2009.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya
Sutskever, and David Duvenaud. Ffjord: Free-form con-
tinuous dynamics for scalable reversible generative mod-
els. International Conference on Learning Representa-
tions (ICLR), 2019.

Alex Graves. Stochastic backpropagation through mixture
density distributions. CoRR, abs/1607.05690, 2016.

Steven L. Heston. A closed-form solution for options with
stochastic volatility with applications to bond and cur-
rency options. Review of Financial Studies, 6:327–343,
1993.

Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, and
Max Welling. Integer discrete flows and lossless com-
pression. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

James M. Hutchinson, Andrww W. Lo, and Tomaso Pog-
gio. A nonparametric approach to pricing and hedging
derivative securities via learning networks. The Journal
of Finance, 49(3):851–889, 1994.

M. Jeanblanc, M. Yor, and M. Chesney. Mathematical Meth-
ods for Financial Markets. Springer Finance. Springer-
Verlag London Ltd., 2009.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In Neural Inform-
ation Processing Systems (NeurIPS), 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,
Ilya Sutskever, and Max Welling. Improved variational
inference with inverse autoregressive flow. In Neural
Information Processing Systems (NIPS), 2016.

S. G. Kou. A jump-diffusion model for option pricing.
Management Science, 48(8):1086–1101, 2002.

Gabriel Loaiza-Ganem, Yuanjun Gao, and John P. Cunning-
ham. Maximum entropy flow networks. In International
Conference on Learning Representations (ICLR), 2017.

Dilip B. Madan, Peter Carr, and Eric C. Chang. The variance
gamma process and option pricing. European Finance
Review, 2:79–105, 1998.

Mary Malliaris and Linda Salchenberger. A neural network
model for estimating option prices. Applied Intelligence,
3(3):193–206, 1993.

Kazuhisa Matsuda. Introduction to merton jump diffusion
model, 2004.

https://EconPapers.repec.org/RePEc:boe:boeewp:66
https://EconPapers.repec.org/RePEc:boe:boeewp:66

Robert C. Merton. Option pricing when underlying stock re-
turns are discontinuous. Journal of Financial Economics,
3:125–144, 1976.

Ana Margarida Monteiro, Reha H. Tutuncu, and Luis N.
Vicente. Recovering risk-neutral probability density func-
tions from options prices using cubic splines and ensur-
ing nonnegativity. European Journal of Operational Re-
search, 187(2):525–542, 2008.

Cassio Neri and Lorenz Schneider. Maximum entropy dis-
tributions inferred from option portfolios on an asset.
Finance and Stochastics, 16(2):293–318, 2012.

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation. In
Neural Information Processing Systems (NIPS), 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Lakshminaray-
anan. Normalizing flows for probabilistic modeling and
inference. CoRR, abs/1912.02762, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chint-
ala. Pytorch: An imperative style, high-performance deep
learning library. In Neural Information Processing Sys-
tems (NeurIPS), 2019.

Johannes Ruf and Weiguan Wang. Neural networks for
option pricing and hedging: a literature review. Journal
of Computational Finance, 24(1):1–46, 2020.

Yongxin Yang, Yu Zheng, and Timothy M. Hospedales.
Gated neural networks for option pricing: Rationality by
design. In AAAI Conference on Artificial Intelligence
(AAAI), 2017.

	Introduction
	Related Work
	Option pricing
	Neural networks for option pricing
	Normalizing flows

	Methodology
	Problem setting
	The constraints for non-arbitrage
	A normalizing flows model
	Enforcing the expectation constraint
	Activation function design
	Mixture of normalizing flows
	Regularisation

	Experiments
	Data pre-processing
	Train-test split

	Implementation
	Results analysis
	Is mixture model necessary?
	Regularisation

	Conclusion

